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Preface

Calculus is one of the triumphs of the human mind. It emerged from inves-
tigations into such basic questions as finding areas, lengths and volumes. In
the third century B.C., Archimedes determined the area under the arc of a
parabola. In the early seventeenth century, Fermat and Descartes studied the
problem of finding tangents to curves. But the subject really came to life in
the hands of Newton and Leibniz in the late seventeenth century. In partic-
ular, they showed that the geometric problems of finding the areas of planar
regions and of finding the tangents to plane curves are intimately related to
one another. In subsequent decades, the subject developed further through
the work of several mathematicians, most notably Euler, Cauchy, Riemann,
and Weierstrass.

Today, calculus occupies a central place in mathematics and is an essential
component of undergraduate education. It has an immense number of appli-
cations both within and outside mathematics. Judged by the sheer variety of
the concepts and results it has generated, calculus can be rightly viewed as a
fountainhead of ideas and disciplines in mathematics.

Real analysis, often called mathematical analysis or simply analysis, may
be regarded as a formidable counterpart of calculus. It is a subject where one
revisits notions encountered in calculus, but with greater rigor and sometimes
with greater generality. Nonetheless, the basic objects of study remain the
same, namely, real-valued functions of one or several real variables.

This book attempts to give a self-contained and rigorous introduction to
calculus of functions of one variable. The presentation and sequencing of topics
emphasizes the structural development of calculus. At the same time, due im-
portance is given to computational techniques and applications. In the course
of our exposition, we highlight the fact that calculus provides a firm foun-
dation to several concepts and results that are generally encountered in high
school and accepted on faith. For instance, this book can help students get a
clear understanding of (i) the definitions of the logarithmic, exponential and
trigonometric functions and a proof of the fact that these are not algebraic
functions, (ii) the definition of an angle and (iii) the result that the ratio of
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the circumference of a circle to its diameter is the same for all circles. It is our
experience that a majority of students are unable to absorb these concepts
and results without getting into vicious circles. This may partly be due to the
division of calculus and real analysis in compartmentalized courses. Calculus
is often taught as a service course and as such there is little time to dwell on
subtleties and gain perspective. On the other hand, real analysis courses may
start at once with metric spaces and devote more time to pathological exam-
ples than to consolidating students’ knowledge of calculus. A host of topics
such as L’Hôpital’s rule, points of inflection, convergence criteria for Newton’s
method, solids of revolution, and quadrature rules, which may have been in-
adequately covered in calculus courses, become passé when one studies real
analysis. Trigonometric, exponential, and logarithmic functions are defined, if
at all, in terms of infinite series, thereby missing out on purely algebraic moti-
vations for introducing these functions. The ubiquitous role of π as a ratio of
various geometric quantities and as a constant that can be defined indepen-
dently using calculus is often not well understood. A possible remedy would
be to avoid the separation of calculus and real analysis into seemingly disjoint
courses and textbooks. Attempts along these lines have been made in the past
as in the excellent books of Hardy and of Courant and John. Ours is another
attempt to give a unified exposition of calculus and real analysis and address
the concerns expressed above. While this book deals with functions of one
variable, we intend to treat functions of several variables in another book.

The genesis of this book lies in the notes we prepared for an undergraduate
course at the Indian Institute of Technology Bombay in 1997. Encouraged by
the feedback from students and colleagues, the notes and problem sets were
put together in March 1998 into a booklet that has been in private circulation.
Initially, it seemed that it would be relatively easy to convert that booklet into
a book. Seven years have passed since then and we now know a little better!
While that booklet was certainly helpful, this book has evolved to acquire a
form and philosophy of its own and is quite distinct from the original notes.

A glance at the table of contents should give the reader an idea of the
topics covered. For the most part, these are standard topics and novelty, if
any, lies in how we approach them. Throughout this text we have sought
to make a distinction between the intrinsic definition of a geometric notion
and the analytic characterizations or criteria that are normally employed in
studying it. In many cases we have used articles such as those in A Century of
Calculus to simplify the treatment. Usually each important result is followed
by two kinds of examples: one to illustrate the result and the other to show
that a hypothesis cannot be dropped.

When a concept is defined it appears in boldface. Definitions are not num-
bered but can be located using the index. Everything else (propositions, ex-
amples, remarks, etc.) is numbered serially in each chapter. The end of a proof
is marked by the symbol ⊓⊔, while the symbol ✸ marks the end of an example
or a remark. Bibliographic details about the books and articles mentioned in
the text and in this preface can be found in the list of references. Citations
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within the text appear in square brackets. A list of symbols and abbreviations
used in the text appears after the list of references.

The Notes and Comments that appear at the end of each chapter are an
important part of the book. Distinctive features of the exposition are men-
tioned here and often pointers to some relevant literature and further devel-
opments are provided. We hope that these may inspire many fruitful visits
to the library—not when a quiz or the final is around the corner, but per-
haps after it is over. The Notes and Comments are followed by a fairly large
collection of exercises. These are divided into two parts. Exercises in Part A
are relatively routine and should be attempted by all students. Part B con-
tains problems that are of a theoretical nature or are particularly challenging.
These may be done at leisure. Besides the two sets of exercises in every chap-
ter, there is a separate collection of problems, called Revision Exercises which
appear at the end of Chapter 7. It is in Chapter 7 that the logarithmic, ex-
ponential, and trigonometric functions are formally introduced. Their use is
strictly avoided in the preceding chapters. This meant that standard examples
and counterexamples such as x sin(1/x) could not be discussed earlier. The
Revision Exercises provide an opportunity to revisit the material covered in
Chapters 1–7 and to work out problems that involve the use of elementary
transcendental functions.

The formal prerequisites for this course do not go beyond what is normally
covered in high school. No knowledge of trigonometry is assumed and expo-
sure to linear algebra is not taken for granted. However, we do expect some
mathematical maturity and an ability to understand and appreciate proofs.
This book can be used as a textbook for a serious undergraduate course in
calculus. Parts of the book could be useful for advanced undergraduate and
graduate courses in real analysis. Further, this book can also be used for self-
study by students who wish to consolidate their knowledge of calculus and
real analysis. For teachers and researchers this may be a useful reference for
topics that are usually not covered in standard texts.

Apart from the first paragraph of this preface, we have not discussed the
history of the subject or placed each result in historical context. However,
we do not doubt that a knowledge of the historical development of concepts
and results is important as well as interesting. Indeed, it can greatly enrich
one’s understanding and appreciation of the subject. For those interested, we
encourage looking on the Internet, where a wealth of information about the
history of mathematics and mathematicians can be readily found. Among the
various sources available, we particularly recommend the MacTutor History
of Mathematics archive http://www-groups.dcs.st-and.ac.uk/history/

at the University of St. Andrews. The books of Boyer, Edwards, and Stillwell
are also excellent sources for the history of mathematics, especially calculus.

In preparing this book we have received generous assistance from vari-
ous organizations and individuals. First, we thank our parent institution IIT
Bombay and in particular its Department of Mathematics for providing ex-
cellent infrastructure and granting a sabbatical leave for each of us to work
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on this book. Financial assistance for the preparation of this book was re-
ceived from the Curriculum Development Cell at IIT Bombay, for which we
are thankful. Several colleagues and students have read parts of this book
and have pointed out errors in earlier versions and made a number of useful
suggestions. We are indebted to all of them and we mention, in particular,
Rafikul Alam, Swanand Khare, Rekha P. Kulkarni, Narayanan Namboodri,
S. H. Patil, Tony J. Puthenpurakal, P. Shunmugaraj, and Gopal K. Srinivasan.
The figures in the book have been drawn using PSTricks, and this is the work
of Habeeb Basha and to a greater extent of Arunkumar Patil. We appreciate
their efforts, and are grateful to them. Thanks are also due to C. L. Anthony,
who typed a substantial part of the manuscript. The editorial and TeXnical
staff at Springer, New York, have always been helpful and we thank all of
them, especially Ina Lindemann and Mark Spencer for believing in us and for
their patience and cooperation. We are also grateful to David Kramer, who
did an excellent job of copyediting and provided sound counsel on linguistic
and stylistic matters. We owe more than gratitude to Sharmila Ghorpade and
Nirmala Limaye for their support.

We would appreciate receiving comments, suggestions, and corrections.
These can be sent by e-mail to acicara@gmail.com or by writing to either
of us. Corrections, modifications, and relevant information will be posted at
http://www.math.iitb.ac.in/∼srg/acicara and we encourage interested
readers to visit this website to learn about updates concerning the book.

Mumbai, India Sudhir Ghorpade
July 2005 Balmohan Limaye
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1

Numbers and Functions

Let us begin at the beginning. When we learn the script of a language, such
as the English language, we begin with the letters of the alphabet A, B, C,
. . .; when we learn the sounds of music, such as those of western classical
music, we begin with the notes Do, Re, Mi, . . . . Likewise, in mathematics,
one begins with 1, 2, 3, . . .; these are the positive integers or the natural
numbers. We shall denote the set of positive integers by N. Thus,

N = {1, 2, 3, . . .} .

These numbers have been known since antiquity. Over the years, the number 0
was conceived1 and subsequently, the negative integers. Together, these form
the set Z of integers.2 Thus,

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} .

Quotients of integers are called rational numbers. We shall denote the set
of all rational numbers by Q. Thus,

Q =
{m

n
: m, n ∈ Z, n �= 0

}
.

Geometrically, the integers can be represented by points on a line by fixing a
base point (signifying the number 0) and a unit distance. Such a line is called
the number line and it may be drawn as in Figure 1.1. By suitably subdi-
viding the segment between 0 and 1, we can also represent rational numbers
such as 1/n, where n ∈ N, and this can, in turn, be used to represent any

1 The invention of ‘zero’, which also paves the way for the place value system of
enumeration, is widely credited to the Indians. Great psychological barriers had
to be overcome when ‘zero’ was being given the status of a legitimate number.
For more on this, see the books of Kaplan [39] and Kline [41].

2 The notation Z for the set of integers is inspired by the German word Zahlen for
numbers.
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Fig. 1.1. The number line

rational number by a unique point on the number line. It is seen that the
rational numbers spread themselves rather densely on this line. Nevertheless,
several gaps do remain. For example, the ‘number’

√
2 can be represented by

a unique point between 1 and 2 on the number line using simple geometric
constructions, but as we shall see later, this is not a rational number. We are,
therefore, forced to reckon with the so-called irrational numbers, which are
precisely the ‘numbers’ needed to fill the gaps left on the number line after
marking all the rational numbers. The rational numbers and the irrational
numbers together constitute the set R, called the set of real numbers. The
geometric representation of the real numbers as points on the number line
naturally implies that there is an order among the real numbers. In particu-
lar, those real numbers that are greater than 0, that is, which correspond to
points to the right of 0, are called positive.

1.1 Properties of Real Numbers

To be sure, we haven’t precisely defined what real numbers are and what
it means for them to be positive. For that matter, we haven’t even defined
the positive integers 1, 2, 3, . . . or the rational numbers.3 But at least we are
familiar with the latter. We are also familiar with the addition and the mul-
tiplication of rational numbers. As for the real numbers, which are not easy
to define, it is better to at least specify the properties that we shall take for
granted. We shall take adequate care that in the subsequent development,
we use only these properties or the consequences derived from them. In this
way, we don’t end up taking too many things on faith. So let us specify our
assumptions.

We assume that there is a set R (whose elements are called real num-
bers), which contains the set Q of all rational numbers (and, in particular,
the numbers 0 and 1) such that the following three types of properties are
satisfied.

3 To a purist, this may appear unsatisfactory. A conscientious beginner in calculus
may also become uncomfortable at some point of time that the basic notion of
a (real) number is undefined. Such persons are first recommended to read the
‘Notes and Comments’ at the end of this chapter and then look up some of the
references mentioned therein.
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Algebraic Properties

We have the operations of addition (denoted by +) and multiplication (de-
noted by · or by juxtaposition) on R, which extend the usual addition and
multiplication of rational numbers and satisfy the following properties:

A1 a + (b + c) = (a + b) + c and a(bc) = (ab)c for all a, b, c ∈ R.
A2 a + b = b + a and ab = ba for all a, b ∈ R.
A3 a + 0 = a and a · 1 = a for all a ∈ R.
A4 Given any a ∈ R, there is a′ ∈ R such that a + a′ = 0. Further, if a �= 0,

then there is a∗ ∈ R such that aa∗ = 1.
A5 a(b + c) = ab + ac for all a, b, c ∈ R.

It is interesting to note that several simple properties of real numbers that
one is tempted to take for granted can be derived as consequences of the above
properties. For example, let us prove that a · 0 = 0 for all a ∈ R. First, by A3,
we have 0+0 = 0. So, by A5, a · 0 = a(0+0) = a · 0+ a · 0. Now, by A4, there
is a b′ ∈ R such that a · 0 + b′ = 0. Thus,

0 = a · 0 + b′ = (a · 0 + a · 0) + b′ = a · 0 + (a · 0 + b′) = a · 0 + 0 = a · 0,

where the third equality follows from A1 and the last equality follows from
A3. This completes the proof! A number of similar properties are listed in
the exercises and we invite the reader to supply the proofs. These show, in
particular, that given any a ∈ R, an element a′ ∈ R such that a + a′ = 0 is
unique; this element will be called the negative or the additive inverse of
a and denoted by −a. Likewise, if a ∈ R and a �= 0, then an element a∗ ∈ R
such that aa∗ = 1 is unique; this element is called the reciprocal or the
multiplicative inverse of a and is denoted by a−1 or by 1/a. Once all these
formalities are understood, we will be free to replace expressions such as

a (1/b) , a + a, aa, (a + b) + c, (ab)c, a + (−b),

by the corresponding simpler expressions, namely,

a/b, 2a, a2, a + b + c, abc, a − b.

Here, for instance, it is meaningful and unambiguous to write a+b+c, thanks
to A1. More generally, given finitely many real numbers a1, . . . , an, the sum
a1 + · · · + an has an unambiguous meaning. To represent such sums, the
“sigma notation” can be quite useful. Thus, a1 + · · ·+ an is often denoted by∑n

i=1 ai or sometimes simply by
∑

i ai or
∑

ai. Likewise, the product a1 · · · an

of the real numbers a1, . . . , an has an unambiguous meaning and it is often
denoted by

∏n
i=1 ai or sometimes simply by

∏
i ai or

∏
ai. We remark that as

a convention, the empty sum is defined to be zero, whereas an empty product
is defined to be one. Thus, if n = 0, then

∑n
i=1 ai := 0, whereas

∏n
i=1 ai := 1.
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Order Properties

The set R contains a subset R+, called the set of all positive real numbers,
satisfying the following properties:

O1 Given any a ∈ R, exactly one of the following statements is true:

a ∈ R+; a = 0; −a ∈ R+.

O2 If a, b ∈ R+, then a + b ∈ R+ and ab ∈ R+.

Given the existence of R+, we can define an order relation on R as follows.
For a, b ∈ R, define a to be less than b, and write a < b, if b − a ∈ R+.
Sometimes, we write b > a in place of a < b and say that b is greater than
a. With this notation, it follows from the algebraic properties that R+ =
{x ∈ R : x > 0}. Moreover, the following properties are easy consequences of
A1–A5 and O1–O2:

(i) Given any a, b ∈ R, exactly one of the following statements is true.

a < b; a = b; b < a.

(ii) If a, b, c ∈ R with a < b and b < c, then a < c.
(iii) If a, b, c ∈ R, with a < b, then a+c < b+c. Further, if c > 0, then ac < bc,

whereas if c < 0, then ac > bc.

Note that it is also a consequence of the properties above that 1 > 0. Indeed,
by (i), we have either 1 > 0 or 1 < 0. If we had 1 < 0, then we must have
−1 > 0 and hence by (iii), 1 = (−1)(−1) > 0, which is a contradiction.
Therefore, 1 > 0. A similar argument shows that a2 > 0 for any a ∈ R, a �= 0.

The notation a ≤ b is often used to mean that either a < b or a = b.
Likewise, a ≥ b means that a > b or a = b.

Let S be a subset of R. We say that S is bounded above if there exists
α ∈ R such that x ≤ α for all x ∈ S. Any such α is called an upper bound
of S. We say that S is bounded below if there exists β ∈ R such that x ≥ β
for all x ∈ S. Any such β is called a lower bound of S. The set S is said to
be bounded if it is bounded above as well as bounded below; otherwise, S
is said to be unbounded. Note that if S = ∅, that is, if S is the empty set,
then every real number is an upper bound as well as a lower bound of S.

Examples 1.1. (i) The set N of positive integers is bounded below, and any
real number β ≤ 1 is a lower bound of N. However, as we shall see later
in Proposition 1.3, the set N is not bounded above.

(ii) The set S of reciprocals of positive integers, that is,

S :=

{
1,

1

2
,
1

3
, . . .

}

is bounded. Any real number α ≥ 1 is an upper bound of S, whereas any
real number β ≤ 0 is a lower bound of S.
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(iii) The set S := {x ∈ Q : x2 < 2} is bounded. Here, for example, 2 is an
upper bound, while −2 is a lower bound. ✸

Let S be a subset of R. An element M ∈ R is called a supremum or a
least upper bound of the set S if

(i) M is an upper bound of S, that is, x ≤ M for all x ∈ S, and
(ii) M ≤ α for any upper bound α of S.

It is easy to see from the definition that if S has a supremum, then it must
be unique; we denote it by supS. Note that ∅ does not have a supremum.

An element m ∈ R is called an infimum or a greatest lower bound of
the set S if

(i) m is a lower bound of S, that is, m ≤ x for all x ∈ S, and
(ii) β ≤ m for any lower bound β of S.

Again, it is easy to see from the definition that if S has an infimum, then it
must be unique; we denote it by inf S. Note that ∅ does not have an infimum.

For example, if S = {x ∈ R : 0 < x ≤ 1}, then inf S = 0 and supS = 1. In
this example, inf S is not an element of S, but supS is an element of S.

If the supremum of a set S is an element of S, then it is called the maxi-
mum of S, and denoted by maxS; likewise, if the infimum of S is in S, then
it is called the minimum of S, and denoted by minS.

The last, and perhaps the most important, property of R that we shall
assume is the following.

Completeness Property

Every nonempty subset of R that is bounded above has a supremum.

The significance of the Completeness Property (which is also known as the
Least Upper Bound Property) will become clearer from the results proved in
this as well as the subsequent chapters.

