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Abstract 

Globally, power projects are prone to cost overrun projects. Within the body of knowledge, 

previous studies have paid less attention to predicting the cost overruns to assist contingency cost 

planning. Particularly, the thermal power plant projects (TPPPs), the enormous risks involved in 

their delivery undermine the accuracy of cost overrun prediction. To prevent cost overrun in 

thermal plant projects, these risks need to be accounted for by employing sophisticated cost 

overrun prediction techniques. This study aims to develop a Hybrid Predictive-Probabilistic-based 

Model (HPPM) that integrates a genetic programming technique with a Monte Carlo simulation 

(MCS). The HPPM was proposed based on the data collected from TPPPs in Bangladesh. Also, 

the sensitivity of the HPPM was examined to identify the critical risks in cost overruns simulation. 

The simulation outcomes show that 40.48% of a project’s initial estimated budget was the most 

probable to cost overrun, while the maximum cost overrun will not exceed 75% with 90% of 

confidence. Practically, the analysis will sensitize project managers to emphasize thermal plants' 

budget accuracy not only at the initial project delivery phase but throughout the project lifecycle. 

Theoretically, the HPPM model could be employed for cost overrun prediction in other types of 

power plant projects.  
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1 Introduction 

The complex nature of power plant projects (PPPs) leads to unavoidable and significant cost 

overruns worldwide (Sovacool et al. 2014a). For instance, some PPPs in Europe experienced 

almost 200% unexpected costs above the budgeted amount of a project (IHS 2014). The cost 

overrun can effectively be managed by proper risk assessment, management planning, and 

allocation of contingency costs in the project development stage. Therefore, predicting cost 

overrun by analyzing critical risks and corresponding cost overruns of similar previous projects is 

an important step for allocating contingency sum to a project in its initial stage (Islam et al. 2018a, 

2019; De Marco et al. 2016). There are different types of power plants, and they are unique in their 

respective compositions. They include thermal power plants (coal, heavy fuel oil (HFO), combined 

cycle power plant (CCPP), natural gas, etc.), nuclear, wind, or hydropower plants (Hadikusumo 

and Tobgay 2015; Kucukali 2016; Yoo et al. 2016). Each type is influenced by changes in project 

characteristics, ownership, delivery method, fund arrangement, geographic location, etc. (Hashemi 

et al. 2019). From the literature, the critical risks and contingency costs for predicting hydropower, 

wind, and nuclear power plants are well documented. Contrastingly, there has been less attention 

paid to critical risks and contingency costs for predicting TPPPs. An exception is Islam et al. 

(2021). The study developed a contingency cost prediction model for TPPP. The study did not 

analyze TPPP risks relationships and their impacts on cost overrun. Therefore, risks relationships 

that influence TPPP cost overrun are not known and remain a research gap. 

Risk assessment contributes to the prediction of cost overrun, and it depends on expert judgment 

for complex infrastructure projects like power plants. Thus, the models, which can handle semi-

quantitative or linguistic data sets, subjectivity, or biases of the data, and are not data-intensive, 

are appropriate for risk assessment and cost overrun prediction of TPPPs. The fuzzy logic can 

accommodate subjective risk assessment and cost inputs in the contingency cost prediction model 

(Islam et al. 2021) with the limitations of appropriately aggregating subjective and linguistic data 

to assess risks and corresponding cost impacts. Alternatively, MCS is a powerful tool for 

predicting project cost overrun and it considers various risk scenarios and demonstrated by both 

academics (Maronati and Petrovic 2019; Shahtaheri et al. 2017) and professional bodies 

(Government 2017; Nevada DOT 2012; US-DOT 2015). Maronti and Petrovic (2019) developed 

a distribution-free rank correlation between cost items applying MCS for predicting costs of 
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nuclear PPPs. The study revealed the project characteristics that influenced the cost prediction, but 

also, differentiates nuclear power projects from TPPPs. The integrated probabilistic risk analysis 

and MCS approach were proposed by (Shahtaheri et al. 2017) to estimate the risk probability 

associated with individual activities and assess cost impacts of risks based on the performances of 

nuclear plant tube replacement projects. Notably, none of them (Maronati and Petrovic (2019) and 

Shahtaheri et al. (2017)) predicted cost overruns taking critical TPPPs risks and their possible 

relationships as the inputs for cost overrun prediction using MCS.  

On the other hand, Genetic Programming (GP) is a powerful tool that uses the best size tree (that 

includes functions and arguments having different sizes and shapes in the form of a hierarchy), by 

applying a nonlinear encoding system to find the best-fit model for different inputs-output 

relationships (Lin et al. 2020). It can capture the natural phenomena of a complex problem by 

developing a comprehensive equation through functional evolution during training and testing 

stages in the prediction model (Z-Flores et al. 2017). Thus, GP overcomes the human bias of 

subjective data sets in finding real relationships among the input variables to predict the output. 

Accordingly, the power of GP was demonstrated to handle expert-judgment-based inputs 

predicting project schedules (Lin et al. 2020). Shahrana et al. (2017) predicted project cost by 

developing a GP-based model using numerical data sets collected from 210 sewer and water 

rehabilitation projects. However, no previous study attempted to use GP to predict project cost 

overruns where expert judgment-based risk assessment would be the sole inputs. Thus, the coupled 

GP-MCS is a robust integrated approach to overcome the identified research gaps (i.e., lack of a 

comprehensive model for predicting cost overrun of TPPPs that can capture the complex 

relationships among the critical risk factors, as well as paucity of a probabilistic-based model for 

simulating cost overrun of such projects) for proactive risk management and cost control of 

complex PPPs, TPPPs in particular. Therefore, this study aims to develop a novel Hybrid 

Predictive-Probabilistic-based Model (HPPM) using the integration of Genetic Programming (GP) 

and MCS technique for predicting cost overruns of complex TPPs, where subjective judgment-

based risks magnitude are the inputs. The unique contributions of this study are as follows: 

 
• Obtaining an inclusive equation for the first time in the literature, based on which the cost 

overruns of TPPPs can be calculated. 
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• The model’s outcome, i.e., percentage of cost overrun with the probability of occurrence, 

can directly be applied in practice to make an informed decision about allocating 

contingency cost for future power plant project delivery. 

• The critical factors that are identified and their respective levels of sensitivity levels for 

predicting cost overruns is a guideline for managing risks and associated uncertainties 

towards achieving target costs in PPPs.  

