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Abstract

This work presents a methodology to address the problems of bubbles and drops evolving in
incompressible, viscous flows due to the effect of surface tension. It is based on the combina-
tion of a recently developed immersed interface method to resolve discontinuities, with the
level set (LS) method to reproduce the evolving interfaces. The paramount feature of this im-
mersed interface method is the use of Lagrange interpolation enclosing grid points positioned
in the vicinity of the interface and few exceptional grid points positioned on the interface.
Different problems are considered to assert the accurateness of the proposed methodology,
involving both simple and complex interface geometries. Precisely, the following problems
are addressed: circular flow with a fixed interface, the dispersion of capillary waves, initially
circular, ellipse, star shaped bubbles oscillating to an equilibrium state and circular drops
deforming in shear flows. The transient evolution of bubbles/drops in terms of their shapes,
pressure profiles, velocity vectors, deformation ratios of major and minor axis is analyzed to
observe the effect of surface tension. The proposed methodology is seen to recover the exact
numerical equilibrium between the surface tension and pressure gradient in the vicinity of
complex interface geometries as well, while recreating the flow physics with an adequate level
of accuracy with well representation of overall trends. Moreover, the numerical results yield
a good level of agreement with the reference data.

Keywords: Immersed Interface; Level set; Surface tension; Multiphase; Navier-Stokes equa-
tions; Shear flows; HOC.
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1 Introduction

Recently, there is a growing interest to model and simulate the behaviour of liquid drops
or gas bubbles that are immersed in viscous fluids. These studies are motivated by the
presence of multiple fluid environments in daily life and by numerous scientific and engi-
neering applications. Examples are fluid mixing, fuel injection in engines, bubble column
reactors, particulate flows, suspension rheology, biofluid-dynamics such as emulsion rheology,
blood flow, to name only a few. To cite another example, deformation and cleavage of cells
generally involves multiple drop deformation processes [1, 2, 3]. Moreover, some emerging
and rapidly growing technologies like digital microfluidics are fed from the knowledge of
the topology of drop or bubbles evolving through microgeometries [4]. Since the shape and
size of the droplet determine important properties such as stability, rheology, and particle
morphology, it is important to understand the mechanism of bubble deformation, growth
and breakup. The success in numerical simulations of these flows lies in the capability of
numerical algorithm to address the following dominant issues:
(a) The fluid interfaces must be accurately computed and well represented.
(b) Discontinuity of material properties (eg. density, viscosity) across these interfaces must
be effectively treated while accounting for the forces acting on them like surface tension.
(c) The computations should be stable while having advantages like easy implementation,
low in time and cost.
In order to address the first issue, two main groups of numerical techniques have been devel-
oped in the literature. Namely, Lagrangian methods (e.g. front tracking [5]) and Eulerian
methods (e.g. the level set (LS) [6, 7], the volume-of-Fluid (VOF) methods [8, 9, 10]). The
location of the interface is explicitly known in Lagrangian methods and consequently the
implementation of surface tension and interfacial boundary conditions is straightforward.
However, a major shortcoming of this method is that once the interface topology starts
varying, “surgical” procedures are required to smooth and distribute the interfacial elements
utilized to represent the interface [11]. Such procedures are complicated when interfaces
merge or split, specifically in three dimensions (3D) [12]. On the other hand, in Eulerian
methods, the location of an interface is implicitly represented by a scalar function in general
on an Eulerian mesh, which serves as an indicator and as such it permits interfaces to merge
or break with relative ease. The interface is allowed to evolve on a fixed numerical mesh by
solving an advection equation involving this indicator function (for example, the LS function
or the VOF function). The methodology proposed in the present work considers a set of
governing equations with the interfacial conditions embedded in the field equations as source
terms. The equations are discretized in a finite-thickness interfacial zone, within which the
fluid properties change smoothly [6]. This approach has been undertaken along with the
application of the LS method for modelling the interfaces. The LS method introduced in [7]
is a numerical approach for implicitly evolving the interface by means of a smooth (Lipschitz
continuous) function (denoted by φ) defined on the entire physical domain. By initializing
the interface as the zero level set of this function, the interface propagates naturally with
the evolution of zero level set. Some of its advantages over other methods include its ability
to easily handle topological changes like breakup and merging, well generalization to three
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dimensions, and its relatively easy implementation.
The Navier Stokes equations for incompressible viscous flows constitute a mainstay for

computing multiphase flows. The numerical methodology adopted herein is the classic Chorin
pressure projection scheme [13]. This method consists of splitting the solution procedure
into distinct steps in which the velocity and pressure are decoupled by introducing a pressure
Poisson equation. A literature survey reveals the existence of many numerical studies related
to the modifications of this method. For example, Balcazar et al. [14], Chakraborty et
al.[15], Francois and shyy [16], Francois et al. [17], Hysing [18], Huang et al. [19], Li and
Lai [20], Leveque and Li [21], Torrecilla et al. [22], Tong and Wang [23], Uh and Xu [24]
and the references therein. However all these variants of the projection method are fraught
with certain shortcomings, mostly with evaluating pressure, for instance, oscillations in the
pressure profile in the vicinity of the interface [25, 22]. Additionally, it is vital to accurately
compute interfacial quantities such as curvature and normal vectors because they are used
to evaluate the surface tension force. Numerical imbalance of the surface tension force and
the associated pressure gradient is likely to induce non physical velocities, commonly known
as spurious or parasitic currents [14, 18, 11]. These currents can flourish with time and
can degrade simulation results significantly. In particular, one has to be extremely careful
in ascertaining that the interface topologies projected by computation are not numerical
artifacts arising from errors.

