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Abstract. We present a coupled minimization problem for image segmentation using prior shape and inten-

sity profile. One part of the model minimizes a shape related energy and the energy of geometric active contour

with a parameter that balances the influence from these two. The minimizer corresponding to a fixed parame-

ter in this minimization gives a segmentation and an alignment between the segmentation and prior shape. The

second part of this model optimizes the selection of the parameter by maximizing the mutual information of

image geometry between the prior and the aligned novel image over all the alignments corresponding to dif-

ferent parameters in the first part. By this coupling the segmentation arrives at higher image gradient, forms a

shape similar to the prior, and captures the prior intensity profile. We also propose using mutual information of

image geometry to generate intensity model from a set of training images. Experimental results on cardiac ultra-

sound images are presented. These results indicate that the proposed model provides close agreement with expert

traced borders, and the parameter determined in this model for one image can be used for images with similar

properties.

Keywords: segmentation, registration, shape prior, intensity prior, mutual information of image geometry,

variational method
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1. Introduction

In numerous medical imaging modalities, the bound-

aries of anatomical structures cannot be detected by

algorithms that only use edge or region information.

Reasons for this are significant signal loss, noise, and

non-uniformity of regional intensities. These problems

are ever present for images acquired in cardiac ultra-

sound, where the boundary detection problem is further

complicated by the presence of confusing anatomical

structures such as the mitral valve and papillary mus-

cles. In some cases, an image sequence may even have

portions of the myocardium that lie outside of the sec-

tor scan so that some segments of its boundary may not

be visible at all.

In an effort to overcome these difficulties, various

techniques have been developed to incorporate prior

information into the segmentation process. In Cootes

et al. (1995) and Wang and Staih (1998), a statistical

shape model was constructed from a set of correspond-

ing points across the training images. This informa-

tion was used in a Bayesian formulation to find the

object boundary. In Cootes et al. (1999) a Gaussian

model was fit to a training set of corresponding feature

points. In Cootes and Taylor (1999) mixed models were

used to fit to the data for specific applications where

the distributions are non-Gaussian. In an alternate ap-

proach in Staib and Duncan (1992), Staib and Duncan

specified the shape of the curve by creating statistical

priors on the Fourier coefficients of the contour. This

prior was incorporated into segmentation processing in

a Bayesian framework. In Szekely et al. (1996) also de-

veloped Fourier parameterized shape models. In their

model, an elastic fit of the shape model in the subspace

of eigenmodes restricts the deformations. Another ap-

proach using shape templates was presented in Tagare

(1997), where an energy function was created whose

minimum corresponded to a boundary in the image that

is similar in shape to the template. In Yuille et al. (1992)

a method of deformable templates was proposed for

feature extraction from faces. The features of the inter-

est were described by a parameterized template which

interacts dynamically with the image to minimize the

energy function. More deformable models in medical

image segmentation can be found in McInerney and

Terzopoulous (1996).

Recently, statistical shape knowledge has been incor-

porated in edge based or region based active contours.

In Leventon et al. (2000b), Leventon et al. extended

geometric active contours developed in Caselles et al.

(1997) and Kichenassamy et al. (1995) by incorporat-

ing shape information into the evolution process. A

principal component analysis was used to form a sta-

tistical shape model from a training set represented by

using signed distance functions. The evolution of the

interface was first driven by a force depending on image

gradient and curvature, and then a correction was made

by maximizing a posterior estimate of shape and pose.

In Chen et al. (2002) incorporated the shape informa-

tion into geodesic active contours by using variational

methods. They created a shape term in the energy of

the geodesic active contour, so that the deformation of

the active contour stops when it arrives at high image

gradients and forms a shape similar to the prior. The

shape term also recovers a similarity transformation

that aligns the interface to the prior shape better. Shape

priors have also been used in region based segmentation

schemes. In Cremers et al. (2002) incorporated statisti-

cal shape knowledge into the Mumford-Shah segmen-

tation scheme (Mumford and Shah, 1989) by minimiz-

ing a functional that includes the shape energy and the

Mumford-Shah energy. In Tsai et al. (2001) build a

parametric shape model, and the parameters adjusted

to minimize a region based objective function which

provides the segmentation.

Besides using prior shape in segmentation, in

Leventon et al. (2000a) incorporated prior intensity and

curvature profiles of the features extracted from a train-

ing set into the segmentation process by an approach

similar to the one developed in Leventon et al. (2000b).

While experimental results have shown the effective-

ness of using image and prior information in segmenta-

tion in numerous medical applications, many problems

remain including the complexity and variability of the

images, the accuracy of the measurements obtained,

and the rapid computation times required by the user.

One practical problem that remains is how to determine

the parameter that balances the influences from image

information and priors. If the evolution of an active

contour is mainly governed by a force defined by im-

age gradients, it may be sensitive to the initial step or

may leak through the boundary where the edge feature

is not salient. Conversely, if the force defined by the

shape prior is the dominating term, the active contour

may not arrive at the boundary of the object of interest

even though it has a shape similar to the prior.

In this paper we propose to use prior intensity profile

to determine the parameter that balances the influence

from image information and shape prior. The basic idea

is to find the optimal balance of the forces that govern
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the evolution of an active contour, so that the active

contour arrives at high gradients, forms a shape similar

to the prior, and captures prior intensity profile. Our

approach is solving a coupled optimization problem.