• The predicting approach of cost overrun can be applied to other complex infrastructure 

projects, where risk assessment and cost overrun data are largely subjective and correlated 

with unknown relationships.  

The remainder of this study is organized as follows. First, the cost overrun scenario of PPPs is 

presented to identify the research gap in TPPPs, followed by a critical discussion on existing cost 

overrun prediction models. Second, the methodology, including step-by-step model development 

and data collection approach, is discussed. Third, the HPPM is demonstrated for predicting cost 

overruns in real Bangladeshi TPPPs. A sensitivity analysis was conducted to identify the impacts 

of critical risk factors (RFs) on cost overrun predictions. Finally, the concluding remarks are 

presented with practical applications and the limitations leading to further studies. 

2 Literature Review 

2.1 TPPPs in cost overrun literature 

Table S1 shows a summary of the studies on the risk assessment of PPPs. It was observed that the 

previous studies mainly focused on assessing the risks in hydropower, wind power, and nuclear 

PPPs, while TPPPs were neglected. Meanwhile, it is notable that thermal power plants are the 

major sources of energy globally, especially the ones based on natural gas, oil, and coal (Hans-

Wilhelm 2016). Also, increasing demand for energy supply from thermal plants for the next 

twenty-five years has been projected to guarantee energy access (Singer and Peterson 2017). 

Despite the commonness of thermal power plants, which have enhanced energy access globally, 

the successful provision of this infrastructure was affected by cost overrun (Sovacool et al. 2014a). 

Therefore, there is a need to understand the RFs that lead to cost overrun in TPPPs. This will 

enable better control of thermal power plants’ budgeting and, by extension, lead to more thermal 

power projects procured at optimum budgets to increase energy access globally. The previous 
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studies on the risks and cost overruns in different PPPs such as hydro, nuclear, and wind power 

plants (Alsharif and Karatas 2016; Filho et al. 2017; Hashemi et al. 2019; Hossen et al. 2015; Kim 

et al. 2017; Maronati and Petrovic 2019; Sudirman and Hardjomuljadi 2011a; Wang and Tiong 

2000) showed that they differ significantly in their economic, technical, stakeholder policies, 

environmental, and spatial characteristics (Gilbert et al. 2017; Sovacool et al. 2014a; b). Also, the 

consequences and likelihood of cost overruns vary significantly according to project size, type, 

and contracting system (Sovacool et al. 2014b; a). Although Islam et al. (2021) proposed a 

contingency cost prediction model for TPPPs, the study was limited to addressing risk impacts on 

allocating contingency cost during preliminary budgeting instead of directly predicting cost 

overruns using RFs as input variables. Thus, the real risk scenarios and exposure of TPPPs to cost 

overruns are not reflected in the existing literature. Also, the existing cost or contingency 

prediction models are not yet justified to predict cost overruns of TPPPs. To conceptualize the risk 

terminology, it refers to the uncertainties that may cause either negative or positive project impacts. 

However, in this study, it refers to uncertainties that may cause negative project impacts, (similar 

to many research in the literature (e.g., (Tabatabaee et al. 2021)) 

2.2 Towards potential cost overrun prediction models for TPPPs 

There are several tools and techniques for predicting project costs and contingencies. These are 

log-logistic probability distribution (Love et al. 2013, 2014, 2015, 2016), Monte Carlo simulation 

(MCS) (Bouayed 2016; Chang and Ko 2017; Traynor and Mahmoodian 2019a), artificial neural 

networks (ANN) (Attalla and Hegazy 2003; Elmousalami 2020a; b; Matel et al. 2019; Tijanić et 

al. 2020), multiple linear regression (Thal et al. 2010), step-wise regression (Diab et al. 2017), 

fuzzy logic (Islam et al. 2021; Salah and Moselhi 2015), and some integrated approach like 

probabilistic risk analysis and MSC (Shahtaheri et al. 2016). The following section discusses the 

applications and limitations of these models to find their potentiality in the cost overrun modeling 

in TPPPs.  

The regression analysis, ANN, and probabilistic cost prediction models are data-intensive and 

depend on numerical cost data from similar previous projects. Besides, ANN has some particular 

limitations, such as selecting the optimal number of hidden layers, and uncontrolled black-box in 

the training of the neurons significantly influence prediction outcomes. Probabilistic models (Love 

et al. 2013, 2014, 2015, 2016) look for the best-fit probability distribution of the historical and 
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numerical cost or cost overrun data, limiting their application to PPPs in general as they vary 

significantly from project to project (Hashemi et al. 2019). Besides, some studies critiqued Love 

et al.’s (2013, 2014, 2015) probabilistic models that they do not accommodate behavioral or 

conscious bias although most of the megaprojects are intentionally under budget in development 

stages and inflated in execution phases (Ansar et al. 2014; Flyvbjerg et al. 2002, 2018). The fuzzy-

based models can accommodate subjective bias in risk assessment and cost prediction models 

(Salah and Moselhi 2014). Accordingly, Islam et al. (2021) proposed a fuzzy-Bayesian 

contingency cost prediction model for TPPPs. Their study was limited to addressing risk impacts 

on contingency cost modeling during preliminary budgeting instead of predicting cost overruns. 

However, the fuzzy models lack an appropriate method for aggregating subjective and linguistic 

evaluation, and their transfer of linguistic data to numerical values was also critiqued. Besides, the 

Bayesian belief networks can only handle the causal relationships among the risks developed by 

the experts, which are subjected to different biases. The MCS is a widely accepted tool for cost or 

contingency cost prediction under uncertain project environments (Afzal et al. 2020; Bouayed 

2016; Maronati and Petrovic 2019; Touran and Lopez 2006; Traynor and Mahmoodian 2019b). 

Overall, MCS was applied effectively when huge quantitative data sets from similar previous 

projects are available, while its integration with other methods can improve its performance when 

such data is not available.  

Some machine learning models (regression neural network (RNN), genetic algorithm (GA), 

genetic programming) are the potential to handle natural relationships among the variable for 

predicting expected outcomes. The RNN model can be used for nonlinear relationships among the 

numerical variables for the project’s cost prediction (Car-Pusic et al. 2020; Yip et al. 2014). While 

the model performs better even for limited data sets, numerical cost data from past similar projects 

should be used. A coupled ANN-GA model (Hashemi et al. 2019) shows better performance than 

using only ANN for conceptual cost estimation of PPPs, where GA assists in selecting the best 

neural architecture. However, like other ANN models, it also requires sufficient numerical data 

sets from previous similar projects (Hashemi et al. 2019).  