Proposition 1.2. Let S be a nonempty subset of R that is bounded below.
Then S has an infimum.

Proof. Let T = {β ∈ R : β ≤ a for all a ∈ S}. Since S is bounded below, T
is nonempty, and since S is nonempty, T is bounded above. Hence T has a
supremum. It is easily seen that sup T is the infimum of S. ⊓⊔
Proposition 1.3. Given any x ∈ R, there is some n ∈ N such that n > x.
Consequently, there is also an m ∈ N such that −m < x.

Proof. Assume the contrary. Then x is an upper bound of N. Therefore, N has
a supremum. Let M = sup N. Then M − 1 < M and hence M − 1 is not an
upper bound of N. So, there is n ∈ N such that M −1 < n. But then n+1 ∈ N
and M < n + 1, which is a contradiction since M is an upper bound of N.
The second assertion about the existence of m ∈ N with −m < x follows by
applying the first assertion to −x. ⊓⊔
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The first assertion in the proposition above is sometimes referred to as the
Archimedean property of R. Observe that for any positive real number ǫ,
by applying the Proposition 1.3 to x = 1/ǫ, we see that there exists n ∈ N
such that (1/n) < ǫ. Note also that thanks to Proposition 1.3, for any x ∈ R,
there are m, n ∈ N such that −m < x < n. The largest among the finitely
many integers k satisfying −m ≤ k ≤ n and also k ≤ x is called the integer
part of x and is denoted by [x]. Note that the integer part of x is characterized
by the following properties:

[x] ∈ Z and [x] ≤ x < [x] + 1.

Sometimes, the integer part of x is called the floor of x and is denoted by
⌊x⌋. In the same vein, the smallest integer ≥ x is called the ceiling of x and
is denoted by ⌈x⌉. For example, ⌊ 3

2⌋ = ⌊1⌋ = 1, whereas
⌈

3
2

⌉
= ⌈2⌉ = 2.

Given any a ∈ R and n ∈ N, we define the nth power an of a to be
the product a · · · a of a with itself taken n times. Further, we define a0 = 1
and a−n = (1/a)n provided a �= 0. In this way integral powers of all nonzero
real numbers are defined. The following elementary properties are immediate
consequences of the algebraic properties and the order properties of R.

(i) (a1a2)
n = an

1an
2 for all n ∈ Z and a1, a2 ∈ R (with a1a2 �= 0 if n ≤ 0).

(ii) (am)
n

= amn and am+n = aman for all m, n ∈ Z and a ∈ R (with a �= 0
if m ≤ 0 or n ≤ 0).

(iii) If n ∈ N and b1, b2 ∈ R with 0 ≤ b1 < b2, then bn
1 < bn

2 .

The first two properties above are sometimes called the laws of exponents
or the laws of indices (for integral powers).

Proposition 1.4. Given any n ∈ N and a ∈ R with a ≥ 0, there exists a
unique b ∈ R such that b ≥ 0 and bn = a.

Proof. Uniqueness is clear since b1, b2 ∈ R with 0 ≤ b1 < b2 implies that
bn
1 < bn

2 . To prove the existence of b ∈ R with b ≥ 0 and bn = a, note that the
case of a = 0 is trivial, and moreover, the case of 0 < a < 1 follows from the
case of a > 1 by taking reciprocals. Thus we will assume that a ≥ 1. Let

Sa = {x ∈ R : xn ≤ a}.

Then Sa is a subset of R, which is nonempty (since 1 ∈ Sa) and bounded
above (by a, for example). Define b = sup Sa. Note that since 1 ∈ Sa, we have
b ≥ 1 > 0. We will show that bn = a by showing that each of the inequalities
bn < a and bn > a leads to a contradiction.

Note that by Binomial Theorem, for any δ ∈ R, we have

(b + δ)n = bn +

(
n

1

)
bn−1δ +

(
n

2

)
bn−2δ2 + · · · + δn.
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Now, suppose bn < a. Let us define

ǫ := a−bn, M := max

{(
n

k

)
bn−k : k = 1, . . . , n

}
and δ := min

{
1,

ǫ

nM

}
.

Then M ≥ 1 and 0 < δk ≤ δ for k = 1, 2, . . . , n. Therefore,

(b + δ)n ≤ bn + Mδ + Mδ2 + · · · + Mδn ≤ bn + nMδ ≤ bn + ǫ = a.

Hence, b+ δ ∈ Sa. But this is a contradiction since b is an upper bound of Sa.
Next, suppose bn > a. This time, take ǫ = bn − a and define M and δ as

before. Similar arguments will show that

(b − δ)n ≥ bn − nMδ ≥ bn − ǫ = a.

But b − δ < b, and hence b − δ cannot be an upper bound of Sa. This means
that there is some x ∈ Sa such that b − δ < x. Therefore, (b − δ)n < xn ≤ a,
which is a contradiction. Thus bn = a. ⊓⊔

Thanks to Proposition 1.4, we define, for any n ∈ N and a ∈ R with a ≥ 0,
the nth root of a to be the unique real number b such that b ≥ 0 and bn = a;
we denote this real number by n

√
a or by a1/n. In case n = 2, we simply

write
√

a instead of 2
√

a. From the uniqueness of the nth root, the analogues
of the properties (i), (ii), and (iii) stated just before Proposition 1.4 can be
easily proved for nth roots instead of the nth powers. More generally, given any

r ∈ Q, we write r = m/n, where m, n ∈ Z with n > 0, and define ar = (am)
1/n

for any a ∈ R with a > 0. Note that if also r = p/q, for some p, q ∈ Z with

q > 0, then for any a ∈ R with a > 0, we have (am)
1/n

= (ap)
1/q

. This
can be seen, for example, by raising both sides to the nqth power, using laws
of exponents for integral powers and the uniqueness of roots. Thus, rational
powers of positive real numbers are unambiguously defined. In general, for
negative real numbers, nonintegral rational powers are not defined in R. For
example, (−1)1/2 cannot equal any b ∈ R since b2 ≥ 0. However, in a special
case, rational powers of negative real numbers can be defined. More precisely,
if n ∈ N is odd and a ∈ R is positive, then we define

(−a)1/n = −
(
a1/n

)
.

It is easily seen that this is well defined, and as a result, for any x ∈ R,
x �= 0, the rth power xr is defined whenever r ∈ Q has an odd denominator,
that is, when r = m/n for some m ∈ Z and n ∈ N with n odd. Finally, if
r is any positive rational number, then we set 0r = 0. For rational powers,
wherever they are defined, analogues of the properties (i), (ii), and (iii) stated
just before Proposition 1.4 are valid. These analogues can be easily proved
by raising both sides of the desired equality or inequality to sufficiently high
integral powers so as to reduce to the corresponding properties of integral
powers, and using the uniqueness of roots.
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Real numbers that are not rational numbers are called irrational num-
bers. The possibility of taking nth roots provides a useful method to con-
struct several examples of irrational numbers. For instance, we prove below a
classical result that

√
2 is an irrational number. The proof here is such that

it can easily be adapted to prove that several such numbers, for example,√
3,
√

15, 3
√

2, 5
√

16, are not rational. [See Exercises 10 and 44.] We recall first
the familiar notion of divisibility in the set Z of integers. Given m, n ∈ Z,
we say that m divides n or that m is a factor of n (and write m | n) if
n = ℓm for some ℓ ∈ Z. Sometimes, we write m ∤ n if m does not divide n.
Two integers m and n are said to be relatively prime if the only integers
that divide both m and n are 1 and −1. It can be shown that if m, n, n′ ∈ Z
are such that m, n are relatively prime and m | nn′, then m | n′. It can also
be shown that any rational number r can be written as

r =
p

q
, where p, q ∈ Z, q > 0, and p, q are relatively prime.

The above representation of r is called the reduced form of r. The numerator
(namely, p) and the denominator (namely, q) in the case of a reduced form
representation are uniquely determined by r.

Proposition 1.5. No rational number has a square equal to 2. In other words,√
2 is an irrational number.

Proof. Suppose
√

2 is rational. Write
√

2 in the reduced form as p/q, where
p, q ∈ Z, q > 0, and p, q are relatively prime. Then p2 = 2q2. Hence q divides
p2. This implies that q divides p, and so p/q is an integer. But there is no
integer whose square is 2 because (±1)2 = 1 and the square of any integer
other than 1 or −1 is ≥ 4. Hence

√
2 is not rational. ⊓⊔

The following result shows that the rational numbers as well as the irra-
tional numbers spread themselves rather densely on the number line.

Proposition 1.6. Given any a, b ∈ R with a < b, there exists a rational
number as well as an irrational number between a and b.

Proof. By Proposition 1.3, we can find n ∈ N such that n > 1/(b − a). Let
m = [na] + 1. Then m − 1 ≤ na < m, and hence

a <
m

n
≤ na + 1

n
= a +

1

n
< a + (b − a) = b.

Thus we have found a rational number (namely, m/n) between a and b. Now,
a +

√
2 < b +

√
2, and if r is a rational number between a +

√
2 and b +

√
2,

then r −
√

2 is an irrational number between a and b. ⊓⊔

We shall now introduce some basic terminology that is useful in dealing
with real numbers. Given any a, b ∈ R, we define the open interval from a
to b to be the set
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(a, b) := {x ∈ R : a < x < b}
and the closed interval from a to b to be the set

[a, b] := {x ∈ R : a ≤ x ≤ b}.

The semiopen or the semiclosed intervals from a to b are defined by

(a, b] := {x ∈ R : a < x ≤ b} and [a, b) := {x ∈ R : a ≤ x < b}.

In other words, (a, b] := [a, b] \ {a} and [a, b) := [a, b] \ {b}. Note that if a > b,
then each of these intervals is empty, whereas if a = b, then [a, b] = {a} while
the other intervals from a to b are empty. If I is a subset of R of the form
[a, b], (a, b), [a, b) or (a, b], where a, b ∈ R with a < b, then a is called the left
(hand) endpoint of I while b is called the right (hand) endpoint of I.
Collectively, a and b are called the endpoints of I.

It is often useful to consider the symbols ∞ (called infinity) and −∞
(called minus infinity), which may be thought as the fictional (right and
left) endpoints of the number line. Thus

−∞ < a < ∞ for all a ∈ R.

The set R together with the additional symbols ∞ and −∞ is sometimes
called the set of extended real numbers. We use the symbols ∞ and −∞
to define, for any a ∈ R, the following semi-infinite intervals:

(−∞, a) := {x ∈ R : x < a}, (−∞, a] := {x ∈ R : x ≤ a}

and
(a,∞) := {x ∈ R : x > a}, [a,∞) := {x ∈ R : x ≥ a}.

The set R can also be thought of as the doubly infinite interval (−∞,∞),
and as such we may sometimes use this interval notation for the set of all real
numbers.

It may be noted that each of the above types of intervals has a basic
property in common. We state this in the form of the following definition.

Let I ⊆ R, that is, let I be a subset of R. We say that I is an interval if

a, b ∈ I and a < b =⇒ [a, b] ⊆ I.

In other words, the line segment connecting any two points of I is in I. This
is sometimes expressed by saying that an interval is a ‘connected set’.

Proposition 1.7. If I ⊆ R is an interval, then I is either an open interval
or a closed interval or a semiopen interval or a semi-infinite interval or the
doubly infinite interval.
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Proof. If I = ∅, then I = (a, a) for any a ∈ R. Suppose I �= ∅. Define

a :=

{
inf I if I is bounded below,
−∞ otherwise,

and b :=

{
sup I if I is bounded above,
∞ otherwise.

Note that by the Completeness Property and Proposition 1.2, both a and b
are well defined and a ≤ b. Since I is an interval, it follows that

(i) I = (a, b), or (ii) I = [a, b], or (iii) I = [a, b), or (iv) I = (a, b],

according as (i) a �∈ I and b �∈ I, or (ii) a ∈ I and b ∈ I, or (iii) a ∈ I and b �∈ I,
or (iv) a �∈ I and b ∈ I. This proves the proposition. ⊓⊔

In the proof of the above proposition, we have considered intervals that can
reduce to the empty set or to a set containing only one point. However, to avoid
trivialities, we shall usually refrain from doing so in the sequel. Henceforth,
when we write [a, b], (a, b), [a, b) or (a, b], it will be tacitly assumed that a and
b are real numbers and a < b.

Given any real number a, the absolute value or the modulus of a is
denoted by |a| and is defined by

|a| :=

{
a if a ≥ 0,
−a if a < 0.

Note that |a| ≥ 0, |a| = | − a|, and |ab| = |a| |b| for any a, b ∈ R. The notion
of absolute value can sometimes be useful in describing certain intervals that
are symmetric about a point. For example, if a ∈ R and ǫ is a positive real
number, then

(a − ǫ, a + ǫ) = {x ∈ R : |x − a| < ǫ}.

1.2 Inequalities

In this section, we describe and prove some inequalities that will be useful to
us in the sequel.

Proposition 1.8 (Basic Inequalities for Absolute Values). Given any
a, b ∈ R, we have

(i) |a + b| ≤ |a| + |b|,
(ii) | |a| − |b| | ≤ |a − b|.

Proof. It is clear that a ≤ |a| and b ≤ |b|. Thus, a + b ≤ |a| + |b|. Likewise,
−(a + b) ≤ |a| + |b|. This implies (i). To prove (ii), note that by (i), we have
|a− b| ≥ |(a− b) + b| − |b| = |a| − |b| and also |a− b| = |b− a| ≥ |b| − |a|. ⊓⊔
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The first inequality in the proposition above is sometimes referred to as the
triangle inequality. An immediate consequence of this is that if a1, . . . , an

are any real numbers, then

|a1 + a2 + · · · + an| ≤ |a1| + |a2| + · · · + |an|.
Proposition 1.9 (Basic Inequalities for Powers and Roots). Given
any a, b ∈ R and n ∈ N, we have

(i) |an − bn| ≤ nMn−1|a − b|, where M = max{|a|, |b|},
(ii) |a1/n − b1/n| ≤ |a − b|1/n, provided a ≥ 0 and b ≥ 0.

Proof. (i) Consider the identity

an − bn = (a − b)(an−1b + an−2b2 + · · · + a2bn−2 + abn−1).

Take the absolute value of both sides and use Proposition 1.8. The absolute
value of the second factor on the right is bounded above by nMn−1. This
implies the inequality in (i).

(ii) We may assume, without loss of generality, that a ≥ b. Let c = a1/n

and d = b1/n. Then c − d ≥ 0 and by the Binomial Theorem,

cn = [(c − d) + d]n = (c − d)n + · · · + dn ≥ (c − d)n + dn.

Therefore,
a − b = cn − dn ≥ (c − d)n = [a1/n − b1/n]n.

This implies the inequality in (ii). ⊓⊔
We remark that the basic inequality for powers in part (i) of Proposition

1.9 is valid, more generally, for rational powers. [See Exercise 54 (i).] As for
part (ii), a slightly weaker inequality holds if instead of nth roots, we consider
rational roots. [See Exercise 54 (ii).]

Proposition 1.10 (Binomial Inequalities). Given any a ∈ R such that
1 + a ≥ 0, we have

(1 + a)n ≥ 1 + na for all n ∈ N.

More generally, given any n ∈ N and a1, . . . , an ∈ R such that 1 + ai ≥ 0 for
i = 1, . . . , n and a1, . . . , an all have the same sign, we have

(1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + (a1 + · · · + an).

Proof. Clearly, the first inequality follows from the second by substituting
a1 = · · · = an = a. To prove the second inequality, we use induction on n.
The case of n = 1 is obvious. If n > 1 and the result holds for n − 1, then

(1 + a1)(1 + a2) · · · (1 + an) ≥ (1 + bn)(1 + an),

where bn = a1 + · · · + an−1. Now, bn and an have the same sign, and hence

(1 + bn)(1 + an) = 1 + bn + an + bnan ≥ 1 + bn + an.

This proves that (1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + (a1 + · · · + an). ⊓⊔
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Note that the first inequality in the proposition above is an immediate
consequence of the Binomial Theorem when a ≥ 0, although we have proved
it in the more general case of a ≥ −1. We shall refer to the first inequality
in Proposition 1.10 as the binomial inequality. On the other hand, we
shall refer to the second inequality in Proposition 1.10 as the generalized
binomial inequality. We remark that the binomial inequality is valid, more
generally, for rational powers. [See Exercise 54 (iii).]

Proposition 1.11 (A.M.-G.M. Inequality). Let n ∈ N and let a1, . . . , an

be nonnegative real numbers. Then the arithmetic mean of a1, . . . , an is greater
than or equal to their geometric mean, that is,

a1 + · · · + an

n
≥ n

√
a1 · · ·an.

Moreover, equality holds if and only if a1 = · · · = an.

Proof. If some ai = 0, then the result is obvious. Hence we shall assume
that ai > 0 for i = 1, . . . , n. Let g = (a1 · · ·an)1/n and bi = ai/g for i =
1, . . . , n. Then b1, . . . , bn are positive and b1 · · · bn = 1. We shall now show,
using induction on n, that b1 + · · · + bn ≥ n. This is clear if n = 1 or if
each of b1, . . . , bn equals 1. Suppose n > 1 and not every bi equals 1. Then
b1 · · · bn = 1 implies that among b1, . . . , bn there is a number < 1 as well as
a number > 1. Relabeling b1, . . . , bn if necessary, we may assume that b1 < 1
and bn > 1. Let c1 = b1bn. Then c1b2 · · · bn−1 = 1, and hence by the induction
hypothesis c1 + b2 + · · · + bn−1 ≥ n − 1. Now observe that

b1 + · · · + bn = (c1 + b2 + · · · + bn−1) + b1 + bn − c1

≥ (n − 1) + b1 + bn − b1bn

= n + (1 − b1)(bn − 1)

> n,

where the last inequality follows since b1 < 1 and bn > 1. This proves that
b1+· · ·+bn ≥ n, and moreover the inequality is strict unless b1 = · · · = bn = 1.
Substituting bi = ai/g, we obtain the desired result. ⊓⊔

Proposition 1.12 (Cauchy–Schwarz Inequality). Let n ∈ N and let
a1, . . . , an and b1, . . . , bn be any real numbers. Then

n∑

i=1

aibi ≤
( n∑

i=1

a2
i

)1/2( n∑

i=1

b2
i

)1/2

.