The first problem minimizes a weighted sum of two

energies depending on image gradient and prior shape,

respectively. The solution of this problem with fixed

weight provides a segmentation and a transformation

that aligns the interface to the prior shape. The second

problem maximizes the mutual information of image

geometry (see definition in Section 2) between the prior

image and the aligned novel image. The alignment is

the solution of the first problem. By maximizing the

energy of the second problem over all the solutions

of the first problem corresponding to different weights

we can get the ‘best’ estimate for the parameter used

in the first problem, and hence obtain a desirable seg-

mentation. A similar idea was proposed by Ma in his

unpublished thesis (Ma, 1997).

The proposed model indeed performs segmentation

and registration simultaneously. The registration in our

model combines a rigid transformation and a local de-

formation. The rigid transformation is determined ex-

plicitly by shape matching, while the local deformation

is determined implicitly by image gradient and prior

intensity profile. This is somewhat similar to the idea

used in Soatto and Yezzi (2002), Paragios et al. (2002),

Rousson and Paragios (2002) for matching nonequiv-

alent shapes. In those works they consider a general

deformation as the composition of a finite dimensional

group action ( rigid or affine transformation) and a local

deformation.

Another reason to use prior intensity profiles to assist

segmentation is that in some cases information about

the expected shape alone may not be sufficient to guide

the active contour arriving at the boundary of the ob-

ject of interest. For instance, in some 2-chamber car-

diac ultrasound images, the shape of the epicardium is

nonequivalent to the prior while simultaneously having

low contrast. In these images the models incorporating

prior shape in active contours may not be able to give

an accurate segmentation, as shown in Fig. 3 below.

Using prior intensity profile across the boundary of the

object can help the active contour to arrive at the right

location.

Moreover, in this paper, we present an alternative

method for generating average intensity profiles from

a set of training images. To generate an intensity model

in Leventon et al. (2000a) a Gaussian model was used

to compute the joint distribution of the intensity values

and signed distances to boundary from a set of train-

ing images and segmentations. In ultrasound images

the signal is partially in the form of speckle (Tao et al.,

2002), and the statistics of speckle are non-Gaussian.

Therefore, modeling the randomness of ultrasound im-

ages using a Gaussian model is not appropriate. Our

method of generating an intensity model is model free

and based on maximizing mutual information of im-

age geometry between the intensity model and aligned

training images.

We report experimental results on ultrasound

images. We show that with appropriate prior shapes and

intensity profiles, our technique is capable of finding

boundaries in images, that are complicated by signif-

icant signal loss, poor signal to noise ratio, and non-

uniformity of intensities. Moreover, our experiments

indicate that the proposed model is not too sensitive

to the initial step, and the optimized parameter for one

image can be used for a group of images with similar

properties. The existence problem for our model is also

discussed.

2. Model Description

The literature on active contours is vast and we do not

review all of it here. Our aim is to briefly discuss the

formulation of active contours and then review work

that directly deals with the incorporation of shape in

active contours.

2.1. Shape Model

The notion of shape in our model is assumed inde-

pendent of translation, rotation, and scaling. The shape

model C∗ used in our algorithm was obtained by aver-

aging the aligned training contours with similar shapes.

The alignment was made as follows. Fix C1, align C j

( j = 2, . . . , n) to C1 by finding a scale μ j , a rota-

tion matrix R j and a translation vector Tj such that the

overlap area of C1 and μ j R j C j + Tj is maximized. i.e.

a(C1, C j ) = area of (A1 ∪ A j − A1 ∩ A j ) (2.1)

is minimized, where A1 and A j are the inside areas

of C1 and μ j R j C j + Tj respectively. Then the average

shape C∗ is given by C∗ = (C1+
∑n

2 μ j R j C j +Tj )/n.

In case the sample curves have large shape varia-

tions, we use a clustering process to create the pri-

ors. The procedure is as follows. Fix a curve from
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the training set (say C1), and align the rest of the

curves to C1 as above to get μ j R j C j + Tj , and cor-

respondingly, a(C1, C j ) ( j = 1, . . . , n − 1). Define

σ = ∑n
i=2 a(C1, Ci )/(n−1). Then the first cluster con-

sists of all the curves Ck , such that a(C1, Ck) < σ/3.

The remaining curves then are grouped into several

clusters by repeating the process. The details are avail-

able in Chen et al. (2001). The drawback of this method

is not symmetrical in the sense that the average shape

may depend on the choice of C1.

An alternative method we used to create the prior

shapes was the self-organizing maps algorithm. This

method requires to determine in advance the number

of the clusters containing all the training shapes. If we

want to group the n training contours Ci i = 1, . . . , n
into k clusters (say k = 3), we first take three arbitrary

contours as the initial contours, denoted by m j (0) (i =
1, 2, 3). At t + 1 iteration, randomly select a contour

denoted by X (t +1) from the training set, and compare

the disparity in shape between X (t + 1) and each of

m j (t) ( j = 1, 2, 3). To do this comparison we first

align X (t + 1) to each m j (t), and denote the aligned

X (t + 1) by X̃ j (t + 1) = μ j R j X (t + 1) + Tj . Then

we compute A j =: a(X̃ j (t + 1), m j ) defined in (2.1).

Suppose A1 is the smallest number in A j j = 1, 2, 3.

