A coupling approach to randomly
forced nonlinear PDE's. 1

Sergei Kuksin Armen Shirikyan

Abstract

We develop a coupling approach to prove that a randomly forced dis-
sipative PDE has a unique stationary measure and to study ergodic prop-
erties of this measure.
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0 Introduction

Let H be a separable Hilbert space with a norm || - || and an orthonormal
basis {e;} and let S: H — H be a locally Lipschitz operator such that S(0) =
0. It is assumed that S satisfies some additional conditions which, roughly
speaking, mean that S is compact and that S™(u) — 0 as n — oo uniformly on
bounded subsets of H. (For the exact statement, see conditions (A) — (C) in
Section 2.) Let 7, k € Z, be a sequence of i.i.d. random variables in H of the
form

N = ijfjkej. (0.1)
j=1

Here b; > 0 are some constants such that Y b% < oo and {{;} are indepen-
dent random variables such that D(;x) = p;(r) dr, where p;, j =1,2,..., are
functions of bounded variation supported by the interval [—1,1]. (We denote
by D(&) the distribution of a random variable £.)



Our goal is to study the random dynamical system (RDS)
ub = S 4+ . (0.2)

For any v € H, we denote by u* = u*(v), k > 0, the solution of (0.2) such
that u® = v. Let C,(H) be the space of bounded continuous functions on H
and P(H) be the set of probability Borel measures on H. The RDS (0.2)
defines a family of Markov chains in H. We shall denote by ;. and ‘B the
corresponding Markov semigroups acting in Cy(H) and P(H), respectively:

Pef(v) = Bf (), | € CylH),
Pun0) = [ Plu(e) € Dhulde), ue PA)
H

Let us recall that g € P(H) is called a stationary measure for (0.2) if Piu = p.

The goal of this paper is to present a new, simple proof of the uniqueness
and ergodicity of a stationary measure and to specify the rate of convergence
to it. Namely, we prove the following result:

Theorem 0.1. There is an integer N > 1 such that if
bj #0 for 1<j <N, (0.3)

then (0.2) has a unique stationary measure p. Moreover, for any R > 0 there
is Cr > 0 such that

[Bif(u) — (1, f)| < Cre=YF(supy |f| +Lip(f)) for k>0,  (0.4)

where ||ul| < R, f is an arbitrary bounded Lipschitz function on H, and ¢ > 0
is a constant not depending on u, f, R, and k.

Ezample 0.2. Let us consider the 2D Navier—Stokes (NS) equations perturbed
by a random kick-force:

U —vAu+ (u, Vu+ Vp =n(t,z) = Z me(2)d(t — k),

k=—o00

(0.5)
divu =0, (u(t,-)) =0,

where u = u(t,z), € T? and (u) = [ u(z)dz. Let H be the space of
divergence-free vector fields v € L?*(T?,R?) such that (u) = 0 and let {e;}
be the normalised trigonometric basis in H. Assuming that the kicks m, € H
have the form (0.1) and normalising solutions w(t) for (0.5) to be continuous
from the right, we observe that (0.5) can be written in the form (0.2), where
u* = u(k,-) € H and S: H — H is the time-one shift along trajectories of the
free NS system (i.e., of Equations (0.5) with » = 0). As it is shown in [KSI],
the operator S satisfies all the required assumptions, and therefore Theorem 0.1
applies to (0.5).



Theorem 0.1 can also be applied to many other dissipative nonlinear PDE’s
perturbed by a random kick-force, in particular, to the complex Ginzburg—
Landau equation

U'_V(A_ 1)U+Z|U|2u:77(tax)a T ET”?

where u = u(t,z) and v > 0 (see [KS1, KS2]).

Uniqueness of a stationary measure for (0.2) was first established! in [KS1].
The proof in [KS1] is based on a Lyapunov—Schmidt type reduction of the sys-
tem (0.2) to an N-dimensional RDS with delay (the integer N is the same as in
Theorem 0.1). Due to this reduction, the problem of uniqueness of a stationary
measure for (0.2) reduces to a similar question for an abstract 1D Gibbs system
with an IV-dimensional phase space. The uniqueness for the reduced Gibbs sys-
tem is then established using a version of the Ruelle-Perron—Frobenius theorem.

