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Structure and dynamics of DNA are studied by using a model dynamical system in which each base 
in the system, coupled with its complementary base and nearest neighbours in the same strand by the 
hydrogen·bonding and the stacking energy, respectively, is allowed to rotate in a plane perpendicular to the 
helical axis. The potential energy of the base system is taken to be composed of two parts, intra·strand 
.base·base interaction energy and inter-strand one; in which base-sequence variation of interaction constants 
is neglected. When the intra-strand interactions are much larger than the inter-strand ones, a continuum 
approximation can be used, and the model system admits various topological solitons propagating along 
the helical axis. By studying numerically nonlinear difference equations determined from the extrema of 
a potential function of the model system in its simplified yet nontrivial case, it is shown that there exist 
fairly large local fluctuations in helical twist angles from one base pair to the next characterized by 

commensurate, incommensurate and chaotic phases, in addition to the conventional, idealized B-form. 

§ 1. Introduction 

The conventional structure of DNA is the so-called B-form proposed more than thirty 

years ago by Watson and Crick. I) Despite its widespread acceptance, however, this 

model was based 'On x-ray diffraction studies of fibers with limited resolution. Further 

examination of x-ray patterns from crystals, fibers and thin films of natural DNA revealed 

two other forms, A-form and Z-form, of the double helix, the latter being so different from 

the other two due to left-handed structure in its twise) On the other hand, it has been 

known for some time that polar hydrogens of bases in DNA and synthetic duplexes 

exchange with solvent hydrogens under conditions in which these molecules are ordered 

and remote from any denaturation transitions.3
) Free bases are able to exchange their N

H with solvent much more rapidly than those coupled with their complementary bases by 

hydrogen bonding. This has led to the proposal that ordered helices contain small 

amounts of open states, in which bases are unpaired, and that these open states mediate 

exchange 'of otherwise inaccessible hydrogen-bonded protons. It is therefore likely that 

aside from several forms of averaged, overall structure, there exist local fluctuations in 

the structure of DNA. Englander et al.4
) and YomosaS) suggested that open segments in 

DNA may propagate as solitons. In arriving at such a result, these workers employed a 

continuum approximation to model equations describing the dynamical properties of 

DNA. 

In a previous paper, which will hereafter be referred to as (1),6) we made a brief report 

of our theqry based on a dynamic plane base-rotator model. Main results obtained there 

are: (1) There exist in the continuum approximation topological solitons having the 

properties somewhat different from those obtained previously.4),S) (2) Numerical solu-
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680 s. Homma and S. Takeno 

tions to original, static, spatially discrete model field equations give fairly large local 

variations in helical-twist angles from one base pair to the next characterized by commen

surate, incommensurate and chaotic phases. The results in (I) are based on a highly 

idealized model of DNA, in which non-periodicity of force field along the helical axis due 

to a particular base-pair sequence is neglected. The qualitative features of the second of 

the above-mentioned results, i.e., local fluctuations in the helical twist angles may-remain 

unchanged or even be enhanced if we consider more realistic situations by taking se

quence-dependence of the field into account and by allowing several other degrees of 

freedom for the dynamics of bases. 

It is the purpose of this paper to make a more detailed study of the problem outlined 

in (I). This is done by (1) improving our previous plane base-rotator model and (2) doing 

more extensive numerical and analytical calculations of the structural and dynamical 

properties of DNA. When studying the problem as described above, our recognition is 

that the discreteness as well as nonlinearity appears to be the key elements to study the 

properties of DNA and other biologically important macromolecules from the viewpoint 

of mathematical physics. By reducing model field equations to a discrete version of the 

double sine-Gordon equation, it is shown that numerical solutions to a static form of the 

equations give a variety of local fluctuations in the structure of bases, in addition to the 

idealized B-form and that topological solitons described by the double sine-Gordon 

equation7
) or by its generalized version can exist, provided the stacking energy of the 

bases is much larger than the hydrogen bonding energy. 

While this manuscript was under preparation, the present authors became aware of a 

recent review article by Dickerson,8) who reported on the results of recent structural 

analysis of short double helical DNA molecules. It was shown that there exist various 

forms of local fluctuations in the helix structure of. three forms of DNA, such as helical 

twist angle, base inclination, propeller twisting of bases, base rolling, etc. The first of 

these, which was shown to be largest among the types of fluctuations given above, is 

nothing. but the principal result of this paper. Introducing sum functions and using 

heuristic arguments, Dickerson has suggested that local variations in helical twist angles 

and base-roll angles of very short DNA molecules are induced by particular base sequence. 

