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Abstract

We develop a coupling approach to prove that a randomly forced dis-

sipative PDE has a unique stationary measure and to study ergodic prop-

erties of this measure.
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0 Introduction

Let H be a separable Hilbert space with a norm ‖ · ‖ and an orthonormal
basis {ej} and let S : H → H be a locally Lipschitz operator such that S(0) =
0. It is assumed that S satisfies some additional conditions which, roughly
speaking, mean that S is compact and that Sn(u) → 0 as n → ∞ uniformly on
bounded subsets of H . (For the exact statement, see conditions (A) – (C) in
Section 2.) Let ηk, k ∈ Z, be a sequence of i.i.d. random variables in H of the
form

ηk =

∞∑

j=1

bjξjkej . (0.1)

Here bj ≥ 0 are some constants such that
∑

b2
j < ∞ and {ξjk} are indepen-

dent random variables such that D(ξjk) = pj(r) dr, where pj, j = 1, 2, . . . , are
functions of bounded variation supported by the interval [−1, 1]. (We denote
by D(ξ) the distribution of a random variable ξ.)
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Our goal is to study the random dynamical system (RDS)

uk = S(uk−1) + ηk. (0.2)

For any v ∈ H , we denote by uk = uk(v), k ≥ 0, the solution of (0.2) such
that u0 = v. Let Cb(H) be the space of bounded continuous functions on H
and P(H) be the set of probability Borel measures on H . The RDS (0.2)
defines a family of Markov chains in H . We shall denote by Pk and P∗

k the
corresponding Markov semigroups acting in Cb(H) and P(H), respectively:

Pkf(v) = Ef
(
uk(v)

)
, f ∈ Cb(H),

Pkµ(Γ) =

∫

H

P
{
uk(v) ∈ Γ

}
µ(dv), µ ∈ P(H).

Let us recall that µ ∈ P(H) is called a stationary measure for (0.2) if P∗
1µ = µ.

The goal of this paper is to present a new, simple proof of the uniqueness
and ergodicity of a stationary measure and to specify the rate of convergence
to it. Namely, we prove the following result:

Theorem 0.1. There is an integer N ≥ 1 such that if

bj 6= 0 for 1 ≤ j ≤ N, (0.3)

then (0.2) has a unique stationary measure µ. Moreover, for any R > 0 there

is CR > 0 such that

∣∣Pkf(u) − (µ, f)
∣∣ ≤ CRe−c

√
k
(
supH |f | + Lip(f)

)
for k ≥ 0, (0.4)

where ‖u‖ ≤ R, f is an arbitrary bounded Lipschitz function on H, and c > 0
is a constant not depending on u, f , R, and k.

Example 0.2. Let us consider the 2D Navier–Stokes (NS) equations perturbed
by a random kick-force:

u̇ − ν∆u + (u,∇)u + ∇p = η(t, x) ≡
∞∑

k=−∞
ηk(x)δ(t − k),

div u = 0, 〈u(t, ·)〉 = 0,

(0.5)

where u = u(t, x), x ∈ T
2, and 〈u〉 =

∫
T2 u(x) dx. Let H be the space of

divergence-free vector fields u ∈ L2(T2, R2) such that 〈u〉 = 0 and let {ej}
be the normalised trigonometric basis in H . Assuming that the kicks ηk ∈ H
have the form (0.1) and normalising solutions u(t) for (0.5) to be continuous
from the right, we observe that (0.5) can be written in the form (0.2), where
uk = u(k, ·) ∈ H and S : H → H is the time-one shift along trajectories of the
free NS system (i.e., of Equations (0.5) with η ≡ 0). As it is shown in [KS1],
the operator S satisfies all the required assumptions, and therefore Theorem 0.1
applies to (0.5).

2



Theorem 0.1 can also be applied to many other dissipative nonlinear PDE’s
perturbed by a random kick-force, in particular, to the complex Ginzburg–
Landau equation

u̇ − ν(∆ − 1)u + i|u|2u = η(t, x), x ∈ T
n,

where u = u(t, x) and ν > 0 (see [KS1, KS2]).
Uniqueness of a stationary measure for (0.2) was first established1 in [KS1].

The proof in [KS1] is based on a Lyapunov–Schmidt type reduction of the sys-
tem (0.2) to an N -dimensional RDS with delay (the integer N is the same as in
Theorem 0.1). Due to this reduction, the problem of uniqueness of a stationary
measure for (0.2) reduces to a similar question for an abstract 1D Gibbs system
with an N -dimensional phase space. The uniqueness for the reduced Gibbs sys-
tem is then established using a version of the Ruelle–Perron–Frobenius theorem.

E, Mattingly, Sinai [EMS] and Bricmont, Kupiainen, Lefevere [BKL] used
later similar approaches to show that the NS system (0.5) perturbed by a white
(in time) force of the form

η(t, x) =

N ′∑

j=1

bj β̇j(t)ej(x), N ′ < ∞,

also has a unique stationary measure µ ∈ P(H), provided that bj 6= 0 for
1 ≤ j ≤ N ≤ N ′ with some sufficiently large N = N(ν). Moreover, it is shown
in [BKL] that for the case of white noise the convergence in (0.4) is exponentially
fast for µ-almost all u ∈ H .