In the present paper, a coupling between LS and a recently developed higher order
accurate immersed interface method [26] has been proposed to address the problems of
drops or bubbles evolving in incompressible, viscous flows due to surface tension force. The
paramount feature of this immersed interface scheme is the use of Lagrange interpolation
enclosing adjacent grid points and few special grid points named as “the interfacial points”
as nodes. Interfacial points are defined as points in the domain where grid lines intersect
the interface. The use of this methodology in conjunction with the LS method allows us
to deal with intricate interface geometries with a very simple mesh generation process. For
a fixed interface, this methodology has been thoroughly validated in one, two and three
dimensions [26]. In the present work, this methodology is extended to solve moving interface
problems governed by N-S equations for the first time. Following problems are considered to
assert the accurateness of proposed methodology: dispersion of capillary waves for validation,
circular flow with a fixed interface; static circular bubble at equilibrium in a fluid at rest,
initially ellipse shaped and star shaped bubbles oscillating to an equilibrium state and drops
deforming in shear flows. For the test cases considered here, the methodology is
seen to recover the exact numerical equilibrium between the surface tension
and pressure gradient in the vicinity of high curvature interface geometries as
well. Accurate resolution of pressure is demonstrated without the presence of
any oscillations in the vicinity of the interface validating the Young-Laplace’s
law to a good level of accuracy. Grid refinement analysis of the infinity error
norms of pressure and velocities report the convergence rates near to two along
with significantly reduced spurious currents. In addition, the primary traits of
physical behaviours of drop deformations in shear flows are strongly captured
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and numerical results yield a good level of agreement with the reference data.

2 Mathematical Formulation

The mathematical formulation of the proposed methodology is presented in the present sec-
tion. The equations depicting the conservation of mass and momentum of two unsteady,
viscous, incompressible, immiscible fluids are given by the the Navier Stokes equations de-
fined on a spatial domain Ω with boundary ∂Ω as [6]:

ρi

(

∂ui

∂t
+ ui · ∇ui

)

= ∇ · Si + ρig, (1)

Si = −piI+ µi

(

∇ui + (∇ui)
T
)

(2)

and
∇ · ui = 0 (3)

where t is the time, ρ is the density, µ is the viscosity, p is the pressure, u = (u, v) is the
velocity field, g is the acceleration due to gravity, S is the stress tensor, I is the identity
tensor and the super-index T represents the transpose operator. Fig. 1 shows an illustration
of a square domain Ω embedded with an interface Γ separating two immiscible fluids. The
apex i = 1, 2 represents variables correlating to the regions labelled as fluid 1 and fluid 2
(see Fig. 1) respectively. Assuming no mass transfer between the fluids yields a continuous
velocity condition at the interface:

u1 = u2 at Γ. (4)

The effect of surface tension is to balance the jump of the normal stresses along the fluid
interface. Overlooking the variations of the surface tension coefficient, σ gives the following
boundary condition for momentum conservation at the interface [14, 6]:

(S1 − S2) · n = σκn at Γ (5)

where n is a unit outward normal vector along Γ. The resulting evolution equations can be
mingled into a set of equations for a single fluid in Ω, with the effect of surface tension in
terms of a singular source term [14]:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p +∇ ·
[

µ
(

∇u+∇uT
)]

+ ρg + σκnδΓ (6)

∇.u = 0 (7)

where δΓ is the Dirac delta function (ensuring that σ is only applied at the location Γ).
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Ω 2

Fluid 2(φ>0)

Fluid 1(φ<0)

Γ(φ = 0)
y

x Ω

Ω 1

Figure 1: Illustration of a computational domain, Ω showing the evolution of a level set
function, φ(x,y) with a zero contour marking the interface, Γ.

2.1 Interface Capturing

The position of the interface is evolved in time using the LS method, introduced in [7].
A smooth level set function φ(x, t) is defined over Ω in such a way that φ > 0 in one
fluid region (i.e. in Ω2) and φ < 0 in the other fluid region (i.e. in Ω1) and the interface
position is characterized by φ = 0. The time evolution of the interface is obtained solving
the Hamilton-Jacobi equation for φ:

∂φ

∂t
+ u · ∇φ = 0. (8)

At each time, t the fluid domain Ωi are defined by the sign of φ and the parameters required
to impose the jump conditions at the interface Γ are obtained from the level set function
φ(x, t). For some problems, a source term is added to right hand side of eq. (8) to maintain
the mass conservation in the solution process ([27]). This source term is the difference
between the current mass at each time step during the solution process and the initial mass.

The accurate computation of the curvature, κ and the normal, n = ∇φ/|∇φ| desires the
values of φ to be nearly a signed distance function, that is |∇φ| = 1. The numerical solution
of eq. (8) rapidly loses the signed distance property during larger time computations, thus
a correction is introduced solving the so-called re-initialization equation [28] for few steps in
the pseudo-time Θ:

∂φ

∂Θ
+ S(φ0) (|∇φ| − 1) = 0. (9)

The operator S(φ0) = φ0/
√

φ2
0 + h is a smoothed sign function, φ0 = φ(Θ = 0) is the initial

zero-level set function and h is the grid spacing.
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2.2 Surface Tension Treatment

Implementation of a pertinent surface tension model is necessary for an accurate calculation
of curvature and incorporation of pressure jump in to the fluid domain. By the means of φ,
the singular source term, σκnδΓ in (6) can be expressed as [6, 29]:

σκnδΓ = σκδ(φ)∇φ (10)

The curvature κ can be expressed in terms of φ and its derivatives as

κ(φ) =
φ2
yφxx − 2φxφyφxy + φ2

xφyy

(φ2
x + φ2

y)
3/2

(11)

2.3 Governing equations

This conversion of the singular source term in (10) enables us to reformulate the evolution
equations (6)-(7) as:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p +∇ ·
[

µ
(

∇u+∇uT
)]

+ ρg + σκ(φ)δ(φ)∇φ, (12)

and
∇.u = 0 (13)

