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Abstract A coupled level set and moment of fluid method (CLSMOF) is described
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the level set function, volume of fluid function, and reference centroid, in order
to produce a slope and an intercept for the local reconstruction. The level set
function is coupled to the volume-of-fluid function and reference centroid by being
maintained as the signed distance to the CLSMOF piecewise linear reconstructed
interface.

The nonlinear terms in the momentum equations are solved using the sharp in-
terface approach recently developed by Raessi and Pitsch (2009). We have modified
the algorithm of Raessi and Pitsch from a staggered grid method to a collocated
grid method and we combine their treatment for the nonlinear terms with the
variable density, collocated, pressure projection algorithm developed by Kwatra et
al (2009). A collocated grid method makes it convenient for using block structured
adaptive mesh refinement (AMR) grids. Many 2D and 3D numerical simulations of
bubbles, jets, drops, and waves on a block structured adaptive grid are presented
in order to demonstrate the capabilities of our new method.

Keywords moment of fluid · volume of fluid · level set · two-phase flow ·
deforming boundaries

1 Introduction

Recently, the moment of fluid (MOF) method [14,15,3,2,4,1,32] interface captur-
ing method has been developed for computing the motion of deforming boundary
problems. The moment of fluid method has been demonstrated to give more ac-
curate results than volume of fluid (VOF) methods, level set methods, or coupled
level set and volume of fluid (CLSVOF) methods [42,11] for deforming boundaries
that have corners or thin filaments. For example, we illustrate in sections 7.3 and
7.4 below (rotating notched disk and rotating letter “A” respectively), that the
error associated with the directional split MOF interface advection scheme on a
coarse grid is as small as the errors admitted by the directional split LVIRA [29]
or CLSVOF [39] methods on the next finer grid.

In this work, we develop a directional split, coupled level set-moment of fluid
(CLSMOF) interface capturing algorithm in order to compute incompressible (2D
or 3D) two phase flows that have surface tension. The level set function has two
main purposes: (1) the level set slope is used to accelerate to convergence the
MOF slope reconstruction step, and (2) the level set function is used in order
to determine the location of the interface when implementing the mass weighted
nonlinear advection scheme developed by [31] (5.2), the mass weighted interpola-
tion of cell center velocity to face centers [22] (5.12), the “inverse mass weighted”
interpolation of cell center pressure to face centers [22] (5.24), and the ghost fluid
treatment for surface tension [21] (5.27).

In this paper, we have also hybridized the MOF slope reconstruction with the
CLSVOF slope reconstruction in order to develop a CLSMOF slope reconstruction
algorithm. The MOF slope reconstruction procedure is defined as follows [14,15,3,
2,4,1]: given a reference volume fraction FRef and a reference centroid xRef , find
the slope n and the intercept b so that the actual volume fraction FA equals FRef ,
and the difference between the actual centroid xA and the reference centroid is
minimized. In other-words,

(n, b) = arg min
n,b,F Ref=F A

||xRef − x
A||. (1.1)
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The CLSMOF slope reconstruction is a modification of the MOF slope re-
construction (1.1). Suppose ∆x is the length of a computational cell in which a
slope reconstruction is sought. In smooth regions of a deforming interface where
||xRef − xA|| > 10−8∆x, the CLSMOF interface reconstruction derives the slope
from the level set function. In regions of large curvature, or if ||xRef − xA|| <

10−8∆x, the MOF reconstruction is used to derive the slope. Details of exactly
when we choose the level set function in defining the slope, and when we choose
the MOF reconstruction (1.1) in defining the slope is presented in section 4.1 be-
low. We refer the reader to Figure 1 for an illustration of the cell moments xRef

(denoted by the filled circles), cell volume fractions (denoted by V in the figure),
and the level set function φ which is the signed distance of the cell center (open
circles) to the piecewise linear reconstructed interface.

We apply our newly developed CLSMOF slope reconstruction algorithm to
solving incompressible two phase flow problems on adaptive grids. All advection
terms are discretized in time using directional splitting [34]. We have developed a
sharp interface method using the ideas proposed in [31] for treating the nonlinear
advective terms when there is a density jump at the gas-liquid interface. The
algorithm by [31] was implemented on a staggered grid. We have extended [31] to
an unstaggered grid algorithm and implemented a cell centered, variable density
projection method developed by [22]. An important contribution from [31] and
[22] is that the interpolation of velocity should be mass weighted (5.2), (5.12).
Another critical development from [22] was that the interpolation of pressure from
cell centers to faces, in order to update the cell center velocity, should be “inverse
mass” weighted (5.24). [22] applied their techniques for simulating compressible
flows with strong shocks, and we have discovered that their interpolation ideas
work well for multiphase flows (with density ratio corresponding to air and water)
too.

By storing both the velocity and pressure at the cell centers, it is convenient to
reuse existing algorithms for block structured adaptive mesh refinement [5] and it
is convenient to reuse existing algorithms for calculating the viscous or viscoelastic
force terms [33]. All forces are calculated at the cell centers. The surface tension
force is discretized using the “ghost fluid method” [21].

Many of our results in section 7 are computed on a dynamic block structured
adaptive grid [5,37,36]. We remark that quadtree adaptive mesh refinement was
implemented by [2]. In order to implement CLSMOF on an adaptive grid, we
developed routines for transferring fine grid volume fraction and centroid data to
an underlying coarse grid, and routines for interpolating the coarse grid volume
fraction and centroid data to a finer level in order to prescribe boundary conditions
at a coarse-fine border. We simultaneously interpolate both volume fraction and
centroid information at the coarse-fine borders. In a given coarse cell, first the MOF
interface reconstruction algorithm is carried out in order to define a local interface
reconstruction in the coarse cell. Then, the local interface reconstruction is used
to define the volume of fluid function and centroid information in the four (in
two dimensions) ghost fine cells above the coarse cell. The criterion for adaptivity
in most of our calculations in section 7 is that cells in which the volume-of-fluid
function F satisfies 0.1 ≤ F ≤ 0.9 or in which the level set function φ changes
sign are tagged for adaptivity. In Figure 16, we also present a result in which the
curvature is an additional indicator for refining the mesh.
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We remark that the development of numerical methods for multiphase flow
is an active field, the following is a representative list of the current state of
the art: [11,16,40,31,18,21,30,26,19]. The developments that we report in this
paper represent the first application of the MOF concepts to capturing interfaces
in incompressible two-phase flows that include three dimensional effects and the
effects of surface tension. In Section 7.9 we show an example of the simulation of
three dimensional impinging jets. The jets merge, a spray sheet is formed, and then
the sheet breaks up into ligaments and drops. The CLSMOF method has better
volume conservation throughout the impinging jet simulation than the CLSVOF
method.

Outline The remainder of this article is organized as follows. Section 2 gives the
governing equations for incompressible two phase flows. Section 3 gives an overview
of our CLSMOF algorithm. Section 4 describes our CLSMOF method for local in-
terface reconstruction and directional split interface advection. Section 5 describes
our collocated sharp interface method for integrating the solutions to the Navier-
Stokes equations for two phase flows. Also in Section 5, we describe the ghost fluid
method for surface tension on a collocated grid. Section 6 describes our implemen-
tation of the CLSMOF on a dynamic block structured adaptive mesh refinement
grid. Our new results are described in Section 7 in which we compare results using
our new CLSMOF interface reconstruction algorithm to results using CLSVOF
[39], MOF, and LVIRA [29] interface reconstruction. All tests are performed using
directional splitting for interface and momentum advection [34]. Finally, Section 8
gives the conclusions.

Fig. 1 Illustration of the cell moments x
Ref (denoted by the filled circles), cell volume frac-

tions (denoted by V in the figure), and the level set function φ which is the signed distance
of the cell center (open circles) to the piecewise linear reconstructed interface. The open and
filled circles coincide for cells that are not cut by the interface.
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2 Governing Equations

The Navier-Stokes equations for incompressible two phase flows are [12]:

ρ(φ)
Du

Dt
= −∇p + ∇ · (2µ(φ)D) − σκ(φ)∇H(φ) + ρ(φ)gẑ (2.1)

∇ · u = 0 (2.2)

Dφ

Dt
= 0 (2.3)

φ is a level set function [28] which is positive in the liquid (dark fluid) and negative
in the gas (light fluid). H(φ) is the Heaviside function,

H(φ) =



1 φ ≥ 0
0 φ < 0

(2.4)

ρ(φ) is the density,

ρ(φ) = ρLH(φ) + ρG(1 − H(φ)), (2.5)

µ(φ) is the viscosity,

µ(φ) = µLH(φ) + µG(1 − H(φ)), (2.6)

κ(φ) is the interface curvature,

κ(φ) = ∇ · ∇φ

|∇φ| , (2.7)

u = (u, v, w) is the velocity, D is the rate of deformation tensor,

D =
∇u + (∇u)T

2
, (2.8)

g is a gravitational force constant, and ẑ = (0, 0, 1) is a unit vector pointing in the
vertical direction.

3 Overview of CLSMOF method for incompressible two-phase flow

At time t = tn we are given the cell center velocity, u
n,cell
i,j,k , face center (MAC)

velocity, un,MAC
i+1/2,j,k

, vn,MAC
i,j+1/2,k

, wn,MAC
i,j,k+1/2

, level set function, φn
i,j,k, volume-of-fluid

function, Fn
i,j,k, and the location of the centroid of dark (liquid) material and light

(gas) material in cell (i, j, k), x
n,dark
i,j,k , x

n,light
i,j,k . φ ≥ 0 in the liquid and φ < 0 in the

gas. In order to integrate the solution to time t = tn+1 we perform the following
steps:

1. Use a directionally split (Strang-splitting) algorithm in order to advect φ, F ,
ucell, xdark, xlight. The new values are denoted by φn+1, Fn+1, ucell,advect,
xn+1,dark, and xn+1,light. Details are in sections 4 and 5.1.