We keep m2(t) and m3(t) unchanged, and update m1(t)
by

m1(t + 1) = m1(t) + α(t)[X̃1(t + 1) − m1(t)],

where α(t) is a smooth function of t , and decreases to

zero as t → ∞. After a large number, say N , of iter-

ations, three average shapes m j (N ) ( j = 1, 2, 3) are

generated. Then three clusters are formed by the curves

that are closest to the average shapes. The closeness is

again measured by the measurement in (2.1).

2.2. Intensity Model

In this section we introduce our method for generating

an intensity model (average intensity profile across the

average shape) from a set of training images.

Let Ci (p) (i = 1, . . . , m) be a set of training seg-

mentations in a cluster, and Ii (i = 1, . . . , m) be the

set of images associated with Ci (p). Let also C∗(p)

p ∈ [0, 1] be the average shape in this cluster. Our task

is to generate an average intensity profile I ∗ across C∗

from the training images Ii .

To do this, we first align each contour Ci (i =
1, . . . , m) to C∗ by a similarity transformation

(μi , Ri , Ti ) that minimizes a(C∗, Ci ) defined in (2.1).

As a consequence, Ii (μ
−1
i R−1

i (x − Ti )) is aligned with

I ∗(x). Then, we examine the disparity in the training

intensity profiles Ii across the training segmentation Ci

as follows. Let

Vε0
= {x ∈ � | d(C∗, x) < ε0}, (2.2)

be a ε0 neighborhood of C∗. If two images Ii and I j

are related approximately by

Ii
(
μ−1

i R−1
i (x − Ti )

) � aI j
(
μ−1

j R−1
j (x − Tj )

) + b

(2.3)

for some constants a and b, we may define the dis-

parity measurement in the intensity profiles near the

segmentations Ci and C j by

min
a,b

∫
Vε0

|Ii
(
μ−1

i R−1
i (x − Ti )

)
−aI j

(
μ−1

j R−1
j (x − Tj )

) − b|2dx .

The integral is over Vε0
rather than the entire im-

age domain, since the intensity profiles near the seg-

mentations are more meaningful. If the relation (2.3)

is not valid, maximizing mutual information has been

proven to be effective in solving matching problems,

in particular in matching multi-modality images (see

e.g. Collignon et al., 1995; Hermosillo et al., 2002;

Thevenaz and Unser, 2000; Viola and Wells, 1997;

Wells et al., 1996 and the references there). One of the

advantages of using mutual information is that it does

not require an explicit function that relates two images,

but only assumes that aligned images explain each other

better than when they are not aligned.

Mutual information between two random vectors X
and Y is defined as

M I (X, Y ) = H (X ) + H (Y ) − H (X, Y ), (2.4)

where

H (Z ) = −
∫

RN

pZ (z) log pZ (z) dz, (2.5)

is the Shannon entropy of a random N -vector Z with

density pZ (z), and

H (X, Y ) =−
∫

RN

∫
RN

pX,Y (x, y) log pX,Y (x, y)dxdy,

(2.6)
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is the joint entropy of X and Y , and pX,Y (x, y) is the

joint density function. Consider intensity at each pixel

as the realization of a random variable, and all the ran-

dom variables in an image have the same distribution.

By using (2.4)–(2.6) the common mutual information

(MI) of two images Ii (x) and I j (x) on Vε0
can be com-

puted as follows: Let

f (x) = Ii
(
μ−1

i R−1
i (x − Ti )

)
,

(2.7)
g(x) = I j

(
μ−1

j R−1
j (x − Tj )

)
.

M IVε0
(Ii , I j ) =:

∫
R2

p f,g(i1, i2) log
p f,g(i1, i2)

p f (i1)pg(i2)
di1di2.

(2.8)

where p f,g(i1, i2), p f (i1) and pg(i2) are computed over

Vε0
. From this definition we can see that the mutual in-

formation of two random variables f and g is the same

as the Kullback-Leibler distance of the random vari-

ables with the probability density functions p f,g(i1, i2)

and p f (i1)pg(i2). Therefore, this is a measure of mutual

dependence of f and g.

Note that if the locations of two points in the im-

age are switched, the intensity profile is changed, but

the density function remains the same. In order to

match intensity profiles of two images, we propose to

maximize the mutual information of image geometry

(MIIG) rather than mutual information (MI).

By MIIG of Ii and I j on Vε0
we mean that

MIIGVε0
(Ii , I j )

=
∫

R10

pF,G(m, n) log
pF,G(m, n)

pF (m)pG(n)
dmdn (2.9)

where pF (m) and pG(n) are the the probability density

function of

F(x) = 〈 f (x − 2h), f (x − h), f (x), f (x + h),

f (x + 2h)〉,

and

G(x) = 〈g(x − 2h), g(x − h), g(x), g(x + h),

g(x + 2h)〉,

over Vε0
with f and g are defined in (2.8), re-

spectively, pF,G(m, n) is the joint density function

of F(x) and G(x) over Vε0
, m = 〈i1, i2, i3, i4, i5〉,

n = 〈i6, i7, i8, i9, i10〉, dm = di1di2di3di4di5, and

dn = di6di7di8di9di10. h is a vector, that can be cho-

sen according to user’s interest. The principle goal of

h is to better use neighborhood intensity information.