Moreover, equality holds if and only if a1, . . . , an and b1, . . . , bn are propor-
tional to each other, that is, if aibj = ajbi for all i, j = 1, . . . , n.

Proof. Observe that



1.3 Functions and Their Geometric Properties 13

( n∑

i=1

aibi

)2

=
n∑

i=1

n∑

j=1

aibiajbj =
n∑

i=1

a2
i b

2
i + 2

∑

1≤i<j≤n

(aibj)(ajbi).

Now for any α, β ∈ R, we have 2αβ ≤ α2 + β2 and equality holds if and only
if α = β. (This follows by considering (α − β)2.) If we apply this to each of
the terms in the second summation above, then we obtain

( n∑

i=1

aibi

)2

≤
n∑

i=1

a2
i b

2
i +

∑

1≤i<j≤n

a2
i b

2
j + a2

jb
2
i =

( n∑

i=1

a2
i

)( n∑

j=1

b2
j

)

and moreover, equality holds if and only if aibj = ajbi for all i, j = 1, . . . , n.
This proves the desired result. ⊓⊔

Remark 1.13. Analyzing the argument in the above proof of the Cauchy–
Schwarz inequality, we obtain, in fact, the following identity, which is easy to
verify directly:

( n∑

i=1

a2
i

)( n∑

j=1

b2
j

)
−
( n∑

i=1

aibi

)2

=
∑

1≤i<j≤n

(aibj − ajbi)
2.

This is known as Lagrange’s Identity and it may be viewed as a one-line
proof of Proposition 1.12. See also Exercise 16 for yet another proof. ✸

1.3 Functions and Their Geometric Properties

The concept of a function is of basic importance in calculus and real analysis.
In this section, we begin with an informal description of this concept followed
by a precise definition. Next, we outline some basic terminology associated
with functions. Later, we give basic examples of functions, including polyno-
mial functions, rational functions, and algebraic functions. Finally, we discuss
a number of geometric properties of functions and state some results concern-
ing them. These results are proved here without invoking any of the notions
of calculus that are encountered in the subsequent chapters.

Typically, a function is described with the help of an expression in a single
parameter (say x), which varies over a stipulated set; this set is called the
domain of that function. For example, each of the expressions

(i) f(x) := 2x + 1, x ∈ R, (ii) f(x) := x2, x ∈ R,
(iii) f(x) := 1/x, x ∈ R, x �= 0, (iv) f(x) := x3, x ∈ R,

defines a function f . In (i), (ii), and (iv), the domain is the set R of all real
numbers whereas in (iii), the domain is the set R \ {0} of all nonzero real
numbers. Note that each of the functions in (i)–(iv) takes its ‘values’ in the
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set R; to indicate this, we say that R is the codomain of these functions or
that these are real-valued functions.

Given a real-valued function f having a subset D of R as its domain, it
is often useful to consider the graph of f , which is defined as the subset
{(x, f(x)) : x ∈ D} of the plane R2. In other words, this is the set of points on
the curve given by y = f(x), x ∈ D, in the xy-plane. For example, the graphs
of the functions in (i) and (ii) are shown in Figure 1.2, while the graphs of
the functions in (iii) and (iv) above are shown in Figure 1.3.
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Fig. 1.2. Graphs of f(x) = 2x + 1 and f(x) = x2

In general, we can talk about a function from any set D to any set E, and
this associates to each point of D a unique element of E. A formal definition
of a function is given below. It may be seen that this, in essence, identifies a
function with its graph!

Definitions and Terminology

Let D and E be any sets. We denote by D × E the set of all ordered pairs
(x, y) where x varies over elements of D and y varies over elements of E. A
function from D to E is a subset f of D×E with the property that for each
x ∈ D, there is a unique y ∈ E such that (x, y) ∈ f . The set D is called the
domain or the source of f and E the codomain or the target of f .

Usually, we write f : D → E to indicate that f is a function from D to
E. Also, instead of (x, y) ∈ f , we usually write y = f(x), and call f(x) the
value of f at x. This may also be indicated by writing x �→ f(x), and saying
that f maps x to f(x). Functions f : D → E and g : D → E are said to be
equal and we write f = g if f(x) = g(x) for all x ∈ D.

If f : D → E is a function, then the subset f(D) := {f(x) : x ∈ D} of E
is called the range of f . We say that f is onto or surjective if f(D) = E.
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On the other hand, if f maps distinct points to distinct points, that is, if

x1, x2 ∈ D, f(x1) = f(x2) =⇒ x1 = x2

then f is said to be one-one or injective. If f is both one-one and onto, then
it is said to be bijective or a one-to-one correspondence.

The notion of a bijective function can be used to define a basic terminology
concerning sets as follows. Given any nonnegative integer n, consider the set
{1, . . . , n} of the first n positive integers. Note that if n = 0, then {1, . . . , n}
is the empty set. A set D is said to be finite if there is a bijective map from
{1, . . . , n} onto D, for some nonnegative integer n. In this case the nonnegative
integer n is unique (Exercise 18) and it is called the cardinality of D or the
number of elements in D. A set that is not finite is said to be infinite.
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Fig. 1.3. Graphs of f(x) = 1/x and f(x) = x3

The simplest examples of functions defined on arbitrary sets are an identity
function and a constant function. Given any set D, the identity function
on D is the function idD : D → D defined by idD(x) = x for all x ∈ D.
Given any sets D and E, a function f : D → E defined by f(x) = c for all
x ∈ D, where c is a fixed element of E, is called a constant function. Note
that idD is always bijective, whereas a constant function is neither one-one
(unless D is a singleton set!) nor onto (unless E is a singleton set!). To look
at more specific examples, note that f : R → R defined by (i) or by (iv) above
is bijective, while f : R → [0,∞) defined by (ii) is onto but not one-one, and
f : R \ {0} → R defined by (iii) is one-one but not onto.

If f : D → E and g : D′ → E′ are functions with f(D) ⊆ D′, then
the function h : D → E′ defined by h(x) = g(f(x)), x ∈ D, is called the
composite of g with f , and is denoted by g ◦ f [read as g composed with f ,
or as f followed by g].

Note that any function f : D → E can be made an onto function by
replacing the codomain E with its range f(D); more formally, this may be
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done by looking at the function f̃ : D → f(D) defined by f̃(x) = f(x), x ∈ D.
In particular, if f : D → E is one-one, then for every y ∈ f(D), there exists
a unique x ∈ D such that f(x) = y. In this case, we write x = f−1(y).
We thus obtain a function f−1 : f(D) → D such that f−1 ◦ f = idD and
f ◦ f−1 = idf(D). We call f−1 the inverse function of f .

For example, the inverse of f : R → R defined by (i) above is the function
f−1 : R → R given by f−1(y) = (y − 1)/2 for y ∈ R, whereas the inverse of
f : R \ {0} → R defined by (iii) above is the function f−1 : R \ {0} → R \ {0}
given by f−1(y) = 1/y for y ∈ R \ {0}.

In general, if a function f : D → E is not one-one, then we cannot talk
about its inverse. However, sometimes it is possible to restrict the domain of
a function to a smaller set and then a ‘restriction’ of f may become injective.
For any subset C of D, the restriction of f to C is the function f|C : C → E,
defined by f|C(x) = f(x) for x ∈ C. For example, if f : R → R is the function
defined by (ii), then f is not one-one but its restriction f |[0,∞) is one-one and

its inverse g =
(
f|[0,∞)

)−1
is given by g(y) =

√
y for y ∈ [0,∞).

Suppose D ⊆ R is symmetric about the origin, that is, we have −x ∈ D
whenever x ∈ D. For example, D can be the whole real line R or an interval
of the form [−a, a] or the punctured real line R \ {0}. A function f : D → R
is said to be an even function if f(−x) = f(x) for all x ∈ D, whereas f is
said to be an odd function if f(−x) = −f(x) for all x ∈ D. For example,
f : R → R defined by f(x) = x2 is an even function, whereas f : R \ {0} → R
defined by f(x) = 1/x and f : R → R defined by f(x) = x3 are both odd
functions. On the other hand, f : R → R defined by f(x) = 2x + 1 is neither
even nor odd.

Geometrically speaking, given D ⊆ R and f : D → R, the fact that f is a
function corresponds to the property that for every x0 ∈ D, the vertical line
x = x0 in the xy-plane meets the graph of f in exactly one point. Further, the
property that f is one-one corresponds to requiring, in addition, that for any
y0 ∈ R, the horizontal line y = y0 meet the graph of f in at most one point.
On the other hand, the property that a point y0 ∈ R is in the range f(D) of f
corresponds to requiring, in addition, that the horizontal line y = y0 meet the
graph of f in at least one point. In case the inverse function f−1 : f(D) → R
exists, then its graph is obtained from that of f by reflecting along the diagonal
line y = x. Assuming that D is symmetric, to say that f is an even function
corresponds to saying that the graph of f is symmetric with respect to the
y-axis, whereas to say that f is an odd function corresponds to saying that
the graph of f is symmetric with respect to the origin. Notice that if f is odd
and one-one, then its range f(D) is also symmetric, and f−1 : f(D) → R is
an odd function.

Given any real-valued functions f, g : D → R, we can associate new
functions f + g : D → R and fg : D → R, called respectively the sum and
the product of f and g, which are defined componentwise, that is, by

(f + g) (x) = f(x) + g(x) and (fg) (x) = f(x)g(x) for x ∈ D.
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In case f is the constant function given by f(x) = c for all x ∈ D, then fg is
often denoted by cg and called the multiple of g (by c). We often write f − g
in place of f + (−1)g. In case g(x) �= 0 for all x ∈ D, the quotient f/g is
defined and this is a function from D to R given by (f/g) (x) = f(x)/g(x) for
x ∈ D. Sometimes, we write f ≤ g to mean that f(x) ≤ g(x) for all x ∈ D.

Basic Examples of Functions

Among the most basic functions are those that are obtained from polynomials.
Let us first review some relevant algebraic facts about polynomials.

A polynomial (in one variable x) with real coefficients is an expression4

of the form
cnxn + cn−1x

n−1 + · · · + c1x + c0,

where n is a nonnegative integer and c0, c1, . . . , cn are real numbers. We call
c0, c1, . . . , cn the coefficients of the above polynomial and more specifically,
ci as the coefficient of xi for i = 0, 1, . . . , n. In case cn �= 0, the polynomial
is said to have degree n, and cn is said to be its leading coefficient. A
polynomial (in x) whose leading coefficient is 1 is said to be monic (in x).
Two polynomials are said to be equal if the corresponding coefficients are
equal. In particular, cnxn + · · · + c1x + c0 is the zero polynomial if and
only if c0 = c1 = · · · = cn = 0. The degree of the zero polynomial is not
defined. If p(x) is a nonzero polynomial, then its degree is denoted by deg p(x).
Polynomials of degrees 1, 2, and 3 are often referred to as linear, quadratic,
and cubic polynomials, respectively. Polynomials of degree zero as well as the
zero polynomial are called constant polynomials. The set of all polynomials
in x with real coefficients is denoted by R[x]. Addition and multiplication of
polynomials is defined in a natural manner. For example,

(x2 + 2x + 3) + (x3 + 2x2 + 5) = x3 + 3x2 + 2x + 8

and

(x2 + 2x + 3)(x3 + 2x2 + 5) = x5 + 4x4 + 7x3 + 11x2 + 10x + 15.

4 For those who consider ‘expression’ a vague term and wonder what x really is, a
formal and pedantic definition of a polynomial (in one variable) can be given as
follows. A polynomial with real coefficients is a function from the set {0, 1, 2, . . .}
of nonnegative integers into R such that all except finitely many nonnegative
integers are mapped to zero. Thus, the expression cnxn+· · ·+c1x+c0 corresponds
to the function which sends 0 to c0, 1 to c1, . . . , n to cn and m to 0 for all m ∈ N
with m > n. In this set up, one can define x to be the unique function that maps 1
to 1, and all other nonnegative integers to 0. More generally, we may define xn to
be the function that maps n to 1, and all other integer to 0. We may also identify
a real number a with the function that maps 0 to a and all the positive integers
to 0. Now, with componentwise addition of functions, cnxn + · · · + c1x + c0 has
a formal meaning, which is in accord with our intuition!
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In general, for any p(x), q(x) ∈ R[x], the sum p(x) + q(x) and the product
p(x)q(x) are polynomials in R[x]. Moreover, if p(x) and q(x) are nonzero, then
so is p(x)q(x) and deg (p(x)q(x)) = deg p(x) + deg q(x), whereas p(x) + q(x)
is either the zero polynomial or deg (p(x) + q(x)) ≤ max{deg p(x), deg q(x)}.
We say that q(x) divides p(x) and write q(x) | p(x) if p(x) = q(x)r(x) for
some r(x) ∈ R[x]. We may write q(x) ∤ p(x) if q(x) does not divide p(x).

If p(x) = cnxn + · · · + c1x + c0 ∈ R[x] and α ∈ R, then we denote by
p(α) the real number cnαn + · · · + c1α + c0 and call it the evaluation of
p(x) at α. In case p(α) = 0, we say that α is a (real) root of p(x). There do
exist polynomials with no real roots. For example, the quadratic polynomial
x2 + 1 has no real root since α2 + 1 ≥ 1 > 0 for all α ∈ R. More generally, if
q(x) = ax2 + bx+ c is any quadratic polynomial (so that a �= 0), then we have

4aq(x) = (2ax + b)2 − (b2 − 4ac).

Consequently, q(x) has a real root if and only if b2 − 4ac ≥ 0; indeed, if
b2−4ac ≥ 0, then

(
−b ±

√
b2 − 4ac

)
/2a are the roots of q(x). We call b2−4ac

the discriminant of the quadratic polynomial q(x) = ax2 + bx + c.
Quotients of polynomials, that is, expressions of the form p(x)/q(x), where

p(x) is a polynomial and q(x) is a nonzero polynomial, are called rational
functions. Two rational functions p1(x)/q1(x) and p2(x)/q2(x) are regarded
as equal if upon cross-multiplying, the corresponding polynomials are equal,
that is, if p1(x)q2(x) = p2(x)q1(x). Sums and products of rational functions
are defined in a natural manner. Basic facts about polynomials and rational
functions are as follows:

(i) If a nonzero polynomial has degree n, then it has at most n roots. Conse-
quently, if p(x) is a polynomial with real coefficients such that p(α) = 0
for all α in an infinite subset D of R, then p(x) is the zero polynomial.

(ii) [Real Fundamental Theorem of Algebra] Every nonzero polynomial
with real coefficients can be factored as a finite product of linear polyno-
mials and quadratic polynomials with negative discriminants.

(iii) [Partial Fraction Decomposition] Every rational function can be de-
composed as the sum of a polynomial and finitely many rational functions
of the form

A

(x − α)i
or

Bx + C

(x2 + βx + γ)j
,

where A, B, C and α, β, γ are real numbers and i, j are positive integers.

The factorization in (ii) is, in fact, unique up to a rearrangement of terms.
In (iii), we can choose (x − α)i and (x2 + βx + γ)j to be among the factors
of the denominator of the given rational function and in that case the partial
fraction decomposition is also unique up to a rearrangement of terms. See
Exercises 60 and 67 (and some of the preceding exercises) for a proof of (i)
and (iii) above. See also Exercise 69 for more on (ii) above. A simple and
useful example of partial fraction decomposition is obtained by taking any
distinct real numbers α, β and noting that
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1

(x − α)(x − β)
=

A1

x − α
+

A2

x − β
, where A1 =

1

α − β
and A2 =

1

β − α
.

More generally, if p(x), q(x) are polynomials with deg p(x) < deg q(x) and
q(x) = (x − α1) · · · (x − αk) where α1, . . . , αk are distinct real numbers, then

p(x)

q(x)
=

A1

x − α1
+ · · · + Ar

x − αk
where Ai =

p(αi)∏
j �=i

(αi − αj)
for i = 1, . . . , r.

This, then, is the partial fraction decomposition of p(x)/q(x). In general, the
partial fraction decomposition of a rational function can be more complicated.
A typical example is the following:

x5 − 4x4 + 8x3 − 13x2 + 3x − 7

x4 − 3x3 + x2 + 4
= (x−1)+

2

(x − 2)
− 3

(x − 2)2
+

2x + 1

(x2 + x + 1)
.

Now let us revert to functions. Evaluating polynomials at real numbers,
we obtain functions known as polynomial functions. Thus, if D ⊆ R, then a
polynomial function on D is a function f : D → R given by

f(x) = cnxn + cn−1x
n−1 + · · · + c1x + c0 for x ∈ D,

where n is a nonnegative integer and c0, c1, . . . , cn are real numbers. Alterna-
tively, we can view the polynomial functions on D as the class of functions
obtained from the identity function on D and the constant functions from D
to R by the construction of forming sums and products of functions. If D is
an infinite set, then it follows from (i) above that a polynomial function on
D and the corresponding polynomial determine each other uniquely. In this
case, it is possible to identify them with each other, and permit polynomial
functions to inherit some of the terminology applicable to polynomials. For
example, a polynomial function is said to have degree n if the corresponding
polynomial has degree n.

Rational functions give rise to real-valued functions on subsets D of R
provided their denominators do not vanish at any point of D. Thus, a rational
function on D is a function f : D → R such that f(x) = p(x)/q(x) for x ∈ D,
where p and q are polynomial functions on D with q(x) �= 0 for all x ∈ D.