2. Calculate the effect of the viscous force terms, ∇· (2µD), as in [33] or [38]. Also
calculate the gravity force term. The new provisional cell centered velocity is
u∗.

3. Project the velocity u∗ in order to simultaneously determine u
n+1,cell
i,j,k , un+1,MAC

i+1/2,j,k
,

vn+1,MAC
i,j+1/2,k

, and wn+1,MAC
i,j,k+1/2

. Please refer to section 5.2 for details.
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4 Directional Split CLSMOF interface reconstruction and advection

4.1 CLSMOF piecewise linear interface reconstruction

In each cell the interface is approximated by a plane in 3D (or a straight line in
2D X-Y or R-Z coordinate systems). Here, we stick to the 3D case. The 2D cases
follow analogously. The interface plane is given by

{x ∈ R
3|n · (x − xi,j,k) + b = 0}, (4.1)

where n is the normal vector, b the intercept and xi,j,k the cell center. The ob-
jective of the slope reconstruction algorithm is to find a suitable n and b. The
following sections describe the slope reconstruction in case of the MOF method,
the CLSVOF method and the CLSMOF method.

4.1.1 MOF reconstruction

The MOF method can be seen as an extended volume of fluid method. In addition
to the volume fractions of the dark fluid Fdark and the light fluid Flight = 1−Fdark

in each computational cell the centers of mass or centroids xref,dark and xref,light

are given. In each cell the linear approximation to the interface is constructed such
that the actual volume of the dark fluid matches its reference volume exactly and
the actual centroids xA of both fluids are the best approximations to the reference
centroids [4].

This procedure can be cast as a constrained optimization problem in which one
must simultaneously find n and b in order that the volume fraction error satisfies,

|Fref(n, b) − FA(n, b)| = 0 (4.2)

and the centroid error,

EMOF = ‖xref − xA(n, b)‖2 (4.3)

is minimized. The reference fluid is chosen such that the distance of the reference
centroid and the cell center is maximal, i.e.

reference fluid =

(

dark fluid ‖xref,dark − xi,j,k‖ > ‖xref,light − xi,j,k‖
light fluid otherwise.

(4.4)

Therefore we drop the index dark or light.
Due to the parameterization of the normal

n =

0

@

sin(Φ) cos(Θ)
sin(Φ) sin(Θ)

cos(Φ)

1

A (4.5)

EMOF is a function of the angles Φ and Θ. Thus, minimizing the error EMOF is
a non-linear least squares problem for (Φ, Θ), i.e. find (Φ∗, Θ∗) such that

EMOF (Φ∗, Θ∗) = ‖f (Φ∗, Θ∗)‖2 = min
(Φ,Θ):(4.2) holds

‖f (Φ, Θ)‖2, (4.6)
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where

f : R
2 → R

3, f (Φ, Θ) = (xref − xA(Φ, Θ)). (4.7)

Now we solve (4.6) for (Φ∗, Θ∗) numerically by means of the Gauss-Newton
algorithm, which is basically given by the following steps.

0. choose initial angles (Φ0, Θ0) and initialize k = 0. Set tol = 10−8∆x, where ∆x

is the grid size.

while not converged

1. find bk(Φk, Θk) such that (4.2) holds.
2. find the centroid xk(bk, Φk, Θk)
3. find the Jacobian matrix Jk of f evaluated at (Φk, Θk). Define fk ≡ f (Φk, Θk).
4. stop if one of the following three conditions is fulfilled:

– ‖JT
k · fk‖ ≤ tol · 10−2∆x

– ‖fk‖ < tol
– k = 11

else continue
5. solve the linear least squares problem: find sk ∈ R

2 such that

‖Jksk + fk‖2 = min
s∈R2

‖Jks + fk‖2 (4.8)

by means of the normal equations.
6. update the angles: (Φk+1, Θk+1) = (Φk, Θk) + sk

7. k := k + 1

To find suitable initial angles (Φ0, Θ0) an initial normal n0 is chosen as follows.
Compute the normal n1

0 using the volume fractions as defined in (4.19) and a
second normal

n
2
0 =

xref − xi,j,k

‖xref − xi,j,k‖
. (4.9)

Define

n0 = argmin{n1
0,n2

0}
{EMOF (n1

0), EMOF (n2
0)} (4.10)

Then,(4.5) can be used to derive the angles.
In each iteration the interface has to be reconstructed five times in step 3 to

evaluate fk and derive the Jacobian matrix. The partial derivatives ∂f
∂Φ and ∂f

∂Θ
are approximated as

∂f

∂Φ
≈ (f (Φ + h) − f (Φ − h))/(2h) (4.11)

∂f

∂Θ
≈ (f (Θ + h) − f (Θ − h))/(2h) (4.12)

for an appropriate constant h. Therefore the interface for the truncated angles is
needed.

Notes:



8 Matthew Jemison et al.

– In the original version of MOF described in [4] instead of the Gauss-Newton
method an iterative Broyden-Fletcher-Goldfarb-Shanno method was used. More
details on this method can be found in appendix C in [4].

– In order to calculate the Jacobian matrix, (4.11) and (4.12), we must perform
four additional interface reconstructions per iteration of the Gauss-Newton
method. The interface reconstruction algorithm uses Newton’s method to find
the intercept, given a slope and a volume fraction. The initial starting value for
the Newton iteration, when calculating the Jacobian matrix, is the intercept
derived from (Φk, Θk).

4.1.2 CLSVOF reconstruction

The discrete level set function Φn
i,j,k and volume fraction Fn

i,j,k are given in each cell
and located at the cell centers. In addition, the values of the neighboring cells are
stored. Thus, for each cell a 3×3×3 stencil of level set values and volume fractions
is available. For boundary cells suitable values are derived from the prescribed
boundary conditions. We need to reconstruct the interface in cells for which the
stencil of level set values has both non-negative and non-positive values or the
volume fraction is between 0 and 1. If the stencil of level set values has both
non-negative and non-positive values, the normal vector n and the intercept b are
computed as the parameters that minimize the error

ELS(n, b) =

v

u

u

t

1
X

i′,j′,k′=−1

wi′,j′,k′(Φi′+i,j′+j,k′+k − ΦR
i,j,k(xi′+i,j′+j,k′+k))2,(4.13)

where

ΦR
i,j,k(x) ≡ n · (x − xi,j,k) + b (4.14)

is the piecewise linear reconstructed interface and wi′,j′,k′ is a weight function:

wi′,j′,k′ = (
1

22
)|i

′|+|j′|+|k′| `δ∆x(Φi+i′,j+j′,k+k′)
´

(4.15)

δ∆x(Φ) =

(

10−3 |Φ| > 2∆x

1 + cos( πΦ
2∆x ) + 10−3 |Φ| < 2∆x

(4.16)

The 1/22 factor in (4.15) is a quadrature weight since (4.13) is a discrete approx-
imation to

Z

Ωi,j,k

δ(Φ)(Φ(x) − ΦR
i,j,k(x))2dx (4.17)

where Ωi,j,k represents the rectangular cell (i, j, k).

Afterwards, the intercept b is adjusted such that the volume fraction Fi,j,k,dark

is exactly reproduced by the interface plane cutting the cell into two parts.

Remark:
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– If the 3×3×3 stencil of level set values contains only positive or only negative
values, then instead of having the CLSVOF slope defined as

n = arg min
n,b

ELS(n, b), (4.18)

we estimate the CLSVOF slope n using the central differences of the volume
fractions, i.e.

ñ =
1

2∆x

0

@

Fi+1,j,k − Fi−1,j,k

Fi,j+1,k − Fi,j−1,k

Fi,j,k+1 − Fi,j,k−1

1

A , n =
ñ

‖ñ‖ (4.19)

4.1.3 CLSMOF Reconstruction

In CLSMOF the level set method is combined with the moment of fluid method.
We can predict the error in the level set reconstruction by approximating the
curvature:

κ(Φ) = ∇ · ∇Φ

|∇Φ| . (4.20)

The discretization of (4.20) is given in [37] (equations 35 through 38).
For the slope reconstruction both κ(Φ) and EMOF are used to determine

whether to use the MOF slope or the CLSVOF slope.
MOF is used to determine n and b if any one of the following equations holds

1.

κ(Φ) >
1

β∆x
(4.21)

2. EMOF < 10−8∆x

3. EMOF > ∆x3(1/∆x)2/720 = ∆x/720.

Otherwise CLSVOF is used.

Remarks:

– For the first condition (4.21), if β is large, we recover the MOF method. In the
results that we report in this paper, we have fixed β = 6.

– The second condition is essential; the MOF slope should always be selected if
the reference centroid equals the actual centroid. It has been shown that if the
centroid is known exactly, then the MOF reconstruction is optimal [2,4,1].