E, Mattingly, Sinai [EMS] and Bricmont, Kupiainen, Lefevere [BKL] used
later similar approaches to show that the NS system (0.5) perturbed by a white
(in time) force of the form

N
n(t,x) =Y biBi(t)ej(z), N' < oo,
j=1

also has a unique stationary measure p € P(H), provided that b; # 0 for
1 <j < N < N’ with some sufficiently large N = N(v). Moreover, it is shown
in [BKL] that for the case of white noise the convergence in (0.4) is exponentially
fast for p-almost all u € H.

In [KS3] the NS equations (0.5) with an unbounded kick-force n(¢,z) is
studied and the scheme of [KS1] is used to prove the uniqueness and ergodicity
of a stationary measure.

The approach presented in this work does not use a Lyapunov—-Schmidt
type reduction and the Gibbs measure technique. Instead it exploits some ideas
from [KS2], interpreting them in terms of the coupling. The new approach gives
rise to a shorter proof and is more flexible.

The coupling is a well-known effective tool for studying finite-dimensional
Markov chains (e.g., see [Lin] and the Appendix in [V]) and dynamical systems
(e.g., see [Y, BL]). In [EMS] a coupling is used to study the auxiliary finite-
dimensional RDS with delay which arises as a result of the Lyapunov—Schmidt
reduction. Our work shows that a form of coupling applies directly to infinite-
dimensional Markov chains and randomly forced PDE’s.

When a preprint of this paper was sent around, we learned from L.-S. Young
that a similar approach to prove Theorem 0.1 is developed by her and Nader
Masmoudi in their work under preparation.

Tt is shown in [KS1, KS2] that the left-hand side of (0.4) converges to zero as k — oo for
any f € Cy(H); however, the rate of convergence is not specified.



Notation

We abbreviate a pair of random variables £, & or points uy, us to &1,2 and uq 2,
respectively. Given a probability space (€2, F,P), for any integer k£ > 1 we denote
by QF the space Q x --- x Q (k times) endowed with the o-algebra F x --- x F
and the measure P x --- x P. For a random variable £, we denote by D(§) its
distribution.

For a Banach space H, we shall use the following spaces and sets:

Cy(H) is the space of bounded continuous functions on H with the supremum
norm || - ||oc-

L(H) is the space of bounded Lipschitz functions on H endowed with the
natural norm || - ||z (see Section 1).

M(H) is the space of signed Borel measures on H with bounded variation.

P(H) is the set of probability measures y € M(H); this space is endowed
with two different metrics described in Section 1.

P(H, A) is the set of measures u € P(H) with support in a closed set A.

ty (k) is the measure P(k, v, ), where P is the Markov transition function
for (0.2).

Bp(R) is the closed ball of radius R > 0 centred at zero.
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1 Measures on Hilbert spaces

Let H be a separable Hilbert space with the Borel o-algebra B(H) and let
M(H) be the space of signed Borel measures with bounded variation. We
denote by P(H) the set of probability measures u € M(H) and by P(H, .A) the
subset in P(H) consisting of measures supported by a closed set A C H. For
any measure y € M(H) and any function f € Cp(H), we write

(. f) = /H £ () dpu(ar) = /H F(w)p(d).

We shall use two different topologies on P(H). The first of them is given by
the variation norm on M(H):

lllvar = sup |p(I)[.
TeB(H)

The distance defined by this norm on P(H) can be characterised in terms of
densities. Namely, let us assume that uq, pue € P(H) are absolutely continuous



with respect to a fixed Borel measure m, finite or infinite. (Such a measure
always exists; for instance, one can take m = (u1 +p2)/2.) In this case, we have

It = palhor = 5 [ Ipa(w) = pa(w)] (), ()

where p;(u), i = 1,2, is the density of u; with respect to m. The space P(H) is
complete with respect to || - ||var-

To define a second topology, we denote by L(H) the space of real-valued
bounded Lipschitz functions on H with the norm

I fllz == (Slelglf(uﬂ) v (21;5%)

Let || - |5 be the dual norm on M(H):

lullf = sup |(u, f)|.
Ifllc<1

It is clear that the norm || - || defines a metric on P(H).
Lemma 1.1. The space P(H) is complete with respect to the metric || - ||} .