In [KS3] the NS equations (0.5) with an unbounded kick-force η(t, x) is
studied and the scheme of [KS1] is used to prove the uniqueness and ergodicity
of a stationary measure.

The approach presented in this work does not use a Lyapunov–Schmidt
type reduction and the Gibbs measure technique. Instead it exploits some ideas
from [KS2], interpreting them in terms of the coupling. The new approach gives
rise to a shorter proof and is more flexible.

The coupling is a well-known effective tool for studying finite-dimensional
Markov chains (e.g., see [Lin] and the Appendix in [V]) and dynamical systems
(e.g., see [Y, BL]). In [EMS] a coupling is used to study the auxiliary finite-
dimensional RDS with delay which arises as a result of the Lyapunov–Schmidt
reduction. Our work shows that a form of coupling applies directly to infinite-
dimensional Markov chains and randomly forced PDE’s.

When a preprint of this paper was sent around, we learned from L.-S. Young
that a similar approach to prove Theorem 0.1 is developed by her and Nader
Masmoudi in their work under preparation.

1It is shown in [KS1, KS2] that the left-hand side of (0.4) converges to zero as k → ∞ for
any f ∈ Cb(H); however, the rate of convergence is not specified.
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Notation

We abbreviate a pair of random variables ξ1, ξ2 or points u1, u2 to ξ1,2 and u1,2,
respectively. Given a probability space (Ω,F , P), for any integer k ≥ 1 we denote
by Ωk the space Ω× · · · ×Ω (k times) endowed with the σ-algebra F × · · · × F
and the measure P × · · · × P. For a random variable ξ, we denote by D(ξ) its
distribution.

For a Banach space H , we shall use the following spaces and sets:
Cb(H) is the space of bounded continuous functions on H with the supremum

norm ‖ · ‖∞.
L(H) is the space of bounded Lipschitz functions on H endowed with the

natural norm ‖ · ‖L (see Section 1).
M(H) is the space of signed Borel measures on H with bounded variation.
P(H) is the set of probability measures µ ∈ M(H); this space is endowed

with two different metrics described in Section 1.
P(H,A) is the set of measures µ ∈ P(H) with support in a closed set A.
µv(k) is the measure P(k, v, ·), where P is the Markov transition function

for (0.2).
BH(R) is the closed ball of radius R > 0 centred at zero.

Acknowledgements. The authors thank Roger Tribe and Sergei Foss for
fruitful discussions of the coupling approach during the Symposium “Stochas-
tic Fluid Equations” in Warwick on January 19–20, 2001, and at seminars in
Heriot-Watt University, respectively. The authors are also grateful to Jan Kris-
tensen for useful remarks on functional analysis. This research was supported
by EPSRC, grant GR/N63055/01.

1 Measures on Hilbert spaces

Let H be a separable Hilbert space with the Borel σ-algebra B(H) and let
M(H) be the space of signed Borel measures with bounded variation. We
denote by P(H) the set of probability measures µ ∈ M(H) and by P(H,A) the
subset in P(H) consisting of measures supported by a closed set A ⊂ H . For
any measure µ ∈ M(H) and any function f ∈ Cb(H), we write

(µ, f) =

∫

H

f(u) dµ(u) =

∫

H

f(u)µ(du).

We shall use two different topologies on P(H). The first of them is given by
the variation norm on M(H):

‖µ‖var = sup
Γ∈B(H)

|µ(Γ)|.

The distance defined by this norm on P(H) can be characterised in terms of
densities. Namely, let us assume that µ1, µ2 ∈ P(H) are absolutely continuous
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with respect to a fixed Borel measure m, finite or infinite. (Such a measure
always exists; for instance, one can take m = (µ1 +µ2)/2.) In this case, we have

‖µ1 − µ2‖var =
1

2

∫

H

|p1(u) − p2(u)| dm(u), (1.1)

where pi(u), i = 1, 2, is the density of µi with respect to m. The space P(H) is
complete with respect to ‖ · ‖var.

To define a second topology, we denote by L(H) the space of real-valued
bounded Lipschitz functions on H with the norm

‖f‖L :=
(

sup
u∈H

|f(u)|
)
∨

(
sup
u6=v

|f(u) − f(v)|

‖u − v‖

)
.

Let ‖ · ‖∗L be the dual norm on M(H):

‖µ‖∗L = sup
‖f‖L≤1

∣∣(µ, f)
∣∣.

It is clear that the norm ‖ · ‖∗L defines a metric on P(H).

Lemma 1.1. The space P(H) is complete with respect to the metric ‖ · ‖∗L.

Proof. Suppose that {µn} ⊂ P(H) is a sequence such that ‖µn − µm‖∗L → 0 as
m, n → ∞. Let L∗(H) be the space of continuous functionals on L(H). Regard-
ing µn as elements of L∗(H), we conclude that the sequence {µn} converges (in
the norm ‖ · ‖∗L) to a limit ℓ ∈ L∗(H), and we have

ℓ(f) = lim
n→∞

(µn, f), f ∈ L(H). (1.2)

In view of the corollary2 from Theorem 1 in [GS, Chapter VI, §1], there is a
measure µ ∈ P(H) such that ℓ(f) = (µ, f). This completes the proof.

Note that, in the case when H is finite-dimensional, the fact that the func-
tional ℓ in (1.2) is a measure is implied by the following well-known result (for
instance, see [H, Theorem 2.1.7]): any nonnegative distribution is a measure; in
particular, any positive functional ℓ ∈ L∗(H) is a measure as well.