All quantities in the above-mentioned equations are made dimensionless using the following
reference values:

x̃ =
x

L
, ũ =

u

U
, t̃ =

tU

L
, p̃ =

p

ρrefU2
, g̃ =

g

gref

ρ̃ =
ρ

ρref
, µ̃ =

µ

µref

where L is the characteristic length scale; the subscript ref is for the reference values being
equal to the values of phase in domain Ω2. Therefore, the dimensionless form of equations
(12) and (13), in which the superscripts˜are omitted for convenience, are

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p +
1

Re
∇ ·
[

µ
(

∇u+∇uT
)]

+
1

Fr
ρg +

1

We
κ(φ)δ(φ)∇φ, (14)

∇.u = 0 (15)

where Re is the Reynolds number, We is the Weber number, and Fr is the Froude number,
defined as

Re =
ρrefUL

µref
, We =

ρrefU
2L

σ
, Fr =

U2

grefL

Since, physical properties change discontinuously across the interface, a Heaviside func-
tion, H is utilized to distinguish these fluid properties in each domain, yielding the following
equations:

ρ = λ+ (1− λ)H and µ = η + (1− η)H
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where λ = ρ1/ρ2 is the density ratio, η = µ1/µ2 is the viscosity ratio and the value of H is
equal to one in Ω1 and zero elsewhere.

The sharp changes in these physical properties across the interface Γ can pose numerical
difficulties [6, 29]. In order to resolve these issues, the interface is given a fixed thickness
ǫ proportional to mesh spacing h. Firstly, a regularization for δ is introduced using H .
Following [30], the regularized delta function, δǫ (where ǫ is typically set to some integral or
fractional multiple of h) is defined as

δǫ(φ) =







1

2

(

1 + cos(
πφ

ǫ
)

)

/

ǫ, if |φ| < ǫ

0, elsewhere

Hǫ is defined as

Hǫ(φ) =















0 if φ < −ǫ

(φ+ ǫ)
/

(2ǫ) + sin

(

πφ

ǫ

)

/

(2π), if |φ| 6 ǫ

1, if φ > ǫ

The above Heaviside function satisfies the relation
dHǫ(φ)

dφ
= δǫ(φ). Using Hǫ, the corre-

sponding regularized viscosity, µǫ and regularized density, ρǫ can be written as follows:

ρǫ = λ+ (1− λ)Hǫ(φ) (16)

µǫ = η + (1− η)Hǫ(φ) (17)

With this regularisation, the resulting equations (14)-(15) are well posed [6], written as
follows:

ρǫ

(

∂u

∂t
+ u · ∇u

)

= −∇p+
1

Re
∇ ·
[

µǫ

(

∇u+∇uT
)]

+
1

Fr
ρǫg +

1

We
κδǫ∇φ, (18)

∇.u = 0 (19)

2.4 Interface Jump conditions

The interface normal velocity jump condition, in absence of mass transfer, can be written
as:

[u] · n = 0, (20)

where the operator [u] = u2−u1 at Γ and n = (n1 n2)
T is the interface normal unit vector.

Enforcing the no-slip condition at the interface, the tangential velocity jump condition can
be written as:

[u] · t = 0, (21)
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where t is the interface tangent unit vector. Combining eq. (20) - (21), the velocity jump
condition at the interface is [u] = 0. Integrating eq. (18) across Γ and considering the effects
of the the surface tension, the following stress jump condition is obtained:

[

T̄
]

· n− σn (∇ · n) = 0, (22)

where σ is the constant surface tension, −∇ ·n = κ, the interface curvature and T̄ · n is the
stress tensor. In this case the non-uniform surface tension contribution ∇σ is neglected, thus
the tangential stress component jump

(

T̄ · n
)

· n = 0. For a Newtonian fluid, the interface
normal component of the jump condition (22) yields:

[

p− 2µ
∂u · n

∂n

]

= σκ. (23)

Equation (23) can be rewritten as follows:

[p]− 2 [µ]
∂un

∂n
= σκ, (24)

where [p] = p2 − p1 at Γ and [µ] = µ2 − µ1 at Γ.

3 Numerical Method of Solution

The set of governing equations (18)-(19) posed in Section 2.3 are discretized on a uniform
Cartesian grid. Without loss of generality, the solution domain, Ω is considered to be a
rectangle with a curved interface, Γ (see Fig. 1). The governing equations are solved by
the means of standard projection method [13], which comprises of three different steps. In
the first step, an intermediate velocity, u∗ is computed explicitly by ignoring the pressure
gradient term

ρnǫ

(

u∗ − un

∆t
+ un.∇un

)

=
1

Re
∇ ·
[

µn
ǫ

(

∇u+∇uT
)]

+
1

Fr
ρnǫ g +

1

We
κδǫ∇φ (25)

The superscript, n denotes the quantities at n-th time level. In this equation (projector
step), the diffusion terms are discretized by using the standard central difference scheme.
However, the convection terms are discretized by means of a second order ENO scheme. In
the second step of the method, to satisfy the incompressibility constraint, ∇.un+1 = 0, the
pressure at (n+ 1)-th time level, pn+1 is defined through the solution of Poisson equation:

∇2pn+1 =
ρn+1
ǫ

∆t
∇.u∗ (26)

Numerical solution of the pressure Poisson equation (26) is challenging due to the discontinu-
ities in the variables near the interface. To compute pressure, an efficient immersed interface
scheme is enforced, according to [26]. The detailed discussion of this scheme is presented in
Section (3.1).
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The final step of the method is to compute the velocity field at (n + 1)-th time level,
un+1 from the following expression:

un+1 = u∗ −
∆t

ρn+1
ǫ

∇pn+1 (27)

The set of equations (25)-(27) comprise to form a N-S solver which are simulated along with
the application of LS method to reproduce the evolving interfaces. Third order accurate total
variation diminishing Runge Kutta (TVDRK) scheme is enforced to solve the LS
advection equation (8) and the reinitialisation equation (9) in time. Spatial discretization
in the LS method is carried out by using a fifth order Hamilton Jacobi weighted
essentially non-oscillatory scheme (HJ-WENO) scheme.