Proof. Suppose that {u,} C P(H) is a sequence such that ||pn — pm |7 — 0 as
m,n — oo. Let L*(H) be the space of continuous functionals on L(H). Regard-
ing py, as elements of L*(H ), we conclude that the sequence {u,} converges (in
the norm || - [|3) to a limit £ € L*(H), and we have

(f) = i (n. ). f € L(H). (1.2)

In view of the corollary? from Theorem 1 in [GS, Chapter VI, §1], there is a
measure p € P(H) such that £(f) = (i, f). This completes the proof. O

Note that, in the case when H is finite-dimensional, the fact that the func-
tional £ in (1.2) is a measure is implied by the following well-known result (for
instance, see [H, Theorem 2.1.7]): any nonnegative distribution is a measure; in
particular, any positive functional £ € L*(H) is a measure as well.

Let PB(k,u,T), k >0,ue H,T € B(H), be a Markov transition function. A
set A C B(H) is said be invariant for B if

PBk,u, A) =1 forall k>0, wueA

Lemma 1.2. Let A € B(H) be an invariant set for P(k,u,T'). Suppose that
there is kg > 1 and a sequence (x, k > kg, going to zero as k — oo such that

Bk, u,) = Pk, v, )L <G for k>ko, u,veA (1.3)
Then there is a unique measure u € P(H, A) such that

2The corollary of Theorem 1 in [GS, Chapter VI, §1] claims, in fact, that if the limit in (1.2)
exists for any f € C,(H), then the functional ¢ can be represented in the form £(f) = (y, f),
where p € P(H). However, the same proof works also in the case under study.




Proof. Let f € L(H), ||f|l <1. Then, by (1.3) and the Chapman—Kolmogorov
relation, for | > k > kg and u,v € A we have

— P(k,u,), f)] <

| (Bl v, u,
’/ Bl — k,v dz)/ (‘,B(k,z,dw)f(w) —‘B(k,u,dw)f(w)) <

s@/Hma—k,v,dz):ck. (15)

By Lemma 1.1, the space P(H) is complete with respect to || - ||5.. Hence, there
is a unique measure p € P(H) such that | B(l,v,-) — p|l} — 0asl — oco. It is
clear that supp 1 C A and therefore p € P(H, A). Passing to the limit in (1.5)
as | — 0o, we obtain (1.4). O

We now recall that a pair of random variables (£1,&2) defined on the same
probability space is called a coupling for given measures pi,pus € P(H) if
D(&) = pj, j = 1,2. For some basic results on the coupling, see [Lin, V]
and the Appendix (Section 4).

Lemma 1.3. If measures pu1, us € P(H) admit a coupling (&1,&2) such that
P{[[& — & > e} <0, (1.6)
where € > 0 and 0 > 0 are some constants, then
1 — pallL <20 +e. (1.7)
Proof. Let f € L(H), ||f|z < 1. Then (u12, f) = E f(€12) and, therefore,
(i1 = p2, )] < [Exq(f(&1) = £(&2))| + [Exqe (f(&1) — f(&2))], (1.8)

where xg and xge are characteristic functions of the event [|{; — &2]| > € and
of its complement, respectively. By (1.6), the first term in the right-hand side
of (1.8) is bounded by 26, while the second does not exceed ¢||f||, < e. This
completes the proof of (1.7). O

2 A class of random dynamical systems

Let H be a Hilbert space with a norm || - || and an orthonormal basis {e;} and
let S: H — H be an operator satisfying conditions (A) — (C) below:

(A) For any R > r > 0 there exist positive constants a = a(R,r) < 1 and
C = C(R) and an integer ng = no(R,r) > 1 such that

[IS(u1) — S(u2)|| < C(R)||ur —uz| forall wi,us € Bu(R), (2.1)
|1S™(w)|| < max{allu|,r} for uw€ Bg(R), n > no. (2.2)



Let ng, £ > 1, be a sequence of i.i.d. H-valued random variables that are
defined on a probability space (€1, F1,P1) and have the form (0.1), where b; > 0
are some constants such that

D b < oo, (2.3)
j=1

and {{x} is a family of independent real-valued random variables such that
|€k] <1 for all j, k, and wy € Q1. We consider the following RDS in H:

ub = S 4y = Fr (Wb, B> 1 (2.4)

It follows from (0.1) and (2.3) that the distribution of 7 is supported by the
Hilbert cube K,

(o)
K = {u:Zujej :|u;| < b; for all j > 1}.

j=1

Therefore, if the initial state u® of the RDS (2.4) belongs to a set B C H, then
uF € Ap(B) for all k > 1 and w; € Qy, where Ay(B) = B and

Ap(B) = S(Ap—1(B)) + K for k=>1.