Let P(k, u, Γ), k ≥ 0, u ∈ H , Γ ∈ B(H), be a Markov transition function. A
set A ⊂ B(H) is said be invariant for P if

P(k, u,A) = 1 for all k ≥ 0, u ∈ A.

Lemma 1.2. Let A ∈ B(H) be an invariant set for P(k, u, Γ). Suppose that

there is k0 ≥ 1 and a sequence ζk, k ≥ k0, going to zero as k → ∞ such that

‖P(k, u, ·)− P(k, v, ·)‖∗L ≤ ζk for k ≥ k0, u, v ∈ A. (1.3)

Then there is a unique measure µ ∈ P(H,A) such that

‖P(k, u, ·) − µ‖∗L ≤ ζk for k ≥ k0, u ∈ A. (1.4)

2The corollary of Theorem 1 in [GS, Chapter VI, §1] claims, in fact, that if the limit in (1.2)
exists for any f ∈ Cb(H), then the functional ℓ can be represented in the form ℓ(f) = (µ, f),
where µ ∈ P(H). However, the same proof works also in the case under study.
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Proof. Let f ∈ L(H), ‖f‖L ≤ 1. Then, by (1.3) and the Chapman–Kolmogorov
relation, for l ≥ k ≥ k0 and u, v ∈ A we have

∣∣(P(l, v, ·) − P(k, u, ·), f
)∣∣ ≤

≤

∣∣∣∣
∫

H

P(l − k, v, dz)

∫

H

(
P(k, z, dw)f(w) − P(k, u, dw)f(w)

)∣∣∣∣ ≤

≤ ζk

∫

H

P(l − k, v, dz) = ζk. (1.5)

By Lemma 1.1, the space P(H) is complete with respect to ‖ · ‖∗L. Hence, there
is a unique measure µ ∈ P(H) such that ‖P(l, v, ·) − µ‖∗L → 0 as l → ∞. It is
clear that suppµ ⊂ A and therefore µ ∈ P(H,A). Passing to the limit in (1.5)
as l → ∞, we obtain (1.4).

We now recall that a pair of random variables (ξ1, ξ2) defined on the same
probability space is called a coupling for given measures µ1, µ2 ∈ P(H) if
D(ξj) = µj , j = 1, 2. For some basic results on the coupling, see [Lin, V]
and the Appendix (Section 4).

Lemma 1.3. If measures µ1, µ2 ∈ P(H) admit a coupling (ξ1, ξ2) such that

P
{
‖ξ1 − ξ2‖ > ε

}
≤ θ, (1.6)

where ε > 0 and θ > 0 are some constants, then

‖µ1 − µ2‖
∗
L ≤ 2θ + ε. (1.7)

Proof. Let f ∈ L(H), ‖f‖L ≤ 1. Then (µ1,2, f) = E f(ξ1,2) and, therefore,

|(µ1 − µ2, f)| ≤
∣∣EχQ(f(ξ1) − f(ξ2))

∣∣ +
∣∣EχQc(f(ξ1) − f(ξ2))

∣∣, (1.8)

where χQ and χQc are characteristic functions of the event ‖ξ1 − ξ2‖ > ε and
of its complement, respectively. By (1.6), the first term in the right-hand side
of (1.8) is bounded by 2θ, while the second does not exceed ε‖f‖L ≤ ε. This
completes the proof of (1.7).

2 A class of random dynamical systems

Let H be a Hilbert space with a norm ‖ · ‖ and an orthonormal basis {ej} and
let S : H → H be an operator satisfying conditions (A) – (C) below:

(A) For any R > r > 0 there exist positive constants a = a(R, r) < 1 and

C = C(R) and an integer n0 = n0(R, r) ≥ 1 such that

‖S(u1) − S(u2)‖ ≤ C(R)‖u1 − u2‖ for all u1, u2 ∈ BH(R), (2.1)

‖Sn(u)‖ ≤ max{a‖u‖, r} for u ∈ BH(R), n ≥ n0. (2.2)
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Let ηk, k ≥ 1, be a sequence of i.i.d. H-valued random variables that are
defined on a probability space (Ω1,F1, P1) and have the form (0.1), where bj ≥ 0
are some constants such that ∞∑

j=1

b2
j < ∞, (2.3)

and {ξjk} is a family of independent real-valued random variables such that
|ξjk| ≤ 1 for all j, k, and ω1 ∈ Ω1. We consider the following RDS in H :

uk = S(uk−1) + ηk =: Fω1(uk−1), k ≥ 1. (2.4)

It follows from (0.1) and (2.3) that the distribution of ηk is supported by the
Hilbert cube K,

K =

{
u =

∞∑

j=1

ujej : |uj | ≤ bj for all j ≥ 1

}
.

Therefore, if the initial state u0 of the RDS (2.4) belongs to a set B ⊂ H , then
uk ∈ Ak(B) for all k ≥ 1 and ω1 ∈ Ω1, where A0(B) = B and

Ak(B) = S
(
Ak−1(B)

)
+ K for k ≥ 1.

The next condition expresses the property of existence of a bounded absorbing
set for the system in question.

(B) There exists ρ > 0 such that for any bounded set B ⊂ H there is an

integer k0 ≥ 1 such that Ak(B) ⊂ BH(ρ) for k ≥ k0.

