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Abstract 

Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the 

blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs 

squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and 

deformed shapes, when flowing through these capillaries with diameters varying between 

5-10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the 

RBCs directly influences on the motion and the deformation of the RBCs. However, most of the 

previous numerical studies have explored the motion and deformation of a single RBC when the 

interaction between RBCs has been neglected. In this study, motion and deformation of two 2D 

(two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed 

particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly 

model the interactions between RBCs, only two RBCs are considered in this study even though 

blood with RBCs is continuously flowing through the blood vessels. A spring network based on 

the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside 

fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane 

bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and 

deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of 

two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction 

between RBCs has significant influence on their motion and deformation. 

Keywords: Multiple Red blood cells, smoothed particle hydrodynamics, 

computational biomechanics, blood flow, meshfree method, hydrodynamics 

interactions 
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1. Introduction 

Blood is a suspension of different blood cells in plasma and the majority of the 

blood cells are RBCs. The diameter of average healthy matured RBC varies 

between 6-8 µm (Dupire et al. 2012) at rest. The volumetric ratio of the RBCs to 

the total blood volume is called hematocrit and its value for a healthy person 

varies from 40 % to 50 % (Shvartsman,Fine 2003). The hematocrit value of the 

blood affects the motion and deformation of the RBCs as the interaction between 

RBCs makes a significant impact on the flow field. Fahraeus (1931) reported that 

the average volume fraction of the RBCs in the blood flow decreases when the 

capillary diameter decreases below 300 µm (Pozrikidis 2005; Secomb 1987). As a 

result, the discharge hematocrit (overall volumetric ratio of RBCs) is greater than 

the tube hematocrit (volumetric ratio of RBCs inside the capillary) which is 

known as Fahraeus effect. It has been found that the mechanical interaction 

between RBCs and capillary walls generally result in the formation of plasma 

layer, which leads to the Fahraeus effect (Pries et al. 1996; Bayliss 1959). 

However, very few studies are reported related to the motion and deformation of 

multiple RBCs and the influence of the interactions between the RBCs on their 

behavior. Furthermore, most of the studies have considered an average value for 

the diameter of the RBC and they have ignored the effects of the RBCs with 

different diameters on their motion and deformation behavior. 

The effects of hematocrit value on the blood flow properties are investigated by 

Tsubota et. al (2006) using moving particle semi-implicit (MPS) method. 

However, they did not report how the motion or deformation of the RBCs changes 

when a RBC is infected by a disease such as malaria (Jiang et al. 2013). It is 

generally known that the motion and the deformation of the RBCs are 

significantly changed when they are infected by these diseases. Furthermore, most 

of the simulations were carried out for the RBCs in uniform capillaries previously 

without considering stenosed conditions in the capillaries. However, capillaries 

always do not have uniform cross sections and some of the capillaries have 

stenosed sections, where the cross sectional area of the capillary suddenly 

reduces. There is a high risk of micro vascular blockages in these areas (Cooke et 

al. 2001). Therefore, it is important to study the motion and deformation of the 

RBCs in the capillaries with these stenosed sections. Sun and Munn (2005) 

employed the Lattice Boltzmann approach to simulate the blood flow in blood 
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vessels. They reproduced the motion of blood cells in plasma to explain the 

experimental results, such as Fahraeus effect (Sun,Munn 2005). However, in their 

model the deformability nature of the RBCs were overlooked, since all the blood 

cells were modelled as rigid bodies (Tsubota et al. 2006). Pozrikidis (2005) 

revealed that the initial cell spacing or the tube hematocrit for a fixed capillary 

diameter influences the mean flow velocity and the deformation of the RBCs. 

However, their study did not focus closely on the effect of the mean velocity of 

the flow and deformation behavior of the RBCs when the properties of a specific 

RBC are changed due to the infection by a disease. 

A three-dimensional model was developed by Nagayama and Honda (2012) to 

simulate the behavior of the RBCs in the capillary blood flow using moving 

particle semi implicit (MPS) method. In this method, instead of solving the Navier 

Stokes equations, a momentum equation for the RBC was developed, considering 

the inter-particle force, viscous diffusion and external force. They studied the 

motion and deformation of multiple RBCs in bent capillaries. However, a 

comprehensive analysis of the RBC behaviour in microchannels was not done by 

this model. Recently, dissipative particle dynamics (DPD) is employed to simulate 

the deformation and aggregation of healthy and infected RBCs in a capillary (Ye 

et al. 2014). However, the comprehensive investigation of the influence of 

interactions between RBCs on the motion and deformation in capillaries was not 

explained by this model. 

The main objective of this study is to analyze the influence of the interactions 

between two RBCs on their motion and deformation. Specifically, this study 

aimed to investigate the effect of one RBC’s properties on the motion and 

deformation of the other RBC due to the hydrodynamic interaction between them. 

In this study, coupled smoothed particle hydrodynamics (SPH), discrete element 

method (DEM) is used to analyze the influence of the interactions between two 

RBCs on their motion and deformation. The RBC membrane is modeled by a two 

dimensional spring network using fundamentals of DEM and the forces acting on 

the RBC membrane are determined based on the minimum energy concepts 

(Tsubota et al. 2006; Pan,Wang 2009; Polwaththe-Gallage et al. 2012). First, we 

present the motion and deformation of two RBCs in a uniform capillary. Next, we 

investigate the effect of the initial distance between two RBCs on the deformation 

behavior of the RBCs and how significant it is. Then, the effect of the membrane 
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bending stiffness (Kb) of one RBC on the motion and deformation of both RBCs 

in a uniform capillary is explored. Specifically, this study aims to predict the 

motion and deformation of two RBCs, when one RBC is having an 

uncharacteristic membrane bending stiffness due to the infection by a disease like 

malaria. Furthermore, we explore how the motion and deformation behavior of 

two RBCs change, when the initial diameter of one RBC changes, because of the 

average diameter of a healthy matured RBC varies between 6-8 µm. Moreover, 

the deformation behavior of two RBCs in abnormal blood vessels such as stenosis 

capillaries is investigated, where a micro vascular blockage could be happened. 