– The last condition is due to the influence of the curvature on the distance
between the actual centroid and the reference centroid. Referring to Figure 2,
suppose one has a cell with lower left corner (−∆x/2, 0) and upper right corner

(∆x/2, ∆x). Now suppose an interface is defined as y = αx2− α∆x2

12 + ∆x
2 . Then

the volume fraction is 1/2 and the graph is symmetric about x = 0 so that the

actual centroid will be (0, ∆x/4). The reference centroid is (0, ∆x/4 + α2∆x3

180 ).
The curvature κ at x = 0 is 2α. So, now one can write the difference between
the actual centroid and the reference centroid in terms of the curvature (for
this specific configuration) as ∆x3κ2/720.
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In our CLSMOF slope reconstruction algorithm, the starting value for the
Gauss-Newton algorithm is either (a) the CLSVOF normal n1

0 or (b) the “centroid
normal” n2

0 as in (4.9); whichever gives the smaller EMOF :

n0 = argmin{n1
0,n2

0}
{EMOF (n1

0), EMOF (n2
0)}. (4.22)

xref

Ax

Fig. 2 The reference centroid, xref , does not coincide with the exact centroid, xA, for a
parabolic interface cutting the cell. The difference between the two centroids is proportional
to the curvature.

4.1.4 Performance of the Gauss-Newton method for MOF and CLSMOF

reconstruction

The performance of the MOF slope reconstruction and the CLSMOF slope re-
construction are compared in two test cases: (A) Reversible Single vortex in 2D
(section 7.1) and (B) Reversible vortex in 3D (section 7.2).

Table 1 compares, at t = 0 and t = 4, the number of calls of the Gauss-
Newton (GN) algorithm, the total number of iterations and the average number
of iterations for the two methods on the basis of the Single Vortex problem (section
7.1) in 2D with a period T = 8. The overall CPU time in order to integrate the
solution from t = 0 to t = 8 was 725 seconds for the CLSMOF method and 762
seconds for the MOF method. In order to capture the t = 4 statistics in Table 1,
we ran the simulation up to t = 4 instead of t = 8, then restarted the computation
at t = 4. At t = 4, the interface is stretched the most, so the most calls to the
Gauss-Newton method will occur at this time. The grid was 128 × 128. A better
performance of the CLSMOF method can be observed concerning the total and,
thus, average number of iteration in the Gauss-Newton algorithm. This is expected
since the level set function is used to help pick a good starting value for the Gauss-
Newton procedure.

Remarks:



A Coupled Level Set-Moment of Fluid Method for Incompressible Two-Phase Flows 11

– The level set reinitialization step does not necessitate an extra reconstruction
of the interface because we store the MOF slope reconstruction information
that was used for reinitialization, to be used again at the beginning of the
next time step. The level set reinitialization step does not modify the volume
fractions or centroids, so that MOF interface reconstruction information before
reinitialization does not change after reinitialization.

– We reran the 2d deformation test using MOF slope reconstruction without
level set reinitialization, and the overall runtime of the MOF case consumed
713 seconds instead of 762 seconds. This test only proves that MOF is slightly
more efficient than CLSMOF for passive advection of an interface. On the other
hand, for non-passive advection of a deforming boundary, the reinitialization
step/level set function provides an efficient way in order to derive the the
departure density ρi′,i (5.2) and the half cell masses (5.15).

Table 2 compares, at t = 0 and t = 1.5, the number of calls of the Gauss-
Newton (GN) algorithm, the total number of iterations and the average number
of iterations for the two methods on the basis of the 3D reversible deforming sphere
problem (section 7.2) with a period T = 3.0. The overall CPU time in order to
integrate the solution from t = 0 to t = 3.0 was 21443 seconds for the CLSMOF
method and 23114 seconds for the MOF method. The grid was 64 × 64 × 64. At
t = 1.5 the sphere experiences the most deformation. As with the 2D deformation
case, the number of Gauss Newton iterations to achieve convergence is lower when
the level set function is available in order to choose an initial starting slope for the
Gauss-Newton procedure.

MOF CLSMOF

t = 0 t = 4 t = 0 t = 4
number of calls of GN algorithm 624 3985 625 3997

total number of iteration 2355 14074 1903 10874
average number of iterations 3.77 3.53 3.04 2.72

Table 1 2D deformation problem: MOF vs. CLSMOF

MOF CLSMOF

t = 0 t = 1.5 t = 0 t = 1.5
number of calls of GN algorithm 10894 40422 10888 40422

total number of iteration 46598 182978 38980 166411
average number of iterations 4.28 4.53 3.58 4.11

Table 2 3D deformation problem: MOF vs. CLSMOF

4.2 Directionally split CLSMOF Interface Advection

We use direction splitting, “Strang splitting” [34], in order to numerically integrate
the position of a deforming interface. In each cell whose center is xi,j,k, the interface
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reconstruction (section 4.1) gives a normal vector and an intercept. The interface
within a cell is defined as the set of points, x, which satisfy:

φ(x) = n · (x − xi,j,k) + b = 0 (4.23)

Using the interface definition (4.23), we can define a Heaviside function to
differentiate light and dark regions of the fluid (4.24). Here, n is a unit normal
vector pointing to the direction of the dark region.

H(n · (x − xi,j,k) + b) =

(

1, x ∈ Ωdark

0, x ∈ Ωlight
(4.24)

The following algorithm is carried out in order to integrate the position of an
interface in a given x, y, or z direction. We will shorten all cell (i, j, k) subscripts
to be just i in the steps (1) through (4) below.

1. In each computational cell i, the local CLSMOF slope reconstruction is found
(see Section 4.1.3). The interface within the cell is defined by (4.23).

2. For a given computational cell with center xi and volume Vi, determine the
mapping from cell i’s departure region Ωi,depart (4.25) to cell i (Ωi). See Figure
3. In the x-direction, we have

Ωi,depart = {xi− 1

2

− ui− 1

2

∆t, xi+ 1

2

− ui+ 1

2

∆t} (4.25)

ui+1/2 and ui−1/2 are horizontal velocities on the MAC grid, and the MAC
velocities are discretely divergence free. i.e. in 3D:

ui+1/2,j,k − ui−1/2,j,k

∆x
+

vi,j+1/2,k − vi,j−1/2,k

∆y
+

wi,j,k+1/2 − wi,j,k−1/2

∆z
= 0. (4.26)

The target volume corresponding to Ωi,depart is the current cell i,

ΩT
i,depart = Ωi = {xi− 1

2

, xi+ 1

2

}. (4.27)

The mapping from the departure volume to the target volume for cell i is:

χ′ = αχ + β =
∆x(x − (xi−1/2 − ui−1/2∆t))

(xi+1/2 − ui+1/2∆t) − (xi−1/2 − ui−1/2∆t)
+ xi−1/2 (4.28)

h

xi−1/2 − ui−1/2∆t, xi+1/2 − ui+1/2∆t
i

→
h

xi−1/2, xi+1/2

i

(4.29)

3. Determine the intersection of the departure region with surrounding cells,

Ωi′,i = Ωi′+i ∩ Ωi,depart, i
′ = −1, 0, 1, (4.30)

then map Ωi′,i forward in order to derive ΩT
i′,i. (see Figures 4 and 5).
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4. Compute new light and dark centroids and mapped volumes/volume fractions
(see Figure 4):

V dark
i,target =

+1
X

i′=−1

Z

ΩT
i′,i

H(
ni+i′ · (x′ − x′

i+i′)

α
+ b)dx

′ (4.31)

V total
i,target =

+1
X

i′=−1

Z

ΩT
i′,i

1dx
′ = Vi (4.32)

x
dark
i =

P+1
i′=−1

R

ΩT
i′,i

x′H

 

ni+i′ · (x′ − x′
i+i′)

α
+ b

!

dx′

V dark
i,target

(4.33)

x
light
i follows analogously except replace H with 1 − H. The updated volume

fraction is,

F ∗
i =

V dark
i,target

Vi
. (4.34)

Remarks:

– The mapping factor α can be rewritten in a more helpful fashion.

α =
1

1 − ui+1/2−ui−1/2

∆x ∆t
∼

1

1 − ux∆t
(4.35)

This allows us to make some generalizations about the mapping and the be-
havior we can expect of volume fractions in the departure region.

8

>

<

>

:

α < 1, compression

α = 1, translation

α > 1, expansion

– In a 2D R-Z coordinate system, the calculation of the departure region (4.25)
is modified in the R direction to be,

Ωi,depart = {ri− 1

2

− ũi− 1

2

∆t, ri+ 1

2

− ũi+ 1

2

∆t}, (4.36)

where ũi−1/2 satisfies,

ri−1/2ui−1/2∆t = (ri−1/2 − ũi−1/2∆t/2)ũi−1/2∆t. (4.37)

ri−1/2 is the R coordinate of the left face of cell i. In a 2D R-Z coordinate
system, by defining the departure volume in the R direction by (4.36) and
(4.37), we guarantee that the corresponding advection method is free stream
preserving.
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Steps (1) through (4) above are repeated in the x, y, and z directions. F ∗

in (4.34) is a provisional volume fraction. In order to preserve mass, we must
keep track of the total amount of “dark mass” that enters a cell and use that
to determine the updated volume fraction. We define F ∗,(0) ≡ Fn, F ∗,(1) to be
the provisional volume fraction after the first sweep, F ∗,(2) to be the provisional
volume fraction after the second sweep, and F ∗,(3) to be the provisional volume
fraction after the last sweep.