Clearly, inequality (2.2) and condition (B) are satisfied if ‖S(u)‖ ≤ γ‖u‖ for
all u ∈ H and some positive constant γ < 1.

To formulate the last condition, we introduce some notations. For a sub-
space E ⊂ H , we denote by E⊥ its orthogonal complement in H . For an integer
N ≥ 1, let HN be the finite-dimensional subspace generated by the vectors
e1, . . . , eN and let PN and QN be the orthogonal projections onto HN and H⊥

N ,
respectively.

(C) For any R > 0 there is a decreasing sequence γN (R) > 0 tending to zero

as N → ∞ such that

∥∥QN

(
S(u1) − S(u2)

)∥∥ ≤ γN (R)‖u1 − u2‖ for all u1, u2 ∈ BH(R).

Finally, we specify the random variables {ξjk}:

(D) For any j, the random variables ξjk, k ≥ 1, have the same distribu-

tion πj(dr) = pj(r) dr, where the densities pj(r) are functions of bounded

variation such that supp pj ⊂ [−1, 1] and
∫
|r|≤ε

pj(r) dr > 0 for all j ≥ 1

and ε > 0. We normalise the functions pj to be continuous from the right.

7



The RDS (2.4) defines a family of Markov chains in H with the transition
function

P(k, v, Γ) = P
{
uk ∈ Γ

}
,

where (uk, k ≥ 0) is the solution of (2.4) such that u0 = v. Let Pk and P∗
k be the

corresponding semigroups (see the Introduction for their definition). Continuity
of S (see condition (A)) and the Lebesgue theorem on dominated convergence
imply that the transition function satisfies the Feller condition: if f ∈ Cb(H),
then Pkf ∈ Cb(H) for all k ≥ 1.

Let ρ > 0 be the constant in condition (B). We introduce the set

A =
⋃

k≥1

Ak

(
BH(ρ)

)
. (2.5)

It is clear that A is an invariant set for the RDS (2.4): if u0 ∈ A, then uk ∈ A
for all k ≥ 1 and ω1 ∈ Ω1. Moreover, it follows from condition (C) that the
set A is compact in H . (Note that the union in (2.5) is taken over k ≥ 1 and
therefore BH(ρ) is not a subset of A.)

Our goal is to prove the following result:

Theorem 2.1. There is an integer N ≥ 1 such that if (0.3) holds, then the

RDS (2.4) has a unique stationary measure µ ∈ P(H,A). Moreover, for any

R > 0 there is CR > 0 such that

∣∣Pkf(u) − (µ, f)
∣∣ ≤ CRe−c

√
k‖f‖L for k ≥ 0, ‖u‖ ≤ R,

where f ∈ L(H) is an arbitrary function and c > 0 is a constant not depending

on f , u, R, and k.

Condition (B) and the definition of A imply that for any R > 0 there is
an integer l ≥ 1 depending on R such that P(l, u,A) = 1 for any u ∈ BH(R).
Hence, we can restrict our consideration to the invariant set A. In view of
Lemma 1.2, Theorem 2.1 will be established if we show that there are positive
constants C and c and an integer k0 ≥ 1 such that

‖P(k, u, ·)− P(k, v, ·)‖∗L ≤ C e−c
√

k for k ≥ k0, u, v ∈ A. (2.6)

3 Proof of the main result

We first establish some auxiliary assertions and then use them to prove inequal-
ity (2.6), which implies the required result.

3.1 Auxiliary assertions

We begin with a simple observation. Let R > 0 be so large that BH(R) ⊃ A.
To simplify notation, we denote B = BH(R).
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Lemma 3.1. For any d > 0 there is an integer l = l(d) ≥ 0 and a constant

κ = κ(d) > 0 such that

P
{
‖ul(v)‖ ≤ d/2 for all v ∈ B

}
≥ κ. (3.1)

Proof. Let a and n0 be the constants in condition (A) that correspond to the
parameters R (the radius of B) and r = d/4 and let l = n0m, where m is the
smallest integer such that amR ≤ d/4. If ηk = 0 in (2.4) for 1 ≤ k ≤ l, then, in
view of (2.2), we have

‖ul(v)‖ ≤ max{amR, d/4} = d/4 for all v ∈ B.

By continuity, there is γ > 0 such that if

‖ηk‖ ≤ γ for 1 ≤ k ≤ l, (3.2)

then
‖ul(v)‖ ≤ d/2. (3.3)

It follows from (2.3) and condition (D) that the event (3.2) has a positive prob-
ability κ. Inequality (3.1) follows now from (3.3).

To simplify notation, for any v ∈ H we denote by µv(k) the measure
P(k, v, ·) ∈ P(H). For any measurable space (X,B(X)) and any integer k ≥ 1,
we denote by Xk the direct product X × · · · × X endowed with the product
σ-algebra Bk(X) = B(X)× · · · × B(X).

Lemma 3.2. There is a probability space (Ω,F , P), an integer N ≥ 1, and

a constant C > 0 such that if (0.3) holds, then for any u1, u2 ∈ B the mea-

sures µu1,2
(1) admit a coupling V1,2 = V1,2(u1, u2; ω) that possesses the following

properties:

(i) The maps V1,2 are measurable with respect to the σ-algebra B2(H)×F as

functions of (u1, u2, ω) ∈ B2 × Ω.

