
Research Article

A Coupling Electromechanical Cell-Based Smoothed Finite
Element Method Based on Micromechanics for Dynamic
Characteristics of Piezoelectric Composite Materials

Jianxiao Zheng ,1 Zhishan Duan ,1 and Liming Zhou 2

1Yanta Road No. 13, School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology,
Xi’an 710055, Shaanxi, China
2Renmin Street No. 5988, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, Jilin, China

Correspondence should be addressed to Jianxiao Zheng; zhengjianxiao1979@163.com

Received 13 January 2019; Revised 22 April 2019; Accepted 28 April 2019; Published 28 May 2019

Guest Editor: Rishi Gupta

Copyright © 2019 Jianxiao Zheng et al.+is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Coupling electromechanical cell-based smoothed finite element method (CSFEM) with the asymptotic homogenization method
(AHM) is presented to overcome the overstiffness of FEM. +is method could accurately simulate the dynamic responses and
electromechanical coupling effects of piezoelectric composite material (PCM) structures. Firstly, the efficient performances for
active compounds of round cross-section fibers are calculated based on AHM. Secondly, in the CSFEM, electromechanical multi-
physic-field FEM is coupled with gradient smoothing technique. CSFEM returns the nearly exact stiffness of continuum
structures, which auto discretes the elements in complex areas more readily and thus remarkably reduces the numerical errors.
Static and dynamic characteristics of four PCM structures are investigated using CSFEM with AHM. Results are compared with
analytical solution and those of FEM, which proves that CSFEM with AHM is more accurate and reliable than the standard FEM
when solving problems of complex structures. Additionally, CSFEM could provide results of higher accuracy even using distorted
meshes. +erefore, such method is a robust tool for analyzing mechanical properties of PCM structures.

1. Introduction

Piezoelectric composite materials (PCMs) could confirm
between mechanical energy and electrical energy [1]. PCMs
are made of piezoceramics and passive non-piezoelectric
polymers [2, 3]. +ese composites possess superior prop-
erties owing to the most promising characteristics of
components as well as various structures.

Because of the electromechanical effects, PCMs are more
often used as sensors or actuators into noise, vibration,
precision position control, energy harvesting, and structural
health monitoring [4–6]. +us, the electric-mechanical
properties of PCMs were investigated widely. +e hetero-
geneous media can be generally characterized by micro-
mechanical models. Under such scenario, numerical or
analytical ways were used to electromechanically charac-
terize PCMs.

Some analytical approaches were presented to in-
vestigate PCMs, but the methods were limited by boundary
conditions and loading cases [7, 8]. Moreover, single in-
clusion was applied into a piezoelectric material based on
the micromechanical theory with the electromechanical
solution [9–13]. Also, the asymptotic homogenization
method (AHM) was developed to solve the effective co-
efficients of PCMs with the square fibers distribution
[14, 15]. AHM can be used to calculate effective perfor-
mances of structures made of hexagonal symmetrical and
randomly distributed fibers [16, 17]. +e effective elastic
coefficients of periodic composites could be solved by an
asymptotic method [18]. Otero et al. expressed the effective
properties of reinforced PCMs in the closed form [19]. de
Medeiros et al. studied the effective coefficients of PCMs
made of circular or squared cross-sectional fibers based on
AHM [20]. Viaño et al. derived a high-order asymptotic
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expanding model of piezoelectric rods [21]. Le built an
exact 2D theory based on the variation asymptotic method
for functionally graded PCMs [22]. Fantoni et al. proposed
a multifield AHM to analyze the periodic microstructured
PCMs exposed to body force, charge density, and heat
sources [23]. However, closed-form solutions which are
very a valuable benchmark to issues concerning PCMs are
often inaccessible except for relatively simple boundary and
geometry conditions.