Finally, the effect of their interactions on motion and deformation behavior of 

both RBCs is explained. The main purpose of this study is to predict the effects of 

influence of the interactions between two red blood cells on motion and 

deformation under different pathological conditions. With the aid of this model 

the behavior of the RBCs predicted, particularly the details related to the blood 

flow rate can be projected, under the pathological conditions. 

2. Model and methodologies 

2.1 Two-dimensional RBC model 

The membrane of the RBC is modelled by a two dimensional spring network 

(Polwaththe-Gallage et al. 2014). The RBC membrane is initially assumed to be a 

circle with the radius of 2.8 µm (Polwaththe-Gallage et al. 2014). Then it is 

discretized into 88 mass points and 88 springs are used to interconnect the 

neighboring mass points. In order to obtain a stable RBC membrane shape the 

total energy of the RBC membrane is considered. The total elastic energy stored 

in the springs due to stretching/compression (El) and bending (Eb) are calculated 

by 
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where li, l0, θi, Kl, and Kb are the present length of the ith spring, the original 

length of the same spring, the angle between two consecutive springs, the spring 
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constants for stretching/compression and the spring constants for bending 

respectively. Here, N is the number of springs, which are used to model the RBC 

membrane. In addition to the above elastic energies in Eq. (1) and (2), an energy 

penalty function Es [Eq. (3)] is used to maintain a constant equivalent RBC 

membrane area(Polwaththe-Gallage et al. 2014) . 
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where s, se and Ks are the present cross sectional area, equivalent RBC membrane 

area and the penalty coefficient. The forces acting on the i
th

 membrane particle are 

calculated, using the principal of virtual work as in Eq. (4): 
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where the ri is the position vector of the i
th

 membrane particle and the Fi is the 

vectorial force acting on the i
th

 membrane particle. The typical biconcave shape of 

the RBC with the radius of 7.64 µm and the thickness of 2.12 µm is obtained, 

when the total energy of the RBC membrane is minimized. This biconcave shape 

represents the morphology of an average healthy matured RBC. However, the 

biconcave shape of the RBC changes and exhibits more spherical shape, when the 

RBCs are infected by diseases such as malaria (Suresh et al. 2005). In this study, 

we use the obtained biconcave shape to represent the membrane of a healthy 

RBC. Therefore, the motion and deformation of the RBCs in capillaries is 

modelled with the aid of obtained biconcave shape. 

 

2.1 SPH methodology 

The inside and outside of the RBC membrane is discretized into a finite number of 

particles, to represent hemoglobin and plasma respectively. All the particles are 

treated by SPH method (Polwaththe-Gallage et al. 2014; Liu,Liu 2003; Morris et 

al. 1997). Navier-Stokes equation for the conservation of mass in Lagrangian 

form [Eq. (5)] is used calculate the forces acting on the SPH particles  
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Where, v, p, ρ, μ, r and m are velocity, pressure, density, dynamic viscosity, 

position vector and mass of the SPH particles respectively, while i is the particle 

on focus and j is the neighboring particle (Liu,Liu 2003). Here, W is the 

smoothing kernel and in this study cubic spline smoothing function [Eq. (6)] is 

used. 
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where, ܴ ൌ หܚ௜ െ ௝หܚ ݄⁄  and h is the smoothing length, which is set to 1.2 times the 

particle spacing, in order to improve the accuracy of the simulations (Liu,Liu 

2003).  

In the SPH method, theoretically incompressible fluids are considered as a slightly 

compressible fluid (Liu,Liu 2003). Artificial compression is introduced to the 

system to produce a pressure disturbance via quasi-incompressible equation of 

state [Eq. (7)]: 
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where B is a problem dependent parameter, in this study it is set to the initial 

pressure (Liu,Liu 2003), 0 and  are initial and present density of the fluid 

particles respectively. Here γ is a constant and usually it is taken as γ = 7. This 

ensures large pressure variation correspond to the variations in density, which 

maintains the density variation less than 1% within the system.  
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Lenard Jones type repulsive forces [Eq. (8)] are applied to the fluid particles to 

avoid the penetration of fluid particles through solid membrane of the RBC 

(Polwaththe-Gallage et al. 2014). 

  
 

























































0

2

4

0

12

0

ji

ji

jiji
i

rrrr

r

rr

r
D

rr

F 								
1  if

1  if

0

0



























ji

ji

rr

r

rr

r

 (8)

 

where D is a problem dependent parameter, usually is equal to the square of the 

maximum velocity and r0 is usually selected approximately close to the initial 

particle spacing (Liu,Liu 2003). 