3.1 Immersed Interface treatment

In order to discretize (26), the grid points in the computational domain are categorized into
regular and irregular points [31, 32, 26]. A grid point is said to be an grid irregular point, if
the finite difference stencil resulting from the approximation of the derivatives encloses points
from both sides of Γ. Otherwise, they are categorized as regular. Our numerical algorithm is
based upon enforcing a nine pointHigher Order Compact (HOC) scheme [32, 33, 34, 35]
for discretization at regular points and a higher order accurate immersed interface method at
the irregular points. However, as we contemplate on using a nine point HOC scheme on the
regular points, if all the eight neighbours of a regular point cannot be found on the same side
across Γ, there is a need for redefining such regular points. Subsequently, we further classify
a regular point as “semi-regular” (labelled in Fig. 2). A regular point in the subdomain Ωi is
termed as semi-regular if at least one of its eight neighbouring points in the nine point HOC
stencil belongs to Ωj such that i 6= j, i, j = 1, 2. The methodology employed at irregular
points curtails to standard central differences at semi-regular points. The detailed description
of the methodology used for the discretization of (26) at irregular points is presented. The
paramount feature of this methodology is the use of interfacial points as nodes in the stencil,
which allows us to employ standard finite difference approximations directly. Pertinent
interpolation techniques are enforced on both sides of the interface to determine the values
at interfacial points. Fig. 2 sketches a magnified view of Ω in the vicinity of Γ. It outlines
different classifications of grid points, along with a general interpolation stencil used for
computations.

Let (xi, yj) be an irregular grid point (see Fig. 2). The discretization at irregular points
follows the similar procedure in both x and y-directions. Therefore, the modified formulas
are presented only in x-direction on the segment [xi−(N−1), xi+M ]× {yj} and the subscript j
in the notations below is omitted. Denote the interfacial point by “xi+θ” such that

xi+θ = xi + θh, 0 < θ < 1.

Denoting the approximation at point xi by pi, the central difference formula for the derivative
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h

(i+θ, j)

θh

h

Γ (φ = 0)

(i, j)(i-1, j) (i+2, j)

Ω
2

(φ > 0)

Ω

y

x

(i+1, j)

Ω
1

(φ < 0)

regular

irregular

semi-regular

interfacial

Figure 2: Illustration of the magnified view of computational domain, Ω in the vicinity of
the interface, Γ. Different classifications of grid points are highlighted with coloured symbols
and a general interpolation stencil used in our computations is outlined.

∂2p

∂x2
enclosing grid points xi−1, xi and the interfacial point xi+θ as nodes can be written as:

∂2p

∂x2

∣

∣

∣

∣

i

≈

(

p−i+θ − pi

xi+θ − xi
−
pi − pi−1

xi − xi−1

)

/

(

(xi+θ − xi) + (xi − xi−1)

2

)

(28)

We now introduce the notation p−i+θ to denote the value of p at the interfacial point xi+θ in
Ω1. Correspondingly, p+i+θ denotes the value of p at the interfacial point xi+θ in Ω2. p−i+θ

is calculated by Lagrange polynomial interpolation by using points on both sides of the
interface and the interfacial point. The interpolating polynomial on one side of the interface
enclosing (N + 1) points {xi−(N−1), · · · , xi−1, xi, xi+θ} can be written as

L−(x) =

0
∑

k=−(N−1)

lk(x)ui+k + lθ(x)u
−
i+θ (29)

Similarly, the interpolating polynomial on the other side of interface enclosing (M + 1)
points {xi+θ, xi+1, xi+2, · · · , xi+M} can be written as

L+(x) =
M
∑

k=1

hk(x)ui+k + hθ(x)u
+
i+θ (30)

10



Here lk(x) and hk(x) are the Lagrange basis polynomials and they are respectively given
by

lk(x) =
∏

−(N−1)6l60, l=θ
l 6=k

(x− xi+l)

/

∏

−(N−1)6l60, l=θ
l 6=k

(xi+k − xi+l)

and

hk(x) =
∏

l=θ, 16l6M
l 6=k

(x− xi+l)

/

∏

l=θ, 16l6M
l 6=k

(xi+k − xi+l)

Differentiating polynomial equations (29) and (30) term by term and substituting into
derivative jump condition ([px]Γ) at the interface yield

{

M
∑

k=1

h′k(xi+θ)pi+k + h′θ(xi+θ)p
+
i+θ

}

−







0
∑

k=−(N−1)

l′k(xi+θ)pi+k + l′θ(xi+θ)p
−
i+θ







= [px]Γ . (31)

Note that derivative jump conditions are nothing but the derivative of equation (24) in the
direction normal to the interface. Equation (31) is a discretized version obtained by resolving
the normal jump along x-direction. It is easy to see that jump relation (24) translates to

p+i+θ − p−i+θ = [p]Γ , (32)

so that (31)-(32) simplifies to

[

h′θ(xi+θ) −l′θ(xi+θ)
1 −1

] [

p+i+θ

p−i+θ

]

=

[

b1
b2

]

(33)

where

b1 = [px]Γ −







M
∑

k=1

h′k(xi+θ)−
0
∑

k=−(N−1)

l′k(xi+θ)







pi+k

and b2 = [p]Γ .

Solution of (33) yields the following general formula for p−i+θ

p−i+θ =
1

D

{

M
∑

k=−N+1

akpi+k + [px]Γ − h′θ(xi+θ) [p]Γ

}

(34)

where
D = h′θ(xi+θ)− l′θ(xi+θ)
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ak =

{

l′k(xi+θ) (k = −(N − 1), ... , 0)
h′k(xi+θ) (k = 1 , ..., M).