For instance, in order to segment cardiac borders in

ultrasound images we set x + h to be the first right

neighboring point of x in the horizontal direction, since

the intensity profiles across the cardiac boundaries vary

more in this direction than other directions. Since MIIG

uses neighborhood information, MIIG of two images

gives better description of the closeness of the intensity

profiles of these two images than MI.

The method was tested against a group of 85 apical

2−chamber end diastolic (ED) echocardiographic im-

ages acquired retrospectively from 61 normal patients.

The expert traced epicardial borders were given in these

images as the training segmentations. The images were

grouped into three clusters by applying the grouping

method described in Section 2.1 to these training seg-

mentations. The 20 images from one of the clusters with

expert borders superimposed are displayed in Fig. 1.

The average shape C∗ for this cluster was created

by the method mentioned in Section 2.1. We used both

methods explained there, and got similar results. Then,

the training images Ii in this cluster were aligned by

aligning the corresponding training segmentation Ci to

C∗ using a similarity transformation (μi , Ri , Ti ) that

minimizes a(C∗, Ci ) defined in (2.1). Next, we defind

the neighborhood Vε0
as a three pixel neighborhood of

C∗ to compute the MIIGVε0
(Ii , I j ). If the images in this

cluster have relatively larger MIIGVε0
(Ii , I j ) after some

outliers are droped, then we don’t do any subgrouping.

Otherwise, we may group images in this group into

several subclusters by using MIIGVε0
(Ii , I j ) as the dis-

tance function in the k-means clustering algorithm, so

that the images in each subcluster has similar intensity

profiles. In our experiment we grouped this 20 images

into two subclusters. One of them has 11 images, which

are displayed as the first 11 images in Fig. 1.

Denoting the subgroup of 11 images by I1, . . . , I11,

we now describe the construction of the average inten-

sity profile I ∗ across C∗ for this subgroup of 11 images.

Ideally, we would like to generate I ∗ by

max
I ∗

11∑
j=1

MIIGVε0
(I ∗, I j ), (2.10)

where MIIGVε0
(I ∗, I j ) is defined as in (2.9) with

f = I ∗(x) and g = I j (μ
−1
j R−1

j (x − Tj )). Since this

formulation is computationally intensive, we restricted



264 Chen et al.

Figure 1. 20 training images with the segmented epicardia used as training images and shapes.

ourselves to the cases where

I ∗ =
11∑
j=1

a j I j
(
μ−1

j R−1
j (x − Tj )

)
. (2.11)

The weights a j were determined by using (2.10). We

applied this method to this subgroup of 11 training

images, and obtained the average intensity profile I ∗

shown in Fig. 2(b). Moreover, we computed the sum

in (2.10) for the a j determined in (2.10) and a j =
1/11 ( j = 1, . . . , 11). The results were 196.73 and

184.08 respectively, confirming our suspicion that the

weighted average is better. The average intensity pro-

file of the other subgroup can be generated by the same

method.

2.3. Segmentation with Priors

Now we are going to present our variational ap-

proach for segmentation using prior shape and in-

tensity profile. The key point of our model is to

propagate a curve/surface by a velocity that depends on

Figure 2. The image I ∗ = ∑11
j=1 a j I j (μ

−1
j R−1

j (x − Tj )) (a). a j =
1/11; (b). a j is determined by (2.10). In (a) and (b) the superimposed

contours are the average shapes.

the image gradients, prior shape and intensity profile,

such that the propagation stops when the active con-

tour/surface forms a shape similar to the shape prior,

arrives at high gradients, and captures the prior intensity

profile.
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To begin the description of the proposed model, we

first briefly review the active contour with a shape prior

in Chen et al. (2002). Let C∗(p) (p ∈ [0, 1]) be a curve,

representing the shape prior. The model in Chen et al.

(2002) minimizes the energy functional E(C, μ, R, T )

defined as∫ 1

0

{g(|∇ I |)(C(p)) + λ

2
d2(μRC(p) + T )}|C ′(p)|dp,

(2.12)

where (μ, R, T ) are similarity transformation parame-

ters, d((x, y)) is the distance of the point (x, y) from C∗,

and g(|∇ I |) = 1

1+β|∇Gσ ∗I |2 , with a parameter β > 0,

and Gσ (x) = 1
σ

e− |x |2
4σ2 . The first term in (2.12) is the en-

ergy functional of geodesic active contours (Caselles et

al., 1997; Kichenassamy et al., 1995), that measures the

amount of high gradient under the trace of the curve.

The second term is the shape related energy, that mea-

sures the disparity in shape between the interface and

the prior. The constant λ > 0 is a parameter, that bal-

ances the influence from the image gradient and prior

shape. The curve C and the transformation parame-

ters μ, R and T evolve to minimize E(C, μ, R, T ). At

the stationary point, the contour C lies over points of

high gradient in the image and forms a shape close to

C∗. This model also provides accurate estimates for

a similarity transformation that aligns the interface to

prior shape. A geometric active contour often “leaks”

through “gaps” in the boundary, which have low gra-

dients, since it does not have any information about

how the gaps are to be bridged. However, model (2.12)

incorporates the information about the expected over-

all shape of the boundary in geometric active contours

so that the active contour can compare its shape with

the expected shape and bridge the gaps in a meaning-

ful way. The experimental results in Chen et al. (2002)

showed model (2.12) is able to get a satisfactory seg-

mentation in the presence of gaps, if the boundary of the

object of interest has a shape similar to the prior. How-

ever, there are still some problems in using this model.