 

The Leap-Frog (LF) algorithm (Liu,Liu 2003) is used in time integration 

technique, due to its low memory storage requirement and high computational 

efficiency and the time step for following simulations is et to 1×10
-9

 s 

3. Simulation results and discussion 

The model considered here is validated against the simulation results published by 

Kaoui et al.(2011). They have established the steady state inclination angle for 

different area ratio (s*) values in RBC, when the RBC is subjected to a shear 

flow. Steady state of the RBC is observed when its morphology and the location 

almost do not change with time. The biconcave shape of the RBC is altered, by 

changing the equivalent area (se) of the RBC membrane. The area ratio (s*) is 

equal to se / s. When the area ratio is increased, the RBC membrane gives more 

circular shape. Four shapes with different area ratio values (s* = 0.6, 0.7, 0.8 and 

0.9) are used for the purpose of validation and the relevant RBC membrane shapes 

are obtained (see Fig 1). In order to generate the shear flow, a constant velocity of 

2×10
-3

 m/s is applied to the upper and lower walls of the flow channel 

(Polwaththe-Gallage et al. 2015). 

 s*=0.9
s*=0.8
s*=0.7

s*=0.6
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Fig 1 Equilibrium RBC shapes for different area ratios 

The behavior of the four RBCs in a simple shear flow is examined. The time step 

is set to 10
-9

 s. The dynamic viscosity (µ) of hemoglobin, plasma and RBC 

particles is set to 10
3
 Pa.s and other simulation parameters are given in Table 1. 

Table 1: Simulation Parameters 

Parameter Definition Value Reference

kl Spring constant for 

stretching/compression energy 

5×10
-8

 Nm (Pan,Wang 

2009) 

kb Spring constant for bending energy 
5×10

-10 
Nm 

(Pan,Wang 

2009) 

ks Penalty function constant 
10

-5
 Nm 

(Shi et al. 

2012) 

ρrbc Density of RBC membrane 
1098 kg/m

3
 

(Sun,Munn 

2005) 

ρplasma Density of plasma 
1025 kg/m

3
 

(Frcitas 

1998) 

ρcytoplasm Density of cytoplasm 
1050 kg/m

3
 

(Le et al. 

2009) 

 

The equilibrium inclination angles for four RBCs are measured and compared 

with the previously published results (Kaoui et al. 2011). The simulation results 

show a good agreement with previous results with less than 5% difference (see 

Fig 2).  

 

Fig 2 Equilibrium inclination angle of RBC for different area ratios 
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3.1 Motion and deformation of two RBCs in a uniform capillary 

Motion and deformation of multiple RBCs in a uniform capillary is studied. The 

behavior of two RBCs in a uniform capillary is compared with the behavior of a 

single RBC in the same capillary (see Fig 3). The total length (L) and the diameter 

(D) of the capillary are set to 50 µm and 9.6 µm respectively. The inlet pressure is 

set to 512.5 Pa, while the outlet pressure is set to zero. In order to generate a flow 

in x-direction, the pressure exerted on the plasma particles located next to the inlet 

boundary is then converted into the body forces and applied on them. Thereby 

flow in x
+
-direction is generated and the outflow through the inlet boundary 

(x
-
-direction) is avoided. Periodic boundary conditions are applied to the problem 

domain, such that any particle leaves the problem domain through the outlet 

boundary, immediately reenters the problem domain through the inlet boundary. 

No slip boundary conditions are applied to the top and bottom walls of the 

capillary. 

 

  

Fig 3: Initial particle configuration of the flow field with two RBCs 

 

Due to the pressure gradient imposed into the capillary, plasma particles and 

RBCs start to move. For convenience, the right-side cell is defined as the leading 

RBC (1
st
 RBC) and the left-side RBC is defined as the trailing RBC (2

nd
 RBC). 

The horizontal distance from the inlet boundary to the trailing RBC’s center; l1 is 

set to 3 µm and the distance between two RBCs’ centers; l2 is set to 5 µm. The 
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deformation index (DI) of the RBCs is calculated by l/d as Eq (9), where l and d 

defined in the Fig 4. 

 

 

)( RBC  theheightof Total

)( RBC  theoflength  Total

d

l
DI  (9)

 

 

 

 

Fig 4: Deformed RBC; DI = l/d 

 

When two cells move in the capillary, they start to deform from their initial 

biconcave shape to the parachute shape. However, the leading RBC exhibits a 

larger deformation compared to the trailing RBC (see Fig 5 and Fig 6). The 

calculated DI of the leading RBC is even greater than that of the single RBC 

flowing through the same capillary under the same pressure gradient (see Fig 5). 

On the other hand, the trailing RBC shows a less deformation compared to the 

leading RBC and also its DI is less than that of the single RBC flowing alone in 

the same capillary (see Fig 5). 

 

Fig 5: Variation of the DI of the RBCs with time; when two RBCs are present in an uniform 

capillary and a single RBC is present in the same capillary 
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This phenomenon occurs due to the hydrodynamic interaction between two RBCs 

(Pozrikidis 2005; Shi et al. 2013). It can be seen from Fig 6 that the flow 

streamlines are disturbed due to the presence of two RBCs. The flow streamlines 

(in the x-direction) follow the capillary wall and are parallel to each other near the 

inlet boundary (see Fig 6) as a result of the applied pressure at the inlet of the 

capillary. However, when they reach the trailing RBC, the flow streamlines 

diverge from each other. According to the Bernoulli's principle the pressure 

behind the trailing RBC increases (see Fig 7), when the flow streamlines depart 

from each other. The departed flow streamlines flow almost parallel to each other 

again after the trailing RBC and they converge immediately after the leading 

RBC. The converged streamlines cause to create a low pressure region right after 

the leading RBC (see Fig 7). This pressure variation is not enormous to clearly 

demonstrate in a pressure field (see Fig 7). However, it causes to create a 

difference in the DI of two RBCs. 