The same procedure is followed at the node xi+1. Here, once again a central difference
type discretization is employed as in equation (28) by enclosing the nodes xi+θ, xi+1 and xi+2.
In this case, p+i+θ needs to be approximated by the means Lagrange polynomial interpolation.
At the boundary ∂Ω, pressure is computed by solving the zero pressure gradient condition

∇p · n̂ = 0, (35)

n̂ being a unit normal to the boundary. The values of p arising out of the Neumann boundary
condition (35) are approximated by a fifth order one sided formula (see [36]). For example,
on the right boundary (denoted by the index b), the following backward difference formula
is enforced:

pb,j =
1

25
[48pb−1,j − 36pb−2,j + 16pb−3,j − 3pb−4,j] +O(h5),

and likewise on the other three boundaries.

3.2 Time step

The time step, ∆t must adhere to the CFL condition at each iteration due to the presence
of convective terms. Therefore, the following restriction is imposed [29]:

∆t 6 min
Ω

(

h

||un||
,
h2ρn

µn
,

(

ρ1 + ρ2
4πσ

)1/2

h3/2

)

(36)

3.3 Calculation Algorithm

This section summarizes how the solution algorithm proceeds iteratively to advance the so-
lution of velocity field, pressure field, and level set function forward from time step tn to tn+1:

1. Calculate ∆t (Section 3.2).
2. Compute u∗ from un (Eq. (25)).
3. Solve the pressure Poisson equation (26) to calculate p (Section 3.1).
4. Compute un+1 from u∗ (Eq. (27)).
5. Solve the level set evolution equation (8) to advect φ by using un+1.
6. Iterate the reinitialisation equation (9) to correct φ (Section 2.1).
7. Return to Step 1 till t > tfinal.

4 Numerical Examples

In order to affirm the validity and efficiency of the proposed methodology, a series of numer-
ical experiments are conducted on flows involving simple and intricate interface geometries.
Precisely, the following problems are addressed : circular flow with a fixed interface geometry
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to test the N-S solver; problem of the dispersion of capillary waves for validation and finally,
transient evolution of initial circular, ellipse and star shaped bubbles to equilibrium static
shapes. All the computations are performed on a Laptop with i5-2430M Processor with 4 GB
RAM using a double precision floating point arithmetic on grid sizes ranging from 20×20 to
320 × 320. The performance of our methodology is evaluated in terms of the infinity norm

of the errors in velocity, ‖u‖∞ and pressure, ‖p‖∞ such that ‖u‖∞ =

(

‖u‖∞ + ‖v‖∞
2

)

.

4.1 Circular Flow

In order to ascertain the accuracy of the proposed methodology to solve N-S equations, an
example with a fixed circular interface is chosen [37], which admits the exact solution

u(x, y, t) =

{

(1− et)
(y

r
− 2y

)

, if φ > 0

0, if φ 6 0
,

v(x, y, t) =







(1− et)

(

−x

r
+ 2x

)

, if φ > 0

0, if φ 6 0
,

p(x, y, t) =

{

sin(πx) sin(πy), if φ > 0
0, if φ 6 0

.

Here r =
√

x2 + y2 and the interface is a circle centered at origin with radius 0.5 in a
square computational domain of size [−1, 1]× [−1, 1] with an equal grid spacing, h. Dirichlet
boundary conditions are used at the outer boundaries.

Fig. 3 plots the variation of absolute error in the curvature along the circumferential
angle, 0◦ to 360◦ of the interface computed by using the formula given in equation (11). It is
intended to verify the accurate calculation of curvature by considering three different grids:
32× 32, 64× 64 and 128× 128. Minimal error of order ranging from O(10−6) to O(10−3) is
reported. It is noteworthy to mention that all the numerical results presented hereafter are
simulated by using the numerical approximation to the curvature in equation (11). In order
to affirm the adequateness of different grid sizes tested, Table 1 shows errors in velocity,
‖u‖∞ and pressure, ‖p‖∞ for µ2 = 1, µ1 = 0.1 at t = 2 and compares them with the results
of method proposed in [37]. It can be seen that our computed results are relatively better
which certainly confirms the efficiency of the proposed methodology.

4.2 Dispersion of Capillary waves

The preceding test example permits us to predict the accurateness in the calculation of
curvature and the performance of N-S solver. In the present example of capillary waves
([38, 39, 40, 41]), the performance of the full methodology, i.e. coupling amongst the curva-
ture calculation, N-S solver and interface advection is validated. The problem of small ampli-
tude oscillations associated with an initially sinusoidal interface between two superimposed
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Figure 3: Absolute error in the computed curvature along the circumferential angle, 0◦ to
360◦ of the interface for three different grids, 32× 32, 64× 64 and 128× 128.

Table 1: Comparison of the errors in the dimensionless velocity, ‖u‖∞ and pressure, ‖p‖∞ on grid
refinement with the method proposed in [37].

n
‖u‖∞ ‖p‖∞

Present [37] Present [37]

32 1.224 × 10−3 1.915 × 10−3 6.760 × 10−3 7.516 × 10−3

64 3.286 × 10−4 4.498 × 10−4 1.502 × 10−3 2.110 × 10−3

128 8.882 × 10−5 1.101 × 10−4 4.016 × 10−4 6.103 × 10−4

256 1.211 × 10−5 2.811 × 10−5 9.616 × 10−5 1.681 × 10−4

viscous, incompressible fluids of infinite depth and lateral extent is addressed. A sinusoidal
perturbation is induced to a horizontal interface between two fluids initially at rest. Fig. 4
sketches the interface configurations at initial and equilibrium states in a rectangular domain
of length, L and height, H . The balance amongst surface tension, inertia and viscosity leads
to the oscillations of the interface around its equilibrium position. Numerical simulations
are performed on a equally spaced grid of size 64× 190 on Ω = [−1.5, 0.5]× [−1.5, 1.5] with
a time step; ∆t = 1 × 10−4. The initial wavelength of the wave is chosen as λ = 1 with an
initial amplitude, a0 = 0.1. The kinematic viscosites of both the fluids are assumed to be
the same. Gravitational forces are assumed to be absent and flow regime is set by treating
the horizontal walls as no slip boundaries and vertical walls as periodic boundaries. The
following non dimensional parameters are adopted: ρ1/ρ2 = 100, 1000; Re = 100 , We = 1.
Fig. 5 sketches the transient variation of interface curves in terms of the time evolution of
their respective normalized amplitudes, computed on 64×190 grid. The decay of oscillations
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Figure 4: Illustration of interface configurations at initial and equilibrium states in compu-
tational domain.

is apparent from the clear fluctuations of amplitude curves in this figure. The numerical so-
lution agrees well with the analytical solution of Prosperetti [40], which certainly confirms
the accurateness and efficiency of the proposed methodology.