The PPPs are uncommon, and characteristically dissimilar due to geological features, demand-

based design (i.e., fuel sources and supply, electricity demand in the locality (MW), variations in 

plant equipment), financial arrangement (single source, or multiple sources), etc. (Hashemi et al. 
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2019; Islam et al. 2019). Thus, access to the quality cost data sets and objective risk assessment 

for PPPs is unrealistic. This leads to export-dependent subjective risk assessment and cost data 

sets. Therefore, further study must find a suitable tool that can accommodate subjective data sets 

and natural relationships among the variables to predict project cost and/or contingency.  

The GP is a powerful programming tool that uses a set of genes based on a Genetic Algorithm to 

imitate human’s way of solving critical problems (Ahvanooey et al. 2019). Thus, it can 

accommodate subjective bias PPPs (Flyvbjerg et al. 2018). It also determines relationships among 

input variables but does not reveal the output prediction process (Ahvanooey et al. 2019). Thus, 

unlike Bayesian networks used in the study conducted by Islam et al. (2021), GP can be used to 

establish unbiased risk relationships for predicting project cost overruns. Accordingly, Shahrara et 

al. (2017) developed a project cost prediction model using a GP algorithm and found a higher 

accuracy level (84.67% correlation accuracy) for estimating the cost of water and sewerage 

rehabilitation projects. They did not consider risks as input variables for cost overrun prediction 

and did not demonstrate the model for TPPPs. Besides, adding MCS to capitalize the power of 

simulation with the developed GP model is undiscovered, and project cost overrun prediction 

through coupling GP and MCS is particularly unattended. 

From the above discussion, two specific research gaps are clear: (1) cost overrun prediction model 

that employs critical RFs as input variables for TPPPs is not yet developed or demonstrated. This 

is of paramount importance as the related risk assessment is imbued with subjectivity; thus, there 

is a need to have a comprehensive predictive model for taking note of the complex relationship 

among the risk factors affecting the cost overrun of such projects, and (2) the probabilistic failure 

of TPPPs in terms of their budgeting, based on the existing critical risk factors impacting such 

projects, has not been uncovered yet. All these gaps are systematically addressed throughout the 

paper by demonstrating a novel GP-MCS model for predicting cost overruns of TPPPs. Such cost 

overruns prediction model as couple GP-MCS can significantly assist the risk managers or 

decision-makers for controlling potential and critical RFs and subsequent contingency cost 

management throughout the execution phases of the power plant and similar infrastructure 

projects. The methodology underlying the GP-MCS coupling is presented in the next section. 



   
 

8 
 

3 Methods 

Following the identification of the most important RFs causing cost overrun in TPPPs, the hybrid 

GP-MCS model was developed to predict the cost overrun based on the most significant risk 

factors. In addition, cost overruns of such projects were simulated using a large dataset gathered 

from TPPPs in Bangladesh. To this end, first, the most significant risk factors were identified by 

refining a pool of risk factors discussed in the literature based on experts’ opinions. Second, GP 

was employed to develop a cost overrun predictive equation based on the experts’ feedback 

regarding the significance of risk factors and real data of TPPPs cost overruns. The GP was used 

due to its multiple offered benefits compared to other methods for equation development. Third, 

MC simulation — as a powerful and commonly-used quantitative risk assessment approach — 

was used to simulate the cost overruns in TPPPs projects using thousands of trials. It is worth 

mentioning that for simulation purposes, the gathered data in this first step (i.e., experts’ opinions 

and real data related to TPPPS cost overrun) and the generated equation in the second step were 

used. The research flowchart and integration of techniques are described in this section and 

illustrated in Fig. 1.  

3.1 Questionnaire development and data collection 

The geographical scope where data was collected is Bangladesh, a fast-growing developing 

country in TPPPs in Aisa (Gilbert et al. 2017; Harrison et al. 2014; Islam et al. 2019; Maronati and 

Petrovic 2019). The cost overrun RFs were compiled from the existing literature (Islam et al. 

2018b, 2019) and verified for thermal power plants by experts in Bangladesh. The list of RFs 

contributing to cost overruns in TPPPs is tabulated in Table S2. The experts occupy executive 

positions in the Bangladesh Power Development Board (BPDB). They evaluated the cost overrun 

RFs in terms of probability of occurrence, and severity in a structured questionnaire. The linguistic 

scale from 0 (none) to 6 (extremely high) was presented to the experts for evaluation. Also, the 

experts provided the percentage cost overruns, project ownership, and contract type for the projects 

that formed the basis of their evaluation. The questionnaire was randomly distributed to 100 

experts. The experts’ profiles are presented in Fig. 2. Among them, 64 completed the 

questionnaires and were used for analysis. Academically, the experts completed a bachelor’s 

degree level of education. Also, they have varying years of work experience in power plant project 

delivery. The experts’ profiles confirm their validity to provide more objective information about 
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power plant project delivery performance (Islam et al. 2019; Li and Wang 2016). Furthermore, all 

64 experts revealed that their projects adopted EPC (Engineering, Procurement, and Construction) 

or Turnkey contract, and are owned by the government (i.e., BPDB). Thus, no further analysis was 

made considering contract type or project ownership. 

3.2 Refinement of critical RFs  

Initially, potential RFs affecting the cost overrun of the PPPs were selected from the previous 

literature (as shown in Table S2). Subsequently, the domain experts were requested to assess the 

risk based on a quantitative measurement scale. Only the highly influential critical RFs were 

selected based on experts’ judgments, so as to ensure an accurate and useful predictive model has 

been developed. The influential ones were selected using a defined risk magnitude threshold. A 

RF with a higher risk magnitude than the threshold was considered highly important and selected 

for predictive model development. The risk magnitude threshold by Mahdiyar et al. (2018) was 

followed. On a scale of 1–5, “3.5” is defined as the threshold. This threshold value was then 

adjusted based on the calculated risk magnitudes as explained in subsection 4.1.  

3.3 Genetic programming 

Koza (1994) authored the GP in 1994, based on the concept of Genetic Algorithm (GA) to produce 

a non-linear mathematical model output for given input values. The GA and GP were adopted for 

solving and generating equations, respectively. The initial population of individuals in the GP tree 

was created randomly (Sadrossadat et al. 2018). These individuals consist of three main parts 

known as root nodes, function nodes, and terminals nodes. Fig. 3 depicts a GP tree(√(𝑇𝑇/𝑄𝑄 + 2)), 

in which the leaves that were located at the end of nodes are called terminal nodes (such as T and 

Q).  