First, when the gaps are a substantial fraction of the

overall boundary, and at the gaps the shape of boundary

has relatively large geometric distortion from the prior,

model (2.12) can not provide an accurate segmentation,

since the knowledge about expected shape alone is not

sufficient to provide the correct information regarding

how the gaps should be bridged. Another problem is

how to determine the parameter λ in (2.12). Inappro-

priate value of λ will result in a bad segmentation.

To have a better solution to these problems, we pro-

pose to incorporate both prior shape and intensity pro-

file in segmentation. One solution for doing this could

be the creation of a intensity profile related term in the

energy functional (2.12). As discussed in the previous

section, we propose to use the MIIG of the prior im-

age I ∗ and aligned novel image I in a neighborhood of

C∗ as the measurement of the disparity in intensity pro-

files across the interface and prior shape. Then, we may

incorporate this intensity related energy into (2.12) to

form the following optimization problem:

min
C,μ,R,T

∫ 1

0

{g(|∇ I |)(C(p))

+ λ1

2
d2(μRC(p) + T )}|C ′(p)| dp

− λ2MIIGVε0
(I ∗(x), I (μ−1 R−1(x − T ))),

(2.13)

where Vε0
is defined in (2.2), and λi > 0 (i = 1, 2)

are parameters balancing the influences from the im-

age gradient, prior shape and prior intensity profile.

By adding the third term in (2.13), the active contour

governed by (2.12) is forced to arrive at high gradient,

form a shape similar to the prior, and capture the prior

intensity profile near the feature. However, the problem

of determining the parameters λi > 0 (i = 1, 2) is not

trivial.

In this paper we present an alternative approach, that

is not only able to incorporate both shape and intensity

information in segmentation, but also able to provide

better estimate for the parameter used in the model. Our

model is a coupled optimization problem, which con-

sists of a minimization and a maximization problems

below:

Cλ, μλ, Rλ, Tλ = arg min
C,μ,R,T

Eλ(C, μ, R, T ),

(2.14)

and

λ∗ = arg max
λ

F(λ), (2.15)

where

Eλ(C, μ, R, T ) =
∫ 1

0

{g(|∇ I |)(C(p))

+λ

2
d2(μRC(p) + T )}|C ′(p)|dp,
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and

F(λ) = F(μλ, Rλ, Tλ)

= MIIGVε0
(I ∗(x), I (μ−1

λ R−1
λ (x − Tλ))).

The basic idea of this model is to optimize the se-

lection of the parameter, that balances the forces for

deformation from shape prior and edge information,

by maximizing the MIIG between the novel image and

intensity prior in the neighborhoods of the shape prior.

For a given λ the solution of (2.14) provides a optimal

segmentation Cλ and a transformation (μλ, Rλ, Tλ). By

maximizing the energy functional in (2.15) over all the

possible solutions (μλ, Rλ, Tλ) of (2.14) correspond-

ing to λ, we can get an optimal estimate λ∗ for λ,

and hence a better segmentation Cλ∗ corresponding to

λ∗.

Therefore, although the intensity prior was not ex-

plicitly included in the energy functional (2.14) to get

a segmentation, the segmentation result in fact was

greatly influenced by the intensity prior from its role in

the selection of the parameter in (2.14). By the coupling

of (2.14) and (2.15) the segmentation arrives at higher

image gradient, forms a shape similar to the prior, and

captures the prior intensity profile.

2.4. Level Set form and EL Equations

Level set methods (Osher and Sethian, 1988) have

been used extensively in active contour models because

they allow for cusp, corners, and automatic topologi-

cal changes. In this part we will present the level set

formulation of the proposed model (2.14)–(2.15).

Represent a contour C by the zero level set of a

Lipschitz function u such that {x | u(x) > 0} is the

set inside C . Let H (z) be the Heaviside function, that

is H (z) = 1 if z ≥ 0, and H (z) = 0 if z < 0, and

δ = H ′(z) (in the sense of distribution) be the Dirac

measure. Then, the length of the zero level set of u in the

conformal metric ds = g|C ′(p)|dp can be computed

by
∫
�

g|∇ H (u)| = ∫
�

δ(u)g|Du|. The similarity of the

shapes between the zero level set of u and C∗ can be

evaluated by
∫
�

δ(u)d2(μRx + T ))dx . Then, the level

set formulation of (2.14) is given by

min
u,μ,R,T

∫
�

δ(u)

{
g(|∇ I |)(x) + λ

2
d2(μRx + T )

}
|∇u|.
(2.16)

The evolution equations associated with the Euler-

Lagrange equations of (2.16) are

∂u

∂t
= δ(u)div

{(
g + λ

2
d2

) ∇u

|∇u|
}

∂u

∂n
= 0, on ∂�, t > 0, (2.17)

∂μ

∂t
= −λ

∫
�

δ(u)d∇d · (Rx)|∇u|dx (2.18)

∂θ

∂t
= −λ

∫
�

δ(u)μd∇d ·
(

d R

dθ
x

)
|∇u|dx, (2.19)

∂T

∂t
= −λ

∫
�

δ(u)d∇d|∇u|dx, (2.20)

where R is the rotation matrix in terms of the angle θ ,

d is evaluated at μRx + T .