Polynomial functions and rational functions (on D ⊆ R) are special cases of
algebraic functions (on D), which are defined as follows. A function f : D → R
is said to be an algebraic function if y = f(x) satisfies an equation whose
coefficients are polynomials, that is,

pn(x)yn + pn−1(x)yn−1 + · · · + p1(x)y + p0(x) = 0 for x ∈ D,

where n ∈ N and p0(x), p1(x), . . . , pn(x) are polynomials such that pn(x) is
a nonzero polynomial. For example, the function f : [0,∞) → R defined
by f(x) := n

√
x is an algebraic function since y = f(x) satisfies the equation
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yn−x = 0 for x ∈ [0,∞). It can be shown5 that sums, products, and quotients
of algebraic functions are algebraic. Here is a simple example that illustrates
why such a property is true. Consider the sum y =

√
x +

√
x + 1 of functions

that are clearly algebraic. To show that this sum is algebraic, write y −√
x =√

x + 1, square both sides, and simplify to get y2 − 1 = 2y
√

x; now squaring
once again we obtain the equation y4 − 2(1 + 2x)y2 + 1 = 0, which is of the
desired type. Algebraic functions also have the property that their radicals
are algebraic. More precisely, if f : D → R is algebraic and f(x) ≥ 0 for all
x ∈ D, then any root of f is algebraic, that is, for any d ∈ N the function
g : D → R defined by g(x) := f(x)1/d is algebraic. This follows simply by
changing y to yd in the algebraic equation satisfied by y = f(x), and noting
that the resulting equation is satisfied by y = g(x). It is seen, therefore, that
algebraic functions constitute a fairly large class of functions, which is closed
under the basic operations of algebra. This class may be viewed as a basic
stockpile of functions from which various examples can be drawn. A real-
valued function that is not algebraic is called a transcendental function.
The transcendental functions are also important in calculus and we will discuss
them in greater detail in Chapter 7.
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Fig. 1.4. Graphs of f(x) := |x| and f(x) :=



x + 2 if x ≤ 1,
(x2 − 9)/8 if x > 1

Apart from algebra, a fruitful way to construct new functions is by piecing
together known functions. For example, consider f : R → R defined by either
of the following.

(i) f(x) := |x| =

{
x if x ≥ 0,

−x if x < 0;
(ii) f(x) :=

{
x + 2 if x ≤ 1,
(x2 − 9)/8 if x > 1.

The graphs of these functions may be drawn as in Figure 1.4. Taking the
integer part or the floor of a real number gives rise to a function f : R → R

5 A general proof of this requires some ideas from algebra. The interested reader is
referred to [16] or [30].
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defined by f(x) := [x], which we refer to as the integer part function or
the floor function. Likewise, g : R → R given by g(x) := ⌈x⌉ is called
the ceiling function. These two functions may also be viewed as examples
of functions obtained by piecing together known functions, and their graphs
are shown in Figure 1.5. As seen in Figures 1.4 and 1.5, it is often the case
that the graphs of functions defined by piecing together different functions
look broken or have beak-like edges. Also, in general, such functions are not
algebraic. Nevertheless, such functions can be quite useful in constructing
examples of certain ‘wild behavior’.
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Fig. 1.5. Graphs of the integer part function [x] and the ceiling function ⌈x⌉

Remark 1.14. Polynomials (in one variable) are analogous to integers. Like-
wise, rational functions are analogous to rational numbers. Algebraic functions
and transcendental functions also have analogues in arithmetic, which are de-
fined as follows. A real number α is called an algebraic number if it satisfies
a nonzero polynomial with integer coefficients. Numbers that are not algebraic
are called transcendental numbers. For example, it can be easily seen that√

2,
√

3, 5
√

7,
√

2+
√

3 are algebraic numbers. Also, every rational number is an
algebraic number. On the other hand, it is not easy to give concrete examples
of transcendental numbers. Those interested are referred to the book of Baker
[7] for the proof of transcendence of several well-known numbers. ✸

We shall now discuss a number of geometric properties of real-valued func-
tions defined on certain subsets of R.

Bounded Functions

The notion of a bounded set has an analogue in the case of functions. In effect,
we use for functions the terminology that is applicable to their range. More
precisely, we make the following definitions.
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Let D ⊆ R and f : D → R be a function.

1. f is said to be bounded above on D if there is α ∈ R such that f(x) ≤ α
for all x ∈ D. Any such α is called an upper bound for f .

2. f is said to be bounded below on D if there is β ∈ R such that f(x) ≥ β
for all x ∈ D. Any such β is called a lower bound for f .

3. f is said to be bounded on D if it is bounded above on D and also
bounded below on D.

Notice that f is bounded on D if and only if there is γ ∈ R such that
|f(x)| ≤ γ for all x ∈ D. Any such γ is called a bound for the absolute value
of f . Geometrically speaking, f is bounded above means that the graph of
f lies below some horizontal line, while f is bounded below means that its
graph lies above some horizontal line.

For example, f : R → R defined by f(x) := −x2 is bounded above on R,
while f : R → R defined by f(x) := x2 is bounded below on R. However,
neither of these functions is bounded on R. On the other hand, f : R → R
defined by f(x) := x2/(x2 +1) gives an example of a function that is bounded
on R. For this function, we see readily that 0 ≤ f(x) < 1 for all x ∈ R. The
bounds 0 and 1 are, in fact, optimal in the sense that

inf{f(x) : x ∈ R} = 0 and sup{f(x) : x ∈ R} = 1.

Of these, the first equality is obvious since f(x) ≥ 0 for all x ∈ R and f(0) = 0.
To see the second equality, let α be an upper bound such that α < 1. Then
1 − α > 0 and so we can find n ∈ N such that

1

n
< 1 − α and hence f(

√
n − 1) =

n − 1

n
= 1 − 1

n
> α,

which is a contradiction. This shows that sup{f(x) : x ∈ R} = 1. Thus there
is a qualitative difference between the infimum of (the range of) f , which is
attained, and the supremum, which is not attained. This suggests the following
general definition.

Let D ⊆ R and f : D → R be a function. We say that

1. f attains its upper bound on D if there is c ∈ D such that

sup{f(x) : x ∈ D} = f(c),

2. f attains its lower bound on D if there is d ∈ D such that

inf{f(x) : x ∈ D} = f(d),

3. f attains its bounds on D if it attains its upper bound on D and also
attains its lower bound on D.

In case f attains its upper bound, we may write max{f(x) : x ∈ D} in
place of sup{f(x) : x ∈ D}. Likewise, if f attains its lower bound, then “inf”
may be replaced by “min”.
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Monotonicity, Convexity, and Concavity

Monotonicity is a geometric property of a real-valued function defined on a
subset of R that corresponds to its graph being increasing or decreasing. For
example, consider Figure 1.6, where the graph on the left is increasing while
that on the right is decreasing.

a b0
x

y

a b0
x

y

Fig. 1.6. Typical graphs of increasing and decreasing functions on I = [a, b]

A formal definition is as follows. Let D ⊆ R be such that D contains an
interval I and f : D → R be a function. We say that

1. f is (monotonically) increasing on I if

x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≤ f(x2),

2. f is (monotonically) decreasing on I if

x1, x2 ∈ I, x1 < x2 =⇒ f(x1) ≥ f(x2),

3. f is monotonic on I if f is monotonically increasing on I or f is mono-
tonically decreasing on I.

Next, we discuss more subtle properties of a function, known as convexity
and concavity. Geometrically, these notions are easily described. A function is
convex if the line segment joining any two points on its graph lies on or above
the graph. A function is concave if any such line segment lies on or below
the graph. An illustration is given in Figure 1.7. To formulate a more precise
definition, one should first note that convexity or concavity can be defined
relative to an interval I contained in the domain of a function f , and also
that given any x1, x2 ∈ I with x1 < x2, the equation of the line joining the
corresponding points (x1, f(x1)) and (x2, f(x2)) on the graph of f is given by

y − f(x1) = m(x − x1), where m =
f(x2) − f(x1)

x2 − x1
.

So, once again let D ⊆ R be such that D contains an interval I and
f : D → R be a function. We say that
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1. f is convex on I or concave upward on I if

x1, x2, x ∈ I, x1 < x < x2 =⇒ f(x) − f(x1) ≤
f(x2) − f(x1)

x2 − x1
(x − x1),

2. f is concave on I or concave downward on I if

x1, x2, x ∈ I, x1 < x < x2 =⇒ f(x) − f(x1) ≥
f(x2) − f(x1)

x2 − x1
(x − x1).

�

�

x1 x20 a b
x

y

�

�

x1 x20 a b
x

y

Fig. 1.7. Typical graphs of convex and concave functions on I = [a, b]

An alternative way to formulate the definitions of convexity and concavity
is as follows. First, note that for any x1, x2 ∈ R with x1 < x2, the points x
between x1 and x2 are of the form (1− t)x1 + tx2 for some t ∈ (0, 1); in fact,
t and x determine each other uniquely since

x = (1 − t)x1 + tx2 ⇐⇒ t =
x − x1

x2 − x1
.

Substituting this in the definition above, we see that f is convex on I if
(and only if) for any x1, x2 ∈ I with x1 < x2 and any t ∈ (0, 1) we have
f((1 − t)x1 + tx2) ≤ (1 − t)f(x1) + tf(x2). Of course, the roles of t and 1− t
can be readily reversed, and with this in view, one need not assume that
x1 < x2. Thus, f is convex on I if (and only if)

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) for all x1, x2 ∈ I and t ∈ (0, 1).

Similarly, f is concave on I if (and only if)

f(tx1 + (1 − t)x2) ≥ tf(x1) + (1 − t)f(x2) for all x1, x2 ∈ I and t ∈ (0, 1).

Examples 1.15. (i) The function f : R → R defined by f(x) := x2 is in-
creasing on [0,∞) and decreasing on (−∞, 0]. Indeed, if x1, x2 ∈ R with
x1 < x2, then (x2

2 − x2
1) = (x2 − x1)(x2 + x1) is positive if x1, x2 ∈ [0,∞)

and negative if x1, x2 ∈ (−∞, 0]. Further, f is convex on R. To see this,
note that if x1, x2, x ∈ R with x1 < x < x2, then (x − x1) > 0 and

x2 − x2
1 = (x + x1)(x − x1) < (x2 + x1)(x − x1) =

(x2
2 − x2

1)

(x2 − x1)
(x − x1).
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(ii) The function f : R → R defined by f(x) := x3 is increasing on (−∞,∞).
Indeed, if x1, x2 ∈ R with x1 < 0 < x2, then clearly x3

1 < 0 < x3
2, whereas

if x1, x2 ∈ [0,∞) or x1, x2 ∈ (−∞, 0] with x1 < x2, then (x3
2−x3

1) = (x2−
x1)(x

2
2+x2x1+x2

1) is positive. Further, f is concave on (−∞, 0] and convex
on [0,∞). To see this, first note that if x1 < x < x2 ≤ 0, then (x−x1) > 0,
x2 > x2

2, and x1x > x1x2, and so x3−x3
1 = (x2+x1x+x2

1)(x−x1) satisfies

x3 − x3
1 > (x2

2 + x1x2 + x2
1)(x − x1) =

(x3
2 − x3

1)

(x2 − x1)
(x − x1).

Also, if 0 ≤ x1 < x < x2, then (x − x1) > 0, x2 < x2
2, and x1x < x1x2,

and so in this case x3 − x3
1 = (x2 + x1x + x2

1)(x − x1) satisfies

x3 − x3
1 < (x2

2 + x1x2 + x2
1)(x − x1) =

(x3
2 − x3

1)

(x2 − x1)
(x − x1).

(iii) The function f : R → R defined by f(x) := |x| is decreasing on (−∞, 0],
increasing on [0,∞), and convex on R = (−∞,∞). Indeed, the first two
assertions about the monotonicity of f are obvious. The convexity of f is
easily verified from the definition by considering separately various cases
depending on the signs of x1, x, and x2. ✸

Remark 1.16. In each of the examples above, we have in fact obtained a
stronger conclusion than was needed to satisfy the definitions of increasing/de-
creasing and convex/concave functions. Namely, instead of the inequalities
“≤” and “≥”, we obtained the corresponding strict inequalities “<” and
“>”. If one wants to emphasize this, the terminology of strictly increasing,
strictly decreasing, strictly convex, or strictly concave, is employed.
The definitions of these concepts are obtained by changing the inequality “≤”
or “≥” appearing on the right in 1, 2, 4, and 5 above by the corresponding
strict inequality “<” or “>”, respectively. Also, we say that a function is
strictly monotonic if it is strictly increasing or strictly decreasing. ✸

Local Extrema and Points of Inflection

Points where the graph of a function has peaks or dips, or where the convexity
changes to concavity (or vice versa), are of great interest in calculus and
its applications. We shall now formally introduce the terminology used in
describing this type of behavior.

Let D ⊆ R and c ∈ D be such that D contains an interval (c− r, c + r) for
some r > 0. Given f : D → R, we say that

1. f has a local maximum at c if there is δ > 0 with δ ≤ r such that
f(x) ≤ f(c) for all x ∈ (c − δ, c + δ),

2. f has a local minimum at c if there is δ > 0 with δ ≤ r such that
f(x) ≥ f(c) for all x ∈ (c − δ, c + δ).
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3. f has a local extremum at c if f has a local maximum at c or a local
minimum at c,

4. c is a point of inflection for f if there is δ > 0 with δ ≤ r such that f
is convex in (c − δ, c), while f is concave in (c, c + δ), or vice versa, that
is, f is concave in (c − δ, c), while f is convex in (c, c + δ).

It may be noted that the terms local maxima, local minima, and local
extrema are often used as plural forms of local maximum, local mini-
mum, and local extremum, respectively.

Examples 1.17. (i) The function f : R → R defined by f(x) := −x2 has a
local maximum at the origin, that is, at 0.

(ii) The function f : R → R defined by f(x) := |x| has a local minimum at
the origin, that is, at 0. [See Figure 1.4.]

(iii) For the function f : R → R defined by f(x) := x3, the origin, that is, 0,
is a point of inflection. [See Figure 1.3.] ✸

It is easy to see that if D ⊆ R contains an open interval of the form
(c − r, c + r) for some r > 0 and f : D → R is a function such that f is
decreasing on (c − δ, c] and increasing on [c, c + δ), for some 0 < δ ≤ r, then
f must have a local minimum at c. But as the following example shows, the
converse of this need not be true.

Example 1.18. Consider the function f : [−1, 1] → R, which is obtained by
piecing together infinitely many zigzags as follows. On [1/(n + 1), 1/n], we
define f to be such that its graph is formed by the line segments PM and
MQ, where P, Q are the points on the line y = x whose x-coordinates are
1/n + 1 and 1/n, respectively, while M is the point on the line y = 2x whose
x-coordinate is the midpoint of the x-coordinates of P and Q. More precisely,
for n ∈ N, we define

f(x) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2(n + 1)x − 2n + 1

n + 1
if

1

n + 1
≤ x ≤ 2n + 1

2n(n + 1)
,

−2nx +
2n + 1

n
if

2n + 1

2n(n + 1)
≤ x ≤ 1

n
.

Further, let f(0) := 0 and f(x) := f(−x) for x ∈ [−1, 0). The graph of this
piecewise linear function can be drawn as in Figure 1.8. It is clear that f has
a local minimum at 0. However, there is no δ > 0 such that f is decreasing
on (−δ, 0] and f is increasing on [0, δ).

A similar comment holds for the notion of local maximum. ✸

Remark 1.19. As before, in each of the examples above, the given function
satisfies the property mentioned in a strong sense. For example, for f : R → R
defined by (i), we not only have f(x) ≤ f(0) in an interval around 0 but in fact,
f(x) < f(0) for each point x, except 0, in an interval around 0. To indicate
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Fig. 1.8. Graph of the piecewise linear zigzag function in Example 1.18

this, the terminology strict local maximum, strict local minimum, strict
local extremum, and strict point of inflection can be employed. The first
two of these notions are defined by changing in 1 and 2 above the inequalities
“≤” and “≥” by the corresponding strict inequalities “<” and “>”, and the
condition “x ∈ (c − δ, c + δ)” by the condition “x ∈ (c − δ, c + δ), x �= c”. To
say that f has a strict local extremum at c just means it has a strict local
maximum or a strict local minimum at c. Finally, the notion of a strict point
of inflection is defined by adding “strictly” before the words “convex” and
“concave” in the above definition of a point of inflection. ✸

In Examples 1.15 and 1.17, which illustrate the geometric phenomena of
increasing/decreasing functions, convexity/concavity, local maxima/minima,
and points of inflection, the verification of the corresponding property has
been fairly easy. In fact, we have looked at what are possibly the simplest
functions that are prototypes of the above phenomena. But even here, the
proofs of convexity or concavity in the case of functions given by x2 and x3 did
require some effort. As one considers functions that are more complicated, the
verification of all these geometric properties can become increasingly difficult.
Later in this book, we shall describe some results from calculus that can
make such verification significantly simpler for a large class of functions. It is,
nevertheless, useful to remember that the definition as well as the intuitive
idea behind these properties is geometric, and as such, it is independent of
the notions from calculus that we shall encounter in the subsequent chapters.
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Intermediate Value Property

We now consider a geometric property of a function that corresponds, intu-
itively, to the idea that the graph of a function has no “breaks” or “discon-
nections”. For example, if f : R → R is defined by f(x) := 2x + 1 or by
f(x) := x2 or by f(x) := |x|, then the graph of f has apparently no “breaks”.
[See Figures 1.2 and 1.4.] But if f : R → R is defined by

f(x) :=

{
x + 2 if x ≤ 1,
(x2 − 9)/8 if x > 1,

then the graph of f does seem to have a “break”. [See Figure 1.4.] This
intuitive condition on the graph of a real-valued function f can be formulated
by stating that every intermediate value of f is attained by f . More precisely,
we make the following definition.

Let I be an interval and f : I → R be a function. We say that f has the
Intermediate Value Property, or in short, f has the IVP, on I if for any
a, b ∈ I with a < b and r ∈ R,

r lies between f(a) and f(b) =⇒ r = f(x) for some x ∈ [a, b].

Note that if f : I → R has the IVP on I, and J is a subinterval of I, then f
has the IVP on J .

Proposition 1.20. Let I be an interval and f : I → R be any function. Then

f has the IVP on I =⇒ f(I) is an interval.

Proof. Let c, d ∈ f(I) with c < d. Then c = f(a) and d = f(b) for some
a, b ∈ I. If r ∈ (c, d), then by the IVP for f on I, there is x ∈ I between a and
b such that f(x) = r. Hence r ∈ f(I). It follows that f(I) is an interval. ⊓⊔
Remark 1.21. The converse of the above result is true for monotonic func-
tions. To see this, suppose I is an interval and f : I → R is a monotonic
function such that f(I) is an interval. Let x1, x2 ∈ I be such that x1 < x2 and
r be a real number between f(x1) and f(x2). Since f(I) is an interval, there
is x ∈ I such that r = f(x). Now, if f is monotonically increasing on I, then
we must have f(x1) ≤ f(x2); thus, f(x1) ≤ f(x) ≤ f(x2), and consequently,
x1 ≤ x ≤ x2. Likewise, if f is monotonically decreasing on I, then we have
f(x1) ≥ f(x) ≥ f(x2), and consequently, x1 ≤ x ≤ x2. This shows that f has
the IVP on I.