(ii) Let d = ‖u1 − u2‖. Then

P
{
‖V1 − V2‖ ≥ d/2

}
≤ Cd. (3.4)

Let us note that inequality (3.4) is nontrivial only in the case Cd < 1.

Proof. Let (Ω1,F1, P1) be the probability space on which the random vari-
ables {ηk} are defined and let (Ω2,F2, P2) be the probability space constructed
in Theorem 4.2 for the measures ν1,2 specified below. We shall show that the
set Ω = Ω1 × Ω2 endowed with the natural σ-algebra and probability of direct
product is the required probability space.

The random variables V1,2 are sought in the form

V1 = S(u1) + ξ1, V2 = S(u2) + ξ2,
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where ξ1,2 are some random variables on Ω such that D(ξ1) = D(ξ2) = D(η1).
It is clear that D(V1,2) = µu1,2

(1) and that (i) holds. To define the random
variables ξ1,2, we specify their projections PNξ1,2 and QN ξ1,2, where N ≥ 1 is
a sufficiently large integer which is chosen below.

We set
QNξ1 = QNξ2 = QN η̃1,

where η̃1 is the natural extension of η1 to Ω, i.e., η̃1(ω) = η1(ω1) for ω =
(ω1, ω2) ∈ Ω. To define PNξ1,2, let us write ν1,2 := PNµu1,2

(1) and assume that
we have proved the inequality

‖ν1 − ν2‖var ≤ Cd, (3.5)

where C > 0 is a constant not depending on u1,2 ∈ B. In view of Theorem 4.2,
there is a maximal coupling Ξ1,2(u1, u2; ω2) for the measures ν1,2 that is mea-
surable with respect to (u1, u2, ω2) ∈ B2 × Ω2:

P{Ξ1 6= Ξ2} = ‖ν1 − ν2‖var ≤ Cd. (3.6)

Retaining the same notation for the natural extensions of Ξ1 and Ξ2 to Ω, we
now set

PNξ1,2 = Ξ1,2 − PNS(u1,2)

and note that PNV1 6= PNV2 if and only if Ξ1 6= Ξ2. Let N ≥ 1 be so large that
γN (R) ≤ 1/2 (see condition (C)). In this case, if PNV1 = PNV2, then

‖V1 − V2‖ =
∥∥QN (V1 − V2)

∥∥ =
∥∥QN (S(u1) − S(u2))

∥∥ ≤ ‖u1 − u2‖/2 ≤ d/2.

Inequality (3.4) follows now from (3.6).
Thus, it remains to establish (3.5). To this end, we set v1,2 = PNS(u1,2)

and note that, in view of (2.1),

‖v1 − v2‖ ≤ C(R)d. (3.7)

Since bj 6= 0 for 1 ≤ j ≤ N , condition (D) implies that D(PNη1) = p(x) dx,
where dx is the Lebesgue measure on the finite-dimensional space HN and

p(x) =

N∏

j=1

qj(xj), qj(xj) = b−1
j pj(xj/bj), x = (x1, . . . , xN ) ∈ HN ,

is a bounded function with support in the set PNK. It follows that

ν1,2 = D(v1,2 + PNη1) = p(x − v1,2) dx.

Therefore, by (1.1),

‖v1 − v2‖var =
1

2

∫

HN

|p(x − v1) − p(x − v2)| dx.
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We claim that

∫

HN

|p(x − v1) − p(x − v2)| dx ≤ |v1 − v2|

N∑

j=1

b−1
j Var(pj), (3.8)

where Var(pj) stands for the total variation of pj . The required inequality (3.5)
follows immediately from (3.7) and (3.8).

To prove (3.8), we first assume that pj are C1-smooth functions. In this
case, we have

∫

HN

|p(x − v1) − p(x − v2)| dx

≤ |v1 − v2|

∫

HN

∫ 1

0

∣∣(∇p)(x − θv1 − (1 − θ)v2)
∣∣ dθdx

= |v1 − v2|

∫

HN

∣∣(∇p)(x)
∣∣ dx ≤ |v1 − v2|

N∑

j=1

∫

R

∣∣∂xj
qj(xj)

∣∣ dxj

= |v1 − v2|
N∑

j=1

Var(qj).

It remains to note that Var(qj) = b−1
j Var(pj).

Inequality (3.8) in the general case can be easily derived by a standard
approximation procedure; we omit the corresponding arguments.

We now combine Lemmas 3.1 and 3.2 to obtain a coupling Uk
1,2(u1, u2) for

the measures µu1,2
(k), k ≥ 1. Let l = l(d) and C > 0 be the constants in

Lemmas 3.1 and 3.2 and let d0 > 0 be so small that

Cd0 ≤ 1/4.

We set dr = 2−rd0, r ≥ 1.
For a probability space (Ω,F , P), we shall denote by (Ωk,Fk, Pk) the direct

product of its k independent copies. Points of the latter will be denoted by ω
k =

(ω1, . . . , ωk).

Lemma 3.3. Suppose that the conditions of Lemma 3.2 are satisfied. Let

u1, u2 ∈ A and d = ‖u1 − u2‖. Then for any k ≥ 1 the measures µu1,2
(k)

admit a coupling Uk
1,2 = Uk

1,2(u1, u2; ω
k), ω

k ∈ Ωk, such that the following

assertions hold:

(i) The maps Uk
1,2(u1, u2; ω

k) are measurable with respect to (u1, u2, ω
k) ∈

A2 × Ωk.