In construction engineering and management research, there are several advantages associated 

with the utilization of GP against the other types of machine learning-based algorithms or 

statistical-based techniques, such as linear/non-linear techniques (Yun et al. 2019). For instance, 

the optimized solutions are produced in the GP algorithm without limiting the length of solutions. 

Where variables are limited, the GP-based algorithms can unravel the relationships between inputs 

and output, and accordingly, they are used during the development stage (Emigdio et al. 2017). 

Additionally, GP-based models can capture the complexity and sophisticated nature of a problem 
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by achieving a comprehensive equation(s) through the evolution of functions during the training 

and testing stages (Garg and Lam 2015). This means, in comparison with others, when complex 

interrelationships or nonlinear transformations exist in a problem, the utilization of GP-based 

models leads to a more reflective solution (i.e., a comprehensive predictive equation for dealing 

with a particular problem at hand). Notably, the supremacy of the adoption of GP-based models 

against the other types of machine-learning- or statistical-based techniques can be found in diverse 

studies (Castelli et al. 2015; Chavoya et al. 2012; Olague and Trujillo 2011; Yamashita et al. 2022). 

Considering the aforesaid advantages of GP-based models, this study utilized such an algorithm 

to develop a reflective equation for predicting the cost overrun in the TPPPs. 

With the above said, to develop the GP model, an initial population in a GP tree was selected in a 

non-systematic manner. Subsequently, the first equation was produced, and the accuracy of the 

generated equation was computed. If the result is suitable, the process is stopped; if not, a new 

population was then re-produced to obtain the best individuals with the most suitable accuracy by 

mutation (Gandomi et al. 2015). As illustrated in Fig. 4, the specific steps for developing an 

accurate GP model are stated as follows:  

Step 1. Collecting the required data set. In this study, the dataset was the risk magnitudes of the 

critical RFs contributing to cost overruns in TPPPs. The data gathered from the experts were used 

as the inputs. The size of data was considerably prudent when compared to the size of data in other 

related studies (Chan et al. 2021; Dahiru et al. 2021; Fallahpour et al. 2021; Quintero-Domínguez 

et al. 2021). 

Step 2. Determining the training and testing dataset. In this study, 75% of the data obtained was 

used as a training dataset, while the rest (25%) was used as a testing dataset. The datasets include 

the critical RFs determined in the previous step and the cost overrun of the projects. 

Step 3. Applying the GP using the training data set. At the end of this stage, a comprehensive 

equation, which enables a precise calculation of the cost overrun associated with TPPPs based on 

different variables, was derived. 

Step 4. Evaluating the accuracy of the equation derived in the prediction of cost overrun percentage 

using the testing dataset (Alavi and Gandomi 2011; Mostafavi et al. 2013).  
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3.4 Monte Carlo simulation  

3.4.1 Background  

The MCS is a quantitative risk assessment technique for evaluating the deterministic and 

probabilistic impacts of risks holistically (Mahdiyar et al. 2021). As a result, the MCS has been 

extensively utilized for evaluating deterministic and probabilistic risk impacts in the engineering 

field (Arnold and Yildiz 2015; Chang and Ko 2017b; Hollmann 2007b; Maronati and Petrovic 

2019; Sadeghi et al. 2010). Considering the model requirements, random sampling techniques 

were taken into consideration in the MC risk analysis model. Additionally, to obtain accurate 

results, statistical analyses were undertaken. Specifically, the statistical analysis of historical data 

must be performed because the MCS is a strong probabilistic technique that is useful when the 

variables to be analyzed are not deterministic. Considering this, the MC model comprises multiple 

variables with diverse ranges and distribution functions, which can be seen from Fig. 5 (i.e., 

illustration of the operation principle of MCS) (Mahdiyar et al. 2021). At every iteration of the 

MCS model, a random number for each input is selected, albeit the distribution functions of the 

variables. Before the analysis, the exact number of the required iterations needs to be set out. On 

the other hand, the range of outputs can statistically be analyzed once all the iterations have been 

obtained. Therefore, the inputs and outputs in the MCS-based technique are assigned myriad 

values within a specified range (Mahdiyar et al. 2021). Another strong quality of MCS is that it 

can prudently incorporate both independent and dependent variables into one model, which leads 

to more accurate and inclusive results that take into account the interrelationships among the 

identified variables. 

3.4.2 Application of MCS in predicting the cost overruns of PPPs  

This section is concerned with elaborating the steps involved in exploiting the MCS technique 

towards the risk analysis of the TPPPs. To do this, this study followed five steps, as illustrated in 

Fig. 6, and is stated subsequently. 

Step 1. The influential variables that have already been refined together with their corresponding 

risk magnitudes (that were collected from all the experts involved in the study) values were 

compiled.  
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Step 2. This step is concerned with the consideration of each variable’s risk magnitude distribution 

function. Notably, the Risk Simulator was used to calculate the distribution functions of all 

variables (which is an MS-Excel plug-in feature) (Mahdiyar et al. 2021). The ‘best-fit’ function in 

the platform of Risk Simulator was used to apply the distribution function of the variables. The 

continuous probability distribution (CPD) for all the inputs was taken into account during the use 

of the mentioned function. 

Step 3. In this step, based on the inclusive equation derived from the exploitation of GP, the 

percentage of cost overrun was simulated using MCS. For this purpose, the Latin hypercube 

sampling was considered since it privileges simple random sampling (Mahdiyar et al. 2021). It is 

noteworthy that 10,000 trials were executed in the current study to warrant the analysis of all the 

combinations of variable values. 

Step 4. At this stage, conducting sensitivity analysis was taken into account. Sensitivity analysis 

is an important aspect of testing the variability of the model’s outcomes. In the cost overrun 

simulation model, the input parameters were uncertain and varied. The probabilities of the RFs 

depended on expert judgments, and the outcomes (i.e., cost overruns) were simulated based on the 

probability of RFs. Thus, sensitivity analysis had significance in identifying the critical input 

parameters (i.e., RFs) that may substantially impact the final estimate of cost overruns. To figure 

out how much the variation in the cost overrun was explained by the variations in each RF in a 

dynamic simulation environment, a sensitivity analysis was conducted. 

Step 5. As the output of the simulation, a range of cost overrun percentages was obtained—

including 10,000 values—so that the minimum, maximum, and most probable cost overrun were 

interpreted. 