However, in general, the converse of the result in Proposition 1.20 is not
true. For example, if I = [0, 2] and f : I → R is defined by

f(x) =

{
x if 0 ≤ x ≤ 1,
3 − x if 1 < x ≤ 2,

then f(I) = I is an interval but f does not have the IVP on I. The latter
follows, for example, since 5

4 lies between 1 = f(1) and 3
2 = f

(
3
2

)
, but 5

4 �= f(x)
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for any x ∈ [1, 3
2 ]. It may be noted in this example that f is one-one but is

not monotonic on I. Also, f
([

1
2 , 3

2

])
=
[

1
2 , 1

]
∪
[

3
2 , 2

]
is not an interval. ✸

Proposition 1.22. Let I be an interval and f : I → R be any function. Then

f has the IVP on I ⇐⇒ f(J) is an interval for every subinterval J of I.

Proof. The implication =⇒ follows from applying Proposition 1.20 to restric-
tions of f to subintervals of I. Conversely, suppose f(J) is an interval for
every subinterval J of I. Let a, b ∈ I with a < b and r ∈ R lie between f(a)
and f(b). Consider J = [a, b]. Then J is a subinterval of I and hence f(J)
is an interval containing f(a) and f(b). Therefore, r = f(x) for some x ∈ J .
Thus, f has the IVP on I. ⊓⊔

The relation between (strict) monotonicity and the IVP is made clearer
by the following result.

Proposition 1.23. Let I be an interval and f : I → R be a function. Then
f is one-one and has the IVP on I if and only if f is strictly monotonic and
f(I) is an interval. In this case, f−1 : f(I) → R is strictly monotonic and
has the IVP on f(I).

Proof. Assume that f is one-one and has the IVP on I. By Proposition 1.20,
f(I) is an interval. Suppose f is not strictly monotonic on I. Then there are
x1, x2 ∈ I and y1, y2 ∈ I such that

x1 < x2 but f(x1) ≥ f(x2) and y1 < y2 but f(y1) ≤ f(y2).

Let a := min{x1, y1} and b := max{x2, y2}. Note that a < b. Now, suppose
f(a) ≤ f(b). Then we must have f(x1) ≤ f(b) because otherwise, f(x1) >
f(b) ≥ f(a) and hence by the IVP of f on I, there is z1 ∈ [a, x1] such that
f(z1) = f(b). But since z1 ≤ x1 < x2 ≤ b, this contradicts the assumption
that f is one-one. Thus, we have f(x2) ≤ f(x1) ≤ f(b). Again, by the IVP of
f on I, there is w1 ∈ [x2, b] such that f(w1) = f(x1). But since x1 < x2 ≤ w1,
this contradicts the assumption that f is one-one. Next, suppose f(b) < f(a).
Here, we must have f(y2) ≤ f(a) because otherwise, f(y2) > f(a) > f(b) and
hence by the IVP of f on I, there is z2 ∈ [y2, b] such that f(z2) = f(a). But
since a ≤ y1 < y2 ≤ z2, this contradicts the assumption that f is one-one.
Thus, we have f(y1) ≤ f(y2) ≤ f(a). Again, by the IVP of f on I, there is
w2 ∈ [a, y1] such that f(w2) = f(y2). But since w2 ≤ y1 < y2, this contradicts
the assumption that f is one-one. It follows that f is strictly monotonic on I.

To prove the converse, assume that f is strictly monotonic on I and f(I)
is an interval. Then we have seen in Remark 1.21 above that f has the IVP
on I. Also, strict monotonicity obviously implies that f is one-one.

Finally, suppose f is one-one and has the IVP on I. Then as seen above, f
is strictly monotonic on I. This implies readily that f−1 is strictly monotonic
on f(I). Also, f(I) is an interval and so is I = f−1(f(I)). Hence by the
equivalence proved above, f−1 has the IVP on f(I). ⊓⊔
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Notes and Comments

It is often said, and believed, that mathematics is an exact science, and all the
terms one uses in mathematics are always precisely defined. This is of course
true to a large extent. But one should realize that it is impossible to precisely
define everything. Indeed, to define one term, we would have to use another, to
define which we would have to use yet another, and so on. Since our vocabulary
is finite (check!), we would soon land in a vicious circle! Mathematicians find
a way out of this dilemma by agreeing to regard certain terms as undefined
or primitive. Further, one also stipulates certain axioms or postulates that
describe some ‘natural’ properties that the primitive terms possess. Once this
is done, every other term is defined using the primitive terms or the ones
defined earlier. Also, a result is not accepted unless it is precisely proved using
the axioms or the results proved before.

The terms that are usually considered primitive or undefined in mathe-
matics are “set” and “is an element of” (a set). One has a small number of
axioms that postulate certain basic and seemingly obvious ‘facts’ about sets.
Taking these for granted, we can define just about everything else that one
encounters in mathematics. The formal definition of a function given in this
chapter is a good illustration of this phenomenon.

Good references for the nitty-gritty about sets, or rather, the subject of
axiomatic set theory, are the books by Enderton [24] and Halmos [29]. To
define the real numbers, one begins with the set Q of rational numbers and
constructs a set that satisfies the properties we postulated for R. There are two
standard approaches for the construction of R from Q, one due to Dedekind
and the other due to Cantor. An old-fashioned but thorough discussion of both
the approaches can be found in the book of Hobson [37]. A sleek presentation
of Dedekind’s approach can be found in the appendix to Chapter 1 of Rudin
[53]. For a precise account of Cantor’s construction, see Section 5 of the book
of Hewitt and Stromberg [36]. A classic reference for the construction of real
numbers and more generally the foundation of calculus is the charming book
of Landau [44].

The topic of inequalities, which we briefly discussed in Section 1.2 is now
a subject in itself, and to get a glimpse of it, one can see the book of Hardy,
Littlewood, and Polya [33] or of Beckenbach and Bellman [9]. There are also
specialized books like that of Bullen, Mitrinoviv, and Vasic [15], which has, for
example, more than 50 proofs of the A.M.-G.M. inequality! A more elementary
and accessible introduction is the little booklet [43] of Korovkin.

The notion of a function is of basic importance not only in calculus and
analysis, but in all of mathematics. Not surprisingly, it has evolved over the
years and the formal definition is a distilled form of various ideas one has
about this notion. Classically, the notion of a function was supple enough to
admit y as an (implicit) function of x if the two are related by an equation
F (x, y) = 0, even though for a given value of x, there could be multiple values
of y satisfying F (x, y) = 0. But in modern parlance, there is no such thing



Exercises 31

as a multivalued function! Nonetheless, the so-called “multivalued functions”
have played an important role in the development of calculus and other parts
of mathematics. With this in view, we have included a discussion of algebraic
functions, remaining within the confines of modern definitions and the sub-
ject of calculus. For a glimpse of the classical viewpoint, see the two-volume
textbook of Chrystal [16], which is also an excellent reference for algebra in
general. A relatively modern and accessible book on algebra, which includes
a discussion of partial fraction decomposition, is the survey of Birkhoff and
Mac Lane [11]. A variety of proofs of the Fundamental Theorem of Algbra,
which implies the Real Fundamental Theorem of Algebra stated in this chap-
ter, can be found in the book of Fine and Rosenberger [25].

For real-valued functions defined on intervals, we have discussed a number
of geometric properties such as monotonicity, convexity, local extrema, and
the Intermediate Value Property. Typically, these appear in calculus books in
conjunction with the notions of differentiability and continuity. The reason to
include these in the first chapter is to stress the fact that these are geometric
notions and should not be confused with various criteria one has, involving
differentiability or continuity, to check them.

Exercises

Part A

1. Using only the algebraic properties A1–A5 on page 3, prove the following.
(i) 0 is the unique real number such that a+0 = a for all a ∈ R. In other

words, if some z ∈ R is such that a + z = a for all a ∈ R, then z = 0.
(ii) 1 is the unique real number such that a · 1 = a for all a ∈ R.
(iii) Given any a ∈ R, an element a′ ∈ R such that a + a′ = 0 is unique.

[As noted before, this unique real number a′ is denoted by −a.]
(iv) Given any a ∈ R with a �= 0, an element a∗ ∈ R such that a · a∗ = 1

is unique. [As noted before, this unique real number a∗ is denoted by
a−1 or by 1/a.]

(v) Given any a ∈ R, we have −(−a) = a. Further if a �= 0, then(
a−1

)−1
= a.

(vi) Given any a, b ∈ R, we have a(−b) = −(ab) and (−a)(−b) = ab.
2. Given any a ∈ R and k ∈ Z, the binomial coefficient associated with a

and k is defined by

(
a

k

)
=

{
a(a − 1) · · · (a − k + 1)

k!
if k ≥ 0,

0 if k < 0,

where for k ∈ N, k! (read as k factorial) denotes the product of the first
k positive integers. Note that 0! = 1 and

(
a
0

)
= 1 for any a ∈ R.
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(i) Show that if a, k ∈ Z with 0 ≤ k ≤ a, then
(

a

k

)
=

a!

k!(a − k)!
=

(
a

a − k

)
.

(ii) If a ∈ R and k ∈ Z, then show that
(

a

k

)
=

(
a − 1

k

)
+

(
a

k − 1

)
.

[Note: This identity is sometimes called the Pascal triangle identity.
If we compute the values of the binomial coefficients

(
n
k

)
for n ∈ N

and 0 ≤ k ≤ n, and write them in a triangular array such that the nth
row consists of the numbers

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, then this array is called

the Pascal triangle. It may be instructive to write the first few rows
of the Pascal triangle and see what the identity means pictorially.]

(iii) Use the identity in (ii) and induction to prove the Binomial Theorem
(for positive integral exponents). In other words, prove that for any
n ∈ N and x, y ∈ R, we have

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

[Note: Proving a statement defined for n ∈ N such as the above identity
by induction means that we should prove it for the initial value
n = 1, and further prove it for an arbitrary value of n ∈ N, n > 1, by
assuming either that it holds for n − 1 or that it holds for values of
n smaller than the given one. The technique of induction also works
when N is replaced by any subset S of Z that is bounded below; the
only difference would be that the initial value 1 would have to be
changed to the least element of S.]

3. Use induction to prove the following statements for each n ∈ N:

(i)
n∑

i=1

i =
n(n + 1)

2
,

(ii)

n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
,

(iii)

n∑

i=1

i3 =
n2(n + 1)2

4
=

( n∑

i=1

i

)2

.

4. Use the algebraic properties and the order properties of R to prove that
(i) a2 > 0 for any a ∈ R, a �= 0.
(ii) Given a, b ∈ R with 0 < a < b, we have 0 < (1/b) < (1/a).

5. Let S be a nonempty subset of R. If S is bounded above, then show
that the set US = {α ∈ R : α is an upper bound of S} is bounded below,
min US exists, and sup S = min US. Likewise, if S is bounded below, then
show that the set LS = {β ∈ R : β is a lower bound of S} is bounded
above, max LS exists, and inf S = maxLS .
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6. Let S be a nonempty subset of R. If S is bounded above and M ∈ R, then
show that M = sup S if and only if M is an upper bound of S and for
every ǫ > 0, there exists x ∈ S such that M − ǫ < x ≤ M . Likewise, if S
is bounded below and m ∈ R, then show that m = inf S if and only if m
is a lower bound of S and for every ǫ > 0, there exists x ∈ S such that
m ≤ x < m + ǫ.

7. Let S be a nonempty subset of R and c ∈ R. Define the additive translate
c + S and the multiplicative translate cS of S as follows:

c + S = {c + x : x ∈ S} and cS = {cx : x ∈ S}.

If S is bounded, then show that c + S and cS are bounded. Also show
that

sup(c + S) = c + supS and inf(c + S) = c + inf S,

whereas

sup(cS) =

{
c sup S if c ≥ 0,
c inf S if c ≤ 0,

and inf(cS) =

{
c inf S if c ≥ 0,
c sup S if c ≤ 0.

8. Given any x, y ∈ R with y > 0, show that there exists n ∈ N such that
ny > x.
[Note: The above property is equivalent to the Archimedean property,
which was stated in Proposition 1.3.]

9. Given any x, y ∈ R with x �= y, show that there exists δ > 0 such that the
intervals (x − δ, x + δ) and (y − δ, y + δ) have no point in common.
[Note: The above property is sometimes called the Hausdorff property.]

10. Prove that the following numbers are irrational:

(i)
√

3, (ii)
√

15, (iii) 3
√

2, (iv) 4
√

11, (v) 5
√

16, (vi)
√

2 +
√

3.

11. If a, b ∈ R with a < b, then show that there exist infinitely many rational
numbers as well as infinitely many irrational numbers between a and b.

12. Show that n! ≤ 2−n (n + 1)
n

for every n ∈ N, and that equality holds if
and only if n = 1.

13. Let n ∈ N and a1, . . . , an be positive real numbers. Prove that

n
√

a1 · · ·an ≥ n

r
where r :=

1

a1
+ · · · + 1

an

and that equality holds if and only if a1 = · · · = an.
[Note: The above result is sometimes called the G.M.-H.M. inequality
and n/r is called the harmonic mean of a1, . . . , an.]

14. Let a1, . . . , an, b1, . . . , bn be real numbers such that a1 > · · · > an > 0.
(i) Let m = min{B1, . . . , Bn} and M = max{B1, . . . , Bn}, where Bi =

b1+· · ·+bi for i = 1, . . . , n. Show that ma1 ≤ a1b1+· · ·+anbn ≤ Ma1.
[Note: The above inequality is sometimes called Abel’s inequality.]
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(ii) Show that the alternating sum a1 − a2 + · · · + (−1)n+1an is always
between 0 and a1.

15. Let n, m ∈ N be such that m ≥ n.
(i) Let a1, . . . , an, . . . , am be real numbers, and let An denote the arith-

metic mean of a1, . . . , an, and Am denote the arithmetic mean of
a1, . . . , am. Show that

An ≤ Am if a1 ≤ · · · ≤ am and An ≥ Am if a1 ≥ · · · ≥ am.

Further, show that if m > n, then equality holds if and only if a1 =
· · · = am. (Hint: Induct on m.)

(ii) Use (i) to show that for any x ∈ R with x ≥ 0, we have

xm − 1

m
≥ xn − 1

n

and further, if m > n, then equality holds if and only if x = 1.
[Note: Exercise 52 gives an alternative approach to this inequality.]

(iii) Use (ii) to show that for any a ∈ R and r ∈ Q with 1 + a ≥ 0 and
r ≥ 1, we have (1 + a)r ≥ 1 + ra. Further, show that if r > 1, then
equality holds if and only if a = 0.
[Note: Exercise 54 (iii) gives an alternative approach to this inequality.]

16. Let n ∈ N and let a1, . . . , an and b1, . . . , bn be any real numbers. Assume
that not all a1, . . . , an are zero. Consider the quadratic polynomial

q(x) =

n∑

i=1

(xai + bi)
2.

Show that the discriminant ∆ of q(x) is nonnegative, and ∆ = 0 if and
only if there is c ∈ R such that bi = cai for all i = 1, . . . , n. Use this to
give an alternative proof of Proposition 1.12.

17. Show that if n ∈ N and a1, . . . , an are nonnegative real numbers, then
(a1+· · ·+an)2 ≤ n(a2

1+· · ·+a2
n). (Hint: Write (a1+· · ·+an)2 as t1+· · ·+tn,

where tk := a1ak + a2ak+1 + · · ·+ an−k+1an + an−k+2a1 + · · ·+ anak−1.)
[Note: Exercise 35 gives an alternative approach to this inequality.]

18. Let n and m be nonnegative integers. Show that there is an injective map
from {1, . . . , n} to {1, . . . , m} if and only if n ≤ m. Also show that there
is a surjective map from {1, . . . , n} to {1, . . . , m} if and only if n ≥ m.
Deduce that there is a bijective map from {1, . . . , n} to {1, . . . , m} if and
only if n = m. (Hint: Use induction.)

19. Given any function f : R → R, prove the following:
(i) If f(xy) = f(x) + f(y) for all x, y ∈ R, then f(x) = 0 for all x ∈ R.

[Note: It is, however, possible that there are nonzero functions defined
on subsets of R, such as (0,∞) that satisfy f(xy) = f(x)+f(y) for all
x, y in the domain of f . A prominent example of this is the logarithmic
function, which will be discussed in Section 7.1.]
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(ii) If f(xy) = f(x)f(y) for all x, y ∈ R, then either f(x) = 0 for all x ∈ R,
or f(x) = 1 for all x ∈ R, or f(0) = 0 and f(1) = 1. Further, f is
either an even function or an odd function.

Give examples of even as well as odd functions f : R → R satisfying
f(xy) = f(x)f(y) for all x, y ∈ R.

20. Prove that the absolute value function, that is, f : R → R defined by
f(x) = |x|, is not a rational function.

21. Prove that the function f : [0,∞) → R defined by the following is an
algebraic function:

(i) f(x) = 1 + 3
√

x. (ii) f(x) =
√

x +
√

2x, (iii) f(x) =
√

x + 3
√

x.

22. Let f : R → R be the function defined by the following:

(i) f(x) = x3, (ii) f(x) = x4, (iii) f(x) = |x|, (iv) f(x) =
√
|x|.

Sketch the graph of f and determine the points at which f has local
extrema as well as the points of inflection of f , if any, in each case.

23. Let f : (0,∞) → R be the function defined by the following:

(i) f(x) =
√

x, (ii) f(x) = x3/2, (iii) f(x) =
1

|x| , (iv) f(x) =
1

x2
.

Sketch the graph of f and determine the points at which f has local
extrema as well as the points of inflection of f , if any, in each case.

24. Given any f : D → R and c ∈ R, define functions gc, hc, kc, and ℓc from
R to R as follows:

gc(x) = f(x) + c, hc(x) = cf(x), kc(x) = f(x + c), ℓc(x) = f(cx).

If f is given by f(x) = xn for all x ∈ R, then sketch the graph of gc, hc,
kc, and ℓc when n = 1, 2 or 3 and c = 0, 1, 2, −1, −2, 1

2 or − 1
2 .

25. Consider D ⊆ R and f : D → R defined by the following. Determine
whether f is bounded above on D. If yes, find an upper bound for f on
D. Also, determine whether f is bounded below on D. If yes, find a lower
bound for f on D. Also, determine whether f attains its upper bound or
lower bound.