Among numerical approaches, researchers usually
use the finite element model (FEM) to develop a specific
representative volume element (RVE) for various
physical problems, including piezoelectricity. Kar-Gupta
and Venkatesh developed an FEM to evaluate how the
fiber form affected the general piezoelectric characteristic
of PCMs [24]. Jin et al. developed a micromechanical
model based on linear stress strain relations and the
stress amplification factor to determine the microstress
under various mechanical loadings [25]. de Medeiros
et al. compared the analytical model and FEM with RVEs
in calculating the effective coefficients of PCMs [20].
Würkner et al. established a numerical model to estimate
the effective indexes of unidirectional fiber-reinforced
PCMs with rhombic fiber arrangement [26]. Mishra et al.
extended FEM to evaluate the effective properties of
PCMs with SU8 photoresist as the matrix reinforced by
the vertically arrayed ZnO nanowires [27]. Bowen et al.
discussed the effective properties of new PCMs based on
ferroelectric PCR-7M ceramic [28]. +ough most of the
FEMs can interpolate displacement and electric potential
as kinematic field indicators with satisfactory compati-
bility equations, these methods are often limited by
overly stiffness, inaccuracy, and sensitivity to mesh
distortion. +ese limitations can be overcome by hybrid
and mixed finite elements [29–32]. Other contributions
include drilling degree-of-freedom piezoelectric ele-
ments [33–35]. For details and review on FEM estab-
lishment for PCM analysis and modeling, refer to
Reference [36]. So far, much research has been conducted
to develop new special elements [12, 37]. However, the
application of FEM is yet limited by the occurrence of
mesh distortion.

To solve the problem of mesh distortion in FEM, Liu
et al. presented a new smoothed FEM by incorporating the
gradient smoothing technique (GST) into FEM for solid
mechanics problems, based on the nodal integrated
meshless methods [38–42]. +e FEM employs standard
Galerkin formulation in which the stiffness matrix is
stiffened by the presumed displacement field [43]. In the
smoothed FEM, the smoothed Galerkin weak form is used
where GST softens the stiffness matrix through the soft-
ening effect. +eoretically, the smoothed FEM in the en-
ergy norm often creates a softer stiffness matrix than the
FEM with the same background meshes [44, 45]. +is
unique ability endows smoothed FEM with many critical
characteristics [46], such as the easier modeling, upper
bound solution property [47], and even nearly perfect
solutions in a norm [43, 48–52]. +e softening effects
enable smoothed FEM to process highly distorted meshes

and n-sided polygonal elements [45]. +e smoothed FEM
interpolates displacement according to the same lower
standard mesh and evaluates the weak form based on the
smoothing zones.

An ultraprecise hybrid smoothed FEM for the piezo-
electric problem was designed using with the simplest
three- and four-sided elements in 2D and 3D, respectively
[53]. An edge-based smoothed FEM was proposed for
static eigenvalue assessment of 2D piezoelectric structures
[54]. An effective numerical method was presented to
optimize and maximize the basic frequency of functionally
graded carbon-nanotube-strengthened four-sided sheets
[55]. On the commercial software ABAQUS, Bhowmick
and Liu established a phase-field model based on cell-
based smoothed FEM (CSFEM) to address the brittle
fracturing in solids [56]. Pramod et al. developed the
CSFEM with the Reissner’s mixed variational theorem to
analyze the static and free vibration of cross-ply sheet
plates [57].

In this work, the dynamic characteristics on PCM
structures were studied by using the technique based on
the effective CSFEM with AHM. Longitudinal/transversal
elastic, piezoelectric, and dielectric effective parameters of
a piezoceramic fiber with an O-shaped geometrical section
buried in a non-piezoelectric material were computed by
AHM based on micromechanics. +e CSFEM of PCM
structures was presented by applying GST into the exit
FEM for an electromechanical coupling field. +en, the
equations of the dynamic responses under the multifield
for PCM instruments were deduced. Finally, a bilayered
PCM actuator and a PCM energy harvester based on
micromechanics were calculated by CSFEM. Results of
CSFEM were compared with those of FEM, which vali-
dated that CSFEM possessed the advantages of accuracy,
convergence, and efficiency. Besides, CSFEM was in-
sensitive to mesh distortion, which was very useful to
analyze complex structures or large deformation prob-
lems. +erefore, CSFEM with AHM performed better than
FEM.

+is paper is organized as follows: Section 2 introduces
the basic formulations for PCMs. Sections 3 and 4 describe
the AHM based on micromechanics and CSFEM, re-
spectively. Section 5 puts forward the modified Wilson-θ
method. In Section 6, the bilayered PCM actuator and the
PCMs energy harvester were elaborated. Section 7 gives the
conclusions.