 

Fig 6: Velocity streamlines of the whole flow field, at t = 0.080 ms when two RBCs flow in a 

uniform capillary 

 

Fig 7: Pressure (P) variation of the flow field adjacent to two RBCs, at t = 0.080 ms when two 

RBCs flow in a uniform capillary 
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When the leading RBC flows in the x-direction (see Fig 6), it is not influenced by 

any other cell. Furthermore, as explained earlier, the pressure of the flow domain 

in the right-side of the leading RBC is lower compared to the left-side of the cell. 

Therefore, the leading RBC is subjected to a higher deformation. On the other 

hand, the leading RBC acts as an obstacle to the trailing RBC and the deformation 

of the trailing RBC is affected by the presence of the leading RBC. Furthermore, 

the trailing RBC seeks to drive the plasma particles between the trailing and 

leading RBCs and the pressure in the region between two RBCs rises. Therefore, 

an additional pressure is applied by the plasma particles on the left-side of the 

leading RBC. That pressure causes to deform the leading RBC further (see Fig 5). 

Meanwhile, the increased pressure in the flow region between two cells causes an 

additional pressure on the right-side of the trailing RBC. It results to reduce the 

deformation of the trailing RBC.  

The mean velocities of two RBCs are slightly lower than that of a single RBC 

flows alone in the same capillary under the same pressure gradient (see Fig 8). 

Two RBCs act as an obstruction to the plasma flow and reduce the flow velocity 

of the whole flow field. As a result of this reduction of the flow velocity of the 

whole flow field the mean flow velocities of two RBCs are reduced. As can be 

seen in Fig 8 the mean velocity of the leading RBC is slightly higher than that of 

the trailing RBC. Therefore, it can be predicted that the overall blood flow rate 

reduces slightly with the increased number of RBCs in the capillary due to the 

presence of more obstructions in the flow field. 

 

 

Fig 8: Variation of the mean velocity of the RBCs with time; when two RBCs are present in an 

uniform capillary and a single RBC is present in the same capillary 
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This slight variation of the velocities of the two RBCs happens to be due to the 

difference in the deformation of two RBCs. Since the deformation of the leading 

RBC is greater than that of the trailing RBC, the leading RBC follows the flow 

streamlines and makes fewer disturbances to the flow field. Therefore, the leading 

RBC’s mean velocity is slightly higher than the mean velocity of the trailing 

RBC. It is clear that, the DI of a RBC depends on the number of RBCs in the 

capillary and the deformation of the RBCs varies even in the same capillary under 

the same pressure gradient. Even though the mean velocities of two RBCs show 

slight deviation, the amount of deformation of two RBCs are considerable. In the 

following sections the effects of the additional RBC in the capillary on the 

deformation of both RBCs are comprehensively studied. 

3.2 Effect of the number of RBCs in the capillary 

The effect of the number of RBCs on the deformation behavior of the RBCs is 

studied. The inlet pressure is set to 512.5 Pa, while the outlet pressure is set to 

zero. In this study, the number of RBCs in the capillary is changed from one to 

two and three. Here, l1 is set to 3 µm and the distance between consecutive two 

RBCs is set to 5 µm. 

 

Fig 9: Variation of the DI of the RBCs with time, for different numbers of RBCs in the capillary 

 

Simulation results reveal that when the number of RBCs in the capillary increases 

from one to two, the DI of the leading RBC increases and the DI of the trailing 

RBC decreases compared to the single RBC case (see Fig 9). Moreover, when the 

number of RBC increases to three the leading RBC shows a similar behavior as 
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the leading RBC in two RBCs case. However, the DI of the trailing RBC further 

reduces compared with that value of the trailing RBC of two RBCs case (see 

Fig 9). The middle RBC of three RBCs takes a in between value for the DI and it 

is very close to the DI of the single RBC condition (see Fig 9). Since blood 

continuously flows within the cardiovascular network, there is no leading or 

trailing RBC in the blood flow. Therefore, it can be concluded that all the RBCs 

would reach the same DI value, if there is a continuous flow of RBCs in a 

capillary. 

 

Fig 10: Variation of the mean velocity of the RBCs with time, for different numbers of RBCs in 

the capillary 

 

Moreover, the mean velocity of the RBCs show slight variations from each other 

when the number of RBCs in the capillary changes. When there is only one RBC 

in the capillary, that RBC gains the highest mean velocity (see Fig 10). The mean 

velocity of the RBCs decreases when the number of RBCs in the capillary 

increases (see Fig 10). As can be seen in see Fig 10, the mean velocity of the 

trailing RBC of three RBCs is the lowest among all the RBCs’ mean velocities.  

In addition to that, the mean velocity of a RBC affects the DI of the RBC and it 

has been found that the deformation of the RBCs increases when the mean 

velocities of the RBCs increase (Shi et al. 2012). As can be seen in Fig 9, the DI 

of the leading RBC of three RBCs is slightly lower than that value of the leading 

RBC of two RBCs. This slight drop in the DI occurs due to the reduction in the 

mean velocity of the leading RBC of three RBCs compared to that value of the 

leading RBC of two RBCs.  
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In other words, when the number of RBCs in the capillary is increased it causes to 

decrease the mean velocities of the RBCs (see Fig 10). Generally, for a given 

capillary with a specific number of RBCs, the DI of the RBCs reduces when the 

mean velocities of the RBCs reduces. Therefore, it is not possible to compare the 

DIs of the RBCs even in the same capillary, when the number of RBCs changes. 