(i) D = (−1, 1) and f(x) = x2 − 1, (ii) D = (−1, 1) and f(x) = x3 − 1,

(iii) D = (−1, 1] and f(x) = x2 − 2x − 3, (iv) D = R and f(x) =
1

1 + x2
.

26. Let D be a bounded subset of R and f : D → R be a polynomial function.
Prove that f is bounded on D.

27. Let I be an interval and f : I → R be a monotonically increasing function.
Given any r ∈ R, show that rf : I → R is a monotonically increasing
function if r ≥ 0 and a monotonically decreasing function if r < 0.
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28. Let I be an interval and f : I → R be a convex function. Given any r ∈ R,
show that rf : I → R is a convex function if r ≥ 0 and a concave function
if r < 0.

29. Let I be an interval and f, g : I → R be convex functions. Show that
f + g : I → R is also convex.

30. Give an example of f : (0, 1) → R such that f is
(i) strictly increasing and convex, (ii) strictly increasing and concave,
(iii) strictly decreasing and convex, (iv) strictly decreasing and concave.

31. Give an example of a nonconstant function f : (−1, 1) → R such that f
has a local extremum at 0, and 0 is a point of inflection for f .

32. Let I be an interval and f : I → R be any function.
(i) If f is monotonically increasing as well as monotonically decreasing

on I, then show that f is constant on I.
(ii) If f is convex as well as concave on I, then show that f is given by a

linear polynomial (that is, there are a, b ∈ R such that f(x) = ax + b
for all x ∈ I).

33. Let I be an interval and f : I → R be any function. Show that f is
convex on I if and only if the slope of the chord joining (x1, f(x1)) and
(x, f(x)) is less than or equal to the slope of the chord joining (x, f(x))
and (x2, f(x2)) for all x1 < x < x2 in I.

34. Let I be an interval and f : I → R be any function. If f is convex on I,
then show that for any x1, . . . , xn ∈ I and any nonnegative real numbers
t1, . . . , tn with t1 + · · · + tn = 1, we have

f(t1x1 + · · · + tnxn) ≤ t1f(x1) + · · · + tnf(xn).

[Note: The above inequality is sometimes called Jensen’s inequality.]
35. Use Jensen’s inequality in Exercise 34 to show that if n ∈ N and a1, . . . , an

are nonnegative real numbers, then (a1 + · · · + an)2 ≤ n(a2
1 + · · · + a2

n).
36. For f, g : R → R, which of the following statements are true? Why?

(i) If f and g have a local maximum at x = c, then so does f + g.
(ii) If f and g have a local maximum at x = c, then so does fg. What if

f(x) ≥ 0 and g(x) ≥ 0 for all x ∈ R?
(iii) If c is a point of inflection for f as well as for g, then it is a point of

inflection for f + g.
(iv) If c is a point of inflection for f as well as for g, then it is a point of

inflection for fg.

Part B

37. Given any ℓ, m ∈ Z with ℓ �= 0, prove that there are unique integers q and
r such that m = ℓq + r and 0 ≤ r < |ℓ|. (Hint: Consider the least element
of the subset {m − ℓn : n ∈ Z with m − ℓn ≥ 0} of Z.)

38. Given any integers m and n, not both zero, a positive integer d satisfying

(i) d | m and d | n and (ii) e ∈ Z, e | m and e | n =⇒ e | d
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is called a greatest common divisor, or simply a GCD, of m and n. If
m = n = 0, we set the GCD of m and n to be 0. Given any m, n ∈ Z, show
that a GCD of m and n exists and is unique; it is denoted by GCD(m, n).
Also show that GCD(m, n) = um + vn for some u, v ∈ Z. (Hint: Consider
the least element of {um + vn : u, v ∈ Z with um + vn > 0}.)

39. Let m, n ∈ Z. Show that m and n are relatively prime if and only if
GCD(m, n) = 1. Also show that m and n are relatively prime if and only
if um + vn = 1 for some u, v ∈ Z. Is it true that if a positive integer d
satisfies um + vn = d for some u, v ∈ Z, then d = GCD(m, n)?

40. Let m, n ∈ Z be relatively prime integers different from ±1. Show by an
example that the integers u, v satisfying um+ vn = 1 need not be unique.
Show, however, that there are unique u, v ∈ Z such that um+ vn = 1 and
0 ≤ u < |n|. In this case show that |v| < |m|. (Hint: Exercise 37.)

41. Given any integers m and n, both nonzero, a positive integer ℓ satisfying

(i) m | ℓ and n | ℓ and (ii) k ∈ N, m | k and n | k =⇒ ℓ | k

is called a least common multiple, or simply an LCM, of m and n. If
m = 0 or n = 0, we set the LCM of m and n to be 0. Given any m, n ∈ Z,
show that an LCM of m and n exists and is unique; it is denoted by
LCM(m, n). Also show that if m and n are nonnegative integers and we
let d = GCD(m, n) and ℓ = LCM(m, n), then dℓ = mn.

42. If m, n, n′ ∈ Z are such that m and n are relatively prime and m | nn′,
then show that m | n′. Deduce that if p is a prime (which means that p
is an integer > 1 and the only positive integers that divide p are 1 and
p) and if p divides a product of two integers, then it divides one of them.
(Hint: Exercise 38.)

43. Prove that every rational number r can be written as

r =
p

q
, where p, q ∈ Z, q > 0 and p, q are relatively prime,

and moreover the integers p and q are uniquely determined by r.
44. Show that if a rational number α satisfies a monic polynomial with integer

coefficients, that is, if α ∈ Q and αn + cn−1α
n−1 + · · · + c1α + c0 = 0 for

some n ∈ N and c0, c1, . . . , cn−1 ∈ Z, then α must be an integer. Use this
to solve Exercise 10 above.

45. Consider the set {(x, y) : x ∈ R and y ∈ R} of ordered pairs of real
numbers. Define the operations of addition and multiplication on this set
as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and
(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

Show that with respect to these operations, all the algebraic properties
on page 3 are satisfied with R replaced by the above set of ordered pairs.
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[Note: It is customary to write i = (0, 1) and identify a real number x with
the pair (x, 0), so that a pair (x, y) in the above set may be written as
x+iy. The elements x+iy considered above are called complex numbers.
The set of all complex numbers is denoted by C. By identifying x with
x + i0 = (x, 0), we may regard R as a subset of C.]

46. Show that C does not satisfy the order properties. In other words, it is
impossible to find a subset C+ of C that satisfies properties similar to
those stated for R+ on page 4. (Hint: −1 is a square in C.)

47. A set D is said to be countable if it is finite or if there is a bijective map
from N to D. A set that is not countable is said to be uncountable.
(i) Show that the set {0, 1, 2, . . .} of all nonnegative integers is countable.
(ii) Show that the set {1, 3, 5, . . .} of all odd positive integers is countable.

Also, the set {2, 4, 6, . . .} of all even positive integers is countable.
(iii) Show that the set Z of all integers is countable.

48. Prove that every subset of a countable set is countable.
49. (i) If A and B are any countable sets, then show that the set A × B :=

{(a, b) : a ∈ A and b ∈ B} is also countable. (Hint: Write A = {am :
m ∈ N} and B = {bn : n ∈ N}. List the elements (am, bn) of A×B as
a two-dimensional array and move diagonally. Alternatively, consider
the map 2m3n �→ (am, bn) from an appropriate subset of N onto A×B.)

(ii) Let {An : n ∈ N} denote a family of sets indexed by N. If An is count-
able for each n ∈ N, then show that the union

⋃
n∈N

An is countable.
(iii) Show that the set Q of all rational numbers is countable.

50. Let {0, 1}N denote the set of all maps from N to the two–element set
{0, 1}. Prove that {0, 1}N is uncountable. (Hint: Write elements of {0, 1}N

as (s1, s2, . . .), where sn ∈ {0, 1} for n ∈ N. Given any f : N → {0, 1}N,
consider (t1, t2, . . .) defined by tn = 1 if the nth entry of f(n) is 0, and
tn = 0 if the nth entry of f(n) is 1.)

51. Let In = [an, bn], n ∈ N, be closed intervals in R such that In ⊇ In+1 for
each n ∈ N. If x = sup{an : n ∈ N} and y = inf{an : n ∈ N}, then show
that x ∈ In and y ∈ In for every n ∈ N.

52. Let m, n ∈ N and let x ∈ R be such that x ≥ 0 and x �= 1. Show that

xm − 1

m
>

xn − 1

n
if m > n and

xm − 1

m
<

xn − 1

n
if m < n.

(Hint: It suffices to assume that m > n. Write n(xm − 1) − m(xm − 1)
as (x − 1)[n(xn + xn+1 + · · · + xm−1) − (m − n)(1 + x + · · · + xn−1)].
Compare the m−n elements xn, xn+1, . . . , xm−1 as well as the n elements
1, x, . . . , xn−1 with xn, when x < 1 and x > 1.)

53. Let r ∈ Q and a, b ∈ R be such that a > 0, b > 0, and a �= b. Prove that

rar−1(a − b) < ar − br < rbr−1(a − b) if r > 1, and

rbr−1(a − b) < ar − br < rar−1(a − b) if 0 < r < 1.

(Hint: Write r = m/n, where m, n ∈ N and use Exercise 52 with x =
(a/b)1/n and with x = (b/a)1/n.)
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54. Use Exercise 53 to deduce the following:
(i) [Basic Inequality for Rational Powers] Given any a, b ∈ R and r ∈

Q such that a ≥ 0, b ≥ 0 and r ≥ 1, we have |ar − br| ≤ rM r−1|a− b|,
where M = max{|a|, |b|}.

(ii) [Inequality for Rational Roots] Given any a, b ∈ R and r ∈ Q such
that a ≥ 0, b ≥ 0 and 0 < r < 1, we have |ar−br| ≤ 2|a−b|r. (Hint: It
suffices to assume that 0 < b < a. Now, if b ≤ a/2, then ar−br ≤ ar ≤
2r(a− b)r, whereas if b > a/2, then ar − br ≤ rbr−1(a− b) ≤ r(a− b)r.
Note that max{r, 2r} ≤ 2.)

(iii) [Binomial Inequality for Rational Powers] Given any a ∈ R and
r ∈ Q such that 1 + a ≥ 0 and r ≥ 1, we have (1 + a)r ≥ 1 + ra.
Further, if r > 1, then (1 + a)r > 1 + ra.

55. Give an alternative proof of the A.M.-G.M. inequality as follows.
(i) First prove the inequality for n numbers a1, . . . , an when n = 2m by

using induction on m.
(ii) In the general case, choose m ∈ N such that 2m > n, and apply (i)

to the 2m numbers a1, . . . , an, g, . . . , g, with g repeated 2m − n times,
where g = n

√
a1a2 · · · an.

56. Use the Cauchy–Schwarz inequality to prove the A.M.-H.M. inequality,
namely, if n ∈ N and a1, . . . , an are positive real numbers, then prove that

a1 + · · · + an

n
≥ n

r
, where r :=

1

a1
+ · · · + 1

an
.

57. Given any n ∈ N and positive real numbers a1, . . . , an let

Mp =

(
ap
1 + · · · + ap

n

n

)1/p

for p ∈ Q with p �= 0.

Prove that if p ∈ Q is positive, then Mp ≤ M2p and equality holds if and
only if a1 = · · · = an. (Hint: Cauchy–Schwarz inequality.)
[Note: Mp is called the pth power mean of a1, . . . , an. In fact, M1 is the
arithmetic mean and M−1 is the harmonic mean, while M2 is called the
root mean square of a1, . . . , an. A general power mean inequality, which
includes as a special case the above inequality Mp ≤ M2p, the A.M.-G.M.
inequality, and the G.M.-H.M. inequality, is described in Exercise 27 in
the list of Revision Exercises at the end of Chapter 7.]

58. Given any ℓ(x), p(x) ∈ R[x] with ℓ(x) �= 0, use induction on deg ℓ(x) to
prove that there are unique polynomials q(x) and r(x) in R[x] such that

p(x) = q(x)ℓ(x) + r(x), and either r(x) = 0 or deg r(x) < deg ℓ(x).

59. Given any p(x) ∈ R[x] and α ∈ R, show that there is a unique polynomial
q(x) ∈ R[x] such that p(x) = (x − α)q(x) + p(α). Deduce that α is a root
of p(x) if and only if the polynomial (x − α) divides p(x).

60. Show that a nonzero polynomial in R[x] of degree n has at most n roots
in R. (Hint: Exercise 59.)
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61. Given any p(x), q(x) ∈ R[x], not both zero, a polynomial d(x) in R[x]
satisfying
(i) d(x) | p(x) and d(x) | q(x), and
(ii) e(x) ∈ R[x], e(x) | p(x) and e(x) | q(x) =⇒ e(x) | d(x)
is called a greatest common divisor, or simply a GCD, of p(x) and
q(x). In case p(x) = q(x) = 0, we set the GCD of p(x) and q(x) to be 0.
Prove that for any p(x), q(x) ∈ R[x], a GCD of p(x) and q(x) exists, and
is unique up to multiplication by a nonzero constant, that is, if d1(x) as
well as d2(x) is a GCD of p(x) and q(x), then d2(x) = cd1(x) for some
c ∈ R with c �= 0. Further, show that any GCD of p(x) and q(x) can
be expressed as u(x)p(x) + v(x)q(x) for some u(x), v(x) ∈ R[x]. (Hint:
Consider a polynomial of least degree in the set {u(x)p(x) + v(x)q(x) :
u(x), v(x) ∈ R[x] with u(x)p(x) + v(x)q(x) �= 0}.)

62. Let p(x), q(x) ∈ R[x]. Show that p(x) and q(x) are relatively prime if and
only if u(x)p(x) + v(x)q(x) = 1 for some u(x), v(x) ∈ R[x]. Is it true that
if a nonzero polynomial d(x) ∈ R[x] satisfies u(x)p(x) + v(x)q(x) = d(x)
for some u(x), v(x) ∈ R[x], then d(x) is a GCD of p(x) and q(x)?

63. Let p(x), q(x) ∈ R[x] be relatively prime polynomials of positive degree.
Show by an example that the polynomials u(x), v(x) ∈ R[x] such that
u(x)p(x) + v(x)q(x) = 1 need not be unique. Show, however, that there
are unique u(x), v(x) ∈ R[x] such that u(x)p(x)+ v(x)q(x) = 1 and either
u(x) = 0 or deg u(x) < deg q(x). In this case show that either v(x) = 0 or
deg v(x) < deg p(x). (Hint: Exercise 58.)

64. Let p(x), q1(x) and q2(x) be nonzero polynomials in R[x] of degrees m, d1,
and d2, respectively. Assume that q1(x) and q2(x) are relatively prime and
that d1 and d2 are positive. If m < d1+d2, then show that there are unique
polynomials u1(x), u2(x) ∈ R[x] such that p(x) = u1(x)q2(x)+u2(x)q1(x)
and for i = 1, 2, either ui(x) = 0 or deg ui(x) < deg qi(x). Deduce that if
q(x) := q1(x)q2(x), then

p(x)

q(x)
=

u1(x)

q1(x)
+

u2(x)

q2(x)
.

65. Let q(x) ∈ R[x] be a nonzero polynomial of degree n. Use the Real Fun-
damental Theorem of Algebra to write q(x) = q1(x)e1 · · · qk(x)ek , where
e1, . . . , ek are positive integers and q1(x), . . . , qk(x) are distinct polyno-
mials in R[x] that are either linear of the form x − α with α ∈ R or
quadratic of the form x2 + βx + γ with β, γ ∈ R such that β2 − 4γ < 0.
Show that the polynomials qi(x)ei and qj(x)ej are relatively prime for
i, j = 1, . . . , k with i �= j. Use Exercise 64 and induction to show that
given any nonzero polynomial p(x) ∈ R[x] with deg p(x) < deg q(x), there
are unique polynomials u1(x), . . . , uk(x) ∈ R[x] such that either ui(x) = 0
or deg ui(x) < ei deg qi(x) for i = 1, . . . , k and

p(x)

q(x)
=

u1(x)

q1(x)e1
+ · · · + uk(x)

qk(x)ek
.
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66. Let p(x), q(x) ∈ R[x] be nonzero polynomials of degrees m and n respec-
tively. Let e ∈ N be such that m < en. Show that there are polynomials
A1(x), . . . , Ae(x) in R[x] such that either Ai(x) = 0 or deg Ai(x) < n
for i = 1, . . . , e and p(x) = A1(x)q(x)e−1 + A2(x)q(x)e−2 + · · · + Ae(x).
Deduce that

p(x)

q(x)
=

A1(x)

q(x)
+

A2(x)

q(x)2
+ · · · + Ae(x)

q(x)e
.

(Hint: Let R0(x) := p(x). Use Exercise 58 to find A1(x), . . . , Ae(x) and
R1(x), . . . , Re(x) successively in such a way that Ri−1(x) = Ai(x)q(x)e−i+
Ri(x) for i = 1, . . . , e.)

67. Use Exercises 58, 64, 65, and 66 to show that every rational function has
a partial fraction decomposition as stated in this chapter.

68. Let C[x] denote the set of all polynomials in one variable x with coefficients
in C. Elements of C[x] look like cnxn + cn−1x

n−1 + · · · + c1x + c0, where
n is a nonnegative integer and c0, c1, . . . , cn ∈ C. In particular, the set
R[x] of all polynomials in x with coefficients in R is a subset of C[x]. For
polynomials in C[x], the notions of equality, coefficients, degree, addition,
multiplication, evaluation, and division are defined in a similar way as in
the case of R[x]. Given any p(x) ∈ C[x] (in particular, any p(x) ∈ R[x])
and α ∈ C, we say that α is a (complex) root of p(x) if p(α) = 0. Show
that the results in Exercises 58, 59, 61, and 63 are valid if R is replaced
throughout by C.

69. The Fundamental Theorem of Algebra states that if p(x) is a poly-
nomial in C[x] of positive degree, then p(x) has at least one root in C.
(i) Assuming the Fundamental Theorem of Algebra, show that if p(x) is

a polynomial in C[x] of positive degree n ∈ N, then we can write

p(x) = c(x − α1) · · · (x − αn),

where c is the leading coefficient of p(x) and α1, . . . , αn are (not nec-
essarily distinct) complex numbers.