4.3 Static Bubble

The present example addresses the problem of a stationary circular bubble in static equi-
librium without gravity ([14, 15, 18, 22, 23]). In the absence of viscous, gravitational or
external forces, the circular interface with surface tension should remain motionless with a
pressure jump at the interface. This implies an exact equilibrium between the surface tension
force and pressure gradient. Therefore, the analytical solution is a zero velocity field and
a constant pressure jump at the interface, according to Young-Laplace condition, expressed
as:

[p]exact = σκexact. (37)

Here, the exact curvature is given by κexact = 1/r such that r is the radius of the bubble.
The pressure field arises from a constant value pout = p0 outside the bubble to a value
pin = p0 + σκexact inside the bubble. The pressure inside the bubble, pin corresponds to
the maximum pressure in Ω, and the pressure outside the bubble, pout corresponds to the
minimum pressure in Ω.
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Figure 5: Comparison of the transient evolution of the normalized amplitudes of capillary
waves for (a) ρ1/ρ2 = 10, and (b) ρ1/ρ2 = 100; with analytical solution of Prosperetti [40],
plotted on 64× 190 grid.

A bubble with radius r = 0.5 is positioned in the center of a square domain, Ω of size
[−1, 1] × [−1, 1]. No-slip conditions are imposed everywhere on the boundary of Ω. The
coefficients of surface tension, the density and the viscosity inside and outside the bubble
are all set to unity. This corresponds to a Weber number of We = 1 and Reynolds number
of Re = 1. However, circulating flow near the interface, known as spurious velocity currents
arise because at a discretized level, accurate calculation of curvature and the balance between
interfacial tension and pressure jump are not trivial problems[42]. In the computational
results that follow, these spurious currents are measured by errors in the dimensionless
velocity, ‖u‖∞.

Initially, in Fig. 6, we probe the influence of interface thickness, ǫ on the computed
results in order to check the numerical diffusion in the transition zone, |φ| 6 ǫ. A careless
choice of ǫ could lead to an inappropriate shift in the zone of surface tension force [15].
Fig. 6 sketches the plots of errors in the dimensionless velocity for different values of ǫ,
computed on a 80× 80 grid, at time, t = 10. The spurious currents reduce to O(10−6) when
2.5h 6 ǫ 6 3.5h and they rise thereafter. This suggests that the interface thickness has
an influence on spurious currents, which are relatively strong when ǫ ≥ 3.5h and as such,
ǫ = 2.5h is chosen in our computations. Fig. 7 sketches the pressure distribution on the whole
domain, Ω and absolute error between the numerical pressure and exact pressure, computed
on 80 × 80 grid. As expected, a piecewise constant pressure distribution in inner and outer
domains is observed. No oscillation in the pressure profile resulting from this computation is
seen near the interface as against some reported in the literature [14, 22]. Fig. 7(b) reports
maximum error near the interface which is attributed to the numerical approximation of
pressure due to jump discontinuity at the interface. Table 2 further consolidates how well
the computed pressure fulfils Young-Laplace’s law as reflected by the infinity norm, ‖p‖∞.
One can clearly see that, for both pressure and velocity, the norm decreases rapidly with
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grid refinement, to converge with nearly second order accuracy. Fig. 8 shows a typical
distribution of spurious velocity currents around the interface, computed on a 80× 80 grid.
Remarkably, the magnitude is (O(10−7)) which is lower than those reported by the methods
proposed in [22].
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Figure 6: The effect of interface thickness, ǫ on the infinity norm of the error in velocity, ‖u‖∞,
computed on 80 × 80 grid.
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Z

Figure 7: (a) Pressure distribution and (b) Absolute error between the numerical pressure
and exact pressure on the whole domain, Ω computed on 80× 80 grid.
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Figure 8: Spurious velocity currents around the bubble interface in terms of velocity vectors,
plotted on 80× 80 grid.

Table 2: Errors in the dimensionless velocity, ‖u‖∞ and pressure, ‖p‖∞ with their respective
orders of accuracies with grid refinement.

n ‖u‖∞ order ‖p‖∞ order
20 1.976× 10−6 2.471× 10−3

1.76 1.89
40 5.814× 10−7 6.680× 10−3

1.85 1.93
80 1.615× 10−7 1.758× 10−3

4.4 Oscillating Bubble

In the present section, the problem of an initially non-spherical viscous bubble with subse-
quent oscillating decay to equilibrium circular shape is addressed ([3, 17, 20, 21, 23, 24, 37,
43]). The transient motion and evolution of the bubble till numerical equilibrium is analyzed
in order to evaluate the performance of proposed methodology. Two different initial interface
configurations: ellipse and star shaped are considered.