2. Basic Equations for PCMs

2.1. Geometry and Coordinate System. +e cross section of a
PCM beam was a rectangle with length L, breadth b, and
height h. Here, the continuum theory was used. +e PCMs,
cylindrical piezoceramic fibers, were buried in the epoxy
substrate. +e Cartesian coordinate system (x1, x2, x3) and
geometric parameters are illustrated in Figure 1.

2.2. Constitutive Equations. +e 3D linear constitutive
equations, which can very accurately model the
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electromechanical coupling behavior of PCMs, are polarized
along the global coordinates as follows:
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where σij and εkl are the stress and infinitesimal strain
tensors, respectively; Ei and Di are electric field and electric
displacement vector components, respectively; eik, ckl, and χij
are the piezoelectric, elastic, and dielectric material con-
stants, respectively.

In the PCM beam, equations (1) and (2) could be written
in the matrix form:

σ � Cε− eE,
D � eTε + χE,

(3)

where
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 ,
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(4)

�e balance law and Gauss’ law underlie the description
of the coupled field responses, and in the case of no body
force and for quasistatic electromechanics, equations can be
expressed as

σji,j � 0,

σji � σij,

Di,i � 0.

(5)

�e boundary conditions are as follows:
For the mechanical fields,

ui(t) � ui(t) on Γu,
σijnj � βi(t) on Γβ,
Γ � Γu ∪ Γβ.

(6)

L

h

b

x3

x2

x1

Figure 1: A PCMs beam: geometric parameters and Cartesian coordinate system.
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For the electric fields,

Φ(t) � Φ(t) on Γp,
Dini � Q(t) on Γb,
Γ � Γa ∪Γb,

(7)

where Γ, ui(t), and Φ(t) are the global boundary, dis-
placement, and electrical potential, respectively; Γu, Γβ, Γp,
and Γq are the prescribed displacement, traction vector,
normal component of the electric displacement vector, and
electrical potential of Γ, respectively; βi(t) and Q(t) are the
surface load and surface density of free charge, respectively.

3. AHM

A fiber and matrix two-phase structure (Figure 2(a)) is
defined by a composite bodyΩ and the axis x3 parallel to the
fibers. Straight reinforcement is periodically arranged.
Hence, RVE could be illustrated in Figure 2(b). �e periodic
cell S has a squared transversal , which includes a circle of
radius R (Figure 2(c)).

�e phases are supposed to be homogeneous and
electroelastically linear. Between the fiber and the matrix is
the interface Γ, which is regarded as perfect. In the com-
posite, the dimensions l and L are the fiber diameter and the
center-to-center distance between two adjacent cylinders
(fibers), respectively. Since ε� l/L is far smaller than the
dimension of RVE, two space scales the slow variable x and
the fast variable y� x/ε, can be separated. �e stress and
strain tensors, electrical displacement vector, and electric
potential are continuous across Γ or namely between phases.
�us, Ckl, eik, and χij have piecewise constant roles in the
periodic cells.

�e first set of math issues has new physical relation-
ships over Ω with mechanical (C), piezoelectric (e), and
dielectric (χ) constant coefficients, which reflect the
characteristics of a uniform medium Ω and are called the
effective characteristics of PCMs (Figure 2).�e coefficients
cijpq, eipq, and χip could be computed using the equations in
Reference [14].

4. Electromechanical CSFEM

4.1. Weak Formulation. �e virtual work for a piezoelectric
material with volume Ω and regular boundary surface Γ can
be expressed as

δΠ � δU− δW � −∫
Ω
δεTσdΩ + ∫

Γ
δuTβdΓ

+ ∫
Ω
ρδuT €udΩ + ∫

Ω
δE

T
DdΩ + ∫

Γ
QδΦdΓ � 0,

(8)
where ρ and δ are mass density and virtual quantity, re-
spectively. Ω is divided into np elements, which contains Nn

nodes, and the approximation displacement u and electrical
potential Φ for an FGPM problem can be expressed as

u �∑np
i�1

Nu
i ui � Nuu,

Φ �∑np
i�1

NΦi Φi � NΦΦ,

(9)

where Nu and NΦ are the shape functions of electrome-
chanical CSFEM displacement and electrical potential,
respectively.