(ii) There is a constant θ > 0 not depending on u1, u2, and k such that

P
k
{
‖Uk

1 − Uk
2 ‖ ≤ dr

}
≥ θ for all k ≥ r + l(d0), u1, u2 ∈ A. (3.9)

11



(iii) If ‖u1 − u2‖ ≤ dr, then

P
k
{
‖Uk

1 − Uk
2 ‖ ≤ dk+r

}
≥ 1 − 2−r−1 for all k ≥ 1, r ≥ 0. (3.10)

Proof. Let us recall that for any (u1, u2) ∈ B ×B a coupling V1,2(u1, u2; ω) was
constructed in Lemma 3.2. We set

Uj(u1, u2; ω) =

{
Vj(u1, u2; ω) if ‖u1 − u2‖ ≤ d0,
Fω(uj) if ‖u1 − u2‖ > d0,

where j = 1, 2 and Fω(u) is given by (2.4). We define random variables Uk
1,2 on

(Ωk,Fk) by the following rule: if ‖u1 − u2‖ > d0, then

Uk
j (u1, u2; ω

k) = Fωk ◦ · · · ◦ Fω1(uj)

for k ≤ l(d0) and

Uk
j (u1, u2; ω

k) = Uj

(
Uk−1

1 (u1, u2; ω
k−1), Uk−1

2 (u1, u2; ω
k−1); ωk

)
(3.11)

for k > l(d0), where ω
k = (ωk−1, ωk) = (ω1, . . . ωk) and U0

j (u1, u2) = uj. If

‖u1 − u2‖ ≤ d0, then U0
1,2(u1, u2) = u1,2 and for k ≥ 1 the random variables

Uk
j (u1, u2; ω

k) are inductively defined by (3.11).

We claim that Uk
1,2 satisfy assertions (i) – (iii) of the lemma. Indeed, the

measurability of the maps Uk
1,2 is obvious since they are compositions of mea-

surable maps. To prove (3.9), we first note that it is sufficient to consider the
case k = l + r, l = l(d0). We introduce the following events in Ωl+r:

Q+ =
{
‖U l

1 − U l
2‖ ≤ d0

}
,

Q− =
{
‖U l

1 − U l
2‖ > d0

}
,

Q =
{
‖U l+r

1 − U l+r
2 ‖ ≤ dr

}
.

By Lemma 3.1, we have

P
k(Q) = P

k(Q|Q+)P(Q+) + P
k(Q|Q−)P(Q−) ≥ κ P

k(Q|Q+). (3.12)

If we assume that (3.10) is proved for r = 0, then (3.12) will imply the required
estimate (3.9) with θ = κ/2. Thus, it remains to established (iii).

For a fixed r ≥ 0, we set

Q+
k =

{
‖Uk

1 − Uk
2 ‖ ≤ dk+r

}
, Q−

k =
{
‖Uk

1 − Uk
2 ‖ > dk+r

}

and denote by p+
k and p−k the probabilities of Q+

k and Q−
k , respectively. Us-

ing (3.4) with d = dk+r−1, we derive

p+
k = p+

k−1P
k(Q+

k |Q
+
k−1) + p−k−1P

k(Q+
k |Q

−
k−1) ≥ (1 − Cdk+r−1)p

+
k−1.

Since p+
0 = 1, iteration of this estimate results in

p+
k ≥ λ :=

k−1∏

j=0

(1 − Cdj+r). (3.13)
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Since dm = 2−md0 and Cd0 ≤ 1/4, we have

log λ =

k−1∑

j=0

log(1 − Cdj+r) ≥ −C

k−1∑

j=0

dj+r

≥ −Cd0

∞∑

j=0

2−(j+r) = −21−rCd0 ≥ −2−r−1.

Therefore, λ ≥ 1 − 2−r−1.

3.2 Proof of Theorem 2.1

As was mentioned at the end of Section 2, it is sufficient to establish inequal-
ity (2.6). In what follows, to simplify notation, we shall write P instead of P

k.
1) Let us fix arbitrary u1, u2 ∈ A and set T0 = 0 and Tr = Tr−1 + r + l for

r ≥ 1, i.e.,
Tr = r(r + 1)/2 + rl.

We claim that for any integer r ≥ 0 there is a coupling y1,2(Tr) on ΩTr for the
measures µu1,2

(Tr) such that

P
{
‖y1(Tr) − y2(Tr)‖ > dr

}
≤ C1γ

r, (3.14)

where C1 and γ < 1 are some positive constants.
The construction of y1,2(Tr) = y1,2(Tr, u1, u2; ω