Ellipse shaped interface

First, an initial ellipse shaped bubble with semi-major axis and semi-minor axis, rx = 0.75
and ry = 0.5 respectively, placed in the center of Ω is considered. The interface configurations
at initial and equilibrium states are sketched in Fig. 9. The bubble tends to acquire a
circular shape at equilibrium with radius re ≈ 0.61237 (labeled as equilibrium in Fig. 9).
We begin with the detailed discussion of the performance of our scheme using following non-
dimensional parameters: ρ1 = ρ2 = 1, µ1 = µ2 = 0.1, Re = 10 and We = 10. Then, the
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performance is evaluated by reducing the value ofWe to 1. Firstly, a grid refinement analysis
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Figure 9: Illustration of interface configurations at initial and equilibrium states in compu-
tational domain.

is performed to analyze the order of accuracy with the results of finest grid, 320×320 chosen
as reference value. Table 3 compiles the grid refinement analysis at t = 0, where the errors
are measured in infi norm. One can easily see both velocity and pressure errors decaying at a
rate of nearly O(h2). Fig. 10 shows the transient oscillations of the bubble and their profiles
in terms of velocity vectors at times t = 0.5, 2.5, 5.0, 7.0, 10.0 and 15.0 for Re = 10 and
We = 10. The maximum velocity magnitudes first increase till time t = 2.5 up to O(10−2)
and then decrease up to O(10−4) till t = 15. Fig. 11(a) sketches the transient evolution of
pressure along the bubble centerline at initial and equilibrium states, computed on 160×160
grid. As expected a piece-wise constant pressure distribution is observed in the inner and
outer domains at the equilibrium circular shape. The pressure distribution over the whole
domain is illustrated in Fig. 11(b). The pressure profile clearly exhibits no oscillations near
the interface as against reported by few [14, 18]. The numerical equilibrium is found to
agree well with the true equilibrium using the proposed methodology. For instance, at t =
15, the error between rx and re is only 3.12× 10−4 and the error between ry and re is only
2.30× 10−4. Further, the absolute error in area is 5.33× 10−4 which indicates fairly little
leakage of about 0.01%.

The transient variation of bubble shapes is further evaluated in terms of the time evolution
of rx and ry. The evolution of rx and ry is plotted in Fig. 12 for different values of We
in order to analyze the effect of surface tension. The decay of oscillations is apparent from
the clear fluctuating pattern of rx and ry in these figures. Further, it can be noticed that
increase in the value of We reduces the motion of the bubble, which is reflected in fewer
number of oscillations with smaller amplitudes and longer time to converge to equilibrium.
This observation is further supported by the transient evolution of total kinetic energy,

K.E. =
1

2

∫

ρu.udv, sketched in Fig. 13. All these observations certainly confirm the
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Figure 10: Transient oscillations of the bubble and their velocity profiles at times t =
(a)0.5, (b)2.5, (c)5.0, (d)7.0, (e)10.0 and (f) 15.0 for ρ1/ρ2 = 1, µ1/µ2 = 1, Re = 10.0 and
We = 10.0 .

accurateness and capability of the proposed methodology in simulating surface tension driven
interfacial flows.

Star shaped interface

In the final example, we illustrate the usefulness of proposed methodology to model surface
tension effects in the vicinity of high curvature, complicated interface (star-shaped) geometry
in the benchmark test. Fig. 14 sketches the interface configurations at initial and equilibrium
states where the initial shape is defined in cylindrical coordinates (r, θ) as:

r(θ) = r◦(1 + ǫ sin(ζθ)), 0 6 θ 6 2π.

The bubble tends to converge to an equilibrium circular shape due to the effects of surface
tension.
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Figure 11: (a)Transient evolution of pressure along the bubble centerline at initial and
equilibrium states and (b) the distribution of numerical pressure over the whole domain, Ω
at equilibrium for ρ1/ρ2 = 1, µ1/µ2 = 1, Re = 10 and We = 10; computed on 80× 80 grid.

Table 3: Errors in the dimensionless velocity, ‖u‖∞ and pressure, ‖p‖∞ with their respective
orders of accuracies on grid refinement at time t = 0.

n ‖u‖∞ order ‖p‖∞ order
40 1.291× 10−2 2.237× 10−2

1.96 1.76
80 3.322× 10−3 6.580× 10−3

2.01 1.84
160 8.263× 10−4 1.827× 10−3

Flow regime is set by adopting the following non-dimensional parameters: ρ1 = ρ2 =
1, µ1 = µ2 = 1, Re = 1 and We = 10. Fig. 15 sketches transient oscillations of the
bubble shapes and their velocity profiles at times t = 0.5, 2, 7, 10, 14. The maximum velocity
magnitudes first rise till time t = 5 up to O(10−1) and then fall up to O(10−4) till t = 16.
Fig. 11(a) sketches the transient evolution of pressure along the bubble centerline at initial
and equilibrium states, computed on 160 × 160 grid. As expected a piece-wise constant
pressure distribution is observed in the inner and outer domains at the equilibrium circular
shape. The pressure distribution over the whole domain is illustrated in Fig. 11(b). The
pressure profile clearly exhibits negligible oscillations near the interface which proves the
capability of our scheme in efficiently resolving the pressure jump in the vicinity of complex,
high curvature interfaces as well. Table 4 shows grid refinement analysis of error infinity
norm of our computed results. The infinity norm of error in the solution is small and the
accuracy does not seem to be affected by arbitrary shaped interface as long as grid resolution
is high enough to allow for one sided interpolation. Moreover, one can easily see convergence
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Figure 12: Transient evolution of the semi-major axis, rx and semi-minor axis, ry for (a)
We = 1 and (b)We = 10 when ρ2/ρ1 = 1, µ2/µ1 = 1 and Re = 10, computed on 160× 160
grid.

rate near to second order for both the parameters.

Table 4: Errors in the dimensionless velocity, ‖u‖∞ and pressure, ‖p‖∞ with their respective
orders of accuracies with grid refinement at time t = 0.

n ‖u‖∞ order ‖p‖∞ order
40 1.486× 10−2 3.421× 10−2

1.89 1.95
80 4.026× 10−3 8.832× 10−3

2.03 1.98
160 9.824× 10−4 2.226× 10−3

4.5 Deforming drops

In this subsection, the problem of a liquid drop implanted in another immiscible liquid sub-
jected a to shear flow is addressed. Fig. 17 shows an illustration of square computational
domain, containing a liquid drop, where upper and bottom walls move with opposite ve-
locities thereby inducing a plane Couette flow. It is admitted from the literature that, in
such flow configurations, the drop reciprocates by deforming and by developing an internal
circulation in the direction of the flow [44, 45, 46]. In present computations, the radius of
the drop is set to one fourth of the domain height, r = 0.25H where L/H = 1. The physical
properties of the fluids and surface tension, σ of the drop interface are assumed to be uniform
and constant during the motion.
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Figure 14: Illustration of interface configurations at initial and equilibrium states in compu-
tational domain.