The conclusion arrived at in this paper for long DNA molecules with non-periodicity of 

force field along the helical axis neglected is that the nonlinearity and discreteness are 

another important ingredient to be taken into account for the study of local fluctuations 

in helical twist angles. 

This paper is organized as follows. In the next section we introduce a model 

dynamical system to simulate a DNA macromolecule. In §3 we discuss the formal 

properties of the structure and dynamics of our model system by confining ourselves to its 

simplest case, i.e., dynamic plane base-rotator model. In §4 a continuum approximation 

is employed to show the existence of various types of topological solitons. In §5 we 

present the results of numerical calculations for the structural properties of our model 

system determined from original, discrete model. The last section is devoted to conclud

ing remarks on the results presented in this paper. 

§ 2. Model Hamiltonian 

We consider the Watson-Crick model of DNA l
) with helical axis taken in the z-
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A Coupled Base-Rotator Model for Structure and Dynamics of DNA 681 

5 5' 

Fig. 1. Schematic feature of the B-form of DNA. 

The sugar-phosphate backbones of the double 

helix are represented as ribbons Sand S' and the 

rung-like base pairs connecting them as arrows. 

y 

(a) 

z 

'------_ x 

(b) 

Fig. 2. Projection of the nth pair of bases (arrows) 

(a) in the xy-plane and (b) in the xz-plane. 

direction_ Its exact B-form is schematically shown in Fig. 1, where each base is depicted 

by an arrow with unit length, and complementary base pairs are indicated by conjugated 

arrows directed inward. Three fundamental assumptions are employed to study struc

ture and dynamics of DNA: (1) The essential points of the problem can be gained by solely 

paying attention to bases in the double strands. (2) Fluctuations of the positions of the 

bases take place through their rotational motion around the points where they are 

attached to the strands. (3) These fluctuations give rise, under certain circumstances, to 

breaking of hydrogen bonding of the bases, thereby inducing unwinding of double strands 

to which the bases are held. Let the coordinates of P nand P n', which are the points where 

the nth base pair is attached to the one of the strand (referred to as S) and to the other 

strand (referred to as S') be (a cos n(jJo, a sin n(jJo, Zn) and (a cos(n(jJo+ J[), a sin(n(jJo+ J[), 

Zn'), respectively, (Fig. 2) with (jJo=2J[/P(p=10). Here a is the radius of the circle 

depicted in Fig. 2, and P is the number of bases per tum in Sand S'. Also, let (On, (jJn) 

and (On', (jJn') be two angles of rotation of the nth base pair around the points Pn and 

Pn', respectively. The quantities (On, (jJn, Zn) and (On', (jJn', Zn') then measure the deviation 

of the positions of the nth pair of bases from the exact B-forrri. What is the type of base

base interactions in such a model DNA system? As a preliminary to later discussion, we 

first employ a heuristic argument to assume that inter-strand base-base interactions or the 

hydrogen-bonding energy of a given base pair depend on their distance. In terms of the 

. variables given above, the square AA'2 == L n 2 of the distance between the top of the nth 

arrow pair is given by 
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682 s. Homma and S. Takeno 

. In this paper we limit our discussion to the case Zn=Zn'. This amounts to neglecting 

longitudinal compression waves. Here the essential ingredients of the inter-strand base

base interaction energy are the factors sinOn sinOn'COS(9'n-9'n')-COS On cos On' and 

- (sin OnCOS 9'n + sin On' cos 9'n'). Since we have characterized the rung-like base pairs 

connecting them as planks as well as sugar-phosphate backbones of the double helix as 

ribbons, it is not altogether meaningless to assume that the rotational motion of the bases 

takes place predominantly in planes perpendicular to the helical axis. The two factors 

then reduce to COS(9'n-9'n') and -(cos 9'n+COS 9'n'). It is seen that the former depends 

only on the relative angle of the base pair, having the tendency of keeping a pair of bases 

antiparallel to each other. While, the latter comes from the local-field energy responsible 

for the exact B-form of DNA, where helical twist angle from one base pair to the next is 

36 degree, corresponding to 10 base pairs per 360-degree turn. 