3. Numerical Method and Experimental Results

We used the level set form (2.16) in our experiments.

(2.16) was solved by finding a steady state solution of

(2.17)–(2.20). (2.17) was implemented by the follow-

ing iteration scheme:

un+1
i, j − un

i, j

�t
= 1

h2
δε

(
un

i, j

)
×

{
�x

−

(
An

i j�
x
+un+1

i, j√(
�x+un

i, j

)2
/h2+(

un
i, j+1−un

i, j−1

)2
/(2h)2

)

+�
y
−

(
An

i j�
y
+un+1

i, j√(
�

y
+un

i, j

)2
/h2+(

un
i+1, j − un

i−1, j

)2
/(2h)2

)
,

}

where un
i, j = u(n�t, ih, jh), and

An
i j = gn

i, j + λ

2
dn

i, j
2
.

The function δε is a smooth version of the Dirac δ

function, we used

δε(z) =
{

0 if |z| > ε

1
2ε

[1 + cos(π z
ε

)] if |z| ≤ ε

To prevent the level set function to become too flat

near the front we applied a reinitialization technique

to reinitialize u to the signed distance function to its

zero level curve, as in Sussman et al. (1994) and Zhao

et al. (1996). This procedure is made by using a new
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function v(x), which is the steady state solution to the

equation

∂v

∂s
= sign(u(·, t))(1 − |∇v|), v(·, 0) = u(·, t),

as u(·, t) for the next iteration t + �t .
However, how to solve (2.15) efficiently still remains

an open question. In our experiments we first solved

(2.16) to get a sequence of solutions (Cλi , μλi , Rλi , Tλi )

corresponding to a sequence of λi , i = 1, . . . , k. Then

we computed F(μλi , Rλi , Tλi ) in (2.15) for each 1 ≤
i ≤ k. In this computation we partitioned the intensities

into 16 bins, and used the discrete form of Shannon

entropy to calculate the MIIG. If F(μλ j , Rλ j , Tλ j ) is the

largest one among them, then we take Cλ j , μλi , Rλi , Tλi

as our model solutions. In this way we could get a

better estimate for λ, and hence, a better segmentation,

that captures high gradients, shape prior, and intensity

profile. However, it may not be the absolute optimal,

since the comparison of the energy values in (2.15) was

only for finitely many λ’s.

We applied this algorithm on 2-chamber cardiac ul-

trasound images. The epicardia and the endocardia in

these images were not completely imaged, and our task

was to find and complete these boundaries using prior

shape and intensity profile.

To create the prior shape, epicardial boundaries were

outlined by an expert echocardiographer on 85 images

acquired at ED from 61 patients. Using the method de-

scribed in Section 2.1, the boundaries were grouped

into three clusters and the average shape of each

cluster was computed. Using the method described

in Section 2.2, the average intensity profiles for each

average cluster (or subcluster) can be generated. The

average shape C∗ and the associated average inten-

sity profile I ∗ for one of the subclusters is displayed in

Fig. 2(b). (The images in this subcluster are the first 11

images displayed in Fig. 1.).

To segment the epicardial border in a novel image

displayed in Fig. 3(b), we have to select an average con-

tour and the associated intensity profile of one cluster

from all the clusters as the priors in our model. Mak-

ing a good selection is very important and needs some

input from experts or experienced users. This is a prob-

lem that needs to be further studied. In our experiment

suggested by a cardiologist we used the average con-

tour and intensity profile near the contour in Fig. 2(b)

as the priors.

The active contour was initialized with the ellipse

displayed in Fig. 3(a). Evolving the active contour

Figure 3. (a) An ellipse used as the initial contour in our expo-

nents for three images in the following three rows. (b)–(g). Each

row presents the segmentations (solid, red), expert’s borders (dotted,

black), and average shape (green) in an image. The segmentations in

the left column and right column are the solutions of (2.16) corre-

sponding to λ = 0.04 and λ = 20 respectively.
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using equations (2.17)–(2.20) with a fixed λ, we ob-

tained a segmentation Cλ together with a similarity

transformation (μλ, Rλ, Tλ), that are the solutions of

(2.16). By varying λ we generated a sequence of so-

lutions of (2.16). We chose the optimal value λ∗ of λ

to be the one maximizing (2.15). Finally, the solutions

for the model (2.16) coupled with (2.15) were chosen

as the solutions of (2.16) corresponding to λ∗.

The first column of the table displays 8 different

values of λ. By the procedure described above we

obtained Cλi , μλi , Rλi , Tλi , (i = 1, . . . , 8). The third

and the fourth columns present the M IVε0
(I ∗(x),

I (μ−1
λi

R−1
λi

(x − Tλi ))), and MIIGVε0
(I ∗(x), I (μ−1

λi
R−1

λi

(x−Tλi ))), respectively. Since the 4th column of this ta-

ble is largest when λ = 0.04, we selected the solutions

of (2.11) to correspond to this choice of λ = 0.04.