Flow regime is set by treating the vertical walls as periodic boundaries and by adopting
the following non dimensional parameters: Re = 100 and Ca = 0.1, 0.2, 0.3, 0.4. The Capil-
lary number, Ca = We/Re, represents the relative magnitude of viscous and capillary forces
along the interface. The density and viscosity ratios are assumed to be unity. The transient
variation of drop shapes is evaluated in terms of deformation parameter, DDf expressed as

DDf =
rx − ry
rx + ry

The transient evolution of DDf is plotted in Fig. 18(a) for different values of Ca in order
to analyse the effect of surface tension. A first inspection reveals that increase in the value
of Ca increases the magnitude of DDf . Further, it is noticed that, when Ca = 0.1, DDf
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Figure 15: Transient oscillations of the bubble and their velocity profiles at times t =
0.5, 2, 7, 10, 14 and 16 for ρ1 = ρ2 = 1, µ1 = µ2 = 1, Re = 1 and We = 20.

tends to a constant value near time t = 2 which signifies that the drop tends to acquire a
steady shape. However, when Ca > 0.1, DDf continues to increase which signifies that the
drop continues to elongate and does not acquire a stationary shape. Fig. 18(b) sketches
the contours of drop shapes at time t = 3 for different values of Ca. When Ca = 0.1, the
shape of the drop resembles an ellipse. However, for high values of Ca(Ca > 0.1), the drops
are exceptionally deformed and they display a significant deviation from a steady elliptic
shape. Delibrately, the minor axis shortens and the major axis lengthens and consequently
they tend to acquire a sigmoidal shape while rotating in clockwise direction. In order to
investigate the structure of the flow inside and outside the drop, streamline patterns are
sketched in Fig. 19 for Ca = 0.1 and 0.4. The following Poisson equation for stream-function
is solved to serve the purpose:

∆ψ = uy − vx.

When Ca = 0.1, the drop interface is tangential to the local streamlines affirming that the
drops have attained steady shapes. The drops are wrapped by dividing streamlines that end
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Figure 16: (a) Time evolution of pressure along the centerline at times t =
0.5, 2.5, 5.0, 7.0, 10.0 and 15.0, and (b) the distribution of numerical pressure over the whole
domain, Ω at t = 15 for ρ1/ρ2 = 1, µ1/µ2 = 1, Re = 10 andWe = 10, computed on 160×160
grid.

at stagnation points positioned intermediary between drops and nearby the x-axis. However,
when Ca = 0.4, the streamlines cross the drop interface demonstrating that drops continue
to elongate and manage to rotate in clockwise direction due to the effect of the vorticity of
the incoming flow. Next, in order to understand the inertial effects, Fig. 20 sketches the
contours of drop shapes at time t = 2 for Ca = 0.2 and different values of Re = 10, 50, 80
and 100. It can be seen that inertial flow plays a significant role in deciding equivalent drop
shapes and drops turn out to elongate more with increasing Re. This points to the fact
that an increase in Re leads to an easier deformation. All these obervations are coherent
with previous studies [45, 46] which certainly confirms that the proposed methodology can
strongly capture primary traits of drops deformating in shear flows.
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Figure 18: (a) The transient evolution of drop shapes in terms of deformation parameter,
DDf and (b) the contours of drop shapes at time t = 3; for different values of Ca and
Re = 100, computed on 180× 180 grid.

5 Conclusion

In this paper, a coupling between a novel immersed interface method and level set method
is proposed to simulate surface tension driven interfacial flows. The proposed methodology
highly simplifies the grid generation process as it permits us to use a uniform, fixed Cartesian
grid. First, an example with a fixed circular interface is presented to predict the accurateness
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Figure 19: Streamline patterns for (a) Ca = 0.1 and (b) Ca = 0.4; Re = 100, computed
on 180× 180 grid.
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Figure 20: The contours of drop shapes at time t = 2 for Ca = 0.2 and different values of
Re, computed on 180× 180 grid.

in the calculation of curvature and the performance of N-S solver. Next, the algorithm is
validated by the comparing the results with analytical solution by simulating the problem
of small amplitude oscillations associated with the dispersion of capillary waves. Finally,
the problems of initially circular, ellipse shaped and star shaped bubbles with an oscillating
decay to a numerical equilibrium; and circular drops deforming in shear flows are addressed.
The transient evolution of bubbles/drops in terms of their shapes, pressure profiles, velocity
vectors, deformation ratios of major and minor axis is analyzed to observe the effect of sur-
face tension. The methodology is shown to regain the exact numerical equilibrium between
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the surface tension and pressure gradient in the vicinity of high curvature interface geome-
tries as well. It demonstrates accurate resolution of pressure nullyfying the presence of any
oscillations in the vicinity of the interface and Young-Laplace’s law is validated to a good
level of accuracy and with a significantly reduced spurious currents. Grid refinement analysis
of the infinity error norms of pressure and velocities report the convergence rates near to
two for the test cases. Moreover, primary traits of physical behaviour of drop deformations
in shear flows are strongly captured by the proposed methodology. Numerical results show
that the proposed methodology yields a good level of agreement with the reference data.
It is noteworthy to mention that the immersed interface method employed in the present
computations has already been validated for a fixed interface in three dimensions [26]. This
opens up a possibility of their extension to address the problems of moving interfaces in
three dimensions, which is the objective of our next paper.
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