Under the assumption that essential features of structure and dynamics of DNA can 

be gained by such a plane base-rotator model, we take the inter-strand base-base interac

tion energy v( 9'n, 9'n') of the nth base pair to be of the form 

(2·2) 

Here the quantities hn and An are interaction constants characterizing the local-field 

energy and the hydrogen-bonding energy of the nth base pair, respectively. We are next 

concerned with the intra-strand base-base interaction or the stacking energy of the bases. 

Since this has the tendency of keeping neighbouring bases parallel to each other, we take 

the total energy ~nU(9'n, 9'n') of the intra-strand interaction to be of the form 

Here In and In' are interaction constants associated with the nth bases in Sand S', 

respectively. Stationary configurations of the bases in our model DNA system are 

obtained by minimizing the total potential energy with respect to 9'n and 9'n'-

The dynamical properties of our model system can be studied by adding the kinetic 

energy of the bases to this. Thus we take the Hamiltonian in the form 

(2·4) 

Here In and In' are the moments of inertia ofthe nth bases in Sand S'. It is seen that 

here a DNA molecule is simulated as longitudinally and transversally coupled plane 

rotators. Equation (2·4) is obviously a generalization of the Frenkel-Kontrova model,9) 

which has recently been a subject of renewed interest in solid state physics. lO
) It is also 

a slight generalization of the model Hamiltonian employed by the present authors in (I). 6) 

Since the model Hamiltonian (2·4) is too restrictive in studying the structural and 

dynamical properties of DNA, an attempt is made in the Appendix to generalize it to the 

case of three-dimensional rotators. 
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A Coupled Base-Rotator Model for Structure and Dynamics of DNA 683 

§ 3. On-site potential 

Some of the qualitative properties of our model system (2·4) can be gained by solely 

paying attention to the on-site potential V(rpn, rpn'), the dimensionless form of which is 

written as 

(3·1) 

with 

(3·2) 

Depending upon the value of 7)n, it takes several forms. To see this, we first look into 

v( rpn, rpn') for rpn = rpn' and rpn = - rpn'. In these two specific cases the on-site potential 

takes the form 

for rpn = rpn' 

for rpn = - rpn . 

(3·3a) 

(3·3b) 

It is seen that v( rpn, rpn') in the direction of the lines rpn = rpn' and rpn = - rpn' has the form 

of a potential function for the sine-Gordon equation and the double sine-Gordon equation, 

respectively. The on-site potential for the latter case for 0~rpn~2Jr has three forms as 

shown in Fig. 3, where three regions (1), (2) and (3) are defined, the boundaries (1)-(2) and 

(2)-(3) being at 7)n=-1/2 and 7)n=I/2, respectively; In region (1) (-1/2<7)n<I/2) 

v( rpn, - rpn) has absolute minimum points at rpn =0 and 2Jr and an absolute maximum point 

at rpn = Jr. In region (2) (7)n < -1/2) it has absolute and relative minimum points at rpn = 0, 

2Jr and Jr, respectively, and maximum points at rpn =cos-1(1/27)n) and 2Jr-cos-1(1/ 27)n). 

In region (3) (7)n>I/2) rpn=O, 2Jr and rpn=Jr are relative and abso~ute maximum points, 

respectively, while the absolute minimum points are given by rpn=cos- 1(1/27)n) and 2Jr 

-cos- 1 (1/27)n). It is worth noticing here that in case (3) the exact B-form of DNA having 

the configuration rpn =0 or 2Jr for all n is no longer the ground state of the system, but it 

is rather an energy maximum point. 

With the above preliminary consideration for the on-site potential, we show in Fig. 4 

u 2u u 2u 

--------------------~------------------~~----------------~nn 

_~ 1 

(2 ) 2 (1) 2 (3 ) 

Fig. 3. Schematic feature ofthe on-site potential V(\i'n, -\i'n)=2-1]n-2 cos \i'n+ 1]ncOS2\i' for (1) -1/2 

<1]n<I/2, (2)1]n<-1/2 and (3) 1]n>I/2. 
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If' n 

- 2" 

(1) 

(3) - 2" 

s. Homma and S. Takeno 

.- 21f 

- 2" 

(2) 

Fig. 4. Equi·potential lines of the on·site potential 

iJ('Pn, 'Pn')=2-7Jn cos 'Pn-COS 'Pn'+7Jn COS('Pn 

-'Pn') fo.r (1) 7Jn=1/2, (2) 7Jn=-3/4 and (3) 7Jn 

=3/4. Typical, minimum points, maximum 

pnints and saddle points are denoted by symbols 

m, M and S, respectively. 