Fiber

Matrix

x1

x2

x3

RVE

y1

y2

d

S1

S2 ω1 = l/2

Γ 

(a) (b)

(c)

ω2 = m/2

Figure 2: �e geometric mode of PCMs: (a) structure, (b) representative volume element (RVE), and (c) transversal cross-section of the RVE.
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A 4-node element is separated into four smoothing
subdomains Ωki . +e nodes of field and edge/center
smoothing, the edge Gaussian points, outer normal vector
distribution, and the shape functions are shown in Figure 3.

At any point xk inΩki , the smoothed form of strain ε(xk)
and electric field E(xk) are

ε x
k( ) � ∫

Ωki
ε(x)r x − xk( )dΩ, (10)

E x
k( ) � ∫

Ωki
E(x)r x− xk( )dΩ, (11)

where r(x − xk) is the constant function:

r x − xk( ) � 1/Aki , x ∈ Ωki ,
0, x ∉ Ωki ,

 (12)

where

Aki � ∫Ωki dΩ. (13)

Substituting equation (12) in equations (10) and (11), we
have

ε xk( ) � 1

Aki
∫
Γki
n
k
uudΓ, (14)

E xk( ) � 1

Aki
∫
Γki
n
k
ΦΦdΓ, (15)

where Γki is the boundary of Ωki and nku and nkΦ are the outer
normal vector matrices of the smoothing domain boundary:

n
k
u �

nkx1 0

0 nkx3

nkx3 n
k
x1


,

n
k
Φ �

nkx1

nkx3

 .
(16)

Equations (14) and (15) can be newly expressed as
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where ne is the number of smoothing elements.
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At the Gaussian point xGb , equations (18) and (19)
become

B
i
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  lkb ,
(20)

where lkb is the length of the smoothing boundary and nb is
the total number of boundaries in a subdomain. As the shape
function varies linearly along each side of the subdomain,
one Gauss point is enough for precise boundary integration
[38].

+e essential distinction between CSFEM and FEM is
that FEM needs to construct the shape functionmatrix of the
element, while CSFEM only needs to use the function at the
Gaussian point of the smoothing element boundary and
avoids the function derivatives, which reduces the continuity
requirement of the shape function and improves the ac-
curacy and convergence.

+e dynamic model of the PCM electromechanical
system can be deduced from the Hamilton rule as follows:

M€q + Kq � F, (21)

where

M �
Muu 0

0 0

 ,

q
··
�

u
··

Φ··
 ,

K �
Kuu KuΦ

KT
uΦ KΦΦ

 ,

q �
u

Φ

 ,
F �

F

Q

 ,
Muu �∑

e

M
e
uu,

M
e
uu � diag m1, m1, m2, m2, m3, m3, m4, m4{ },

(22)

where mi � piT, A
k
i (i� 1, 2, 3, 4) is the mass of the i-th

smoothing element related to node i, T is the smoothing
element thickness, and pi is the density of the Gaussian
integration point of the i-th smoothing subdomain.
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(23)

where nc � np × ne.

5. Modified Wilson-θ Method

�e modified Wilson-θ method is an important scheme
and an implicit integral way to solve the dynamic system
equations. If θ > 1.37, the solution is unconditionally
stable. �e detailed procedures are shown as follows.

5.1. Initial Calculation

(1) Formulate generalized stiffness matrix K, mass
matrix M

(2) Calculate initial values of u, _u, €u

(3) Select the time step Δt and the integral constant θ
(θ�1.4)

a0 �
6

(θΔt)2
,

a1 �
3

(θΔt),

a2 � 2a1,

a3 �
θΔt
2
,

a4 �
a0
θ
,

a5 � −
a2
θ
,

a6 � 1− 3
θ
,

a7 �
Δt
2
,

a7 �
Δt
2
,

a8 � −
Δt2
6
.

(24)

(4) Formulate an effective generalized stiffness matrix K̃:
K̃ � K + a0M.

(0,0,1/2,1/2)

(0,1/2,1/2,0)

(1/2,1/2,0,0)

(1/2,0,0,1/2)

A2
k

A1
k

A4
k A3

k

Ω2
kΩ1

k

Ω4
k Ω3

k

Γc

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)(1,0,0,0)

Smoothing cells

Element k

Gaussian points

Midside points

Centroidal points

Field nodes

Figure 3: Smoothing subcells and the values of shape functions.
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5.2. For Each Time Step

(1) Calculate the payload at time t+ θΔt:
Ft+θΔt � Ft + θ Ft+Δt −Ft( ) +M a0qt + a2 _qt + 2€qt( ).