The next condition expresses the property of existence of a bounded absorbing
set for the system in question.

(B) There exists p > 0 such that for any bounded set B C H there is an
integer ko > 1 such that A, (B) C Bu(p) for k > k.

Clearly, inequality (2.2) and condition (B) are satisfied if ||S(u)|| < ~||u|| for
all v € H and some positive constant v < 1.

To formulate the last condition, we introduce some notations. For a sub-
space £ C H, we denote by E+ its orthogonal complement in H. For an integer
N > 1, let Hy be the finite-dimensional subspace generated by the vectors
e1,...,en and let Py and Qu be the orthogonal projections onto Hy and H]#,
respectively.

(C) For any R > 0 there is a decreasing sequence vy (R) > 0 tending to zero
as N — oo such that

||QN(S(u1) - S(uz))H < An(R)||lur — ug|| for all wuy,uz € By(R).

Finally, we specify the random variables {&;;}:

(D) For any j, the random variables &, k > 1, have the same distribu-
tion m;(dr) = p;(r) dr, where the densities p;(r) are functions of bounded
variation such that suppp; C [—1,1] and fmgapj (rydr >0 forallj >1
and € > 0. We normalise the functions p; to be continuous from the right.



The RDS (2.4) defines a family of Markov chains in H with the transition
function

P(k,v,T) =P{u* €T},

where (u*, k > 0) is the solution of (2.4) such that u® = v. Let Py and B} be the
corresponding semigroups (see the Introduction for their definition). Continuity
of S (see condition (A)) and the Lebesgue theorem on dominated convergence
imply that the transition function satisfies the Feller condition: if f € C,(H),
then Prf € Cp(H) for all k > 1.

Let p > 0 be the constant in condition (B). We introduce the set

A= ] A(Br(p)). (2.5)

E>1

It is clear that A is an invariant set for the RDS (2.4): if u® € A, then u* € A
for all £ > 1 and wy € 3. Moreover, it follows from condition (C) that the
set A is compact in H. (Note that the union in (2.5) is taken over k£ > 1 and
therefore By (p) is not a subset of A.)

Our goal is to prove the following result:

Theorem 2.1. There is an integer N > 1 such that if (0.3) holds, then the
RDS (2.4) has a unique stationary measure p € P(H, A). Moreover, for any
R > 0 there is Cgr > 0 such that

[B1f(u) — (1, £)] < Cre=V*||flle for k>0, |u| <R,

where f € L(H) is an arbitrary function and ¢ > 0 is a constant not depending
on f,u, R, and k.

Condition (B) and the definition of A imply that for any R > 0 there is
an integer | > 1 depending on R such that B(l,u, A) = 1 for any u € By (R).
Hence, we can restrict our consideration to the invariant set A. In view of
Lemma 1.2, Theorem 2.1 will be established if we show that there are positive
constants C' and ¢ and an integer kg > 1 such that

1Bk, u,-) — Bk, v, )5 <CeVF for k>koy, uveA (2.6)

3 Proof of the main result

We first establish some auxiliary assertions and then use them to prove inequal-
ity (2.6), which implies the required result.

3.1 Auxiliary assertions

We begin with a simple observation. Let R > 0 be so large that By (R) D A.
To simplify notation, we denote B = By (R).



Lemma 3.1. For any d > 0 there is an integer | = I(d) > 0 and a constant
% = »(d) > 0 such that

P{|[u'(v)| < d/2 for all v € B} > s. (3.1)

Proof. Let a and ng be the constants in condition (A) that correspond to the
parameters R (the radius of B) and r = d/4 and let | = ngm, where m is the
smallest integer such that a™R < d/4. If g, = 0 in (2.4) for 1 < k <, then, in
view of (2.2), we have

[u'(v)|| < max{a™R,d/4} = d/4 forall veE B.

By continuity, there is v > 0 such that if

[l <y for 1<k <L, (3.2)

then
lu' ()] < d/2. (3.3)
It follows from (2.3) and condition (D) that the event (3.2) has a positive prob-
ability ». Inequality (3.1) follows now from (3.3). O

To simplify notation, for any v € H we denote by p,(k) the measure
B(k,v,-) € P(H). For any measurable space (X, B(X)) and any integer k > 1,
we denote by X* the direct product X x --- x X endowed with the product
o-algebra BF(X) = B(X) x --- x B(X).