3.5 Verification and validation 

In order to verify and validate the results obtained; different indices were taken into account as 

follows: 

• As regards the reliability of the results obtained from the pool of experts, the Cronbach 

reliability test (𝛼𝛼) was considered (Mohandes and Zhang 2021). In doing so, 𝛼𝛼 for each of 

the risk parameters (i.e., probability and severity) was separately calculated. If the 

calculated 𝛼𝛼 of a developed survey related to each of the considered risk parameters crossed 
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the value of 0.7, then the responses provided by the pool of experts would be considered 

reliable. Otherwise, the corresponding survey needed to be redistributed to the experts. 

• In order to check the validation of the results produced by GP, several statistical tests were 

considered in this study, as suggested by Yong et. al (2021). The considered tests include 

mean square error (MSE) and coefficient of determination (R2). 

• The validation of the results produced by MCS is checked by Risk Simulator. As opined 

by Mahdiyar et al. (2021), once the results have been attained using MCS, there was a need 

to conduct sensitivity analysis to check the extent to which the outputs were sensitive to 

the inputs. If the output was seen to be very sensitive to any of the inputs considered, then 

the simulation procedure was imbued with a problem, thus all the related steps need to be 

checked.  

4 Results 

The results are presented in three sections. The first section shows the RFs refinement. The second 

section presents the developed predictive equation, and the third section shows the findings of cost 

overruns simulation and the sensitivity analysis.   

4.1 Risk factors refinement  

Initially, 49 RFs were observed to affect the cost performance of the TPPPs—the risk codes were 

shown in Table 1 and their descriptions were presented in Table S2. Then, the probability and 

severity of each RF were computed by averaging the scores provided by 64 domain experts. The 

risk magnitude was calculated as a product of the probability and severity of the risk. As shown in 

Table 1, fourteen RFs—those whose risk magnitudes are equal to zero—were considered not 

influential; so they were immediately removed from the list. The magnitudes of the other 

remaining 35 RFs range from 2–10. Notably, the threshold risk magnitude value was defined as 

7.00 (as explained in subsection 3.2). Among 35 remaining RFs, only eight factors were selected 

for model development meaning that they were important to predict cost overruns in TPPPs. Table 

1 shows the results of this step regarding the selected RFs. Notably, the calculated α was equivalent 

to 0.7659 and 0.8472 for probability and severity parameters respectively, which indicated good 

consistency among the pool of experts’ responses involved in the study. 
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4.2 Implementing the GP-based mathematical model 

At this stage, the GP was employed to develop a predictive equation (Eq. (1)) for cost overrun. To 

this end, as the inputs for developing such a predictive equation, a dataset was required including 

the magnitude of eight selected RFs — defined in the previous step — and the reported actual cost 

overruns for each case. To make it more explicit, the magnitude of RFs in a particular project and 

the corresponding actual cost overrun of the respective project constituted one dataset point during 

the GP model development. Then, having the magnitude of each RF for each case (which were 

considered as the inputs) and the corresponding actual cost overrun reported by the experts (which 

was the output), GP model development was undertaken using GeneXproTools 4.0 software, and 

accordingly, Eq. (1) was derived at the final stage of the GP utilization (as explained in sub-section 

3.3). As shown in Eq. (1), the cost overrun was predicted based on the dependent variables (which 

were the magnitude of selected RFs). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  ��cos��𝑥𝑥1𝑥𝑥53 �
2
� (𝑥𝑥8)� + ����𝐴𝐴𝐶𝐶𝐴𝐴𝑂𝑂(𝑥𝑥2) + sin(𝑥𝑥6)� �𝑥𝑥8 + 4 − � 𝑥𝑥1

3.37
��� +

4� + ���𝑥𝑥7�𝑥𝑥7𝑥𝑥63 �� + �cos��𝑥𝑥53 �� + ���sin(3.53𝑥𝑥3)
𝑥𝑥2−1.93

� (𝑥𝑥4)��                   (1) 

where 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4, 𝑥𝑥5, 𝑥𝑥6, 𝑥𝑥7, and 𝑥𝑥8 are Mng_Cntr-MW, Ctr_LKE, Owner_DPTP, Mng_CMW, 

Ctr_PPS, Cslt_LKE, Owner_GCPC, and Mng_Poor FS, respectively. 

As stated in sub-section 3.3, 75% of the collected dataset was applied for finding the best structure.  

Table 2 shows the most suitable structure—which was the most precise one for training and 

testing—that was used for the model development.  

Fig. 7 shows the performance of the training dataset for cost overrun prediction with the percentage 

of the baseline cost (x-axis) as compared to the percentage cost overruns (y-axis) experienced in 

real-life PPPs. The mean square error (MSE) was 3.76 and the R2 value of the correlation model 

for prediction and actual cost overruns data was 0.9562. This high R2 value indicated that almost 

95% of the predicted cost overruns variance can be explained by the variance of the actual cost 

overruns of studied PPPs. The figure also demonstrated that the prediction trend line follows a 

gentle but linear slope. It was notable to mention that the difference between predicted and real 

value of cost overrun was very small in the lower tail, i.e., up to 30%, but it was higher in the trend 
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line's upper tail. For instance, if the predicted cost overrun was 20%, the real cost overrun was also 

the same as 20%; for a further 10% increment of predicted cost overrun, the corresponding real 

figure was only 2% (i.e., 30% to 22%).  

Fig. 8 presents predicted cost overrun (%) performance against reality for testing the data set with 

an acceptable MSE of 3.65. The R2 value of the correlation model for prediction and actual cost 

overruns data was also high, i.e., 0.9609. This high R2 value indicated that almost 96% of the 

predicted cost overruns variance can be explained by the variance of the actual cost overruns of 

studied PPPs. Besides, the line graph showed a gentle but a bit steep slope than the prediction of 

the training data set shown in Fig. 7. Thus, the differences between real cost overruns and predicted 

cost overruns were minimized. For example, if the predicted cost overrun was 40% of the baseline 

cost, the corresponding real figure was 38%; and for 80% predicted cost overrun, it was 77% in 

reality. This showed a reduction of the gap between predicted and real cost overruns in the upper 

tail of the graph compared to that of the training data set. The lower tail performances were almost 

the same for both graphs.  

4.3 Cost overrun simulation  

In the process of cost overrun simulation, the proposed predictive cost overrun equation, together 

with the data obtained from 64 experts (refer to Table 3), related to the refined RFs were used. 

Table 3 shows the expert judgment-based risk magnitude of the most significant factors leading to 

cost overruns of PPPs. This table also shows the nature of distribution functions of the RFs 

considering all responses gathered from the experts.  