equi-potentiallines of jj( rpn, rpn') for 7Jn::::; - 3/4, 1/2 and 3/4 which correspond to regions 

(2), (1) and (3), respectively, for the case rpn= -rpn'. It is seen that essential features of 

contours of the potential jj( rpn, rpn'), i.e., minimum and maximum points, absolute or 

relative, are contained in the specific cases rpn = - rpn' and rpn = rpn'. Figures 3 and 4 are 

useful to study qualitatively the nature of solitons in our model dynamical system when 

the continuum approximation is employed. This will be done in §4. 

As preliminaries to the discussion given in §5, we describe here a procedure to 

investigate the structural properties of our model DNA system from Hamiltonian (2·4). 

A brief discussion on the dynamical properties using a continuum approximation will be 

given in §4. In doing this we limit our discussion henceforth to the case in which all the 

J~s, J~'s, I~s, I~'s, h~s, A~S are taken to be independent of the site index n, thus omitting 

the subscript n attached to these quantities hereafter. We also confine ourselves to the 

case J = J' and I = I'. This is a highly idealized model of DNA, in which the difference 
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A Coupled Base-Rotator Model for Structure and Dynamics of DNA 685 

of inter-strand and intra-strand interaction constants for different base sequence is 

neglected. 

Stationary spatial configurations of the bases are determined by the extrema of the 

potential function V(9'n, 9'n')= U(9'n, 9'n')+V(9'n, 9'n') in Eq. (2·4) with respect to 9'n and 

9'n'. These are determined by the equations 

(3·4) 

. ( , '). ( , ') {. , . (' )} sm 9'n+l - 9'n - sm 9'n - 9'n-1 = g sm9'n - sm 9'n - 9'n , (3·5) 

where 

g=h/J . (3·6) 

) Equations (3·4) and (3·5) constitute simultaneous nonlinear difference equations, which, 

in addition to trivial solutions 9'n = 9'n' = 0 = 27r corresponding to the perfect B-form of 

DNA, yield a number of solutions. The solutions are generally classified into two types, 

the ones yielding metastable configurations of the bases and the others corresponding to 

unstable ones. This implies that there exists a variety of local fluctuations of helical 

twist angles from one base pair to the next. In the specific cases 9'n = 9'n' and 9'n = - 9'n' 

Eqs. (3·4) and (3·5) are decoupled to give a single equation 

sin( 9'n+l - 9'n)- sin( 9'n - 9'n-l) = gsin 9'n 

sin( 9'n+l - 9'n)- sin( 9'n - 9'n-I)= g(sin 9'n -1]sin29'n) 

for 9'n = 9'n', 

for 9'n = --,-- 9'n' . 

(3·7) 

(3·8) 

Equation (3·7) is similar to those treated by AubrylO) and others and by Greene/I) 

Chirikovl2) and others to study the Frenkel-Kontrova model in solid state physics and the 

motion of particles in plasmas, respectively. One important difference here is that the 

difference factor on the left-hand side is of the form sin(9'n+l-9'n)-sin(9'n-9'n-I), in 

contrast to the conventional one 9'n+l+9'n-I-29'n. Equations (3·7) and (3·8), which are 

specific forms of Eqs. (3·4) and (3·5), are not generally analytically tractable. Numerical 

solutions to the former two equations will be studied in §5. 

§ 4. Continuum approximation and topological·solitons 

Equations of motion of the bases are readily obtained from Eq. (2·4) as follows: 

I¢in = ][sin( 9'n+l- 9'n)-sin( 9'n - 9'n-1 )]+ Asin( 9'n - 9'n')- hsin 9'n , 

I¢in' = ] [sin( 9'~+l- 9'n')-sin(9'n' - 9'~-I)]+ ASin( 9'~- 9'n)- hsin 9'n' . 