Lemma 3.2. There is a probability space (2, F,P), an integer N > 1, and
a constant C > 0 such that if (0.3) holds, then for any ui,us € B the mea-
SUTES [y, , (1) admit a coupling Vi o = Vi 2(u1, ug;w) that possesses the following
properties:

(i) The maps V1,2 are measurable with respect to the o-algebra B2(H) x F as
functions of (u1,us,w) € B2 x Q.

(ii) Let d = ||u1s — uz||. Then

P{||Vi — Va|| > d/2} < Cd. (3.4)

Let us note that inequality (3.4) is nontrivial only in the case Cd < 1.

Proof. Let (Q1,F1,P1) be the probability space on which the random vari-
ables {ny} are defined and let (Qg, F2,P2) be the probability space constructed
in Theorem 4.2 for the measures v; o specified below. We shall show that the
set (1 = 3 x Qs endowed with the natural o-algebra and probability of direct
product is the required probability space.

The random variables V o are sought in the form

Vi =S(u1)+&, Vo= S(u2)+ &,



where £ 2 are some random variables on Q such that D(&1) = D(&2) = D(m)-
It is clear that D(V12) = piu, (1) and that (i) holds. To define the random
variables & 2, we specify their projections Py&; 2 and Qn&p,2, where N > 1 is
a sufficiently large integer which is chosen below.
We set
Qn&1 = Qné2 = QnT,

where 7j; is the natural extension of 7 to Q, i.e., 71(w) = N (wy) for w =
(w1,ws) € Q. To define Pyé&; 2, let us write vy 2 := Py iy, ,(1) and assume that
we have proved the inequality

llvr = vallvar < Cd, (3.5)

where C' > 0 is a constant not depending on u;,» € B. In view of Theorem 4.2,
there is a maximal coupling =1 2(u1, u2;wsz) for the measures 14 o that is mea-
surable with respect to (u1,us,ws) € B? x Qa:

P{=; # Z2} = |1 — v2lvar < Cd. (3.6)

Retaining the same notation for the natural extensions of Z; and =5 to 2, we
now set

Pn&i2=E12—PnS(ui2)

and note that Py 1y # Py V4 if and only if 21 # Z5. Let N > 1 be so large that
A~ (R) < 1/2 (see condition (C)). In this case, if Py Vi = PyVa, then

Vi = V2| = |Qu (Vi = Vo) || = [|Qu (S(u1) = S(u2))[| < [Jus — uzl|/2 < d/2.
Inequality (3.4) follows now from (3.6).
Thus, it remains to establish (3.5). To this end, we set v1 2 = PnS(u1,2)
and note that, in view of (2.1),
[v1 — v2f| < C(R)d. (3.7)
Since b; # 0 for 1 < j < N, condition (D) implies that D(Pnyn1) = p(z) dz,
where dz is the Lebesgue measure on the finite-dimensional space Hpy and

N
p(x) = H%’(ﬂ?a’)a gj(x;) = by 'pj(x;/b), == (a1,...,2n) € Hy,

is a bounded function with support in the set Py K. It follows that
vio=D(wi2+Pym)=plx—v12)de.
Therefore, by (1.1),

1
Jor = el =5 [ I = 01) (o~ v2)
Hy

10



We claim that

N
| e =) ==l de < o=l Y8 Vartey), (38)

Jj=1

where Var(p;) stands for the total variation of p;. The required inequality (3.5)
follows immediately from (3.7) and (3.8).

To prove (3.8), we first assume that p; are C''-smooth functions. In this
case, we have

/ Ip(z — v1) — pla — v3)|du
Hy

< |v1 — vl /H /0 |(Vp)(x —0v; — (1 — 9)1}2)‘ dfdx

Hyn

N
— i~ [ [(Vp)@)]dz < [os —v2|Z/R|aquj<xj>| dz;
j=1

N
= |v1 — o ZVar(qj).

j=1

It remains to note that Var(g;) = b;l Var(p;).
Inequality (3.8) in the general case can be easily derived by a standard
approximation procedure; we omit the corresponding arguments. O

We now combine Lemmas 3.1 and 3.2 to obtain a coupling Uﬁg(ul,ug) for
the measures fi,, ,(k), k > 1. Let [ = I(d) and C' > 0 be the constants in
Lemmas 3.1 and 3.2 and let dy > 0 be so small that

Cdy < 1/4.