In order to clearly demonstrate the interactions between RBCs, only two RBCs 

are considered and thereby the effects of the changes in mean velocities of the 

RBCs (due to the change in number of RBCs) are eliminated. 

 

3.3 Effect of the initial distance between two RBCs 

The effect of the initial distance between two RBCs with similar properties on 

their deformation behavior is studied (see Fig 11). Here, l1 is set to 3 µm and l2 is 

varied to 3, 4, 5, 6 and 7 µm. When l2 is equal or less than 2 µm, two RBCs are 

overlapped. Therefore, in this study, the minimum value used for l2 is 3 µm. The 

inlet pressure is set to 512.5 Pa, while the outlet pressure is set to zero. The total 

length (L) and the diameter (D) of the capillary are set to 50 µm and 9.6 µm 

respectively. All the other simulation parameters are kept constant (see Table 1). 

The DI and mean velocities of two RBCs are analyzed for each case. 

Simulation results reveal that when two RBCs are closer to each other at the 

beginning of the simulations (at t = 0), the difference between their DIs is higher 

when they reach the outlet of the capillary (see Fig 11 and Fig 12). On the other 

hand, the DIs of the two cells do not show a considerable difference, when the 

initial distance between two RBCs is higher. As can be seen in Fig 11 (a) when 

the initial distance between two RBC is 3 µm, there is a noteworthy difference in 

the deformed shapes of two RBCs starting from t = 0.08 ms. The difference in the 

deformed shape increases with time and at t = 0.40 ms, it is very significant [see 

Fig 11 (a)]. However, when the initial distance between two RBC is 7 µm, there is 

no considerable difference in the deformed shapes of two RBCs [see Fig 11 (e)] at 

any time. The analysis of the pressure fields for each case suggest that the 

pressure difference (∆P) between left and right hand sides of the trailing RBC 

increases with the initial distance between two RBCs (see Fig 13). Furthermore, it 

can be seen from Fig 13 that the pressure difference for the leading RBC 

generally decreases when the initial distance between two RBCs increases. 
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Therefore, the pressure differences (∆P) curves for leading and trailing RBCs 

approach to each other when the initial distance between two RBCs increases. As 

a result of that the two RBCs attain similar deformed shape, when the initial 

distance of two RBCs increases. 

 

 t =  0 ms          t =  0.08 ms         t = 0.16  ms         t = 0.24  ms       t = 0.32  ms         t = 0.40 ms 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig 11: Deformed shapes of two RBCs at t =  0, 0.08, 0.16, 0.24, 0.32, and 0.40 ms, when the 

initial distance between two RBCs is (a) 3 µm, (b) 4 µm, (c) 5 µm, (d) 6 µm and (e) 7 µm; red-

colour represents the trailing RBC and blue-colour represents the leading RBC 
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Fig 12: Variation of the DI of the leading and trailing RBCs with time; when the two RBCs are 

initially separated by a distance of l 

 

Fig 12 shows the variation of the DI of two RBCs with time. The curves suggest 

that the RBCs’ DI exhibit very little variation with time after about t = 0.60 ms. 

The leading RBC experiences the maximum deformation when the distance 

between two RBCs is 3 µm. On the other hand, the trailing RBC exhibits the 

minimum DI when the distance between two RBCs is 3 µm. The deformation of 

this RBC occurs slowly as the gradient of the curve is lesser, compared with the 

other curves in Fig 12. 

 

                                      

Fig 13: The variation of the pressure difference (∆P) between left and right hand sided of two 

RBCs with initial distance between two RBCs at t = 0.30 ms 

 

Although the deformed shapes of the leading RBC and trailing RBC are different 

from each other, the mean velocities of two RBCs do not show significant 
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deviation. However, there is a slight deviation of velocities of two RBCs. As can 

be seen in Fig 14 the mean velocity of the leading RBC is slightly greater than 

that of the trailing RBC. Since the leading RBC’s deformation is higher, 

compared with the trailing RBC, the leading RBC makes fewer disturbances to 

the flow stream lines and thus gains slightly higher mean velocity as explained 

earlier. Due to the difference in mean velocities of two RBCs, they depart from 

each other. The distance between two RBCs increases rapidly when the initial 

distance is 3 µm, and it reaches about 4.5 µm at t = 0.4 ms (see Fig 15). 

Conversely, the distance between two RBCs is increased by only 0.5 µm after 

0.4 ms when the initial distance between two RBCs is 7 µm (see Fig 15). It can 

also be seen from Fig 15 that the gradient of the curves decrease with the distance 

between two RBCs. 

 

 

Fig 14: Variation of the mean velocity of the leading and trailing RBCs with time; for different 

initial distances (l) between two RBCs 

In other words, when two RBCs are closer, the distance between two RBCs 

increases quickly (see Fig 15). As a result the hydrodynamic effect from one RBC 

on the other reduces. From Fig 13, it is evident that two RBCs in a given capillary 

tend to attain the same deformed shape when the distance between two RBCs 

increases, (due to the weakening of the hydrodynamic interaction between two 

RBCs). 
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Fig 15: Variation of the distance between two RBCs with time; for different initial distances (l) 

between two RBCs 

3.4 Effect of membrane bending stiffness 

The effect of the membrane bending stiffness of one RBC on the deformation 

behavior of both RBCs is studied and presented in Fig 16. It has been found from 

the literature that the membrane deformability of the RBCs drop by more than ten 

times, compared with healthy RBCs, when RBCs are infected by a plasmodium 

parasite in malaria (Fedosov et al. 2011). Furthermore, it is found that the 

deformability of the cancer cells are higher than the healthy matured cells (Hou et 