(ii) Show that if p(x) ∈ R[x] and if a complex number α = a+ ib is a root
of p(x), then its conjugate ᾱ := a − ib is also a root of p(x).

(iii) Show that the Fundamental Theorem of Algebra, as stated above, and
the Real Fundamental Theorem of Algebra, as stated in this chapter,
are equivalent to each other, that is, assuming one of them, we can
deduce the other.

70. Let C[x, y] denote the set of all polynomials in two variables x and y
with coefficients in C. Elements of C[x, y] look like P (x, y) =

∑
ci,jx

iyj ,
where i and j vary over finite sets of nonnegative integers, and ci,j ∈ C. If
P (x, y) is not the zero polynomial, that is, if some ci,j is nonzero, then the
(total) degree of P (x, y) is defined be max{i+ j : ci,j �= 0}. We say that
P (x, y) is homogeneous of degree m if each term has degree m, that is,
i+ j = m whenever ci,j �= 0. As in the case of polynomials in one variable,
we can substitute real or complex numbers for the variables x and y. A
pair (α, β), where α, β ∈ C, is called a root of P (x, y) if P (α, β) = 0.
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(i) Show that there are nonzero polynomials in C[x, y] with infinitely
many roots. Show, however, that there is no nonzero polynomial
P (x, y) ∈ C[x, y] such that P (α, β) = 0 for all α ∈ D and β ∈ E,
where both D and E are infinite subsets of C.

(ii) Show that if P (x, y) is a homogeneous polynomial of positive degree
m, then P (x, y) factors as a product of homogeneous polynomials of
degree 1, that is,

P (x, y) =

m∏

i=1

(αix + βiy) for some αi, βi ∈ C, 1 ≤ i ≤ m.

Deduce that the pair (βi, −αi) is a root of P (x, y) for i = 1, . . . , m,
and up to proportionality, these are the only roots of P (x, y), that
is, if (α, β) is a root of P (x, y), then (α, β) = (λβi,−λαi) for some
λ ∈ C and i ∈ {1, . . . , m}. (Hint: Consider P (x, 1) or P (y, 1), and use
Exercise 69.)

71. Let f : [a, b] → R be a function and c be any point of (a, b).
(i) If f is monotonically (resp. strictly) increasing on [a, c] and on [c, b],

then show that f is monotonically (resp. strictly) increasing on [a, b].
(ii) If f is convex (resp. strictly convex) on [a, c] and on [c, b], then is it

true that f is convex (resp. strictly convex) on [a, b]?
72. Let I be an interval containing more than one point and f : I → R be

any function. Given any x1, x2 ∈ I with x1 �= x2, define

φ(x1, x2) :=
f(x1) − f(x2)

x1 − x2
.

Show that f is convex on I if and only if φ is a monotonically increasing
function of x1, that is, φ(x1, x) ≤ φ(x2, x) for all x1, x2 ∈ I with x1 < x2

and x ∈ I \ {x1, x2}.
73. Let I be an interval containing more than one point and f : I → R be

any function. Given any distinct points x1, x2, x3 ∈ I, define

Ψ(x1, x2, x3) =
(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3)

(x1 − x2)(x2 − x3)(x3 − x1)
.

(i) Show that Ψ is a symmetric function of x1, x2, x3, that is, show
that Ψ(x1, x2, x3) = Ψ(x2, x1, x3) = Ψ(x3, x2, x1) = Ψ(x1, x3, x2) =
Ψ(x2, x3, x1) = Ψ(x3, x1, x2).

(ii) If φ is as in Exercise 72 above, then show that

Ψ(x1, x2, x3) =
φ(x1, x3) − φ(x2, x3)

x1 − x2
for distinct x1, x2, x3 ∈ I.

(iii) Show that f is convex on I if and only if Ψ(x1, x2, x3) ≥ 0 for all
distinct points x1, x2, x3 ∈ I.
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Sequences

The word sequence is almost self-explanatory. It refers to a succession of cer-
tain objects. For us, these objects will be real numbers. A sequence of real
numbers looks like an infinite succession such as

a1, a2, a3, a4, a5, . . .

where the an’s are real numbers. For example,

1,
1

2
,
1

3
,
1

4
,
1

5
, . . .

is a sequence of real numbers. If we see a sequence, it is natural to ask where
it leads. For example, the above sequence 1, 1

2 , 1
3 , . . . seems to approach 0. We

shall make this idea precise by defining the notion of convergence of sequences.
In Section 2.1 below, we begin with the formal definition of a sequence and

go on to discuss a number of basic concepts and results. Along the way, we
will look at numerous examples of sequences and see whether they approach
a fixed number. Next, in Section 2.2, we consider the notion of a subsequence
of a given sequence, and also a special class of sequences known as Cauchy
sequences. We show that any sequence in R that satisfies a mild condition of
being ‘bounded’ has a convergent subsequence. Also, we show that a sequence
in R is convergent if and only if it is a Cauchy sequence.

2.1 Convergence of Sequences

A sequence (in R) is a real-valued function whose domain is the set N of
all natural numbers. Usually, we shall denote sequences by (an), (bn), and so
on, or sometimes by (An), (Bn), and so on. The value of a sequence (an) at
n ∈ N is given by an and this is called the nth term of that sequence. Here
are some simple examples: For n ∈ N, consider
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(i) an := 1, (ii) an := (−1)n, (iii) an :=
1

n
, (iv) an := n, (v) an := (−1)nn.

We shall use the terms ‘bounded’, ‘unbounded’, ‘bounded above’, ‘bounded
below’ for a sequence just as we use them for any function. Thus the sequences
defined in (i), (ii), and (iii) are bounded, but those defined in (iv) and (v) are
not bounded. The sequence defined in (iv) is bounded below (by 1), but it
is not bounded above, while the sequence defined in (v) is neither bounded
above nor bounded below.

We say that a sequence (an) is convergent if there is a ∈ R that satisfies
the following condition: For every ǫ > 0, there is n0 ∈ N such that

|an − a| < ǫ for all n ≥ n0.

In this case, we say that (an) converges to a or that a is a limit of (an),
and write an → a (as n → ∞). A sequence that is not convergent is said to
be divergent.

Examples 2.1. (i) If an := 1 for n ∈ N, then obviously an → 1.

(ii) If an := (−1)n for n ∈ N, then (an) is divergent. This can be seen
as follows. Let a ∈ R. If |a| �= 1, let ǫ := min{|a − 1|, |a + 1|}. Then ǫ > 0.
Observe that |an −a| ≥ ǫ for all n. If |a| = 1, then let ǫ := 2, and observe that
|an − 1| ≥ ǫ for all odd n and |an − (−1)| ≥ ǫ for all even n.

(iii) If an := 1/n for n ∈ N, then an → 0. Indeed, given ǫ > 0, we can take
n0 := [1/ǫ] + 1, and then |an − 0| < ǫ for all n ≥ n0.

(iv) If an := n for n ∈ N, then (an) is divergent. Indeed, given a ∈ R, we
have |an − a| ≥ 1 for all n ≥ [|a|] + 1. Similarly, if an := (−1)nn for n ∈ N,
then (an) is divergent.

Before we begin our discussion of convergent sequences, we make two ob-
servations.

First, the convergence of a sequence (an) is not altered if a finite number
of an’s are replaced by some other bn’s. Thus if we replace an1

, . . . , ank
by

bn1
, . . . , bnk

respectively, then the altered sequence converges if and only if
the original sequence converges. With this in view, we may sometimes regard
(1/an) as a sequence if we know that all except finitely many an’s are nonzero.

Next, if an → a, then the inequality

| |an| − |a| | ≤ |an − a|, n ∈ N,

shows that |an| → |a|. The converse is not true as can be seen by considering
an = (−1)n for n ∈ N. However, if |an| → 0, then clearly an → 0.

Proposition 2.2. (i) A convergent sequence has a unique limit.
(ii) A convergent sequence is bounded.
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Proof. (i) Suppose an → a as well as an → b. If b �= a, let ǫ := |a − b|.
Since an → a, there is n1 ∈ N such that |an − a| < ǫ/2 for all n ≥ n1, and
since an → b, there is n2 ∈ N such that |an − b| < ǫ/2 for all n ≥ n2. Let
n0 := max{n1, n2}. Then

|a − b| ≤ |a − an0
| + |an0

− b| <
ǫ

2
+

ǫ

2
= |a − b|.

This contradiction shows that b = a.

(ii) Let an → a. Then there is n0 ∈ N such that |an−a| < 1 for all n > n0.
If α := max{|a1|, . . . , |an0

|, |a|+ 1}, then |an| ≤ α for all n ∈ N. Hence (an) is
bounded. ⊓⊔

Let an → a. In view of part (i) of Proposition 2.2, we say that a is the
limit of (an) and write

lim
n→∞

an = a.

Example 2.1 (ii) shows that the converse of part (ii) of the above proposition
does not hold.

We now prove some results that are useful in proving convergence or di-
vergence of a variety of sequences.

First we consider how the algebraic operations on R are related to the
concept of the convergence of a sequence of real numbers. The following result
is known as the Limit Theorem for Sequences.

Proposition 2.3. Let an → a and bn → b. Then

(i) an + bn → a + b,
(ii) ran → ra for any r ∈ R,
(iii) anbn → ab,
(iv) if a �= 0, then there is m ∈ N such that an �= 0 for all n ≥ m, and

1

an
→ 1

a
.

Proof. Let ǫ > 0 be given. There are n1, n2 ∈ N such that

|an − a| < ǫ for all n ≥ n1 and |bn − b| < ǫ for all n ≥ n2.

(i) Let n0 := max{n1, n2}. Then for all n ≥ n0,

|an + bn − (a + b)| ≤ |an − a| + |bn − b| < ǫ + ǫ = 2ǫ.

(ii) Let n0 := n1. Then for all n ≥ n0,

|ran − ra| = |r| |an − a| < |r|ǫ.

(iii) By part (ii) of Proposition 2.2, there is α ∈ R such that |an| ≤ α for
all n ∈ N. Let n0 := max{n1, n2}. Then for all n ≥ n0,
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|anbn − ab| = |an(bn − b) + (an − a)b|
≤ |an| |bn − b| + |an − a| |b|
≤ αǫ + ǫ|b| = (α + |b|)ǫ.

(iv) Since |a| > 0, there is m ∈ N such that |an − a| < |a|/2 for all n ≥ m.
But then |an| ≥ |a| − |a − an| > |a|/2 for all n ≥ m. Let n0 := max{n1, m}.
Then for all n ≥ n0, we have an �= 0 and

∣∣∣∣
1

an
− 1

a

∣∣∣∣ =
|a − an|
|an| |a|

<
2ǫ

|a|2 .

Since ǫ > 0 is arbitrary, the desired conclusions follow. ⊓⊔

With notation and hypotheses as in the above proposition, a combined
application of parts (i) and (ii) of Proposition 2.3 shows that an − bn → a− b.
Likewise, a combined application of parts (iii) and (iv) of Proposition 2.3
shows that if b �= 0, then an/bn → a/b. Further, given any m ∈ Z, successive
applications of part (iii) or part (iv) of Proposition 2.3 show that am

n → am,
provided a �= 0 in case m < 0.

Next, we show how the order relation on R and the operation of taking
the kth root are preserved under convergence.

Proposition 2.4. Let (an) and (bn) be sequences and a, b be real numbers
such that an → a and bn → b.

(i) If there is n0 ∈ N such that an ≤ bn for all n ≥ n0, then a ≤ b. Conversely,
if a < b, then there is m0 ∈ N such that an < bn for all n ≥ m0.

(ii) If an ≥ 0 for all n ∈ N, then a ≥ 0 and a
1/k
n → a1/k for any k ∈ N.

Proof. (i) Suppose b < a. Let ǫ := (a−b)/2. Since bn → b, there is n1 ∈ N such
that n1 ≥ n0 and bn < b+ ǫ for all n ≥ n1. But since b+ ǫ = (a+ b)/2 = a− ǫ,
we have an ≤ bn < a − ǫ for all n ≥ n1. This is a contradiction to an → a.
Hence a ≤ b.

Conversely, suppose a < b. Let ǫ := (b − a)/2. There is m1 ∈ N such that
an < a + ǫ for all n ≥ m1 and there is m2 ∈ N such that bn > b − ǫ for all
n ≥ m2. Let m0 := max{m1, m2}. Since b − ǫ = (a + b)/2 = a + ǫ, we have
an < (a + b)/2 < bn for all n ≥ m0.

(ii) Part (i) implies that a ≥ 0. Let k ∈ N and ǫ > 0 be given. Since ǫk > 0,
there is n2 ∈ N such that |an − a| < ǫk for all n ≥ n2. Hence by the basic
inequality for roots (part (ii) of Proposition 1.9), we obtain

|a1/k
n − a1/k| ≤ |an − a|1/k < ǫ for all n ≥ n2.

It follows that a
1/k
n → a1/k. ⊓⊔
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We note that it is possible to have an → a, bn → b, an < bn for all n ∈ N
and yet a = b. For example, let an := 0 and bn := 1/n for all n ∈ N and
observe that a = 0 = b.

With notation and hypotheses as in the above proposition, a combined
application of part (iii) of Proposition 2.3 and part (ii) of Proposition 2.4
shows that if an ≥ 0 for all n ∈ N, then ar

n → ar, where r is any positive
rational number, since we can write r = m/k, where m, k ∈ N. This, together
with part (iv) of Proposition 2.3, shows that if a > 0, then ar

n → ar, where r
is any negative rational number.

Proposition 2.5 (Sandwich Theorem). Let (an), (bn), (cn) be sequences
and c ∈ R be such that an ≤ cn ≤ bn for all n ∈ N and an → c as well as
bn → c. Then cn → c.

Proof. Let ǫ > 0 be given. Since an → c, there is n1 ∈ N such that an−c > −ǫ
for all n ≥ n1, and since bn → c, there is n2 ∈ N such that bn − c < ǫ for all
n ≥ n2. Let n0 := max{n1, n2}. Then

−ǫ < an − c ≤ cn − c ≤ bn − c < ǫ for all n ≥ n0.

It follows that cn → c. ⊓⊔

We now use the above result to show that the supremum and the infimum
of a subset of R are limits of sequences in that subset.

Corollary 2.6. Let E be a nonempty subset of R.

(i) If E is bounded above and a := supE, then there is a sequence (an) such
that an ∈ E for all n ∈ N and an → a.

(ii) If E is bounded below and b := inf E, then there is a sequence (bn) such
that bn ∈ E for all n ∈ N and bn → b.

Proof. To prove (i), suppose E is bounded above. Let a := sup E. Then for
every n ∈ N, there is an ∈ E such that an > a − (1/n). Since an ≤ a, we
see that 0 ≤ a − an < (1/n) for all n ∈ N. Thus, by the Sandwich Theorem,
an → a.

The proof of (ii) is similar. ⊓⊔

Examples 2.7. (i) Let a ∈ R with |a| < 1. Then

lim
n→∞

an = 0.

If a = 0, this is obvious. Suppose a �= 0. Write 1/|a| = 1 + h. Then h > 0
and so by the binomial inequality given in Proposition 1.10, we have

1

|a|n = (1 + h)n ≥ 1 + nh > nh for all n ∈ N.
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Hence 0 < |a|n < 1/nh. By part (ii) of Proposition 2.3 and Example 2.1
(iii), 1/nh → 0. Therefore, by the Sandwich Theorem, |a|n → 0, and thus
an → 0. As a consequence, we can find the limit of the sequence (An),
where An := 1 + a + · · · + an for n ∈ N. Since An = (1 − an+1)/(1 − a)
for n ∈ N, it follows that

lim
n→∞

(1 + a + · · · + an) =
1

1 − a
.

(ii) Let a ∈ R. Then

lim
n→∞

an

n!
= 0.

Choose m ∈ N such that |a| < m. Then for n > m, we have

0 ≤
∣∣∣∣
an

n!

∣∣∣∣ =
|a|m
m!

n∏

j=m+1

|a|
j

<
|a|m
m!

( |a|
m

)n−m

=
mm

m!

( |a|
m

)n

.

Since m is a constant and (|a|/m)n → 0 by (i) above, the Sandwich
Theorem shows that |an/n!| → 0, that is, an/n! → 0.

(iii) Let a ∈ R and a > 0. Then

lim
n→∞

a1/n = 1.

This is obvious if a = 1. Suppose a > 1 and δn := a1/n − 1 for n ∈ N. By
the Binomial Theorem,

a = (1 + δn)n = 1 + nδn + · · · + δn
n > nδn,

so that 0 < δn < a/n for all n ∈ N. Since a/n → 0, it follows from the
Sandwich Theorem that δn → 0, that is, a1/n → 1. If 0 < a < 1, let
b := 1/a, so that 1/a1/n = b1/n → 1 because b > 1. Hence by part (iv) of
Proposition 2.3, a1/n → 1/1 = 1.

(iv) For n ∈ N, let

Cn :=
n

n2 + 1
+

n

n2 + 2
+ · · · + n

n2 + n
.

Then Cn → 1. To see this, let

An :=

n∑

k=1

n

n2 + n
=

n2

n2 + n
and Bn :=

n∑

k=1

n

n2 + 1
=

n2

n2 + 1
for n ∈ N.

Then An ≤ Cn ≤ Bn for all n ∈ N, and by Proposition 2.3,

An =
1

1 + (1/n)
→ 1 and Bn =

1

1 + (1/n2)
→ 1.

Hence by the Sandwich Theorem, Cn → 1. ✸
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We have seen in part (ii) of Proposition 2.2 that every convergent sequence
is bounded. On the other hand, not every bounded sequence is convergent, as
is shown by the example an = (−1)n for n ∈ N. We shall now consider a class
of sequences for which convergence is equivalent to boundedness.

A sequence (an) is called (monotonically) increasing if the correspond-
ing function n �→ an is (monotonically) increasing, that is, if an ≤ an+1 for all
n ∈ N. Likewise, it is called (monotonically) decreasing if the correspond-
ing function is (monotonically) decreasing, that is, if an ≥ an+1 for all n ∈ N.
A sequence is said to be monotonic if it is either monotonically increasing
or monotonically decreasing.

Proposition 2.8. (i) A monotonically increasing sequence is convergent if
and only if it is bounded above. Moreover, if a sequence (an) is monoton-
ically increasing and bounded above, then

lim
n→∞

an = sup{an : n ∈ N}.