We set d,. =27 "dg, r > 1.

For a probability space (€2, F,P), we shall denote by (QF, F* P*) the direct
product of its k independent copies. Points of the latter will be denoted by w” =
(Wi, we).

Lemma 3.3. Suppose that the conditions of Lemma 3.2 are satisfied. Let
uy,ug € A and d = |luy — uz||. Then for any k > 1 the measures iy, ,(k)
admit a coupling Uf;z = UﬁQ(ul,uQ;wk), wk € QF, such that the following
assertions hold:

(i) The maps UﬁQ(ul,uQ;wk) are measurable with respect to (uy,us,w") €

A2 x QF.
(ii) There is a constant 6 > 0 not depending on uy, us2, and k such that

P U - US| <dp} >0 forall k>r+1(dy), ui,uz€ A (3.9)

11



(iil) If |lur — uz|| < d,, then

PHUF -~ US| < dpsr} >1—-27""1 forall k>1, r>0. (3.10)
Proof. Let us recall that for any (ui,us) € B x B a coupling Vi o(u1, u2;w) was
constructed in Lemma 3.2. We set

Uj(u1, up;w) = { ?@E?J;;m;w) i HZi _ Zi” § 23:
where j = 1,2 and F*(u) is given by (2.4). We define random variables U}, on
(QF, F*) by the following rule: if ||u; — ua|| > do, then
Uf(ul,uz;wk) =F*“ 0o...0F¥(u;)

for k < I(dp) and

Uf(ul,uQ;wk) = Uj(Uff (w1, ug; W1, U2 (ul,uQ;wk_l);wk) (3.11)

for k > I(dp), where w* = (wF =1 wy) = (w1,...wx) and UP(u1,ug) = uj. If
[lur — wz|| < dp, then Uf72(u1,uQ) = u19 and for £ > 1 the random variables

Uf(ul, ug; wh) are inductively defined by (3.11).

We claim that Uf, satisfy assertions (i) — (iii) of the lemma. Indeed, the
measurability of the maps U{fz is obvious since they are compositions of mea-
surable maps. To prove (3.9), we first note that it is sufficient to consider the
case k =1+, 1 =1(dy). We introduce the following events in Q'+

T ={|Ul - Uj| < do},
~={||Ul - U} > do},
Q {luit" —ustr|| < d, }.
By Lemma 3.1, we have
PF(Q) = PH(QIQTP(QT) + PH(QIQ)P(Q™) > »PF(Q|Q™T). (3.12)

If we assume that (3.10) is proved for r = 0, then (3.12) will imply the required
estimate (3.9) with 6 = /2. Thus, it remains to established (iii).
For a fixed r > 0, we set

Qf = {IUf —U§|| <drsr}, Qp = {IUF — US| > drsr}

and denote by p: and p, the probabilities of QI and @, , respectively. Us-
ing (3.4) with d = dj4,r—1, we derive

pz :pz_l]P’k(QﬁQ )+pk 1Pk(Q+|Qk 1) (1 _Cdk-l-r 1)pk 1

Since par = 1, iteration of this estimate results in

pr >\ H 1—Cdjy,). (3.13)

12



Since d,;, = 27™dy and Cdg < 1/4, we have

k—1 k—1
log A = Z log(1 — Cdjir) > —CZ djsr
j=0 §=0
> —Cdoy 270+ = —2177Cdy > —27"7 1,
§=0
Therefore, A > 1 — 27771, O

3.2 Proof of Theorem 2.1

As was mentioned at the end of Section 2, it is sufficient to establish inequal-
ity (2.6). In what follows, to simplify notation, we shall write P instead of P*.
1) Let us fix arbitrary uq,us € A and set Ty = 0 and 7, = T;.—1 +r + [ for
r>1,ie.,
T, =r(r+1)/24rl.

We claim that for any integer r > 0 there is a coupling y1 2(7}.) on Q7" for the
measures ji,, ,(7;) such that

P{lly(T,) = ya2(T)|| > dr } < C17y", (3.14)

where C7 and v < 1 are some positive constants.