The overall algorithm, sweeping in all the directions is as follows:

– Initialize

M
dark
i = ρdarkFn

i Vi,cell (4.38)

– For d = 1, 2, 3 do
– Reconstruct the interface slope and intercept (4.23).
– Find the mapping,

χ′ = αχ + β, (4.39)

from departure volume χ to target volume χ′ (4.28).
– Identify the intersections of the departure volume with the neighboring

cells; advect each intersected region, Ωi′,i forward

– Compute volume contributions and moments, V dark
i,target, xdark

i , x
light
i (see

(4.31), (4.33)).

– Compute the provisional volume fraction F
∗,(d)
i (4.34).

– increment the overall dark fluid volume (mass) that enters cell i:

M
dark
i = M

dark
i +

1

α
ρdarkV dark

i,target − ρdarkF ∗,(d−1)Vi,cell (4.40)

– enddo
– Mask volume fraction:

Fn+1
i =

8

>

>

<

>

>

:

0 F
∗,(3)
i < ǫ

M dark

ρdarkVi
ǫ < F

∗,(3)
i < 1 − ǫ

1 F
∗,(3)
i > 1 − ǫ

(4.41)

We integrate the solution of the level set function φ concurrently with the
integration of the solution to the volume fractions and centroids. The following
steps describe how to integrate the solution of the level set function in a given x,
y, or z direction:

1. Use Van-Leer slope limiting [24] in order to locally reconstruct the level set
function profile in a given cell i:

φ(x) = φi + φ′
i,V L(x − xi) (4.42)

where

φ′
i,V L =

8

>

>

<

>

>

:

0,
“

φi+1,j,k−φi,j,k

∆x

”“

φi,j,k−φi−1,j,k

∆x

”

< 0

fV L

 

φi+1,j,k − φi,j

∆x
,
φi,j,k − φi−1,j,k

∆x

!

, otherwise
(4.43)
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fV L(x, y) =
2xy

x + y
(4.44)

The Van-Leer slope, φ′
i,V L, guarantees that the reconstructed profile for φ is

bounded by the values of φ at the cell centers.
2. Find the mapping,

χ′ = αχ + β, (4.45)

from departure volume χ to target volume χ′ (4.28).
3. Find the intersection of departure region Ωi,depart for cell Ωi with the cells Ωi,

Ωi−1, and Ωi+1 as in (4.46). See Fig. 5.

Ωi′,i = Ωi′+i ∩ Ωi,depart, i
′ = −1, 0, 1 (4.46)

4. Compute the updated level set function φ∗
i :

φ∗
i =

P+1
i′=−1

R

Ωi′,i

“

φi+i′ + φ′
i+i′,V L(x − xi+i′)

”

dx

P+1
i′=−1 |Ωi′,i|

(4.47)

After sweeping in the x, y, and z directions, the level set function is coupled
to the volume-of-fluid function, Fn+1, and the moment of fluid function xn+1 by
replacing the current level set function φn+1 with the exact signed distance to the
piecewise linear CLSMOF reconstructed interface.

The algorithm for finding the signed distance to the CLSMOF reconstructed
interface is the same as that described in [39] except that we do not require the
level set function to change sign in an “interface” cell. Instead we only require that
F − 1/2, where F is the volume of fluid function, changes sign in a 3 × 3 stencil
about the cell in question.

The following algorithm finds the signed normal distance in a band K cells
wide about the CLSMOF reconstructed interface.

1. Tag all computational cells (i,j,k)
2. For each computational cell (i,j,k) check to see if

„

Fn+1
i,j,k − 1

2

«„

Fn+1
i∗,j∗,k∗ − 1

2

«

< 0 (4.48)

for some cell (i∗, j∗, k∗) ≡ (i+i′, j+j′, k+k′) such that |i′| ≤ 1, |j′| ≤ 1, |k′| ≤ 1.
If there is a (i∗, j∗, k∗) that satisfies (4.48), then perform the following steps:

(a) If
0 < Fn+1

i,j,k < 1 (4.49)

find the linear reconstruction

φn+1,R
i,j,k (x) = ni,j,k · (x − xi,j,k) + bi,j,k (4.50)

If both (4.49) and (4.48) are satisfied then mark the face centroids and cor-

ners of cell (i, j, k) with the sign according to the evaluation of φn+1,R
i,j,k (x) at

the cell corners and face centroids. If either (4.49) or (4.48) is not satisfied,
then mark the corners and face centroids with the sign of Fi,j,k − 1/2.
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(b) For each cell (i∗, j∗, k∗) ≡ (i + i′, j + j′, k + k′) in the K-band such that
|i′| ≤ K, |j′| ≤ K, and |k′| ≤ K carry out the following steps.

(i) Determine the shortest distance d associated with the cells xi,j,k and
xi∗,j∗,k∗ . One must consider the orthogonal projection of xi∗,j∗,k∗

onto the interface in cell (i, j, k) (4.23), if it lies in the cell. If the
projection lies outside of the cell, then the intersection of the interface
with the cell faces must be considered. Also, one must test corners and
cell face centroids. See Fig. 6. For any corner or centroid whose sign is
opposite that of (i∗, j∗, k∗), compare the distance from (i∗, j∗, k∗) to
the corner/centroid with the current value of d. Take the minimum
value.

(ii) Update φn+1
i∗,j∗,k∗ using d:

φn+1
i∗,j∗,k∗ =

8

>

<

>

:

SGN(Fn+1
i∗,j∗,k∗ − 1

2 )d if d < |φn+1
i∗,j∗,k∗ | or

(i∗, j∗, k∗) is tagged
φn+1

i∗,j∗,k∗ otherwise
(4.51)

(iii) Untag cell (i∗, j∗, k∗).

3. For cells (i, j, k) which are still tagged, we have

φn+1
i,j,k =

(

φmax, Fi,j,k ≥ 1/2

φmin, Fi,j,k < 1/2
(4.52)

Where φmax and φmin are the maximum and minimum level set values in the
untagged cells.

i+1/2

x
i−1/2

x
i+1/2

x
i+1/2

u
i+1/2

u
i−1/2

x
i−1/2 ∆ t ∆ t−

u

−

i−1/2
u

Fig. 3 The intersection of the departure volume with the adjoining cells is found.
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Fig. 4 The intersection of the departure volume (outlined by dashed lines) with the adjoining
cells is found and denoted by Ωi′,i. The intersected departure regions are mapped forward (see
right figure) and then the volume fractions and centroids are calculated in cell i. In this figure,
while there can be a contribution from up to three cells, here there is no contribution from the
i′ = +1 cell. The region marked ΩT

−1,i−1 denotes the mapped intersection of the departure

region for cell i − 1 with cell i − 2

Fig. 5 The shaded departure volume Ωi,depart is intersected with the cells, then mapped

forward into ΩT
0,i, ΩT

−1,i, and ΩT
1,i in the target cell ΩT .

5 Fluid Algorithm

5.1 Momentum Advection

We follow the ideas described in [31] for discretizing the non-linear advection terms
for multiphase flows. Concurrently with directionally split CLSMOF advection
(Section 4.2), we discretize the non-linear advective terms as follows.
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Fig. 6 When finding the nearest point in cell (i, j) to point (i+ i′, j+j′), one needs to test the
points marked with an ‘x’: face centroids, corners, the orthogonal projection onto the interface,
and the intersection of the interface with the cell faces.

1. In each cell, the velocity has the reconstruction as in (5.1), where u′
i,V L is

determined from Van Leer slope limiting. In addition, if φiφi±1 ≤ 0, or if
0 < Fi < 1, then the slope u′

i,V L is set to zero.

u = ui + u′
i,V L(x − xi) (5.1)

2. For a given cell Ωi, find the intersection of the departure region for that cell,
Ωi,depart, with all surrounding cells, as in Figure 3.

3. Denote the intersection of the departure region of cell i with neighboring cell
i + i′ as Ωi′,i. See Figure 5.

4. Find the 1D fraction of dark material in Ωi′,i using linear interpolation of the
levelset function (see Fig. 7), then find the density in each Ωi′,i. Call this ρi′,i,
the departure density.

5. Compute the new velocity as a result of advection,

un+1,advect =

P+1
i′=−1

R

Ωi′,i
ρi′,i(ui+i′ + u′

i+i′,V L(x − xi+i′))dx

P+1
i′=−1 |Ωi′,i|ρi′,i

(5.2)

Note: The mass in the denominator of (5.2) will unlikely be the mass derived
from the updated level set function φ∗

i (4.47), therefore momentum is not discretely
conserved by our method.

5.2 Pressure Projection

We approximate solutions to the following two equations, (5.3) and (5.4), in order
to derive the updated velocity u. In our implementation, we maintain both a
MAC velocity and a cell centered velocity. The MAC velocity is used to determine
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ii−1i−2

Light

1D

Ω
Depart

i

Dark

F

Fig. 7 The departure region, shaded, is cut by the interface. The one-dimensional dark volume
fraction F1D (shown as a dotted line) in the departure cell is found by linear interpolation
of the level set function. The root of the linear interpolant of φ is the location of the 1D
reconstructed interface.

the departure regions (4.25) for transporting the interface and velocity field. The
MAC velocity will be discretely divergence free and the cell centered velocity will
be “approximately” divergence free.

∇ · ∇p

ρ
= ∇ · u∗ (5.3)

u = u
∗ − ∇p

ρ
(5.4)

The labeling convention, in defining ρ and the surface tension force, is that
‘dark’ refers to liquid regions and ‘light’ refers to gas regions. A level set function
φ(x) is defined such that

φ(x)

(

≥ 0, x ∈ Ωdark

< 0, x ∈ Ωlight

The MAC pressure gradient is discretized in the x-direction as in (5.5).