al. 2009). In order to investigate the effects of an infected RBC on the 

deformation behavior of both RBCs, the membrane bending stiffness of one RBC 

is changed as described in the following sections. In the 1
st
 study, the membrane 

bending stiffness of the leading RBC is changed from Kb to 0.01 Kb, 0.2 Kb, 10 Kb 

and 50 Kb while maintaining the membrane bending stiffness of the trailing RBC 

to Kb (5×10
-10

 Nm). Here, l1 and l2 are set to 3 µm and 5 µm respectively. The 

inlet pressure is set to 512.5 Pa, while the outlet pressure is set to zero. All the 

other simulation parameters are kept constant (see Table 1). 
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Fig 16: Variation of the DI of the leading and trailing RBCs with time; for different Kb values of 

the leading RBC with fixed Kb value of 5×10-10 Nm for the trailing RBC 

 

It is clear that, if the membrane bending stiffness of a RBC increases, the DI of 

that RBC decreases. However, it can be seen that the changes in the membrane 

bending stiffness of the leading RBC affects the deformation of both RBCs (see 

Fig 16). When the membrane bending stiffness of the leading RBC is ten times 

greater than that of the trailing RBC, initially, the leading RBC deforms quickly 

(gradient of the curve is higher). However, after 0.50 ms both RBCs show almost 

the same deformed shape. The leading RBC with the membrane stiffness of 50 Kb 

shows the least bending deformation and its deformation occurs slowly (gradient 

of the curve is less). In this case the trailing RBC shows the second least 

deformation (see Fig 16) as its deformation is influenced by the leading RBC. On 

the other hand, the bending deformation of the leading RBC increases when the 

membrane bending stiffness of the leading RBC decreases to 0.2 Kb. However, the 

trailing RBC does not show any significant change in the deformed shape. 

Furthermore, when the leading RBC’s membrane stiffness is decreased by 

hundred times, any considerable difference in the deformation of neither leading 

RBC nor trailing RBC is observed compared with the previous case (0.2 Kb). 
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Fig 17: Variation of the DI of the leading and trailing RBCs with time; for different Kb values of 

the trailing RBC with fixed Kb value of 5×10-10 Nm for the leading RBC 

 

In the 2
nd

 study, the membrane bending stiffness of the trailing RBC is changed 

from Kb to 0.001 Kb, 0.01 Kb, 10 Kb and 50 Kb while maintaining the membrane 

bending stiffness of the leading RBC to Kb (5×10
-10

 Nm). All the other simulation 

parameters are kept constant (see Table 1). Simulation results reveal that, the 

deformation behavior of the leading RBC is not affected by the increase in the 

membrane bending stiffness of the trailing RBC (see Fig 17). Again, no 

significant variation in the deformation behavior of the leading RBC is observed 

when the membrane bending stiffness of the trailing RBC is reduced. 

The mean velocities of both RBCs reduce when the membrane bending stiffness 

of the leading RBC increases (see Fig 18). However, the mean velocities of the 

RBCs do not show noticeable change with the decrease in the membrane bending 

stiffness in either leading RBC or trailing RBC (see Fig 18 and Fig 19). On the 

other hand, the existence of the trailing RBC with higher membrane bending 

stiffness reduces the mean velocity of the leading RBC slightly, while the mean 

velocity of the trailing RBC reduces considerably (see Fig 19). Therefore, if the 

membrane stiffness of a RBC increases in the blood flow, it affects the mean 

velocities of other RBCs as well as the overall blood flow rate. 
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Fig 18: Variation of the mean velocity of the leading and trailing RBCs with time; for different 

Kb values of the leading RBC (Kb1) with fixed Kb value of 5×10-10 Nm for the trailing RBC 

 

 

Fig 19: Variation of the mean velocity of the leading and trailing RBCs with time; for different Kb 

values of the trailing RBC (Kb2) with fixed Kb value of 5×10-10 Nm for the leading RBC 

 

3.5 Effect of undeformed diameter of the RBC 

In the above simulations the undeformed diameter of the RBC was set to 7.64 µm. 

However, it is an average value for a healthy RBC at rest. In general, the diameter 

of a healthy RBC varies between 6-8 µm (Dupire et al. 2012). In this study, the 

effect of the initial undeformed diameter of one RBC on the deformation 

behaviour of both RBCs is studied (see Fig 20- Fig 24). In order to change the 

initial undeformed diameter of the RBC, the radius of the initial circle (see section 

2) is changed to 3.3 µm, 2.8 µm, 2.25 µm and 1.95 µm. Thereby the RBCs with 

initial diameters of 9.03 µm, 7.64 µm, 6.16 µm, and 5.29 µm are generated and 

are used for the following simulations. Although the diameter of healthy RBCs 

varies between 6-8 µm, RBCs with the diameters of 9.03 µm and 5.29 µm are 
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chosen for the simulations to clearly grasp the effect of the undeformed diameter 

of one RBC on the deformation behavior of both RBCs. In the 1
st
 study, the initial 

undeformed diameter of the leading RBC is changed from 7.64 µm to 9.03 µm, 

6.16 µm, and 5.29 µm while keeping the initial undeformed diameter of the 

trailing RBC to 7.64 µm. In this study, l1 and l2 are set to 3 µm and 5 µm 

respectively. The inlet pressure is set to 512.5 Pa, while the outlet pressure is set 

to zero. All the other simulation parameters are kept constant (see Table 1). 