The construction of y1 2(T}) = y1.2(T}, w1, u2; wr) and the proof of (3.14)
are by induction. For r = 0, we set y;(0) = u;, and inequality (3.14) with C; > 1
is trivial in this case. Assuming that y; 2(7;) are constructed for 0 < ¢ < r, we
set

Y (Trgr, un, ugs w0 ) = UFTH (yy (T, g 250" ), o (T ua 05 w07 )3 0" )
(3.15)
where Uf,(u1,ug; w*) are defined in Lemma 3.3 and w’+1 = (w’r, w 1),
Let us introduce the events

QF =l (To) —(T)l < dv ), Q= {lIlna(Ty) — v2(T0)ll > di }

and denote by p;" and p; their probabilities. Then, in view of (3.9) and (3.10)
with k = r + [, we have (cf. (3.12))

P = P(Q 1 |QNP(Q)) + P(Qr11Q, )P(Q))
<27 pf 4+ (1—0)py <277 4qp;, (3.16)

where v = 1 — 0. Without loss of generality, we can assume that 0 < 0 < 1/2,
and therefore 1 < 2y < 2. Iterating (3.16), we obtain

(2) 1~ 1

r+1<c r+1.
27 1 +7y =0y

P 27T gy <27
=0

13



This completes the induction.

2) We can now prove (2.6). Let us fix arbitrary positive integers r and
m < r+1 and set k = T, + m, so that T, + 1 < k < T,41. We define
a coupling y1.2(k) = yi1.2(k, u1,u2) for the measures p,, ,(k) by the formula
(cf. (3.15))

v (b, ur, ugswh) = UM (y2 (T, un, s w0 ™), g2 (T ua, ugs w0 ™) 0™).
In view of (3.10) and (3.14), we have (cf. (3.16))
P{lly1(k) — y2(k)|| > dri1} < P(Qy) + 27 T'P(QF) < Gy, (3.17)

where Cy > 0 is a constant. Now note that r2/2 < T}. < (I + 1)r? for any r > 0
and therefore there are positive constants C' and ¢ such that

dry1 < Cefc‘/E, Coy" < CeVF for T <k<T 4.
Combining this with (3.17), we derive
P{lly1 (k, ur, us) — ya(k, ur, )| > O™V} < CemeVE, (3.18)
By Lemma 1.3, inequality (3.18) implies that
120, (B) = s (R)[|}, < 3C e=VF

which completes the proof of (2.6) with kg = 7. Theorem 2.1 is proved.

4 Appendix: coupling

In this appendix, we present some results on the coupling in finite-dimensional
spaces in the form which we learned from S. Foss. These results are well known
(e.g., see [Lin, V] for Lemma 4.1 and [BF] for Lemma 4.3).

Let v1,v5 € P(RY) be two measures absolutely continuous with respect to
the Lebesgue measure dx:

v1,2(dz) = p12(x) de.

We set .
pim = el =5 [ (@) = pa(o)] da (11)
RN

and assume first that 0 < p < 1. Let

pi=1=p)"'p1 Ap2, Pr2:=p ‘(p12—D) (4.2)

For p =1 or 0, we define p(z) and p; 2(z) as follows:

14



It is clear that
p12(x) = (1 — p)p(x) + pp1,2(z) almost everywhere.

If (&1,&) is a coupling for the measures (vy,v5), then for any I' € B(RY) we
have

() —vao(T) =E{xr(&) — xr(&)}
= E{x{e,260) (xr(&1) —xr(&2)) }
<P{& # &2}

Therefore,
P{& # &} = p = [l — v2llvar
A coupling (&1,&2) for (v1, 1) is said to be mazimal if

]P{fl 7é 62} =p= Hyl - V2||var-

Lemma 4.1. Let & 2, &, and o be independent random variables such that

Pla=1}=1-p, Pla=0}=p, D) =p(x)dr, D(,2)=p12(z)dx.
(4.5)
Then the random variables

Eip=af+ (1 - )i (4.6)
form a mazimal coupling for vy 2.

Proof. Since & and & are independent and their distributions possess densities
with respect to the Lebesgue measure, we have P{¢; = &} = 0. Taking into
account the relation a(1 — a) =0, we get

D(ELQ) = p172(1‘) dl‘ = 1/172, P{El 7& EQ} = ]P{Oé = 0} =P,
which completes the proof. O

Let us now assume that ¢ is a random variable in RY with the distribution
D(p) = q(z) dz, where ¢ € L*(RY). Consider the following family of measures
depending on a parameter v € RV:

vy(dx) = D(v + ) = q(x — v) dz.