The segmentation (solid) corresponding to this λ is

shown in Fig. 3(b) together with the expert traced

border (dotted). The distance between the expert and

algorithm generated borders are tabulated in column

2 of the table. It is defined as
∑N

i=1 dCep (C(pi ))/N ,

where dCep is the distance function of the experts

traced border Cep, and C(p) (0 ≤ p ≤ N , P1 = 0,

pN = 1) is our segmentation. The units of the dis-

tance are the numbers of the pixels, and the pixel size

is 0.62 mm × 0.62 mm. From this table we see that

the segmentation corresponding to λ = 0.04 is the

one having smallest distance from expert’s contour and

largest value of MIIG. This statement is not true for

MI.

λ dist MI MIIG

0.04 3.1142 1.8894 7.9971

0.20 3.2903 1.9192 7.9794

0.40 3.3552 1.9207 7.9698

2 3.3962 1.9579 7.9623

20 4.7160 1.9207 7.8914

40 6.6697 2.0133 7.7524

0.02 25.4498 0 0

0.004 26.2190 0 0

The second row in Fig. 3 displays this experimen-

tal result. The segmentations (solid) in Fig. 3(b) and

(c) are the solutions of (2.16) with λ = 0.04 and

λ = 20, respectively. Comparing the segmentation re-

sults with the expert’s borders (dotted) this figure pro-

vides visual confirmation of the result presented in the

table.

To further test the method, we also used the same

initial contour and the ‘optimal’ value λ = 0.04

determined in the previous test in two additional im-

ages. The segmentation results (solid) together with

expert’s border’s (dotted) are presented in Figs. 3(d)–

(g). The segmentations in the left and right columns are

the solutions of (2.16) corresponding to λ = 0.04 and

λ = 20, respectively. Comparing the results in the left

column of Fig. 3 with those in the right column, we ob-

serve that λ = 0.04 also provides good segmentations

in these two new images indicating that the ‘optimal’

estimate of λ from one image can possibly be used for

other members of the cluster. Of course, the shapes of

the object boundaries and their intensity profiles must

be similar.

Moreover, the proposed model is less sensitive to the

initial step than the edge-based active contours, since

the deformation of the contour is influenced by inten-

sity profiles in addition to image gradients.

Next we present an experiment result on synthetic

data to show more clearly the relationship between

maximization of MIIG and optimality of the parame-

ter for getting a better segmentation. Figure 4(a) shows

a synthetic image with dimension 128 × 128 and the

expected segmentation (the red contour). Our task is to

find a contour in this image, that is close to the expected

one. Fig. 4(b) presents the prior shape (the red contour)

and intensity profiles. The image in Fig. 1(b) was gen-

erated by rotating and then blurring the image in Fig.

1(a) The rotation was π /6 degree, and the blurring was

made by convolution with a Gaussian kernel.

We applied model (2.16) with the prior shape and

intensity profiles presented in Fig. 1(b) to the image

in Fig. 1(a). For each fixed λ, by solving (2.16) we

obtained a segmentation Cλ and a similarity transform

(μλ, Rλ, Tλ). By varying λ we got a sequence of solu-

tions coresponding to the different λ’s. The table below

and the Fig. 4(c)–(e) show how the optimal λ and its

corresponding segmentation are related to the MIIG of

the image and prior in the neighborhood of the prior

shape.

In Fig. 4(c)–(e) the white ellipse was used as the ini-

tial contour to solve the EL equation associated with

(2.16), while the red solid contours were the solutions

of (2.16) corresponding to λ = 0.04, 1, and 0.45, rspec-

tively. When λ = 0.04, the gradient term weighted too

much so that the contour in Fig. 4(c) stopped at high

gradient. While λ = 1, the shape term weighted too

heavy so that the contour in Fig. 4(d) stoped when

it formed a shape similar to the prior shape, and the
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Figure 4. (a) A synthetic image with the expected segmentation (red contour) (b) Shape (red contour) and intensity priors (c)–(e). Segmentations

(solid, red) as the solution of (2.16) corresponding to λ = 1, 0.04 and 0.45, respectively. The ellipse in each figure is the initial contour.

small circle in the expected shape (the red contour

in Fig. 4(a)) was missed. The contour in Fig. 4(e)

corresponding to λ = 0.45 was close to the expected

segmentation. It arrived at high gradient, and captured

the shape and intensity information.

This is further illustrated in the following table. The

first column of the table displays these 3 different values

of λ. The second column shows the distance between

the expected contour and our algorithm generated con-

tours. The third and the fourth columns present the MI

and MIIG between the intensity prior in Fig. 4(b) and

the novel image in Fig. 4(a) corresponding to differ-

ent λ’s, respectively. The definition of the distance is

the same as that in the previous experiment of finding

the epicardial border. This table indicates that the seg-

mentation corresponding to λ = 0.45 is the one having

smallest distance from expected contour and largest

value of MIIG. Again, this statement is not true for MI.

λ dist MI MIIG

0.45 1.41 0.1591 0.3019

1 0.8487 0.1050 0.2828

0.04 2.84 0.1209 0.1814

We also applied our algorithm to segment the endo-

cardia in ultrasound images. The shape model of endo-

cardium and the prior intensity profiles across the shape

model shown in Fig. 5(b) were generated from a set of

12 training shapes and their associated images shown

in Fig. 5(a) by using our proposed method explained

above.