Fig. 9 shows the distribution model of cost overrun simulation. The simulation results showed that 

the cost overruns can vary from 0 to 182% with the minimum, most probably, and maximum 

amounts 0.029%, 40.48%, 181.90% successively. Fig. 9 also depicted that the cost overruns in 

PPPs will not exceed 75% with a 90% confidence level under usually experienced RFs. Also, there 

was a 50% probability that the cost overruns will not exceed 25%. It indicated that the initial cost 

estimate with the addition of a 25% extra cost as a contingency to the baseline estimate may result 

in no cost overrun of a project in 50% cases.  
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Fig. 10 demonstrates the confidence levels of probability in terms of cumulative frequency (or 

probability) of experiencing a percentage of cost overrun of each project. The simulated percentage 

of cost overrun is indicated in the x-axis, and the cumulative frequency of the specific percentage 

of cost overrun is shown in the y-axis. Fig. 10 also compares actual, predicted, and simulated cost 

overruns. The cumulative frequency of cost overrun for every estimate (actual, predicted, and 

simulated) comes together at 40% of cost overruns experienced by the PPPs. Around 90% 

confidence level can be achieved for all cases by considering a 70% cost overrun for every project. 

Moreover, the percentages of actual cases, predicted cost overruns (based on Eq. (1)), and 10,000 

simulated trials are shown in 10 %-ranges. As it can be seen, 20.31% of actual projects have 

experienced between 10% and 20% cost overruns. On the other hand, considering the most 

influential risk factors (that have been used in developing Eq. (1)), — this percentage was predicted 

to be 17.19%. Likewise, using the magnitude of risk factors and the predictive equation (Eq. (1)), 

the cost overrun was simulated with 10,000 trials and the outputs show that the cost overrun of 

24.3% of trials was within that range. 

4.3.1 Sensitivity Analysis 

Table 4 shows the extent to which the variation in cost overrun depends on the variations in RFs 

in descending order of dependence. It shows the sensitivity analysis of the RFs on simulating cost 

overruns; poor feasibility study risks are the most sensitive factor for producing cost overrun, 

followed by the contractor’s lack of experience and poor planning and scheduling. While the 

contractor’s managerial weakness, consultant’s lack of experience, and the owner’s delay in the 

project tendering process have the highest level of risk magnitudes, these factors were 

comparatively less sensitive for a minor change of input variables to model cost overruns. These 

outcomes confirmed the reliability of the simulation as it showed an acceptable level of sensitivity 

of the cost overrun to the variations in variables’ values. 

5 Discussion  

The discussion of the study’s findings was structured in different dimensions such as critical RFs 

considered in this study and other similar studies, distribution patterns of cost overruns data, and 

outcome of the error analysis of this integrated model and the outcomes of other models proposed 

in previous studies in the same domain.  
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In this study, the most important RFs, which were considered for cost overruns modeling, was the 

contractor’s managerial weakness (Mng_Cntr-MW), contractor’s lack of knowledge and 

experiences (Cntr_LKE), and owner's delay in the project tendering process (Owner_DPTP). 

Others are consultant’s managerial weakness (Mng_CMW), contractor’s poor planning and 

scheduling (Ctr_PPS), consultant lack of knowledge and experiences (Cslt_LKE), government’s 

customs policy, and complexity (Owner_GCPC), and poor feasibility study (Mng_Poor FS). It is 

important to note that the RFs were assessed (i.e., probability and severity) based on the average 

score of the respondents. However, in a past similar study (Islam et al. 2018b) conducted in 

Bangladesh, the owner-related issues, e.g., land acquisition delay, delay in project tendering, and 

decision-making were the top-ranked factors. Besides, contractor-related factors like contractor’s 

lack of knowledge, procurement delay, decision-making delay, and poor planning and scheduling 

were found to be high-impact factors to cause cost overruns, and the consultant’s lack of 

knowledge and experiences was also paid attention in this regard. Poor feasibility study, 

contractor’s managerial weakness, equipment unavailable in the local market, site constraints, and 

project complexity were also critical to producing cost overruns of PPPs in Bangladesh (Islam et 

al. 2019).  

Some of the factors from the previously mentioned studies were disregarded because of not 

identified as significant to cost overruns in PPPs. The main reason for the differences between the 

results produced from this study and those of others lies in the adoption of different methodological 

approaches. For instance, Islam et al. (2018b) applied a modified fuzzy group decision-making 

approach and considered the effects of project phases in risk evaluation. This method can be added 

with the cost overrun modeling approach for selecting important RFs contributing to cost overruns 

in PPPs. Islam et al. (2021) considered only four factors, i.e., inflation, construction delay, change 

order, and improper soil investigation for contingency modeling. The construction delay and 

change orders were not the primary causes rather, they could be produced by some other factors 

considered in this study and cost overrun modeling. For example, construction delay in PPPs can 

be occurred due to the land acquisition delay, owner’s delay in project approval decision, fund 

shortage, unavailability of equipment in the local market, complexity in lifting heavy equipment, 

etc. and change order can be the reason of design error or changes in design and specification, 

owner’s additional requirement, owner/consultant’s lack of knowledge and experience, etc. (Islam 

et al. 2019). Poor site management by the parties involved, changes in geological conditions, 
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decision-making delays, and restricted site access were top-ranked critical factors for cost overruns 

of other types of PPPs in Indonesia (Sudirman and Hardjomuljadi 2011b). Delay in site handover, 

financial difficulties, delay in design and equipment procurement, etc. were some major RFs of 

Iranian PPPs (Zegordi et al. 2012). Thus, identifying critical RFs to cost overruns was an issue for 

applying this cost overrun prediction model. However, the model can be applied commonly in 

power plants and other infrastructure projects as infrastructure projects have some common 

characteristics of encountering cost overruns.  

Previous studies claimed that the cost data of real-world projects follow a variety of distribution 

patterns. For example, Traynor and Mahmoodian (2019a) used a combination of Triangular, 

LogNormal, and Normal distribution, Asmar et al. (2011) applied beta distribution, Ayub et al. 

(2019) used the normalized discrete distribution for modeling costs and contingencies of different 

construction projects. Besides, the cost data of transit projects (Gurgun et al. 2013) and industrial 

projects (Barraza et al. 2007) were fitted with normal distribution, while the cost data of nuclear 

energy projects were assumed to be distribution-free (Maronati and Petrovic 2019). From these 

findings, it was clear that the cost data of different construction projects do not follow a consistent 

distribution pattern. Our study found that the cost overrun risk data mostly follows Weibull and 

Gumble maximum distributions. It is noted that the domain experts provided the cost overrun risk 

data using their subjective knowledge. Thus, this is a knowledge area for further exploration as 

subjective data set follows such distributions as mostly Weibull and Gumble maximum.  