(4·1) 

(4·1') 

In studying the properties of our model dynamical system, we limit our discussion to the 

specific case in which the intra-strand interaction energy] is much larger than the local 

field energy h and the hydrogen-bonding energy A. We can then employ a continuum 

approxition to reduce Eqs. (4·1) and (4 ·1') to 

a2
9' 1.a2 

9' _ 1 [ . . ( ')] az 2 -7 at 2 - 102 sm9'-1]sm 9'-9' , (4·2) 

(4· 2') 
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686 S. Homma and S. Takeno 

where 

(4°3) 

in which a is defined by Zn+l-Zn=a. We assume that qJ and qJ'depend on Z and t only 

through the variable z-vt, where v is a constant. Equation (4°2) and (4°2') can then be 

integrated once to give 

10
2 
[( dqJ)2 (dqJ' )2] _ ,_ 2 dz + dz +[-v(qJ,qJ)]-O, (4°4) 

where 

(4°5) 

is the rest· frame coordinate for the system which is Lorentz·invariant. Here we have 

chosen the integral constant suitably to get - v(qJ, qJ') defined by Eq. (3 0 1). We observe 

that Eq. (4'4) is analogous to the classical equation of motion for a Newtonian particle 

with mass 102 under the influence of a potential field - v(qJ, qJ') in a two-dimensional space 

(qJ, qJ') with z playing the role of time. It is seen from Eq. (4°4) and Fig. 4 that here 

topological solitons or kinks which correspond to excitations connecting degenerate 

minima of v(qJ, qJ') exist. In the region -1/2<7}<1/2 the solitons are due to the 

existence of degenerate, absolute minima of v( qJ, qJ'). In the regions 7} < -1/2 and 

7} > 1/2 situations are somewhat more involved, since there exist absolute and relative 

minima and maxima for the former and the latter, respectively, for qJ = - qJ'. 

Since Eqs. (4· 2) and (4 ° 2') are not generally analytically tractable, we content 

ourselves here with considering the case qJ =- qJ' to obtain explicit soliton solutions in our 

model dynamical system. Equations (4 ° 2). and (4 ° 2') reduce to the double sine-Gordon 

equation 

iJ2qJ 1 iJ2qJ _ 1. . az 2 -(;2 at2 -W(sm qJ -7) sm2qJ). 

A corresponding equation for the case 'qJ = qJ' is given by 

a2 qJ 1 a2 qJ _ 1 . 
az 2 -(;2 at 2 - 102 sm qJ , 

(4 0 6a) 

(4 0 6b) 

which is nothing but the sine-Gordon equation. Since a detailed discussion on the 

properties of soliton solutions to the double sine-Gordon equation has been given by 

Condat, Guyer and Miller,13) we present here only the result of calculations, treating the 

cases 7} < -1/2, -1/2< 7} < 1/ 2 and 7} > 1/2 separately. 

(1) region(l): -1/2<7}<1/2, 27r-kinks 

This is the simplest case of all these three cases, corresponding to region (1) in Fig. 3. 

The potential function v( qJ, - qJ) is a simple sinusoidal function, and 27r-kink soliton 

solutions connecting the absolute mimima qJ=O and 27r is given by 

(4°7) 

Here the plus and minus signs denote kink and anti-kink solutions; respectively. For 7} =0 

the solutions reduce to the sine-Gordon kink solutions. 
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A Coupled Base-Rotator Model for Structure and Dynamics of DNA 687 

(2) region (2): r; < -1/2, 27C-kinks and bubbles 

Here we have two types of solutions 

q.> == q.>1(2) = 2tan-1 [± (1-2r; )1/2cosech{(1-2r; )1/2 z}], 

q.> == q.>2(2) = 2tan-1 [± (-1-2r; )1/2cosh{(1-2r; )1/2 z}]. 

(4-8) 

(4-9) 

Solution (4-9), which continuously goes over to Eq. (4-7) is, as before, represents 27C-kink 

solutions. Equation (4 -9) represents finite fluctuations of q.> from the local minimum point 

¢= 7C of iJ(q.>, - q.». Excitations corresponding to the latter, called critical bubbles are, 

however, unstable. 

(3) region (3): r; > 1/2, large kinks and small kinks 

As mentioned before, a characteristic feature is that the conventional perfect B-form 

is not the ground state, but the points q.> = 0 and 27C are rather energy local maximum 

points. Here two types of kink solutions exist: 

(large kinks) (4-10) 

(small kinks) (4-11) 

The former and the latter correspond to kink excitations which connect two degenerate 

relative minimum points q.> =cos-1(1/ 2r;) and 27C-COS-1(1/ 2r;) across the absolute maxi

mum point q.>=7C and the relative maximum point q.>=O, respectively, of v(q.>, -q.». 