Tr ) and the proof of (3.14)
are by induction. For r = 0, we set yj(0) = uj, and inequality (3.14) with C1 ≥ 1
is trivial in this case. Assuming that y1,2(Ti) are constructed for 0 ≤ i ≤ r, we
set

yj(Tr+1, u1, u2; ω
Tr+1) = U r+l+1

j

(
y1(Tr, u1,2; ω

Tr ), y2(Tr, u1,2; ω
Tr ); ωr+l+1

)
,

(3.15)
where Uk

1,2(u1, u2; ω
k) are defined in Lemma 3.3 and ω

Tr+1 = (ωTr , ωr+l+1).
Let us introduce the events

Q+
r =

{
‖y1(Tr) − y2(Tr)‖ ≤ dr

}
, Q−

r =
{
‖y1(Tr) − y2(Tr)‖ > dr

}

and denote by p+
r and p−r their probabilities. Then, in view of (3.9) and (3.10)

with k = r + l, we have (cf. (3.12))

p−r+1 = P(Q−
r+1|Q

+
r )P(Q+

r ) + P(Q−
r+1|Q

−
r )P(Q−

r )

≤ 2−r−1p+
r + (1 − θ)p−r ≤ 2−r−1 + γp−r , (3.16)

where γ = 1 − θ. Without loss of generality, we can assume that 0 < θ < 1/2,
and therefore 1 < 2γ < 2. Iterating (3.16), we obtain

p−r+1 ≤ 2−r−1
r∑

j=0

(2γ)j + γr+1p−0 ≤ 2−r−1 (2γ)r+1 − 1

2γ − 1
+ γr+1 ≤ C1γ

r+1.

13



This completes the induction.
2) We can now prove (2.6). Let us fix arbitrary positive integers r and

m ≤ r + l and set k = Tr + m, so that Tr + 1 ≤ k < Tr+1. We define
a coupling y1,2(k) = y1,2(k, u1, u2) for the measures µu1,2

(k) by the formula
(cf. (3.15))

yj(k, u1, u2; ω
k) = Um

j

(
y1(Tr, u1, u2; ω

Tr ), y2(Tr, u1, u2; ω
Tr); ωm

)
.

In view of (3.10) and (3.14), we have (cf. (3.16))

P
{
‖y1(k) − y2(k)‖ > dr+1

}
≤ P(Q−

r ) + 2−r−1
P(Q+

r ) ≤ C2γ
r, (3.17)

where C2 > 0 is a constant. Now note that r2/2 ≤ Tr ≤ (l + 1)r2 for any r ≥ 0
and therefore there are positive constants C and c such that

dr+1 ≤ C e−c
√

k, C2γ
r ≤ C e−c

√
k for Tr ≤ k < Tr+1.

Combining this with (3.17), we derive

P
{
‖y1(k, u1, u2) − y2(k, u1, u2)‖ ≥ C e−c

√
k
}
≤ C e−c

√
k. (3.18)

By Lemma 1.3, inequality (3.18) implies that

∥∥µu1
(k) − µu2

(k)
∥∥∗

L
≤ 3C e−c

√
k

which completes the proof of (2.6) with k0 = T1. Theorem 2.1 is proved.

4 Appendix: coupling

In this appendix, we present some results on the coupling in finite-dimensional
spaces in the form which we learned from S. Foss. These results are well known
(e.g., see [Lin, V] for Lemma 4.1 and [BF] for Lemma 4.3).

Let ν1, ν2 ∈ P(RN ) be two measures absolutely continuous with respect to
the Lebesgue measure dx:

ν1,2(dx) = p1,2(x) dx.

We set

ρ := ‖ν1 − ν2‖var =
1

2

∫

RN

|p1(x) − p2(x)| dx (4.1)

and assume first that 0 < ρ < 1. Let

p := (1 − ρ)−1p1 ∧ p2, p̂1,2 := ρ−1(p1,2 − p). (4.2)

For ρ = 1 or 0, we define p(x) and p1,2(x) as follows:

p(x) ≡ 0, p̂1,2(x) ≡ p1,2(x) if ρ = 1, (4.3)

p(x) ≡ p1(x), p̂1,2(x) ≡ 0 if ρ = 0. (4.4)

14



It is clear that

p1,2(x) = (1 − ρ)p(x) + ρp̂1,2(x) almost everywhere.

If (ξ1, ξ2) is a coupling for the measures (ν1, ν2), then for any Γ ∈ B(RN) we
have

ν1(Γ) − ν2(Γ) = E
{
χΓ(ξ1) − χΓ(ξ2)

}

= E
{
χ{ξ1 6=ξ2}

(
χΓ(ξ1) − χΓ(ξ2)

)}

≤ P{ξ1 6= ξ2}.

Therefore,
P{ξ1 6= ξ2} ≥ ρ ≡ ‖ν1 − ν2‖var.

A coupling (ξ1, ξ2) for (ν1, ν2) is said to be maximal if

P{ξ1 6= ξ2} = ρ ≡ ‖ν1 − ν2‖var.

Lemma 4.1. Let ξ1,2, ξ, and α be independent random variables such that

P{α = 1} = 1 − ρ, P{α = 0} = ρ, D(ξ) = p(x) dx, D(ξ1,2) = p̂1,2(x) dx.
(4.5)

Then the random variables

Ξ1,2 = αξ + (1 − α)ξ1,2 (4.6)

form a maximal coupling for ν1,2.

Proof. Since ξ1 and ξ2 are independent and their distributions possess densities
with respect to the Lebesgue measure, we have P{ξ1 = ξ2} = 0. Taking into
account the relation α(1 − α) ≡ 0, we get

D(Ξ1,2) = p1,2(x) dx = ν1,2, P{Ξ1 6= Ξ2} = P{α = 0} = ρ,

which completes the proof.