∂p/∂x

ρ
=

pi+1,j − pi,j

∆x
· 1

ρi+ 1

2
,j

(5.5)

The MAC density ρi+ 1

2
,j is derived from the level-set function φ according to

(5.6 - 5.11). See Figure 9.

φ+
j = max (φj , 0) (5.6)

φi+1/2 =
φi + φi+1

2
(5.7)



20 Matthew Jemison et al.

FRight
1D,i =

8

>

>

>

<

>

>

>

:

1, φi ≥ 0, φi+1/2 ≥ 0

0, φi < 0, φi+1/2 < 0

φ+
i + φ+

i+1/2

|φi| + |φi+1/2|
, otherwise

(5.8)

FLeft
1D,i =

8

>

>

>

<

>

>

>

:

1, φi ≥ 0, φi−1/2 ≥ 0

0, φi < 0, φi−1/2 < 0

φ+
i + φ+

i−1/2

|φi| + |φi−1/2|
, otherwise

(5.9)

F1D,i+1/2 =
FRight

1D,i + FLeft
1D,i+1

2
(5.10)

ρi+ 1

2
,j = ρDarkF1D,i+1/2 + ρLight(1 − F1D,i+1/2) (5.11)

The right-hand side of equation (5.3) is discretized as

∇ · u∗ ∼
u∗

i+1/2,j − u∗
i−1/2,j

∆x
+

v∗i,j+1/2 − v∗i,j−1/2

∆y
+

w∗
i,j,k+1/2 − w∗

i,j,k−1/2

∆z

where

u∗
i+ 1

2

=
Mi,Rui + Mi+1,Lui+1

Mi,R + Mi+1,L
(5.12)

The half cell masses Mi,R and Mi+1,L are defined by (5.13 - 5.15).

ρi,Left = FLeft
1D,i ρDark + (1 − FLeft

1D,i )ρLight (5.13)

ρi,Right = FRight
1D,i ρDark + (1 − FRight

1D,i )ρLight (5.14)

Mi,Left = ρi,Left

∆x

2
Mi,Right = ρi,Right

∆x

2
(5.15)

After solving (5.3), the discretely divergence-free MAC velocity (used for com-
puting the departure volume) is defined in Eqn. (5.16 - 5.18) following [21,40]:

ui+1/2,j,k = u∗
i+1/2,j,k − pi+1,j,k − pi,j,k

ρi+1/2,j,k∆x
(5.16)

vi,j+1/2,k = v∗i,j+1/2,k − pi,j+1,k − pi,j,k

ρi,j+1/2,k∆y
(5.17)

wi,j,k+1/2 = w∗
i,j,k+1/2 − pi,j,k+1 − pi,j,k

ρi,j,k+1/2∆z
(5.18)

The “approximately” divergence free cell centered velocity is defined in the
following equations (5.19-5.21) following [22]:

ui,j,k = u∗
i,j,k −

pi+1/2,j,k − pi−1/2,j,k

Mi,Left + Mi,Right
(5.19)
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vi,j,k = v∗i,j,k −
pi,j+1/2,k − pi,j−1/2,k

Mj,Back + Mj,Front
(5.20)

wi,j,k = w∗
i,j,k −

pi,j,k+1/2 − pi,j,k−1/2

Mk,Bot + Mk,Top
(5.21)

We follow the work of [22] in interpolating the pressure from the cell centers,
pi,j,k, to the cell faces, pi+1/2,j,k, pi,j+1/2,k, and pi,j,k+1/2. As in [22], we enforce
that u − u∗ is continuous across cell faces. In otherwords, if one has,

ui,R = u∗
i,R −

pi+1/2 − pi

Mi,Right
ui+1,L = u∗

i+1,L −
pi+1 − pi+1/2

Mi+1,Left
, (5.22)

then we enforce that the sides of a cell face remain in constant contact to arrive
at (5.23):

pi+ 1

2

− pi

Mi,Right
=

pi+1 − pi+ 1

2

Mi+1,Left
(5.23)

Equation (5.23) is solved for pressure at the face:

pi+1/2 =

pi+1

Mi+1,Left
+ pi

Mi,Right

1
Mi+1,Left

+ 1
Mi,Right

(5.24)

Once this process has been carried out to find the pressure on all of the faces,
we obtain an expression for the pressure gradient at the center of the cell. For
example,

ui = u∗
i −

pi+ 1

2

− pi− 1

2

Mi,Left + Mi,Right
(5.25)

1D

1D
φ   = 0

φ < 0

F

φ > 0

Fig. 8 Given a change in sign of the level set function across adjoining cells, we can use a
linear interpolation in 1D to reconstruct the boundary and volume fraction F1D in the face
control volume.
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u
i−1 i+1

uu
i

Face Control Volume

Dark

u

Light

i+1/2

F
1D,i+1/2

Fig. 9 A face control volume can be defined between two grid cells such that the center is
the face centroid of the common side of the grid cells. F1D,i+1/2 is the fraction of the face
control volume occupied by the dark fluid, as found by the 1D linear interpolation of the level
set function.

5.3 Surface Tension

We use the ghost fluid method [21] for discretizing the surface tension force. Cur-
vature κ is estimated by using the height function technique as in [13], [35], or
[20].

Suppose the ith cell is a dark cell. We use the pressure jump across the interface
to rewrite the ‘light’ pressure in terms of the ‘dark’ pressure using the Ghost Fluid
Method [17,21]. See Figure 10. For example, (5.25) is recast as follows if a “light”
cell is nearby:

ui = u∗
i −

pDark
i+1/2 − pDark

i−1/2

Mi,Left + Mi,Right
(5.26)

Referring to Figure 10, since both pi and pi+1 are liquid pressures, pDark
i+1/2 =

pi+1/2, where pi+1/2 is defined by (5.24). Since pi−1 is a gas pressure, we have:

pDark
i−1/2 =

pi

Mi,Left
+

pi−1−σκi−1/2

Mi−1,Right

1
Mi,Left

+ 1
Mi−1,Right

(5.27)

6 Dynamic Block Structured Adaptive Mesh Refinement

For all of our test computations, the underlying computational domain is estab-
lished using dynamic block structured adaptive mesh refinement [37,36] (AMR).
A computational domain that is organized using AMR is made up of a hierarchy
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i−1/2

i−1
P

i

i

Ghost,
Light σκ

i
P        = P +

φ < 0 φ > 0

Γ

Dark
Ghost,

i−1 i−1
P        = P   − σκ

i−1/2

P

Fig. 10 The ith cell rests in the dark region, and the interface cuts in between the i and i− 1
cells. The pressure gradient is computed as in (5.26) in terms of the ghost dark pressure and
accounting for the jump condition across interface Γ .

of adaptive levels ℓ = 0, . . . , ℓmax with each level being the union of disjoint rect-
angular grids. Level ℓ = 0 is the coarsest level and the mesh size on each finer level
is half the mesh size of the preceding level, ∆xℓ+1 = ∆xℓ/2.

In [37,36], the boundary conditions for the level set function φ at the boundary
between a coarse level ℓ and a fine level ℓ+1 was treated using linear interpolation.
In other words, conservative Van-Leer slope limited linear interpolation on the
coarse level ℓ was used to initialize “ghost” fine level ℓ +1 cells and the average of
the level set values on fine grid cells that cover a given coarse grid cell, φℓ+1, was
used to overwrite the coarse level set function, φℓ.

In this work, we use the same grid transfer operations for the level set function
as in [37], and in addition, we have developed routines for transferring volume frac-
tion and centroid information from the coarse grid to the fine grid and vice versa.
Referring to Figure 11, in order to interpolate the volume fraction and centroid
information from the underlying coarse grid (open circles) to the ghost fine grid
points (green cells), we first find the piecewise linear MOF reconstructed interface
in the coarse cells below the “ghost fine cells.” Then the ghost fine grid volume
fraction and centroid are derived from the coarse MOF reconstructed interface.
We synchronize the coarse level volume fraction and centroid information with
the fine level volume fraction and centroid information by overwriting the coarse
grid volume fraction (open circles in blue region) with the average of the overlying
fine grid volume fraction values and by overwriting the coarse grid centroid with
the fine grid volume fraction weighted average of the overlying fine grid centroids.

The criteria for adaptivity on a given level ℓ is to tag a grid cell xℓ
i,j,k for

adaptivity if the level set function φℓ
i,j,k changes sign and if the radius of curvature

satisfies κℓ
i,j,k > 1/Rℓ,cut.
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After every user defined number of time steps, the adaptive mesh is recon-
structed as follows:

– A coarse level, ℓ = 0, is established which covers the whole computational
domain.

– Coarse level cells xℓ
i,j,k are tagged based on user defined criteria.

– Cells within an “errorbuf” radius of a tagged cell are also tagged.
– Cells tagged on level ℓ are grouped together according to the Berger and

Rigoustsos [9] clustering algorithm in order to define a new adaptive level
ℓ + 1.

– The process is repeated until level ℓmax is established.

Fig. 11 For the levelset function, the “ghost points” on a fine level (green region) are initialized
using conservative, Van-Leer limited, linear interpolation from the coarser level. For example,
the points labeled as “xfine” are initialized from the level set values defined at the open
circles. Coarse grid level set values located at points that are covered by a finer level (blue
region) are synchronized to the fine level by overwriting coarse grid level set values with the
average of overlying fine grid level set values. In order to initialize ghost volume fractions and
centroids in the green cells, we first find the piecewise linear MOF reconstructed interface on
the underlying coarse level cells, then derive the fine grid volume fractions and centroids from
the reconstructed interface.