§ 5_ Local lluctuations in helical twist angles 

In the preceding section we studied the dynamical properties of our model DNA 

system by using the continuum approximation. By such an approximation procedure, 

however, several of the essential features of the problem are lost. For example, Eqs . 

. (4-6a) and (4-6b) are always integrable, exhibiting propagating topological soliton 

solutions, whereas their original, discrete form; Eqs. (4'1) and (4 -1') for q.>n = ~ q.>n' and q.>n 

= q.>n', is not generally integrable. In view of this non-integrability of the equations, we 

study in this section numerical solutions to Eqs. (3-7) and (3·8) and their implications to 

the structural properties of DNA. We follow here the conventional procedure to recast 

Eqs. (3-7) and (3-8) in the form of ma.pping 

. . {Sin q.>n 
smWn+1=smWn+g . . 

sm q.>n - r; sm2q.>n 

q.>n+l = q.>n + Wn+1 . 

for Eq. (3-7) 

for Eq. (3-8), 

(5-1-1) 

(5-1-2) 

(5-1' ) 

Numerical solutions to Eq. (5-1) can then be generated by starting at one point in (q.>, w) 

space and iterating the equations. When the spatial variation of the q.>n'S is fairly smooth, 

which is realized for small g, the quantity sinwn in Eqs. (5' 1·1) and (5·1·2) can be 

replaced by Wn itself. Equations (5 -1-1) and (5 -1') then reduce to equations in the 

Frenkel-Kontrova modeI9
),lO) or standard map equations studied extensively as a model for 

certain dynamical systemsll),12) (for example, the motion of ions in a plasma). Three 
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688 s. Homma and S. Takeno 

features exist for solutions to Eq. (5·1) depicted in (q>, OJ )-space: (i) fixed points, hyperbolic 

or elliptic, giving commensurate phases, (ii) invariant trajectories yielding incom

mensurate or commensurate phases and (iii) chaotic or disordered phases corresponding 

to clouds of points that are not analytical curves. The qualitative properties of these 

features are then deduced from the theory developed by Kolmogorov, Arnold and Moser.I 4
) 

Namely, for small g all trajectories which exist in integral systems in the continuum limit 

persist, albeit deformed. As· g increases, fewer and fewer of the KAM trajectories 

remain, and their disappearance is connected with the appearance of chaotic states. 

We confine ourselvesto Eq. (5·1·2) (and Eq. (5·1'» in doing numerical calculations, 

since the case of Eq. (5·1·1) is qualitatively similar to the former in region (1) (-1/2 

<7J<1/2). Three cases g=O.l, 0.2 and 0.3 are considered as examples for each of 7J 

= -1.0, 1/2 and 2.0, which correspond to regions (2), (1) and (3), respectively, of the 

potential function iJ( q>, - q> )( see Fig. 3). The results of numerical calculations are shown 

in Figs. 5.1, 5.2 and 5.3. When discussing the obtained results, we first consider the case 

7J=1/2 which is nearest to the original perfect B-form. Here PI(O, 0) and P2(27C, 0) are 

hyperbolic (fixed) points corresponding to the exact B-form, while Pa(7C, 0) is an elliptic 

point giving configurations in which all the base pairs are directed in outward direction. 

It is seen from Fig. 5.l(a) that for g =0.1 corresponding to strong stacking energy or weak 

hydrogen-bonding energy there appear smooth invariant curves as expected and several 

islands outside the separatrix which is a trajectory connecting the points PI and H. 
Some of the curves here appear to be dashed lines. This is because the iterations were 

stopped before the curves were traced out. Of various types of the trajectories the 

separatrix corresponds to solitons which exist in the continuum, integrable limit. The 

trajectories outside the separatrix correspond to multi-periodic phases, while those encir

culating the point P a are unstable states corresponding to local fluctuations of bases about 

the energy maximum point, having energy higher than those outside the separatrix. As 

g increases (Fig. 5.l(b» the trajectories around the point Pa persist, and there appear 

islands corresponding to new multi-periodic phases. In contrast to this, only traces of the 

separatrix are seen near PI and P2, and the trajectories and the islands near and outside 

the separatrix become diffuse. It is worth mentioning here that when the initial 

configuration is chosen sufficiently close to PI or P2, the trajectories change in a dramatic 

way, and the points do not form invariant curves but tend to fill out a finite area in (q>, OJ) 