(25)

(2) Calculate the generalized displacement at time
t+ θΔt:

K̃ut+θΔt � Ft+θΔt. (26)

(3) Calculate the generalized acceleration, generalized
speed, and generalized displacement at time t+Δt:

€ut+Δt � a4 ut+θΔt −ut( ) + a5 _ut + a6 €ut,
_ut+Δt � _ut + a7 €ut+Δt + €ut( ),
ut+Δt � ut + Δt _ut + a8 €ut+Δt + 2€ut( ).

(27)

6. Numerical Results

6.1. A Singer-Player PCMs Strip. In this example to test the
precision of CSFEM under mechanical and electrical
boundary conditions, we used the shear deformation of a
piezoelectric strip (1× 1mm2, thickness t� 10 μm) under
compressive stress σ0� 5N·mm

−2 and applied voltage V0�
1000V (Figure 4). +e PCMs, piezoceramic fibers (PZT-5A),
were buried in the non-piezoelectric epoxy matrix. +e
material properties are shown in Table 1 [20]. A block of
10000 square cells (each cell 10×10×10 μm3) was used in the
composite z with the specific fiber volume fraction of 55.55%.
One part of the PCM structure (60×10× 40 μm3) is shown in
Figure 5. +e materials were polarized under the electric field
set to the left and right edges, which resulted in shear strain.
+e boundary conditions were applied to the strip edges:

Φ,z(x, z � ±h) � 0,
σzz(x, z � ±h) � σ0,
σxz(x � L, z) � 0,

σxz(x, z � ±h) � 0,
Φ(x � L, z) � −V0,

σxx(x � L, z) � 0,

Φ(x � 0, z) � V0,

u(x � 0, z) � 0,

v(x � 0, z � 0) � 0.

(28)

+e analytical solution to this problem is shown below
[58]:

u � s13σ0x,

v �
d15V0x

h
+ s33σ0z,

Φ � V0 1− 2x
L

( ).
(29)

It should be noted that all 11 effective coefficients in
Table 2 were determined using AHM. CSFEM, FEM, and
analytical solution were all based on AHM. +ree meshes
(each 10×10, including one with uniform elements and two
with distorted elements) were analyzed by CSFEM (Fig-
ure 6). +e αir is the irregularity factor that is assigned
between 0.0 and 0.5 [38]. Meanwhile, 60× 60 uniform ele-
ments were used by FEM. Figure 7 illustrates the CSFEM,
FEM, and analytical horizontal displacement ux at the
central line (z� 0), while the vertical displacement uz at z� 0
of the single-layer PCM strip is shown in Figure 8. +e
distributions of the electric potential Φ at z� 0 with FEM
and the analytical solutions are demonstrated in Figure 9.
Clearly, the displacements and electric potential computed
by CSFEM match well with the analytical solutions and
outperform those estimated by FEM for all three meshes,
which suggested that CSFEM can recreate the linear be-
havior of the analytical solutions.

Moreover, the computation cost of CSFEM over PCMs
in a homogenized structure surpasses that of FEM with a
heterogeneous structure (Figure 10), but FEM costs more to
reach the same precision. +us, CSFEM clearly enhances the
calculation efficiency.

A comparison of costs (computation time for the same
accuracy) for the homogenized PCM structures indicates
CSFEM takes much lower cost than traditional FEM.

6.2. A Cantilever PCMs Beam. +e free vibrations on a
cantilever PCM beam were calculated by CSFEM under the
geometrical parameters of length L� 20mm, width
H� 2mm, and plane stress (Figure 11). +e PCMs, piezo-
ceramic fibers (PZT-5A), were buried in the non-
piezoelectric epoxy matrix. +e material properties are
shown in Table 3. A block of 16000 square cells was used in
the composite z with the specific fiber volume fraction of

z

x

σ

σ

l

h
h

+V0

−V0 

Figure 4: A singer-player PCMs strip under shear deformation.
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66.66%.�e relevant boundary condition was ux� uz�Φ� 0
at the clamped end.

�e 11 effective coefficients estimated by AHM are
shown in Table 3. �e first 10 natural frequencies of the
cantilever PCM beam with 100×10 uniform elements cal-
culated by CSFEM (Figure 12) agree well with the solutions
by FEM using 200× 20 uniform elements. �e CSFEM has
higher accuracy than FEM. Figure 13 plots the first sixth-
order modal shapes, which verify the correctness and val-
idity of CSFEM.