7 Numerical Results

In the results that follow, where an exact solution is available, we compare the
computed solution to the exact solution using the symmetric difference error. We
define ΩC and ΩE to be the computed and exact regions respectively of ‘dark
fluid’ in the domain. The symmetric difference error is then,

Esym = |ΩC ∪ ΩE − ΩC ∩ ΩE |. (7.1)

(7.1) can also be defined as,

Esym =
X

i,j,k

Z

Ωi,j,k

|H(n · (x − xi,j,k) + b) − H(φE(x))|dx. (7.2)
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H is the Heaviside function (2.4), n and b are derived from the interface recon-
struction (4.1), xi,j,k is the center of the cell Ωi,j,k, and the zero level set of φE(x)
is the exact interface location.

We compute the symmetric difference error by approximating the integral in
(7.2) using adaptive quadrature.

The time step ∆t is the minimum of the following quantities:

∆tadvect = cfl
∆x

max |u| (7.3)

∆ttension = cfl∆x

r

∆xρdark

8πσ
(7.4)

∆tgravity = cfl
p

2∆xπ/g (7.5)

We fix “cfl” always to be 1/2 in our simulations.
In the examples that follow, we will often compare the following four different

slope reconstruction techniques:

– CLSVOF slope reconstruction (section 4.1.2)
– MOF slope reconstruction (section 4.1.1)
– CLSMOF slope reconstruction (section 4.1.3)
– LVIRA slope reconstruction (see [29])

In order to emphasize that we use directional splitting [34] for interface and
momentum advection, we refer to each of the four different techniques as DS-
CLSVOF, DS-MOF, DS-CLSMOF, and DS-LVIRA, respectively.

7.1 Single Vortex

In this test, a circle of radius R0 = 0.15 and center (0.5, 0.75) is placed inside a
unit sized box. The velocity field is given by the stream function [8]:

Ψ(x, y, t) =
1

π
sin2(πx) sin2(πy) cos(

πt

T
), (7.6)

where T is the period of a reversing vortical flow.
The resulting velocity field first stretches the circle into an ever thinner filament

that wraps around the center of the box, then after time t = T/2, slowly reverses
and pulls the filament back into the initial circular shape at time t = T .

For this test we prescribe the velocity at the cell faces in terms of finite dif-
ferences of the exact stream function Ψ (7.6). This is important in order to insure
that the face velocity is discretely divergence free.

The velocity depends on time, so we must reverse the order of operations within
each time step in order for the directionally split method to be formally second
order accurate. So for each time step, the velocity is specified at tn+1/2 and we
sweep in the x, y, y, x directions respectively, each with a time step of ∆t/2.

In table 3, we compare the error at t = T , Esym (7.1), using the 4 different
slope reconstruction techniques: DS-CLSVOF, DS-MOF, DS-CLSMOF, and DS-
LVIRA.

The results using the DS-CLSMOF method, for T = 8 and an effective fine
grid resolution of 128x128 is displayed in Figure 12 at time t = 4.0. Results are
compared with the DS-CLSVOF method.
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(a) DS-CLSVOF (b) DS-CLSMOF

Fig. 12 Deformation problem with period T = 8. Results at t = 4.0. The corresponding
piecewise linear reconstructed interface is plotted. Base grid 64x64. one level of AMR; effective
fine grid resolution 128x128.

Size T DS-CLSMOF DS-MOF DS-CLSVOF DS-LVIRA
64 1/2 1.15E − 4 1.43E − 4 1.11E − 4 1.33E − 4
128 1/2 3.22E − 5 (1.8) 4.14E − 5 (1.8) 3.30E − 5 3.46E − 5
256 1/2 9.22E − 6 (1.8) 1.19E − 5 (1.8) 9.28E − 6 9.02E − 6
32 8 2.92E − 2 3.45E − 2 5.45E − 2 6.61E − 2
64 8 5.51E − 3 (2.4) 1.00E − 2 (1.8) 1.05E − 2 1.08E − 2
128 8 1.37E − 3 (2.0) 1.11E − 3 (3.2) 1.74E − 3 1.42E − 3

Table 3 Symmetric Difference Error from Section 7.1, for the reversible 2D vortex. Errors
are taken at the end time t = T . The order of accuracy for the DS-CLSMOF and DS-MOF
methods are reported in parenthesis.

7.2 Reversible Vortex - 3D

In this test problem, a sphere with radius 0.15 and center (0.35, 0.35, 0.35) is placed
in the following flow field:

u = 2cos(πt/3) sin2(πx) sin(2πy) sin(2πz) (7.7)

v = − cos(πt/3) sin2(πy) sin(2πx) sin(2πz) (7.8)

w = − cos(πt/3) sin2(πz) sin(2πx) sin(2πy) (7.9)

The initial sphere undergoes severe deformation for 0 < t < 3/2. For 3/2 < t < 3,
the flow is “reversed” and the final expected shape is a sphere again.

As in section 7.1, we prescribe the velocity at the cell faces in terms of finite
differences of the following function:

f(x, y, z) =
1

π2
sin2(πx) sin2(πy) sin2(πz) (7.10)
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u = 2cos(πt/3)
∂2f

∂y∂z
(7.11)

v = − cos(πt/3)
∂2f

∂x∂z
(7.12)

w = − cos(πt/3)
∂2f

∂x∂y
(7.13)

The velocity depends on time, so we must reverse the order of operations within
each time step in order for the directionally split method to be formally second
order accurate. So for each time step, the velocity is specified at tn+1/2 and we
sweep in the x, y, z, z,y, x directions respectively, each with a time step of ∆t/2.

The results on a 64 × 64 × 64 grid using the DS-CLSMOF method versus the
DS-CLSVOF method are compared in Figure 13 at time t = 1.5 and compared
in Figure 14 at time t = 3.0. We note that while the difference in the symmetric-
difference error of the two methods is small, i.e. the volume of material that is
“displaced” for the DS-CLSVOF method is not that much smaller than for the
DS-CLSMOF method at t = 3.0, the surface area of displaced material for the
DS-CLSVOF method is considerably larger than for the DS-CLSMOF method.

The symmetric difference error for the reversible 3D flow are shown in Table
4.

Size DS-CLSMOF DS-MOF DS-CLSVOF DS-LVIRA
32 4.81E − 3 5.72E − 3 6.92E − 3 7.08E − 3
64 1.99E − 3 (1.3) 2.02E − 3 (1.5) 2.13E − 3 3.01E − 3

Table 4 Symmetric Difference Error from Section 7.2, for the reversible 3D vortex. Errors
are taken at the end time t = 3. The order of accuracy for the DS-CLSMOF and DS-MOF
methods are reported in parenthesis.

7.3 Notched Disk: rigid body motion

In this section, we test the DS-CLSMOF reconstruction algorithm for the problem
of the rigid body rotation of Zalesak’s disk in a constant vorticity velocity field
[43]. The computational domain is [0, 100] × [0, 100]. The disk is a slotted circle
centered at (50, 75) with a radius of 15, and a slot length of 25 and width of 5.
The constant vorticity velocity field is given by:

u = −(π/314)(y − 50)

v = (π/314)(x − 50)

so that the disk completes one revolution every 628 time units.
In table 5 we report the symmetric difference error at t = 628 for the four

different interface reconstruction methods (DS-CLSMOF, DS-MOF,DS-CLSVOF,
and DS-LVIRA). In Figure 15, we compare the shape after one full rotation of
the notched disk between DS-CLSMOF and DS-CLSVOF interface reconstruction.
The effective fine grid resolution in Figure 15 is 100×100. In Figure 16 we compare
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(a) DS-CLSVOF (b) DS-CLSMOF

Fig. 13 3D Deformation problem with period T = 3. Results at t = 1.5. The corresponding
piecewise planar reconstructed interface is plotted. 64x64x64 grid.

(a) DS-CLSVOF (b) DS-CLSMOF

Fig. 14 3D Deformation problem with period T = 3. Results at t = 3.0. The corresponding
piecewise planar reconstructed interface is plotted. 64x64x64 grid. Both methods have en-
trained “light” material, the DS-CLSMOF method has considerably less “flotsam” than the
DS-CLSVOF method.

the shape after one full revolution between DS-CLSMOF and DS-CLSVOF when
the effective fine grid resolution is 200 × 200. The criterion for adaptivity for the
finest level of Figure 16, (Case C), was that κ(φ) > 1/(2∆x) where κ(φ) is the
curvature. The corners in Figure 16 (Case C), are preserved almost just as well
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N DS-CLSMOF DS-MOF DS-CLSVOF DS-LVIRA
100 7.76 6.11 12.6 14.7
200 3.07 (1.3) 2.22 (1.5) 5.22 6.18
400 1.16 (1.4) 0.749 (1.6) 2.00 2.51

Table 5 Symmetric Difference Error from Section 7.3, the rotating, notched disk. measure-
ment taken at the final time step, t = 628. The order of accuracy for the DS-CLSMOF and
DS-MOF methods are reported in parenthesis.

as when the interface is wholly contained on the finest adaptive level (Case B). It
took 1.9 times longer for the result in (B) to finish than in (C).