 

   

Fig 20: Variation of the DI of the leading and trailing RBCs with time; for different initial 

undeformed diameter values (dRBC1) of leading RBC with fixed initial undeformed diameter of 

7.64 µm for the trailing RBC 

 

It can be seen from Fig 20 that the change in the initial diameter of the leading 

RBC affects the DI of the tailing RBC. The increase of the initial diameter of the 

leading RBC causes to increase the DI of the leading RBC and it decreases the DI 

of the trailing RBC (see Fig 20). Since the leading RBC has a larger cross 

sectional area, it deforms more compared to the RBCs having smaller cross 

sectional areas and at the same time larger RBC disturbs the plasma flow more. 

As a result, the hydrodynamic interaction between two cells is greater and it 

directly affects the DIs of both RBCs (see section 3.1). Furthermore, the mean 

flow velocities of both RBCs reduce (see Fig 21) due to the existence of the larger 

leading RBC and it also affects the DI of the trailing RBC indirectly, which 

significantly reduces. 
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Fig 21: Variation of the mean velocity of the leading and trailing RBCs with time; for different 

initial undeformed diameter values (dRBC1) of the leading RBC with fixed initial undeformed 

diameter of 7.64 µm for the trailing RBC 

 

On the other hand, when the initial diameter of the leading RBC is 6.16 µm, due 

to the decrease in the initial undeformed diameter of the leading RBC, its DI 

reduces. Furthermore, less cross sectional area of the leading RBC makes fewer 

disturbances on the plasma flow and thereby the hydrodynamic interaction 

between two cells becomes weaker. Therefore, the two RBCs show almost similar 

DI whet t = 0.0004 s. Furthermore, when the initial diameter of the leading RBC 

is decreased to 5.29 µm, due to the further decrease in the initial undeformed 

diameter of the leading RBC, its DI further reduces. Thus, the cross sectional area 

of the leading RBC does not create a significant disturbance on the plasma flow 

and the hydrodynamic interaction between two cells becomes even weaker. 

Therefore, as explained in the section 3.1, the trailing RBC (which has the larger 

undeformed initial diameter) shows higher DI, while the leading RBC (which has 

the smaller undeformed initial diameter) shows lesser deformation. 
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Fig 22: The variation of the pressure difference (∆P) between left and right hand side of two 

RBCs with different initial undeformed diameter values of leading RBC (dRBC1) at t = 0.20 ms 

 

The analysis of the pressure fields for in this case suggest that the pressure 

difference (∆P) between left and right had sides of the leading RBC increases with 

the initial undeformed diameter of the leading RBC (see Fig 22). Furthermore, it 

can be seen from Fig 22 that the ∆P for the trailing RBC generally decreases 

when the initial undeformed diameter of the leading RBC increases. Therefore, as 

explained earlier, the RBCs experiencing higher ∆P exhibits larger DIs and the 

RBCs experiencing smaller ∆P exhibits lower DIs (Fig 20). 

 

    

Fig 23: Variation of the DI of the leading and trailing RBCs with time; for different initial 

undeformed diameter values (dRBC2) of the trailing RBC with fixed initial undeformed diameter 

of 7.64 µm for the leading RBC 
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In the 2
nd

 study, the initial undeformed diameter of the trailing RBC is changed 

from 7.64 µm to 9.03 µm, 6.16 µm, and 5.29 µm while keeping the initial 

undeformed diameter of the leading RBC to 7.64 µm. Simulation results reveal 

that the deformation behavior of the leading RBC is not greatly affected by the 

increase in the initial undeformed diameter of the trailing RBC (see Fig 23). 

Moreover, there is no significant variation observed in the deformation behavior 

when the initial undeformed diameter of the trailing RBC is reduced. However, 

when the initial undeformed diameter of the trailing RBC is 5.29 µm, the DI of 

the leading RBC slightly reduces. 

 

  

Fig 24: Variation of the mean velocity of the leading and trailing RBCs with time; for different 

initial undeformed diameter values (dRBC2) of the trailing RBC with fixed initial undeformed 

diameter of 7.64 µm for the leading RBC 

 

Whet t = 0.0004 s the mean velocity of the leading RBC is not significantly 

affected by the decrease in the initial undeformed diameter of the trailing RBC. 

However, it can be seen from Fig 24 that the mean velocity of the trailing RBC 

reduces slightly, when the initial diameter of the trailing RBC is increased up to 

9.03 µm. In this case, two RBCs take up a higher volumetric ratio in the problem 

domain due to the higher undeformed diameters (cross sectional area) of the 

trailing RBC. Therefore, compared with the other cases disturbance on the plasma 

flow is higher and as a result of it a slight drop in the mean velocities of the RBCs 

is expected. 
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Fig 25: The variation of the pressure difference (∆P) between left and right hand side of two 

RBCs with different initial undeformed diameter values of trailing RBC (dRBC2) at t = 0.20 ms 

 

Here, the analysis of pressure fields show that the pressure difference (∆P) 

between left and right had sides of the leading RBC remains almost constant when 

the initial undeformed diameter of the trailing RBC increases (see Fig 25). 

Therefore, the leading RBCs do not show considerable variation of DI when the 

initial undeformed diameter of the trailing RBC increases (see Fig 23). However, 

it can be seen from Fig 25 that the ∆P for the trailing RBC increases when the 

initial undeformed diameter of the trailing RBC increases. As can be seen from 

Fig 23 and Fig 25 the DIs of the trailing RBCs change according to the ∆P 

3.6 Deformation of two RBCs in a stenosed capillary 

There is a high risk of microvascular blockage in the blood vessels with stenosed 

section (Cooke et al. 2001). In order to predict the behavior of the RBCs through 

these sections, the motion and deformation of two RBCs in a stenosed capillary is 

studied and presented in this section. The behavior of two RBCs in the stenosed 

capillary is compared with the behavior of a single RBC in the same capillary. 