space. . Such area. represents chaotic states which correspond to the randomness of the 

helical twist angles from one base pair to the next. It is seen that invariant trajectories 

having lower energies are strongly influenced by the increase of g, while those with higher 

energy around the point Pa are little affected by the discreteness effect. As g increases 

further (Fig. 5.l(c» the numerical result becomes rather simple. Namely, clouds of 

points in the vicinity of PI and P2 and of the separatrix which exist in the case g =0.1 

decrease so much as they are nearly countable, including multi-periodic phases, though the 

area encircled by such trajectories decreases slightly. These results imply that higher 

excited states corresponding to unstable states are less influenced by the discreteness 

effect, while those metastable states in the vicinity of PI and P 2 and of the separatrix are 

strongly perturbed. 

The above-mentioned features of the numerical solutions remain unchanged for the 

region 7J< -1/2 (Fig. 5.2(a)~(c». Three points are worth noticing here: (1) A 

separatrix connecting PI and P2 corresponds to 27C-kinks which exist in the continuum 
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l(a) 

l(c) 

W· 
1l 

2(b) 
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W'II 

n=0.5, q=O.l 
n=0.5, g=0.2 

w.,.· 

.: .. '.""""''- P2 ~~~~~~~~~~~~~~~~P2 

0/ ... 0/." 

2(a) n=-1.0, g=O.l 

n=0.5, g=0.3 

n=-1.0, g=0·.2 

Fig. 5. (continued on the next page) 2(c) n=-1.0, g=0.3 
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n=2.0, q=O.l 

3(c) 
n =.2.0, q= 0.3 

S. Homma and S. Takeno 

3(b) 
n=2.0, q=0.2 

Fig. 5. Numerical solutions to Eqs. (5.1.2) and (5.1'). 

Three cases (a) g=O.I, (b) g=0.2 and (c) g=0.3 

are taken as examples for each of (1) 71 = 1/ 2, (2) 

71=-1.0 and (3) 71=2.0. 

limit, while those encirculating the energy-maximum point Q1(cOS -1(1/ 21}), 0) and 

Q2(2Jr-cos-1(1/21}), 0) are bubble excitations. (2) It is seen from Fig. 5.2(a) that the 

invariant trajectories appear to be a little more influenced than those in the case -1/2< 1} 

< 1/ 2 by the discreteness effect. (3) Since there exist two energy maximum points Q1 and 

Q2, however, the area enclosed by the trajectories encirculating these points IS larger than 

that in region (1). This implies that as 9 increases the area of chaotic region gets smaller 

than that in case (1). 

In region (3) 1} > 1/2 Pr and P2 are no longer energy minimum points, but they are 

rather local energy maximum points. As mentioned before, here two kinds of kinks, 

large ones and small ones, exist in the continuum limit. As seen from Fig. 5.3(a), 

however, two kinds of separatrices corresponding to these kink' solutions and invariant 

trajectories in their vicinity almost disappear even for the case 9 =0.1, leaving only 
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A Coupled Base-Rotator Model for Structure and Dynamics of DNA 691 

trajectories encirculating the energy absolute maximum point P3 and energy local 

maximum points PI or P2 • It is seen that in this region of TJ the effect of the discreteness 

is largest of all these three cases. As g increases from 0.1 to 0.2 and 0.3 (Figs. 5.3(b) and 

(c», situations become rather similar to the previous two cases. Namely, clouds of points 

which exist in the case g=O.l considerably decrease as g increases, and the area occupied 

by invariant trajectories encirculating the energy maximum points P3 and H or P2 

decreases. 

The results obtained in this section imply that in addition to the orderd B-form of 

DN A corresponding to the solution ~n = ~n' = 0 (mod 27r), there exists a variety of local 

fluctuations in helical twist angles from one base pair to the next. Here configurations of 

physical importance are metastable states in which ~n and ~n' are either commensurate, 

incommensurate or chaotic with respect to the 27r-periodicity of the inter-strand potential 

; iJ( ~n, ~n'). For the case ~n = - ~n' such metastable configurations correspond to points 

in (~,cv)-space which lie in close vicinity of,energy minimum points and of separatrices. 