In Table 5, we see that the DS-MOF method has the smallest error, followed by
the DS-CLSMOF method. The reason that DS-MOF is better than DS-CLSMOF
is that the interface near the corners (but not within a grid cell of the corners)
will have a curvature that does not trip the condition (4.21) for selecting the MOF
slope. One possible remedy for this problem would be to increase β in (4.21),
but then there would be a penalty in smooth regions (see table 3, T = 1/2, the
error using either DS-CLSMOF or DS-CLSVOF is smaller than the error using
DS-MOF) of the interface where the MOF slope would be selected instead of the
CLSVOF slope. Another possible remedy, that should be tried in the future, is to
replace condition (4.21) with the following condition for choosing the MOF slope:

max
−1<i′<1,−1<j′<1,−1<k′<1

|(κ(Φ))i+i′,j+j′,k+k′ | >
1

β∆x
. (7.14)

(a) DS-CLSVOF (b) DS-CLSMOF

Fig. 15 N = 100 results after one revolution for Zalesak’s problem. The corresponding piece-
wise linear interface reconstruction is plotted at t = 628.
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(a) DS-CLSVOF (b) DS-CLSMOF

(c) DS-CLSMOF

Fig. 16 Results after one revolution (t = 628) for Zalesak’s problem. The effective fine grid
resolution is 200 × 200 for all 3 results. The coarse grid resolution is 50 × 50 and there are 2
levels of AMR. The criterion for the finest level of figure (c) is that κ(φ) > 1/(2∆x).

7.4 Letter “A”: rigid body motion

The shape of the letter “A” is generated via the composition of level set func-
tions and is passively advected. The test of a “rotating A” was also computed
in [14]. As with our other passive advection tests, we shall compare the follow-
ing 4 slope reconstruction algorithms: DS-MOF, DS-CLSMOF, DS-CLSVOF, and
DS-LVIRA.
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N DS-CLSMOF DS-MOF DS-CLSVOF DS-LVIRA
100 15.6 13.0 30.5 35.9
200 6.72 (1.2) 4.92 (1.4) 12.0 14.2
400 2.58 (1.4) 1.73 (1.5) 4.59 5.60

Table 6 Symmetric Difference Error from Section 7.4, the rotating “A.” Measurement taken
at the final time step, t = 628. The order of accuracy for the DS-CLSMOF and DS-MOF
methods are reported in parenthesis.

The computational domain is [0, 100]× [0, 100]. The constant vorticity velocity
field is given by:

u = −(π/314)(y − 50)

v = (π/314)(x − 50)

so that the “A” shape completes one revolution every 628 time units. Table 6 re-
ports the symmetric difference errors for the different slope reconstruction meth-
ods. In Figure 17, we compare the shape after one full rotation of the “A”; DS-
CLSMOF versus DS-CLSVOF interface reconstruction.

Again, as in section 7.3, we see that the DS-MOF method has the smallest
error, followed by the DS-CLSMOF method.

(a) DS-CLSVOF (b) DS-CLSMOF

Fig. 17 N = 100 results after one revolution for the rotating letter “A” problem. The corre-
sponding piecewise linear interface reconstruction is plotted at t = 628.

7.5 Comparison with experiments for a rising gas bubble in liquid

We compare the computed rising bubble shape and velocity with experimental
data reported in [10]. The effective fine grid resolution is 256x256 and the di-
mensionless domain size (with respect to the bubble diameter) is 0 ≤ r ≤ 4 and
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0 ≤ z ≤ 4. We use a 3D axisymmetric coordinate system. We prescribe symmetric
boundary conditions at the left side of the computational domain, free slip bound-
ary conditions at the right side, inflow boundary conditions at the top and outflow
conditions at the bottom. The inflow velocity is a prescribed constant chosen so
that the bubble would stay in the computational domain. See Table 7 for a list of
the conditions we tested along with a comparison of the computed Reynolds num-
ber Recal (after a steady state has been reached) with the experimental observed
Reynolds number Reexp. In Figure 18 we compare the steady bubble shape with
experimental data for conditions 1,3,4 and 6. We find from Table 7 that for all
of the 6 different conditions we tried, we capture the correct steady bubble rising
speed to within a half of a percent. In Figure 18, we illustrate 4 out of the 6 cases.
In all of the cases, the aspect ratio of the computed bubble, when juxtaposed with
the corresponding experimental photograph, “looks” the same.

E0 M Reexp Recal

condition 1 116 41.1 7.16 7.16
condition 2 116 5.51 13.3 13.3
condition 3 116 1.31 20.4 20.3
condition 4 116 0.103 42.2 42.2
condition 5 115 4.63E − 3 94.0 94.1
condition 6 243 266 7.77 7.77

Table 7 Comparison of computed Reynolds number Recal = ρLVcald/µL with the exper-

imentally observed ([10]) Reynolds number Reexp = ρLVexpd/µL. E0 =
(ρL−ρG)gd2

σ
and

M =
gµ4

L(ρL−ρG)

ρ2
L

σ3 represent the Eötvös and Morton numbers respectively.

7.6 Surface tension driven vibrations of a drop in zero gravity

In this section, we perform a grid refinement study for the problem of surface
tension driven vibrations of a drop in zero gravity. We compare the DS-CLSMOF
method to the DS-MOF method.

We have previously reported results for this problem, using DS-CLSVOF, in
[40] and using a high order level set method in [42]. For this problem, the density
ratio is 1000:1 and the viscosity ratio is 1000:1.

According to the linearized results derived in [23] (1932, §275), the position of
the drop interface is

R(θ, t) = a + ǫPn(cos(θ)) sin(ωnt + π/2),

where

ω2
n = σ

n(n − 1)(n + 1)(n + 2)

a3(ρl(n + 1) + ρgn)

and Pn is the Legendre polynomial of order n. θ runs between 0 and 2π, where
θ = 0 corresponds to r = 0 and z = a. If viscosity is present, Lamb (1932, §355)
found that the amplitude is proportional to e−t/τ , where

τ =
a2ρL

µL(2n + 1)(n − 1)
.
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(a) Condition 1 (b) Condition 3

(c) Condition 4 (d) Condition 6

Fig. 18 Comparison of computed bubble steady shape (right side of each juxtaposed figure)
with the experimentally observed bubble shape (left side of each juxtaposed figure - photo
taken from [10]).

We compute the evolution of a drop with a = 1, g = 0, µL = 1/50, µL/µG =
1000, σ = 1/2, ρL = 1 and ρL/ρG = 1000. The initial interface is given by R(θ, 0),
with ǫ = .05 and n = 2. With these parameters we find ω2 = 2.0 and τ = 10.0.
The fluid domain is Ω = {(r, z)|0 ≤ r ≤ 1.5 and 0 ≤ z ≤ 1.5} and we compute on
grid sizes ranging from 32×32 to 128×128. The time step for each respective grid
size ranges from 0.0007 to 0.000175. Symmetric boundary conditions are imposed
at r = 0 and z = 0.

In Table 8, we compare the relative error between succeeding resolutions for
the minor amplitude R∆x(0, t) of the droplet when using the DS-CLSMOF method
versus the DS-MOF method.

The average error Eavg
amplitude is given by

Eavg
amplitude ≡

Z 3.5

0
|R∆x(0, t) − R2∆x(0, t)|dt,

and the maximum amplitude error Emax
Amplitude is given by

Emax
Amplitude ≡ max

0≤t≤3.5
|R∆x(0, t) − R2∆x(0, t)|.

In Figure 19, we plot the minor amplitude versus time for the three different
grid resolutions using the DS-CLSMOF method.

From Table 8, we see that both DS-CLSMOF and DS-MOF methods converge
under grid refinement. The relative error between the ∆r = 3/64 and ∆r = 3/128
meshes is larger for the DS-MOF method than the DS-CLSMOF method. But the
DS-MOF method becomes slightly more accurate than the DS-CLSMOF method
when looking at the relative error between the ∆r = 3/128 and ∆r = 3/256 meshes.



34 Matthew Jemison et al.

DS-CLSMOF DS-MOF

∆r Eavg
Amplitude Emax

amplitude Eavg
Amplitude Emax

amplitude

3/128 0.00072 0.00148 0.00112 0.00328
3/256 0.00029 (1.3) 0.00084 (0.8) 0.00026 (2.1) 0.00082 (2.0)

Table 8 Convergence study; comparison between the DS-CLSMOF and DS-MOF methods
for the vibration of a drop in zero gravity σ = 1/2, µL = 1/50, µL/µG = 1000, ρL/ρG = 1000
and α = 2. The order of accuracy for the DS-CLSMOF and DS-MOF methods are reported
in parenthesis.

(a) 0 ≤ t ≤ 3.5 (b) 2.7 ≤ t ≤ 3.5

Fig. 19 Amplitude versus time for the simulation (DS-CLSMOF) of surface tension driven
zero gravity droplet oscillations The linearized prediction from [23] is included in the plot for
0 ≤ t ≤ 3.5. Density ratio is 1000:1. Viscosity ratio is 1000:1. Three different grid resolutions
tested: 32 × 32, 64 × 64, 128 × 128. ∆t equals 0.0007, 0.00035, and 0.000175 respectively.