Let us now assume that ϕ is a random variable in R
N with the distribution

D(ϕ) = q(x) dx, where q ∈ L1(RN ). Consider the following family of measures
depending on a parameter v ∈ R

N :

νv(dx) = D(v + ϕ) = q(x − v) dx.

Let ρ(v1, v2) be the variation distance between νv1
and νv2

. It is clear
from (4.1) that ρ(v1, v2) is measurable with respect to v1, v2 ∈ R

2N . In the
construction above, let us take ν1,2 = νv1,2

. Then

p(x) = p(x; v1, v2), p̂1,2(x) = p̂1,2(x; v1, v2).

Clearly, the functions p(x; v1, v2) and p̂1,2(x; v1, v2) are measurable with respect
to (x, v1, v2). Using the above observations, we construct a coupling for (νv1

, νv2
)

that is measurable with respect to (v1, v2, ω). Namely, we have the following
result:
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Theorem 4.2. There is a probability space (Ω,F , P) such that for any pair

(v1, v2) ∈ R
2N there are random variables Ξ1,2 = Ξ1,2(v1, v2; ω) satisfying the

following properties:

(i) The pair (Ξ1, Ξ2) is a maximal coupling for (νv1
, νv2

).

(ii) The map Ξ(v1, v2; ω) : R
2N × Ω → R

N is measurable with respect to the

σ-algebra B(R2N) ×F .

To prove the theorem, we shall need the lemma below:

Lemma 4.3. Let µz ∈ P(RN ), z ∈ R
d, be a family of probability measures such

that

µz(dx) = pz(x) dx,

where pz ∈ L1(RN
x ) for each z ∈ R

d and pz(x) is measurable as a function of

(x, z) ∈ R
N × R

d. Then there is a probability space (Ω,F ,P) and a family of

random variables ζz : Ω → R
N such that D(ζz) = µz for all z ∈ R

d and ζz(x) is

measurable with respect to (z, x).

Proof. If N = 1, then we take (Ω,F , P) = ([0, 1],B, dt), where B is the Borel
σ-algebra and dt is the Lebesgue measure. Denoting by Fz(λ) the distribution
function of the measure µz, Fz(λ) = µz((−∞, λ]), we set

ζz(t) = min{λ : Fz(λ) ≥ t}.

The map (t, z) 7→ ζz(t) from [0, 1]×R
d to R is measurable, and the distribution

function of D(ζz) is equal to Fz. Thus, for N = 1 the lemma is proved.
We now assume that the required assertion is established for N = L and

prove it for N = L + 1. Let us write x ∈ R
L+1 as x = (x′, y), where x′ ∈ R

L

and y ∈ R. Decomposing µz in terms of the conditional density (see [GS]), we
write

µz(dx) = pz(x) dx = p′z(x
′| y) dx′qz(y) dy. (4.7)

Here

qz(y) =

∫

RL

pz(x
′, y) dx′, p′z(x

′| y) =
pz(x

′, y)

qz(y)
,

where we set 0/0 = ∞/∞ = 0. Applying the induction hypothesis with z
replaced by (z, y), we find a probability space (Ω′,F ′, P′) and a measurable
map

ζ′z(ω
′, y) : Ω′ × R

d × R → R
L

such that D
(
ζ′z(·, y)

)
= p′z(x

′| y) dx′ for each (z, y) ∈ R
d ×R. Applying the first

step of the proof, we construct a measurable map ξz(t) : [0, 1] × R
d → R such

that D(ξz) = qz(λ) dλ. We now set Ω = Ω′ × [0, 1] and

ζz(ω
′, t) =

(
ζ′z(ω

′, ξz(t)), ξz(t)
)
∈ R

L+1.

We have constructed a measurable map Ω×R
d → R

L+1 such that, for any fixed
z ∈ R

d, its distribution is given by the right-hand side of (4.7).
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Proof of Theorem 4.2. Applying Lemma 4.2 to measures in R
N given by the

densities p and p̂1,2, we construct probability spaces (Σj ,Sj , Pj), j = 0, 1, 2, and

random variables ξj

(v1,v2)
on Σj such that

D(ξ0
(v1,v2)) = p(x; v1, v2) dx, D(ξj

(v1,v2)) = p̂j(x; v1, v2) dx, j = 1, 2. (4.8)

We also define a random variable αρ : [0, 1] → {0, 1}, ρ = ρ(v1, v2), by the
formula

αρ(t) = χ[0,1−ρ](t),

where [0, 1] is endowed with the Borel σ-algebra and the Lebesgue measure,
and χ[0,r] is the characteristic function of the interval [0, r].

We now define the required probability space as the set

Ω = Σ0 × Σ1 × Σ2 × [0, 1]

with the σ-algebra and the probability of direct product. The natural exten-
sions3 of αρ and ξj

(v1,v2)
, j = 0, 1, 2, to Ω (for which we retain the same notations)

form a quadruple of independent random variables satisfying (4.8) and also the
relations

P{αρ = 1} = 1 − ρ(v1, v2), P{αρ = 0} = ρ(v1, v2).

A maximal coupling (Ξ1, Ξ2) for the measures (νv1
, νv2

) that satisfies asser-
tion (ii) of the theorem can now be defined by formula (4.6), in which α = αρ,

ξ = ξ0
(v1,v2), and ξj = ξj

(v1,v2)
, j = 1, 2.
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