The error analysis shows that the cost overrun predictions of both training dataset and testing 

dataset performance were at a satisfactory level with an MSE of 3.76 and 3.65, respectively. The 

error analyses of similar previous studies clearly indicated that the percentage errors of different 

construction cost predictions range from -4% to 50% in some cases. For example, Williams and 

Gong (2014) found that their models (data mining classification algorithms including radial basis 

function neural network) had an average of 43.72% prediction accuracy of construction cost 

overruns. Elmousalami (2020b) proposed a fuzzy-based machine learning approach for the 

project’s cost prediction and found 9% MSE with a 92.9% adjusted R2 value. In a similar study, 

Idrus et al. (2011) proposed a fuzzy expert system for infrastructure project’s contingency cost 

prediction with the highest 18% error. Thus, the amount of error in our proposed model was 

reasonable and acceptable compared to the findings of similar models in previous studies.  
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Having compared Tables 1 and 4, it can be seen that there may not be a direct relationship between 

the RFs influence and their explained impacts on cost overrun variations. For instance, 

Owner_DPTP was ranked as the third most influential RF, while based on the outputs, its variation 

has almost the lowest possible impact on cost overrun. This interesting finding was justifiable 

considering the undeniable existence of interdependencies among the RFs. According to these 

outputs, considering the cause and effect relationships, it was believed that although Owner_DPTP 

is a significant RF, it was an effect and its significance stems from its indirect influences on the 

cost overrun—which were received from causal RFs. Thus, the most significant RFs (based on 

their significance levels) may not necessarily lead to drastic variations in the cost overrun 

percentage of TPPPs, even though they were of high importance for such projects. The results 

suggested that the project managers need to reduce the risk magnitude of the factors explaining 

the most variation in the cost overrun values. Moreover, the concerned stakeholders ought to tilt 

their attention towards any circumstances leading to the variations of the most influential ones 

(according to the sensitivity analysis reported in Table 4), rather than the RFs of the highest 

magnitude (i.e., cost overrun percentage of TPPPs).  

6 Conclusion and Recommendation 

Cost overrun in complex infrastructure projects such as PPPs is a common feature worldwide. 

Whilst there have been some studies investigating cost overrun risks of the TPPPs, the current 

body of literature lacks a systematic approach for predicting and simulating the cost overruns of 

TPPPs based on the significant RFs and their interrelationships. To fill this gap, this study proposed 

a novel HPMM⸻which was based on the integration of machine learning- and probabilistic-based 

techniques⸻to meticulously analyze the cost overruns of TPPPs for the first time throughout the 

current body of literature. Based on the application of the proposed HPMM to the selected TPPPs 

in Bangladesh, the following conclusions were observed: 

1) Based on the responses of the experts involved in the study, eight critical RFs playing a 

major role in the cost overruns of PPPs were determined. These are contractor’s managerial 

weakness, contractor’s lack of knowledge and experiences, owner’s delay in project 

tendering process, consultant’s managerial weakness, contractor’s poor planning and 

scheduling, consultant lack of knowledge and experiences, government’s customs policy 

and complexity, and poor feasibility study. 
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2) Using the proposed GP-based algorithm, an inclusive equation for predicting the cost 

overruns of related projects was put forward, based on which the cost overrun of related 

projects can be predicted. 

3) Based on the proposed derivative produced from GP, the probabilistic cost overrun of 

related projects was simulated using MCS technique by considering 10,000 trials. The 

findings show that the most probable cost overrun was 40.48%, with a maximum of 182%. 

Besides, the Bangladeshi PPPs will experience 25% cost overruns with a 50% probability, 

and this will not exceed 75% with a 90% confidence level under usually experienced RFs. 

4) The sensitivity analysis showed that cost overrun of PPPs was highly sensitive to a poor 

feasibility study, contractor’s lack of experience, and contractor’s poor planning and 

schedule.  

6.1 Research implications  

In this research, the most influential RFs have been selected from a comprehensive list based on 

their impacts on many real-life projects. Moreover, since the cost overrun was simulated based on 

actual data and rigorous mathematical approaches, the outcomes gave clear overall insight to the 

managers on the probability of cost overrun in their projects. The developed mathematical model 

is a practical prediction model, by which managers can predict the cost overrun of their projects 

based on the actual risks’ magnitudes associated with their projects with a high level of accuracy. 

The developed model can directly be used in the PPPs in Bangladesh and economically and 

culturally similar countries for their further project budgeting, contingency cost allocation, and 

risk management-based contingency disbursement. The developed cost overruns prediction 

approach can be used for any real-life infrastructure projects regardless of geo-political boundaries 

as the process itself is robust for cost overruns prediction.  

6.2 Limitations and suggestions for future studies 

The limitations of the study are twofold. Firstly, although the developed HPPM is replicable for 

other PPPs around the globe, the findings are region-specific and may not be fully adopted in PPPs 

in other countries. It is worth mention that the cost overrun can be predicted and simulated for 

projects in other regions by reconsidering the most critical RFs and their magnitudes based on the 

available records in that specific region. Secondly, the model considered only eight top-ranked 
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factors for modeling cost overruns of complex PPPs. As a result, future studies can be conducted 

to consider more RFs in predicting the cost overrun of PPPs and compare the accuracy of such 

prediction models with HPPM. In addition, the findings of the research revealed that there are 

some relationships between the RFs. Although a highly accurate model is developed in this 

research, such relationships should be investigated in future studies for possible cost overrun 

predictive model development. The proposed model can also be implemented or demonstrated in 

cost overrun modeling of other infrastructure projects of its broader applications. This study also 

found by a literature review (please refer to subsection 2.2) that the regression neural network 

(RNN) is a potential tool to consider critical risks as input variables to cost overrun prediction of 

PPPs, and can work with small data set, which overcomes the limitation of data-intensive models. 

Thus, the RNN is recommended for further research justifying its capability to cost overrun 

prediction of TPPPs or similar infrastructure projects. While risks can be defined as threats and 

opportunities, this study only focuses on the risks, which have threats or negative impacts to project 

cost and produced cost overruns. Thus, future research is recommended to address risks creating 

cost-saving opportunities in developing a cost overrun prediction model for TPPPs.  