7.7 Liquid-gas jet co-flowing flow

We compute the growth-rate of instability of a co-flowing jet using our DS-CLSMOF
method and compare with a linear stability analysis (LSA) algorithm developed
in [41]. The LSA algorithm is a general viscous, two-phase, three dimensional, al-
gorithm. A coaxial flow, which satisfies exactly the Navier-Stokes equations, are
given by [25]

W1 = −1 +
Nr2

N − (1 − l2)
{1 − 1 − Q

4N
R[2 ln l + (1 − l2)]}

W2 = − l2 − r2

N − (1 − l2)
{1 − 1 − Q

4N
R[2 ln l + (1 − l2)]} +

1 − Q

4N
R[l2 − r2 − 2ln(

l

r
)]

U1 = U2 = V1 = V2 = 0

in which

N =
µ2

µ1
, l =

R2

R1
, Q =

ρ2

ρ1

Re =
ρ1W0R1

µ1
, F r =

W0

gR1
, R =

Re

Fr
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where the subscript 1 and 2 stand for the liquid and gas phase streamwise velocity
respectively, and g is the gravitational acceleration in the negative z direction.

The non-dimensional constants are defined as following:

N = 0.0018, Q = 0.0013, Re = 50, We = 10

l = 10, F r−1 = 0

As in [41,42], we will use the perturbed velocity derived from the LSA eigen-
vectors in order to prescribe an initial perturbed velocity for the DS-CLSMOF
algorithm. The initial disturbance frequency is prescribed to be α = 0.5. Figure 20
plots the amplitude versus time of the α = 0.5 mode. The DS-CLSMOF method
was used in computing the results. The coarsest simulation, 64×128, is computed
on an AMR grid in which the coarse grid has dimensions 32× 64 and there is one
additional level of adaptivity. The finest simulation, 512 × 1024, is computed on
an AMR grid in which the coarse grid has dimensions 32 × 64 and there are four
additional levels of adaptivity.

The results here are converging faster than the results reported in [42]. We
attribute this improvement to the new sharp interface treatment that we have
implemented that follows the concepts proposed by [31] for treating the nonlinear
advective terms. For early time, the growth rate is converging to the growth rate
predicted by linear stability analysis. See Table 9. The computed growth rate was
derived from the interface data, r = f(z), by finding the Fourier expansion of f(z)
and identifying the amplitude of the α = 0.5 mode, A(t). The computed growth
rate was then,

ω =
lnA(t) − lnA(0)

t
. (7.15)

t was chosen as the closest available time to 0.5.

fine grid resolution ω
64x128 0.010
128x256 0.049
256x512 0.069
512x1024 0.078
LSA 0.088

Table 9 Growth rate of the α = 0.5 mode predicted by the DS-CLSMOF method for the
co-flowing jet problem. Growth rate measured for 0 < t < 1/2. The Density ratio is ρG/ρL =
0.0018 and the viscosity ratio is µG/µL = 0.0013. Re= 50 and We= 10.

7.8 Collapsing Water Column - 2D

In this section, we compute the collapse of a 2D water column using our new
DS-CLSMOF method. For reference, this problem has been previously simulated
in [31] and experimental data has been reported in [27]. Density of the fluids are
taken as ρw = 1000 kg/m3 and ρa = 1.226 kg/m3. The viscosity of the fluids are
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Fig. 20 Amplitude of the α = 0.5 mode versus time predicted by the DS-CLSMOF method
for the co-flowing jet problem. The coarsest simulation, 64×128, is computed on an AMR grid
in which the coarse grid has dimensions 32× 64 and there is one additional level of adaptivity.
The finest simulation, 512 × 1024, is computed on an AMR grid in which the coarse grid has
dimensions 32 × 64 and there are four additional levels of adaptivity. The Density ratio is
ρG/ρL = 0.0018 and the viscosity ratio is µG/µL = 0.0013. Re= 50 and We= 10.

µw = 1.137×10−3 kg/ms and µa = 1.78×−5 kg/ms. The surface tension coefficient
is σ = 0.0728 N/m.

The initial height and width of the water column, a = 5.715 cm, are taken
as the characteristic length of the system. The non-dimensional quantities are
defined as Fr = u/

√
ag = 1, We = ρu2a/σ = 440, and Re = ρua/µ = 37635. The

computational domain has dimensions 7x7/4 in terms of the characteristic length
scale. No-slip boundary conditions are prescribed on all 4 walls with a 90 degree
contact angle. In Figure 22, we plot the dimensionless position of the front of
the collapsing water column versus time. We compare our data to experiments.
In Figure 21 we plot the interface profile at dimensionless time t = 4 for three
different effective fine grid resolutions: 128x32, 256x64, and 512x128.

7.9 Impinging Jets

A case of liquid jet impingement is shown in Figure 24. Following the experiments
reported in [6], the two identical water jets (density, kinematic viscosity and surface
tension equal to 998 kg/m3, 0.076 N/m, and 1.00x10-6 m2/s, respectively) are
inclined by an angle of 60 and injected in air at ambient conditions: the liquid-
gas density ratio is therefore 832 and the dynamic viscosity ratio is 50. In the
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Fig. 21 Interface profile at dimensionless time t = 4 for a 2D dam break problem. The DS-
CLSMOF piecewise linear reconstructed interface is plotted. The density ratio is 1.226/1000.0
and the viscosity ratio is 0.0178/1.137. The red, green, blue interfaces correspond to an effective
fine grid resolution of 128x32, 256x64, and 512x128 respectively.

simplified setting of this simulation, the pre-impingement length (25.4 mm in the
experiment) is shortened to 4 mm and the boundary velocity profile is that of a
plug flow. The initial diameter of the jets is d0 = 0.635 mm. The computational
domain of 16 x 12 x 24 mm with four levels of refinement, giving a final mesh
density of 0.03125 mm in the space occupied by the liquid phase. A previous grid
convergence study suggests that an additional local refinement by two is necessary
to capture the correct spray size distribution downstream of the injection: the main
purpose of Figure 23 is to illustrate the difference in terms of mass conservation
between the DS-CLSMOF and the DS-CLSVOF methodology.

7.10 Six holed injector

Figure 25 displays a simulation snapshot of liquid injection in a Bosch six-hole ver-
tical diesel nozzle manufactured at a 20:1 scale to allow flow measurements inside
the sac volume and the injection holes ([7]); the nominal hole size of the model is
3.52 mm, which corresponds to a hole size of about 0.176 mm in the real injector.
The conical element (the needle) is placed at 6 mm above its seat, at the maximum
lift of the second stage of a real size two-stage injector. The working fluid has a
density and kinematic viscosity of 0.893 kg/m3 and 1.6410-6 m2/s, respectively.
The surface tension coefficient is 0.024 N/m. The computational domain of 100 x
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Fig. 22 Dimensionless front position versus time for a collapsing 2D water column. The
experimental data reported in [27] is included in the plot.

100 x 40 mm is sufficiently large to include both the flow inside the nozzle and
several orifice diameters of diesel jet in standard air. Starting with a coarse mesh
of 80 x 80 x 32, the three levels of adaptive refinement used in the simulation
provide a minimum mesh distance of 0.15625 mm. This grid density is reached at
the interior walls and at the free surface of the jets. The injector wall geometry
is modeled by a triangular mesh of 28814 elements: the minimum node spacing
of 0.4 mm is reached at the six orifices and smoothly increases everywhere else.
Variations from jet to jet in the simulation can be attributed to small differences
in the orifice geometries.

8 Conclusions

A CLSMOF interface reconstruction technique was presented for simulating de-
forming interfaces. We have applied our new CLSMOF algorithm for solving in-
compressible two phase flows in 2D and 3D. The advection terms are discretized
in time using directional splitting. The momentum equations are discretized us-
ing a novel cell centered projection method for two phase flows in which we have
combined the ideas of Raessi and Pitsch (2009) and of Kwatra et al (2009) in
which mass weighting is used when interpolating the velocity and “inverse mass
weighting” is used when interpolating pressure from the cell centers to the cell
faces. For many test problems that we have tried, not heretofore tried with the
MOF method, the CLSMOF method and CLSVOF method will have comparable
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Fig. 23 M(t)/Mexpect(t) for the simulation of two impinging jets. DS-CLSMOF mass fluctu-
ates less about the expected value than DS-CLSVOF.

accuracy (e.g. rising bubble problem, co-flowing jet problem, zero gravity droplet
oscillations). On the other hand, for 3D problems with deforming, stretching, dis-
integrating, interfaces, we show that the CLSMOF method preserves the fidelity
of the interface much better than the CLSVOF or VOF (LVIRA reconstruction)
methods (e.g. 3D reversible vortex problem, impinging jets, flow through a six
holed diesel injector).

We find that for the single vortex problem, our directionally split MOF method
(or CLSMOF method) under performs by about 30 percent compared to the un-
split MOF method [2]. One improvement for the future would be to extend our
directionally split CLSMOF method to an unsplit method. Another possibility
for improvement is to derive the density directly from the volume-of-fluid func-
tion (from the CLSMOF piecewise linear reconstructed interface) instead of from
the level set function, so that even when a jet breaks up into tiny droplets, the
droplets will still have an effect on the velocity field. In Figure 16, (Case B), we
used curvature, derived from the level set function, as a criterion for adaptivity.
In the future, we will investigate using the discrepancy between the reference cen-
troid and actual centroid (4.3) [2] as a criterion for adaptivity. Finally, we wish to
further develop the CLSMOF or MOF reconstruction algorithm in order to solve
problems with 3 or more materials with deforming boundaries as well as be able
to handle the scenario when both sides of a filament are wholly contained within
a computational cell.



40 Matthew Jemison et al.

(a) DS-CLSVOF

(b) DS-CLSMOF

Fig. 24 Interface profile for impinging jets. Effective fine grid resolution: 256x192x384.
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