§ 6. Concluding remarks 

The inherent structural and dynamical flexibility of double-stranded DNA is impor

tant because of its potential role in the mechanisms of, for example, DNA replication, 

transcription, drug binding. In spite of an enormous number of degrees of freedom 

contained in a DNA macromolecule, a simple 'view of the flexibility is provided by 

classifying its motion principally into two types, one is associated with hydrogen-bonding 

and stacking and the other with sugar-phosphate backbones. In this paper we have 

focussed our attention to the former which arises from the motion of bases, simulating 

DNA as a system of transversally and longitudinally coupled base-rotators. From the 

viewpoint of mathematical physics, this is a generalized version of the Frenkel-Kontrova 

model, where a model field equation constitutes a coupled pair of nonlinear differential 

difference equations. In a specific yet physically interesting case, these equations are 

decoupled to give a discrete-version of the double sine-Gordon equation. The principal 

result obtained here for such a simplified model system is the existence of various types 

of topological solitons in the continuum approximation for the dynamical properties and 

the appearance of fairly large local variation in helical twist angles from one base pair to 

the next for the structural properties. Among various structural fluctuations those 

corresponding to energy-local-minimum states are, of course, most physically interesting. 

Although we feel the model employed here is non-trivial for the study of the problem 

of DNA flexibility, it still suffers from a number of simplifications. Non-periodicityof 

force field along the helical axis due to a particular base sequence, treating bases as three

dimensional rotators, flexibility of sugar-phosphate backbones are all likely to improve 

and refine the picture presented here. In particular, the first of these may further enhance 

structural fluctuations, leading to sequence-induced local fluctuations. These points will 

be examined elsewhere. What are implications of these effects? One thing which easily 

comes to mind is that large local structural fluctuations or topological solitons, if any, may 

induce local unwinding of double strands. These and related effects on DNA problems in 

molecular biology are well worth studying. 
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Appendix 

-- Classical-Spin Model of Bases in DNA--

Here an attempt is made to generalize Eq. (2'4) to the case of three-dimensional 

rotators by using analogy with spin model Hamiltonian in magnetism. We observe that 

in terms of a quasi-spin operator Sn=(SnX, SnY, SnZ) with 

SnY=sin On sin CPn, (A'l) 

for the nth base in S and a corresponding one in S', Eq. (2'1) with Zn=Zn' is rewritten 

as 

(A'2) 

It is seen that Ln 2 is written in the form of a generalized Heisenberg model. Then, 

Eqs. (2'2) and U(CPn, CPn') in Eq. (2'3) are a specific form of An(SnXSn'x+SnYSn'Y) 

~f-lnSnzSn'z~ hn(Snx+Sn'X) and - In(S:+1 Snx+Sh+1 SnY)- KnS~+1 Snz- In'(S~~l Sn'x 

+SZlSn'Y)-Kn'S~':tlSn'z, respectively, for On=On'=7r/2. Here f-ln, Kn and Kn' are 

constants. To these terms we may add the anisotropy energy An(SnZ)2+An'(Sn'Z)2 due 

to our characterization of rung-like base pairs as planks, where An and An' are constants. 

Collecting all of these terms together, we take our model base-rotator Hamiltonian to be 

of the form 

H=:~:n - In(S:+lSnx+Sh+1SnY)- KnS~+1Snz 
n 

-I '(S'X S 'X+S'Y S 'Y)-K 'S'Z S 'Z n n+l n n+l n n n+l n 

(A'3) 

It is understood that all the constants In, In', Kn, Kn', An, f-ln, hn, An, An' are positive. 

Stationary configurations of the bases in such a model DNA system are obtained by 

minimizing Eq. (A'3) with respect to On, On', CPn, CPn'. 

Less known is the dynamical nature of such a model DNA system simulated as 

longitudinally and transversally coupled three-dimensional rotators. Here we merely 

give the remark that Eq. (2'4) itself can be derived from Eq. (A'3) for the case when the 

anisotropy energies An and An' are much larger than the remaining interaction constants. 

Namely, under the assumption that the classical equation of motion for spins: 

(j n = (1/ sin On)( aH/ aCPn), (A'4) 

and similar ones for On'and CPn' can be used here, we get ¢n=2An cos On and ¢n' 

=2An' cos On' from the second of~s. (A'4) for An, An'~In, In', Kn, Kn', An, f-ln, hn. In 

this limiting case Eq. (A, 3) reduces to Eq. (2' 4), where the moment of inertia In Un') is 
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related to An{An') by the relation In=1/2An. 15
) 
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