To segment the endocardial border in a novel image

displayed in Fig. 5(b), we used the average contour

and intensity profile near the contour in Fig. 5(b) as

the priors. The active contour was initialized with the

ellipse displayed in Fig. 5(a). Evolving the active con-

tour using equations (2.17)–(2.20) with a fixed λ, we

obtained a segmentation Cλ together with a similarity

transformation (μλ, Rλ, Tλ). By varying λ we gener-

ated a sequence of solutions of (2.16). The optimal

value of λ was chosen as the one maximizing (2.15).

Finally, the solutions of (2.16) corresponding to this

optimal λ is our model solution.

The table below shows a list of the values of λ’s

used in (2.16) together with the distance between the

expert’s borders and the segmentations, the values of

MI and MIIG on the neighborhoods of the segmenta-

tions, which are the solutions of (2.16) corresponding

to these λ’s,

λ dist MI MIIG

0.1 1.97 1.3711 6.8060

0.2 2.14 1.4390 6.7197

0.01 2.36 1.1653 6.6282

0.001 2.78 1.0783 6.4244

1.0 8.18 1.1719 6.4050
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Figure 5. (a) 12 training images with the segmented endocardia used as training images and shapes, (b) Average endocardium with associated

intensity profiles generated from the training shapes and images in Fig. 4(a) by the proposed algorithms.

Figure 6. (a) An ellipse used as the initial contour in our experiments for three images. (b), (d), and (e). Segmentations as the solutions of

(2.16) (solid, red) corresponding to λ = 0.1 comparing with the expert’s borders (dotted, green) in three different images. (c). Segmentation as

the solution of (2.16) (solid, red) corresponding to λ = 1 comparing with the expert’s borders (dotted, green) in the same image as in (b).
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We observed the same phenomena as that in the pre-

vious two tables that the larger the MIIG, the smaller the

distance of the segmentation from the expert’s contour.

This statement is not true for MI. From this table we see

that λ = 0.1 is the optimal value of λ, and the solution

corresponding to this λ is the model solution of (2.16).

Figure 6 presents the results of the segmentations

of endocardium. Figure 6(a) shows the initial contour

in a novel image. Figure 6(b) shows the solution C to

the model (2.16) with the optimal λ = 0.1, while the

segmentation in Fig. 6(c) is the solution of (2.16) with

λ = 1. With this λ the model over weights the shape

energy so that the contour stopped when a shape similar

to the prior was formed. However, the contour has not

captured either the high gradient or the image intensity

profiles. Fig. 6(d)–6(e) display the segmentation re-

sults in two more novel images. They are the solution of

(2.16) with λ = 0.1. In these figures, the segmentations

and the expert’s contours are represented by solid (red)

and dotted (green) contours, respectively. This exper-

iment results indicates again that the proposed model

provides close agreement with expert traced borders,

and the parameter determined in this model for one

image can be used for images with similar properties.

4. Conclusion

We proposed a new method for segmentation that in-

corporates the shape and intensity priors in active con-

tours by solving a coupled optimization problem. The

energy function in one part of the model is a weighted

sum of the energy of the geometric active contour and

a shape related energy. The minimizer of this energy

function gives the segmentation and the transformation

that aligns it to the prior shape. The second part of the

model provides an optimal estimate of the weight used

in the first energy function by maximizing the MIIG of

the intensity prior and the aligned novel image near the

feature over all the alignments that are the solutions of

the first part corresponding to different weights.

The improvements of this model over existing active

contour algorithms are in two aspects. First, we used

maximizing MIIG rather than MI to match intensity

profiles of two images. The reason for doing this is that

the MIIG takes neighborhood intensity distribution into

account, and hence, gives better description of intensity

profile than MI. Secondly, the parameter in the model

of active contour with shape can be selected by model

itself, and the segmentation with the optimized param-

eter arrives at higher image gradients, forms a shape

similar to the prior, and captures the prior intensity pro-

file. Moreover, the coupling idea can be used for any

models where the solution is influenced by three forces.

We applied our model to the problem of car-

diac boundary determination in ultrasound images, for

which the methods using edge or region information

only can not give a good result. Even the active contours

with shape prior struggle with such data. The proposed

model was tested against a database of epicardial bor-

ders traced by an expert on echocardiographic images

acquired from the apical 2-chamber view. The prelim-

inary results were encouraging. The existence of the

solution to the proposed model was proved.

However, much work needs to be done. Our method

for generating shape model and intensity model has two

steps: first creating the shape model, and then building

a intensity model in the neighborhood of the shape

model. The clustering process also involves two steps.

We first group all of the training shapes into several

clusters, then each cluster may divided into sub-clusters

according to the intensity similarity of the images in the

cluster. Finally in each sub-cluster the training shapes

and their associated images were very close. As sug-

gested by the reviewer, we will try to generate intensity

and shape models simultaneously by using a disparity

measurement depending on both the shape and inten-

sity near the shape. We will also further study the ap-

proach presented in alez Ballester et al. (2003, 2004),

where a generalized image model is presented. They

present images as sets of four-dimensional (4D) sites

combining position and intensity information, as well

as their associated uncertainty and joint variation. This

model allows for the representation of both images and

statistical models as well as other representations. such

as landmarks or meshes.

Moreover, our current model is for 2-d images. The

extension of this model to 3-d cases will have addi-

tional computational cost for computing MIIG. There-

fore, better numerical methods for implementing this

model need to be further studied. We also aim to test

the proposed method against the entire database of nor-

mal images and the images acquired from patients with

some observable abnormality.
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