The total length (L) and the diameter (D) of the capillary are set to 60 µm and 

9.6 µm respectively, while the minimum diameter of the stenosed area (d) is set to 

5.6 µm. The inlet pressure is set to 615 Pa, while the outlet pressure is set to zero. 

The horizontal distance from the inlet boundary to the trailing RBC’s center; l1 is 

set to 3 µm and the distance between two RBCs’ centers; l2 is set to 5 µm. In order 

to compare the behavior of two RBCs, under the same simulation conditions a 
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single RBC is used with l1 = 8 µm [case 1; see Fig 26 (b)] and l1 = 3 µm [case 2; 

see Fig 26 (c)] to individually simulate the behavior of the leading and trailing 

RBCs respectively. 
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Fig 26: Initial particle configuration of the flow filed when (a) Two RBCs in the stenosed 

capillary, (b) Case 1: A single RBC in the stenosed capillary with l1 = 8 µm (c) Case 2: A single 

RBC in the stenosed capillary with l1 = 3 µm 

 

Similar to the previous simulations due to the applied pressure at the inlet, plasma 

particles and RBCs start to move. The leading RBC of two RBCs shows a higher 

DI compared to that of the trailing RBC when it moves through the narrowest 

section in the capillary (see Fig 27). The results in Fig 27 reveal that the DI of the 

leading RBC of two RBCs is even greater than that of the single RBC in case 1 

[where l1 = 8 µm; Fig 26 (b)]. Furthermore, the DI of the trailing RBC is less than 

that of the single RBC in the case 2 [where l1 = 3 µm; Fig 26 (c)]. This increase in 

the DI of the leading RBC and decrease in the DI of the trailing RBC of two 

RBCs occur due to the hydrodynamic interactions between two RBCs compared 

with the single RBC cases [Fig 26 (b) and (c)] This simulation results further 

reveal that, when there is a single RBC in the stenosed capillary, the maximum DI 

of the RBC increases, as the initial distance of the RBC from the narrowest 

section of the capillary increases (see Fig 27). 

 

Fig 27: Variation of the DI of the RBCs with time; when two RBCs are present in a stenosed 

capillary and a single RBC is present in the same capillary at different positions 

 

Interestingly, as shown in Fig 28 the mean velocities of two RBCs are noticeably 

lower than the single RBC situations [case 1; Fig 26 (b) and case 2; Fig 26 (c)]. 

Therefore, two RBCs take longer time to reach the stenosed section of the 

capillary and the outlet of the flow domain. It can be seen from Fig 28 that 
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initially two RBCs move almost at the same mean velocity. Since the blood flow 

rate is constant in a capillary for a given pressure, flow velocity increases, when 

the flow area reduces in the stenosed section. Similarly, when the leading RBC is 

moving through the stenosed section of the capillary its mean velocity increases 

significantly. During this time period the leading RBC slightly blocks the plasma 

flow through the stenosed section in the capillary and as a result of it a small 

reduction of the trailing RBC’s mean velocity can be seen (see Fig 28).The 

trailing RBC also reaches its maximum mean velocity when it passes though the 

stenosed section. However, at that time no noticeable change in the mean velocity 

of the leading RBC can be observed, since the leading RBC is already 

downstream of the capillary. Finally, when both RBCs exit from the stenosed 

section the mean velocities of the RBCs increase and they reach a similar velocity 

with a very slight reduction compared to that of the single RBC cases case 1; Fig 

26 (b) and case 2; Fig 26 (c)]. 

Fig 28: Variation of the mean velocity of the RBCs with time; when two RBCs are present in a 

stenosed capillary and a single RBC is present in the same capillary at different positions 

 

4. Conclusions 

A two-dimensional spring network model based on the DEM concepts is 

successfully used in combination with the SPH method to study the interaction 

between two RBCs and its effect on their motion and deformation. From this 

study, the below conclusions may be drawn.  
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 Due to the hydrodynamic interaction between two RBCs, the leading RBC 

is always subjected to a higher deformation compared to the trailing RBC. 

The leading RBC’s DI is greater than that of a single RBC flows in the 

same capillary under the same conditions. The trailing RBC’s DI is less 

than that of a single RBC flows in the same capillary under the same 

conditions.  

 The distance between two RBCs makes a significant impact on the motion 

and deformation of two RBCs. When two RBCs are moving closer to each 

other, the hydrodynamic interaction between two RBCs is higher and the 

relative velocity of two RBCs is also higher, which cause to increase the 

distance between two RBCs. 

 When the leading RBC becomes stiffer as a result of infection by a disease 

like malaria, it directly affects the motion and deformation of the trailing 

RBC. However, the motion and deformation of the leading RBC is not 

greatly influenced by the properties of the trailing RBC. 

 RBCs with larger undeformed diameters slow down the mean velocity of 

the RBCs as well as the blood flow rate. 

 When the capillary has a stenosed section the mean velocity of both RBCs 

decrease significantly before the stenosed section. However, after the 

stenosed section they gain their velocity back similar to the uniform 

capillary situation. 

Furthermore, it is expected to extend the study to three dimensional RBCs, to 

capture more realistic motions and deformations of the RBCs. 
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