6.3. A Bilayered PCMs Actuator. In this example, the
transient responses of a clamp-free bilayered PCM

actuator (L � 20mm, b � 2mm, and layer width � 1mm)
exposed to triangular-wave load F (time period T � 8 s, and
F0 � 5N) at point A were investigated (Figures 14 and 15).
�e actuator consisted of a lower PCM layer and an upper
red copper layer, which were supposed to be well bonded.
�e PCMs (PZT-5A) were buried in the epoxy matrix. A
block of 8000 square cells was used in the composite z with
the specific fiber volume fraction of 44.44%. �e red
copper was featured by Young’s modulus (E) � 108 GPa,
Poisson ratio (])� 0.32, and volume density (ρ)� 8900 kg/m3

(Table 2). �e boundary condition of the actuator was
ux� uz�Φ� 0 (at the clamped end). �e dynamic system
equations were addressed by using the implicit integral
Newmark scheme.

Table 1: Material constants for constituents of the PZT-5A and epoxy matrix.

Material constants
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)
c66

(GPa)
e13

(C/m2)
e15

(C/m2)
e33

(C/m2)
χ11

(F/m)
χ33

(F/m)
ρ

(kg/m3)

Epoxy matrix 3.86 2.57 2.57 3.86 0.64 0.64 — — — 0.0797 0.0797 7500
PZt-5A 121.0 75.4 75.2 111.0 21.1 2.28 −5.4 12.3 15.8 8.11 7.35 7500

A homogeneous structure

60μm

40μ
m

10
μ

m

Figure 5: A part homogeneous model of the singer-player PCMs strip by AHM.

Table 2: �e material properties of the singer-player PCMs strip were calculated by AHM.

Volume fraction
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)
c66

(GPa)
e15

(C/m2)
e33

(C/m2)
e13

(C/m2)
χ11

(nF/m)
χ33

(nF/m)

0.5555 9.74292 5.54232 5.95557 35.11748 2.17285 2.1003 0.021904 10.879245 −0.251715 0.28018 4.27248

(a) (b)

Figure 6: Typical irregular elements with irregularity factor αir� (a) 0.3 (I1) and (b) 0.5 (I2).
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�e 12 effective coefficients calculated using AHM are
shown in Table 4 (Δt� 0.002 s). �e generalized displace-
ments at points A and B calculated by CSFEM and FEM are
shown in Figures 16–21. Clearly, the high agreement of the
simulation results confirms the accuracy of CSFEM. CSFEM
achieves higher precision by using fewer elements than FEM
(40× 4 VS 160×16meshes).�us, CSFEM is well feasible for
dynamic analysis of PCM structures.

6.4. A PCMs Energy Harvester. �e transient responses of a
typical PCM energy harvester were investigated at points A
and B (Figure 22). �e mild steel was featured by
E� 210GPa, ρ� 7800.0 kg·m−3, and ]� 0.3, while red copper
by E� 108GPa, ρ� 8900 kg·m−3, and ]� 0.32 (Table 2). �e
PCMs (PZT-5A) were embedded in the epoxy matrix. A

block of 8000 square cells was used in the composite z with
the specific fiber volume fraction of 55.55%. �e boundary
and initial conditions were the same as stated above. �e
sine-wave payload with 8 s and time step Δt� 0.02 s was
applied (Figure 23). �e background cells of quadrilateral
elements for this harvester were first discretized (Figure 24).
�e implicit integral Newmark scheme was used to address
dynamic system equations.

�e 12 effective coefficients calculated using AHM are
shown in Table 5. �e dynamic responses of the PCM
energy harvester were calculated by CSFEM in comparison
with FEM (700 VS 5600 quadrilateral elements). �e ux, uz,
and V at points A and B are shown in Figures 25–30.
Clearly, the CSFEM produced the generalized displace-
ments closer to real solutions and thereby was proved to

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (mm)

CSFEM-R

CSFEM-I1

CSFEM-I2

FEM

Analyticalsolution

u
z
 (

m
m

)

0.0

3.0 × 10–9

6.0 × 10–9

9.0 × 10–9

1.2 × 10–8

1.5 × 10–8

1.8 × 10–8

2.1 × 10–8

Figure 8: Variation of vertical displacement uz at the central line
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Figure 11: A cantilever PCMs beam.