Data Availability Statement 

Some or all data, models, or code that support the findings of this study are available from the 

corresponding author upon reasonable request. 
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Table 1: RF refinement based on their importance to cost overrun  

RF code Risk Factor Probability* Severity* Magnitude Decision 
Mng_Cntr-
MW 

Contractor’s managerial weakness 2.94 3.13 9.18 Select 

Ctr_LKE Contractor’s lack of experience 2.83 3.23 9.15 Select 
Owner_DPTP Delay in project tendering process 2.97 3.03 9.00 Select 
Mng_CMW Consultant’s managerial weakness 2.77 2.98 8.25 Select 
Ctr_PPS Contractor’s poor planning and 

scheduling 
2.67 3.02 8.06 Select 

Cslt_LKE Consultant’s lack of experience 2.56 3.00 7.69 Select 
Owner_GCPC Government’s customs policy and 

complexity 
2.72 2.77 7.52 Select 

Mng_Poor FS Poor feasibility study 2.48 3.00 7.45 Select 
Owner_DDM Owner’s delay in decision making 2.19 3.14 6.89 Reject 
Mng_Own-
IPM 

Incapable project manager for owner 2.12 3.22 6.83 Reject 

Owner_CODC Change order during construction 2.58 2.62 6.77 Reject 
Mng_LCBP Lack of communication between the 

parties 
2.26 2.98 6.74 Reject 

Ctr_DDM Contractor’s delay in decision 
making 

2.38 2.81 6.71 Reject 

F_CFS Contractor’s fund shortage 2.45 2.73 6.71 Reject 
P_SC Site constraints  2.59 2.58 6.69 Reject 
ME_TD Transportation difficulties 2.39 2.63 6.28 Reject 
P_PC Project complexity 2.39 2.63 6.28 Reject 
F_Contr-LFP Contractor’s lack of financial plan 2.41 2.58 6.20 Reject 
Mng_CBP Conflict between the parties 2.38 2.55 6.05 Reject 
ME_GIPC Government’s import policy and 

complexity 
2.34 2.53 5.93 Reject 

Cslt_ED Error in design 2.22 2.64 5.86 Reject 
Mnp_LE Lack of experienced mapower 2.23 2.59 5.80 Reject 
P_land 
acquisition 

Land acquisition delay 2.45 2.25 5.52 Reject 

Own_GIP Government’s interference in 
procurement 

2.25 2.42 5.45 Reject 

F_Infl Inflation 2.28 2.36 5.38 Reject 
F_BIH Bank interest rate high 2.22 2.42 5.37 Reject 
Owner_DPGF Delay to provide government fund 2.14 2.25 4.82 Reject 
F_MSF Multiple sources of fund 2.23 2.09 4.68 Reject 
ME_DDPE Delay to deliver plant equipment at 

site 
1.98 2.11 4.19 Reject 

F_OwnerPFM Owner’s poor financial management 1.80 2.11 3.79 Reject 
ME_ANER Additional new equipment required 

in construction phase 
1.75 2.16 3.77 Reject 
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P_GovtP Government’s policy (e.g., tax and 
incentive) 

1.80 2.00 3.59 Reject 

Owner_LBS Lowest bidder selection 1.94 1.75 3.39 Reject 
Cslt_CES Change of equipment and/or 

specifications 
1.64 1.97 3.23 Reject 

ME_IMDS International market (demand, 
supply, and price escalation of long-
lead items) 

1.55 1.78 2.76 Reject 

Mnp_LSPS Lack of skilled personnel at site 0.00 0.00 0.00 Reject 
Mnp_PP Poor productivity of the manpower 0.00 0.00 0.00 Reject 
Mnp_LS Labour shortage 0.00 0.00 0.00 Reject 
ME_SME Shortage of materials and equipment 0.00 0.00 0.00 Reject 
ME_FPE Failure of plant equipment during 

setup  
0.00 0.00 0.00 Reject 

ME_UNE Unfamiliar with new equipment 0.00 0.00 0.00 Reject 
Owner_CBS Complex bureaucratic system  0.00 0.00 0.00 Reject 
Ctr_PD Contractor’s procurement delay 0.00 0.00 0.00 Reject 
Cslt_DSWD Consultant’s delay to supply working 

drawing 
0.00 0.00 0.00 Reject 

Cslt_DIAWE Consultant’s delay to inspect and 
approve work or equipment  

0.00 0.00 0.00 Reject 

Env_BW Bad weather 0.00 0.00 0.00 Reject 
Env_UF Unusual flood  0.00 0.00 0.00 Reject 
Env_UC Unexpected casualty  0.00 0.00 0.00 Reject 
Env_EPL Environmental protection law  0.00 0.00 0.00 Reject 
Threshold 
value 

 7.00 

 *average value obtained from the responses of all 64 experts. 
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Table 2 The most suitable structure of the GP algorithm 

Parameters Value 
Number of generation 50-500 

Maximum program size 70 
Function set ×,/,+, power (x, y*) ,Atan, Cos, Exp, 

Initial program size 22 
Crossover rate 0.5, 0.80 

Homologous crossover 0.83 
Mutation rate 0.055 

Number of demes 40 
Instruction mutation rate 0.4 

Data mutation rate 0.2 

Table 3. The inputs used for cost overrun simulation  

RF Experts’ opinions on risk magnitude Distributing function* 
Minimum Maximum 

Mng_Cntr-MW 1 36 Gamma 
Ctr_LKE 0 36 Weibull 
Owner_DPTP 0 36 Gumble maximum 
Mng_CMW 0 25 Gumble maximum 
Ctr_PPS 0 36 Weibull 
Cslt_LKE 0 36 Weibull 3 
Owner_GCPC 0 36 Weibull 3 
Mng_Poor FS 0 20 Gumble maximum 
* obtained from the best-fit function of Risk Simulator 

Table 4. Sensitivity analysis  

RF Per cent variation explained 
Mng_Poor FS (Poor feasibility study) 14.41 
Ctr_LKE (Contractor’s lack of experience) 3.88 
Ctr_PPS (Contractor’s poor planning and scheduling) 1.44 
Owner_GCPC (Government’s customs policy and complexity)  0.97 
Mng_CMW (Consultant’s managerial weakness)  0.33 
Mng_Cntr-MW (Contractor’s managerial weakness)  0.18 
Cslt_LKE (Consultant’s lack of experience) 0.07 
Owner_DPTP (Delay in project tendering process) 0.02 
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