Let p(v1,v2) be the variation distance between v, and v,,. It is clear
from (4.1) that p(vi,vs) is measurable with respect to vi,v2 € R*YV. In the
construction above, let us take v1 2 = v, ,. Then

p(x) = p(z;v1,v2), P12(x) = P1a(w;vr,v2).

Clearly, the functions p(x;v1, v2) and pr1 o(x;v1, v2) are measurable with respect
to (x,v1,v2). Using the above observations, we construct a coupling for (v, , v4,,)
that is measurable with respect to (v1,v2,w). Namely, we have the following
result:
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Theorem 4.2. There is a probability space (2, F,P) such that for any pair
(v1,v2) € R2N there are random variables E12 = Ei12(v1,v2;w) satisfying the
following properties:

(i) The pair (E1,Z2) is a mazimal coupling for (vy,, Vy, ).

(i) The map Z(vi,v2;w) : R*EY x Q — RY is measurable with respect to the
o-algebra B(R*N) x F.

To prove the theorem, we shall need the lemma below:

Lemma 4.3. Let yu, € P(RY), z € R?, be a family of probability measures such
that

Mz(dx) = pz(x) dz,
where p, € L*(RY) for each z € R? and p,(x) is measurable as a function of
(z,2) € RN x R, Then there is a probability space (2, F,P) and a family of
random variables C,: Q@ — RN such that D(¢.) = p. for all z € R? and (. (z) is
measurable with respect to (z,x).

Proof. If N = 1, then we take (2, F,P) = ([0, 1], B,dt), where B is the Borel
o-algebra and dt is the Lebesgue measure. Denoting by F.(\) the distribution
function of the measure p,, F,(\) = p.((—o0, \]), we set

C.(t) = min{\ : F,(\) > t}.

The map (,2) — (. (t) from [0, 1] x R? to R is measurable, and the distribution
function of D((,) is equal to F,. Thus, for N = 1 the lemma is proved.

We now assume that the required assertion is established for N = L and
prove it for N = L + 1. Let us write # € R¥T! as 2 = (2/,y), where 2/ € RF
and y € R. Decomposing p. in terms of the conditional density (see [GS]), we
write

pz(dw) = pz(w) do = p. (2| y) da’q.(y) dy. (4.7)
Here

Dz (x/ay)
q:(y =/ p:(z',y)da’, pl(a'ly) = ——,
) RL( ) ('] y) @)
where we set 0/0 = oco/oo = 0. Applying the induction hypothesis with z
replaced by (z,y), we find a probability space (', F',P’) and a measurable
map

(W, y): @ xRTx R — RF

z

such that D((.(-,y)) = p.(z'| y) dz’ for each (z,y) € R? x R. Applying the first
step of the proof, we construct a measurable map &,(t) : [0,1] x R? — R such
that D(£,) = ¢.(A\) dA. We now set Q@ = Q' x [0,1] and

G(W's ) = (LW, (), & (1)) € RFF

We have constructed a measurable map € x R4 — RE*1 such that, for any fixed
z € R?, its distribution is given by the right-hand side of (4.7). O
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Proof of Theorem 4.2. Applying Lemma 4.2 to measures in RY given by the
densities p and p1 2, we construct probability spaces (2;,S;,P;), j =0,1,2, and
random variables §gv1 vz) 0N X such that

D&y, 0p)) = P(w;01,02) dr, DY g’vm)) = pj(z;v1,v9)dx, j=1,2. (4.8)
We also define a random variable a, : [0,1] — {0,1}, p = p(v1,v2), by the
formula

ap(t) = X[0,1-0) (1),
where [0,1] is endowed with the Borel o-algebra and the Lebesgue measure,

and x|, is the characteristic function of the interval [0, 7].
We now define the required probability space as the set

Q:onleng[O,l]

with the o-algebra and the probability of direct product. The natural exten-
sions® of a;, and fgvlm), 7 =0,1,2, to Q (for which we retain the same notations)
form a quadruple of independent random variables satisfying (4.8) and also the
relations

]P{aﬂ: 1}: 1—/)(1)1,1}2), P{QPZO}: (
A maximal coupling (Z1,Z3) for the measures (vy,,Vy,) that satisfies asser-
tion (ii) of the theorem can now be defined by formula (4.6), in which o = «,,

&= f?vl’vz), and §; = fm,uw j=1,2. O

vy, U2).
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