Table 3: �e material properties of the cantilever PCMs beam were calculated by AHM.

Volume fraction
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)
c66

(GPa)
e15

(C/m2)
e33

(C/m2)
e13

(C/m2)
χ11

(nF/m)
χ33

(nF/m)
ρ

(kg/m3)

0.6666 13.27801 7.01985 7.87201 42.31662 3.18867 3.12908 0.052676 12.984637 -0.39420 0.42031 5.1058 7500
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Figure 12: First 10 natural frequencies of the cantilever PCMs beam using CSFEM and FEM.
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Figure 13: First 6 mode shapes of the cantilever PCMs beam by CSFEM and FEM. (a) Mode shape 1. (b) Mode shape 2. (c) Mode shape 3.
(d) Mode shape 4. (e) Mode shape 5. (f ) Mode shape 6.
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Figure 15: Sine-wave load at point A.

Table 4: �e material properties of the bilayered PCMs actuator were calculated by AHM.

Volume fraction
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)
c66

(GPa)
e15

(C/m2)
e33

(C/m2)
e13

(C/m2)
χ11

(nF/m)
χ33

(nF/m)
ρ

(kg/m3)

0.4444 7.61822 4.56846 4.77091 28.4779 1.61506 1.52487 0.010859 8.73225 -0.16364 0.20584 3.43606 7500
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Figure 16: �e variation of the displacement ux at point A with
respect to time.
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Figure 17: �e variation of the displacement uz at point A with
respect to time.
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Figure 18: �e variation of the electrical potential V at point A
with respect to time.

0 1 2 3 4 5 6 7 8

–6.0 × 10–7

–4.0 × 10–7

–2.0 × 10–7

0.0

2.0 × 10–7

4.0 × 10–7

6.0 × 10–7

8.0 × 10–7

1.0 × 10–6

u
x
 (

m
)

Time (s)

FEM 160 × 16

CSFEM 40 × 4

Figure 19: �e variation of the displacement ux at point B with
respect to time.
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Figure 20: �e variation of the displacement uz at point A with respect to time.
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reduce the number of meshes and return more-accurate
results.

7. Conclusions

�e dynamic responses of PCM structures were investigated.
Firstly, the effective properties of PCMs were calculated by
AHM. Secondly, the effective CSFEM was established by
applying gradient smoothing to calculate the electrome-
chanical coupling field of FEM. �en, the equations for
dynamic response computation over the multiphysics
coupling field of PCMs were derived. Finally, a bilayered

PCM actuator and a PCM energy harvester were calculated
by both CSFEM and FEM.

(i) CSFEM reduced the systematic stiffness of FEM and
thereby enhanced the accuracy under the same
element number. CSFEM took less computation
time than FEM under the same accuracy.

(ii) CSFEM avoided the derivation of shape func-
tions and reduced the requirement of form
function continuity by simply converting area
integral to boundary integral in the solution
domain.

(iii) �e practical bilayered PCM actuator and the
PCM energy harvester were modeled by CSFEM,

AB

(a)

AB

(b)

Figure 24: Discrete meshes of PCMs energy harvester. (a) Elements of CSFEM. (b) Elements of FEM.
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Figure 25: �e variation of the displacement ux of the PCMs
energy harvester at point A with respect to time.
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Figure 26:�e variation of the displacement uz of the PCMs energy
harvester at point A with respect to time.

Table 5: �e material properties of the PCMs energy harvester were calculated using AHM.

Volume fraction
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)
c66

(GPa)
e15

(C/m2)
e33

(C/m2)
e13

(C/m2)
χ11

(nF/m)
χ33

(nF/m)

0.5555 9.74292 5.54232 5.95557 35.11748 2.17285 2.1003 0.021904 10.879245 −0.251715 0.28018 4.27248
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which outperformed FEM in calculating the
transient responses by reducing the number of
meshes.
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R. Rodŕıguez-Ramos, and G. A. Maugin, “Analytical ex-
pressions of effective constants for a piezoelectric composite

reinforced with square cross-section fibers,” Archives of
Mechanics, vol. 55, no. 4, pp. 357–371, 2003.
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