(ii) A monotonically decreasing sequence is convergent if and only if it is
bounded below. Moreover, if a sequence (an) is monotonically increasing
and bounded above, then

lim
n→∞

an = inf{an : n ∈ N}.

Proof. (i) Let (an) be a monotonically increasing sequence. Suppose it is
bounded above. Then the set {an : n ∈ N} has a supremum. Let a := sup{an :
n ∈ N}. Given ǫ > 0, there is n0 ∈ N such that a − ǫ < an0

. But since (an) is
monotonically increasing, we have an0

≤ an for all n ≥ n0. Hence

a − ǫ < an ≤ a < a + ǫ for all n ≥ n0.

Thus an → a. Conversely, if (an) is convergent, then it is bounded above by
part (ii) of Proposition 2.2.

(ii) A proof similar to the one above can be given. Alternatively, one may
observe that if (an) is monotonically decreasing, and if we let bn := −an, then
(bn) monotonically increasing. Also, (an) is bounded below if and only if (bn)
is bounded above, and in this case, inf{an : n ∈ N} = − sup{bn : n ∈ N}.
Also, by part (ii) of Proposition 2.3, an → a if and only if −an → −a. Thus
the desired results follow from (i) above. ⊓⊔
Corollary 2.9. A monotonic sequence is convergent if and only if it is
bounded.

Proof. Follows from parts (i) and (ii) of Proposition 2.8. ⊓⊔
Examples 2.10. (i) Consider the sequence (An) defined by

An :=

n∑

k=0

1

k!
= 1 +

1

1!
+

1

2!
+ · · · + 1

n!
for n ∈ N.
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Clearly, (An) is a monotonically increasing sequence. Also, for any n ∈ N,

An ≤ 1 + 1 +
1

2
+

1

22
+ · · · + 1

2n−1
= 1 + 2

(
1 − 1

2n

)
< 3.

Hence (An) is bounded above. So by part (i) of Proposition 2.8, (An) is
convergent.

(ii) Consider the sequence (Bn) defined by

Bn :=

(
1 +

1

n

)n

for n ∈ N.

We show that (Bn) is convergent and its limit is equal to the limit of the
sequence (An) considered in (i) above. By the Binomial Theorem, we have

Bn =

n∑

k=0

n(n − 1) · · · (n − k + 1)

k!

1

nk
=

n∑

k=0

1

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
1

k!
.

This implies that Bn ≤ An for all n ∈ N.
To find a lower bound for Bn in terms of An, we use the generalized
binomial inequality given in Proposition 1.10, and obtain for k = 1, . . . , n,

(1 − 0)

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
≥ 1 −

(
0 +

1

n
+ · · · + k − 1

n

)
.

Now, since 0 + 1 + 2 + · · · + (k − 1) = (k − 1)k/2, we see that

1 − (k − 1)k

2n
≤ n(n − 1) · · · (n − k + 1)

nk
for k = 0, 1, . . . , n.

Dividing by k! and summing from k = 0 to k = n, we have

n∑

k=0

1

k!
− 1

2n

n∑

k=2

1

(k − 2)!
≤ Bn.

Moreover, from (i) above,

n∑

k=2

1

(k − 2)!
≤ An < 3 and hence An−

3

2n
< Bn ≤ An for all n ∈ N.

Therefore, by the Sandwich Theorem, (Bn) is convergent and its limit is
equal to the limit of (An) .
Alternatively, we may argue as follows. Let An → A and ǫ > 0 be given.
Then there is n0 ∈ N such that A−(ǫ/2) < an for all n ≥ n0. In particular,

A − ǫ

2
< An0

.
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For n ∈ N, define

Cn :=

n0∑

k=0

1

(
1 − 1

n

)
· · ·

(
1 − k − 1

n

)
1

k!
.

Then Cn ≤ Bn for all n ≥ n0. By parts (i) and (iii) of Proposition 2.3,
Cn → ∑n0

k=0(1/k!) = An0
as n → ∞. Hence there is n1 ∈ N such that

An0
− ǫ

2
< Cn for all n ≥ n1.

Now for all n ≥ max{n0, n1}, we have

A − ǫ < An0
− ǫ

2
< Cn ≤ Bn ≤ An ≤ A < A + ǫ.

This proves that Bn → A. We remark that yet another proof of the
convergence of the sequence (Bn) is indicated in Exercise 8. The common
limit of the sequences (An) and (Bn) is an important real number. This
real number, denoted by e, will be introduced in Chapter 7. See Section
7.1 and, in particular, Corollary 7.6.

(iii) Consider the sequence (An) defined by

An := 1 +
1

2
+

1

3
+ · · · + 1

n
for n ∈ N.

Clearly, (An) is a monotonically increasing sequence. Also, for n ∈ N, we
have

A2n = 1 +
1

2
+

(
1

3
+

1

4

)
+ · · · +

(
1

2n−1 + 1
+ · · · + 1

2n

)

≥ 1 +
1

2
+

2

4
+ · · · + 2n−1

2n

= 1 +
n

2
.

Hence there is no α ∈ R such that An ≤ α for all n ∈ N, that is, (An)
is not bounded above. Hence (An) is not convergent. Let us modify the
sequence (An) by changing the signs of alternate summands of its terms
and define

Bn := 1 − 1

2
+

1

3
− · · · + (−1)n−1 1

n
for n ∈ N.

We shall show that (Bn) is convergent. First note that 1
2 ≤ Bn ≤ 1. Let

Cn := B2n−1 and Dn := B2n for n ∈ N. Then for every n ∈ N, we have

Cn+1−Cn =
1

2n + 1
− 1

2n
≤ 0 and Dn+1−Dn =

1

2n + 1
− 1

2n + 2
≥ 0.
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Hence (Cn) is a monotonically decreasing sequence that is bounded below
by 1

2 , and (Dn) is a monotonically increasing sequence that is bounded
above by 1. By Proposition 2.8, both (Cn) and (Dn) are convergent. Let
Cn → C and Dn → D. Now since Dn − Cn = 1

2n → 0, we must have
D = C. It follows that (Bn) is convergent and Bn → C.

(iv) Consider the sequence (An) defined by

An := 1 +
1

22
+

1

32
+ · · · + 1

n2
for n ∈ N.

Clearly, (An) is a monotonically increasing sequence. Also, for n ∈ N,

An ≤ 1 +
1

1.2
+

1

2.3
+ · · · + 1

(n − 1)n

= 1 +

(
1 − 1

2

)
+

(
1

2
− 1

3

)
+ · · · +

(
1

n − 1
− 1

n

)

= 2 − 1

n
< 2.

Hence (An) is bounded above. So by part (i) of Proposition 2.8, (An) is
convergent.

(v) Let p be a rational number and consider the sequence (An) defined by

An := 1 +
1

2p
+ · · · + 1

np
for n ∈ N.

Clearly, (An) is a monotonically increasing sequence. We have seen in (iii)
and (iv) above that if p = 1, then the sequence (An) is divergent, whereas
if p = 2, then it is convergent. This implies that (An) is divergent if p ≤ 1,
and it is convergent if p ≥ 2, because for each n ∈ N,

0 <
1

n
≤ 1

np
if p ≤ 1, while 0 <

1

np
≤ 1

n2
if p ≥ 2.

We now give an alternative argument that shows that (An) is convergent
if p > 1. Suppose p > 1. For n ∈ N, we have

A2n+1 = 1 +

(
1

2p
+

1

4p
+ · · · + 1

(2n)p

)
+

(
1

3p
+

1

5p
+ · · · + 1

(2n + 1)p

)

< 1 + 2

(
1

2p
+

1

4p
+ · · · + 1

(2n)p

)

= 1 +
2

2p

(
1 +

1

2p
+ · · · + 1

np

)

= 1 + 21−pAn

< 1 + 21−pA2n+1.

Since 21−p < 1, we see that A2n+1 < 1/(1 − 2p−1) for n ∈ N. Also, since
A2n < A2n+1 for all n ∈ N, it follows that (An) is bounded above. So by
part (i) of Proposition 2.8, we see that (An) is convergent.
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(vi) Consider a sequence defined by a linear recurrence relation, that is, let
α, β, γ ∈ R and (an) be defined by

a1 := α and an+1 := βan + γ for n ∈ N.

Assume that α, β, γ are nonnegative and β < 1. Then each an is nonneg-
ative, and

a2 − a1 = βa1 + γ − a1 = γ − (1 − β)α,

whereas for n > 1,

an+1 − an = βan + γ − (βan−1 + γ) = β(an − an−1).

As a consequence, for n > 1,

an+1 − an = βn−1(a2 − a1) = βn−1[γ − (1 − β)α].

Thus, if γ ≤ (1 − β)α, it follows that (an) is a monotonically decreasing
sequence which is bounded below by 0. Now, assume that γ > (1 − β)α.
Then (an) is a monotonically increasing sequence. Further, a1 = α <
γ/(1 − β) and for n > 1,

an ≤ γ

1 − β
=⇒ an+1 = βan + γ ≤ βγ

1 − β
+ γ =

γ

1 − β
.

Hence, in this case, (an) is bounded above by γ/(1 − β). Thus, in any
case, Proposition 2.8 shows that (an) is convergent. Let an → a. Then
an+1 → a and since an+1 = βan +γ → βa+γ, we obtain that a = βa+γ,
that is, a = γ/(1 − β). ✸

Remark 2.11. We introduce some notation for comparing the orders of mag-
nitude of two sequences (an) and (bn).

If there are K > 0 and n0 ∈ N such that |an| ≤ K|bn| for all n ≥ n0, then
we write an = O(bn) [read as (an) is big-oh of (bn)]. In particular, if bn = 1 for
all large n, then an = O(1), and this means that the sequence (an) is bounded.
Broadly speaking, an = O(bn) if the order of magnitude of (an) is at most the
order of magnitude of (bn). In case (an) and (bn) are monotonically increasing
sequences and an = O(bn), then we also say that the growth rate of (an) is
at most the growth rate of (bn). For example,

(−1)n10 n + 100 = O(n) and (−1)n 10

n
+

100

n
√

n
= O

(
1

n

)
.

Given ǫ > 0, if there is n0 ∈ N such that |an| ≤ ǫ|bn| for all n ≥ n0,
then we write an = o(bn) [read as (an) is little-oh of (bn)]. If bn �= 0 for all
large n, then an = o(bn) means that limn→∞(an/bn) exists and is zero. In
particular, if bn = 1 for all large n, then an = o(1), and this means that
an → 0. Broadly speaking, an = o(bn) if the order of magnitude of (an) is less
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than the order of magnitude of (bn). In case (an) and (bn) are monotonically
increasing sequences and an = o(bn), then we also say that the growth rate
of (an) is less than the growth rate of (bn). For example,

10 n + 100 = o(n
√

n) and (−1)n 10

n
+

100

n
√

n
= o

(
1√
n

)
.

Suppose there is nonzero ℓ ∈ R that satisfies the following condition: Given
ǫ > 0, there is n0 ∈ N such that |an − ℓbn| < ǫ for all n ≥ n0. In this case,
we write an ∼ bn [read as (an) is asymptotically equivalent to (bn)]. Broadly
speaking, an ∼ bn if (an) is of the same order of magnitude as (bn). It can be
easily seen that ∼ is an equivalence relation on the set of all sequences of real
numbers. If bn �= 0 for all large n, then an ∼ bn means that limn→∞(an/bn)
exists and is nonzero. If (an) and (bn) are monotonically increasing sequences
and an ∼ bn, then we also say that (an) and (bn) have the same growth rate.
For example,

10 n2 + 100 n + 1000 ∼ n2 and
10

n2
+

100

n3
+

1000

n4
∼ 1

n2
.

The notation introduced above is useful in understanding relative asymptotic
behavior of two sequences. ✸

Remark 2.12. Before concluding this section, we describe how in some cases
∞ or −∞ can be regarded as a ‘limit’ of a sequence (an). We say that (an)
tends to ∞ or diverges to ∞ if for every α ∈ R, there is n0 ∈ N such that
an > α for all n ≥ n0, and then we write an → ∞. We write an →/ ∞ if (an)
does not tend to ∞. Similarly, we say that (an) tends to −∞ or diverges to
∞ if for every β ∈ R, there is n0 ∈ N such that an < β for all n ≥ n0, and
then we write an → −∞. We write an →/ −∞ if (an) does not tend to −∞.

If an → ∞ and bn → ℓ, where ℓ ∈ R, then it is easy to see that an+bn → ∞,
anbn → ∞ provided ℓ > 0, and anbn → −∞ provided ℓ < 0, whereas if ℓ = 0,
then nothing can be said about the convergence of (anbn), as the examples
(i) an := n and bn := 0, (ii) an := n and bn := 1/n, (iii) an := n and
bn := 1/

√
n, (iv) an := n and bn := −1/

√
n, (v) an := n and bn := (−1)n/n

show. Further, if an → ∞ and bn → ∞, then an + bn → ∞ and anbn → ∞.
Similar conclusions hold if an → −∞ and bn → −∞. On the other hand, if
an → ∞ and bn → −∞, then nothing can be said about the convergence of
an +bn, as the examples (i) an := n, bn := −n, (ii) an := n, bn := −n+1, (iii)
an := n, bn := −√

n, (iv) an := n, bn := −n2, (v) an := n, bn := −n + (−1)n

show. Some of these ‘indeterminate’ cases can be tested using the method
indicated in Remark 4.44.

If an > 0 for all n ∈ N, then it is clear that an → ∞ if and only if
1/an → 0. Also, if (an) is monotonically increasing, then it is easy to see that
an → ∞ if and only if (an) is not bounded above. Similarly, if an < 0 for all
n ∈ N, then an → −∞ if and only if 1/an → 0. Also, if (an) is monotonically
decreasing, then an → −∞ if and only if (an) is not bounded below. ✸
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Examples 2.13. (i) Let p be a positive rational number and an := np for n ∈
N. Then an → ∞. Indeed, given any α ∈ R, we have an > α if n >

[
|α|1/p

]
.

(ii) Let an :=
∑n

k=1(1/k). Then an → ∞, since (an) is monotonically
increasing and, as shown in Example 2.10 (iii), (an) is not bounded above.

(iii) Let a ∈ R be such that |a| > 1 and let an := an for n ∈ N. If a > 1,
then 1/an = (1/a)n → 0 (Example 2.7 (i)) and so an → ∞. If a < −1, then
consider bn := a2n−1, cn := a2n for n ∈ N, and note that bn = (a2)n/a → −∞,
cn = (a2)n → ∞, and so an �→ ∞, an �→ −∞.

2.2 Subsequences and Cauchy Sequences

Let (an) be a sequence. If n1, n2, . . . are positive integers such that nk < nk+1

for each k ∈ N, then the sequence (ank
), whose terms are

an1
, an2

, . . . ,

is called a subsequence of (an). Note that n1 < n2 < · · · implies that
nk → ∞ as k → ∞.

It is easy to see that a sequence (an) converges to a if and only if every
subsequence of (an) converges to a. This follows by observing that (an) is
itself a subsequence of (an) (if we take nk = k for k ∈ N), and on the other
hand, if (ank

) is a subsequence of (an), then for any n0 ∈ N, there is k0 ∈ N
such that nk ≥ n0 for all k ≥ k0.

Similarly, it can be seen that a sequence (an) tends to ∞ if and only if
every subsequence of (an) tends to ∞, and that (an) tends to −∞ if and only
if every subsequence of (an) tends to −∞.

We now prove a remarkable fact about monotonic subsequences.

Proposition 2.14. Every sequence in R has a monotonic subsequence.

Proof. Let (an) be a sequence in R. Consider the ‘peaks’ in (an), that is, those
terms that are greater than all the succeeding terms. Let E be the set of all
positive integers n for which an is a ‘peak’, that is, let

E = {n ∈ N : an > am for all m > n}.
First, assume that E is a finite set. Then there is n1 ∈ N such that n1 > n for
every n ∈ E. Since n1 �∈ E, there is n2 ∈ N such that n2 > n1 and an1

≤ an2
.

Again, since n2 �∈ E, there is n3 ∈ N such that n3 > n2 and an2
≤ an3

.
Having chosen nk for k ∈ N in this manner, we note that nk �∈ E and hence
there is nk+1 ∈ N such that nk+1 > nk and ank

≤ ank+1
. Thus we obtain a

monotonically increasing subsequence (ank
) of (an).

Next, assume that E is an infinite set. If we enumerate E as n1, n2, . . .,
where n1 < n2 < · · ·, then since nk ∈ E for each k ∈ N, we have ank

> am

for all m > nk. In particular, taking m = nk+1, we get ank
> ank+1

for each
k ∈ N. Thus we obtain a monotonically decreasing subsequence (ank

) of (an).
In any case, we have proved that (an) has a monotonic subsequence. ⊓⊔
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We shall use the above result to prove two important results in analysis,
known as the Bolzano–Weierstrass Theorem and the Cauchy Criterion. To
put the former result in perspective, note that every convergent sequence in
R is bounded (part (ii) of Proposition 2.2), but a bounded sequence need not
be convergent.

Proposition 2.15 (Bolzano–Weierstrass Theorem). Every bounded se-
quence in R has a convergent subsequence.

Proof. Let (an) be a bounded sequence in R. By Proposition 2.14, (an) has
a monotonic subsequence (ank

). Since (an) is bounded, so is its subsequence
(ank

). Hence by Corollary 2.9, (ank
) is convergent. ⊓⊔

The following result may be viewed as a more elaborate version of the
Bolzano–Weierstrass Theorem.

Corollary 2.16. Let (an) be a sequence in R. If either (an) is bounded above
and an →/ − ∞, or if (an) is bounded below and an →/ ∞, then (an) has a
convergent subsequence.

Proof. First assume that (an) is bounded above and an →/ −∞. The statement
an →/ −∞ means there is β ∈ R such that for every n0 ∈ N, there is n ∈ N
with n > n0 and an ≥ β. Hence there are n1 < n2 < · · · in N such that
ank

≥ β for each k ∈ N. The subsequence (ank
) in R is thus bounded above

as well as bounded below. So by the Bolzano–Weierstrass Theorem, (ank
) has

a convergent subsequence. Finally, we note that a subsequence of (ank
) is a

subsequence of (an) itself.
If (an) is bounded below and an →/ ∞, the proof is similar. ⊓⊔

As a consequence of the Bolzano–Weierstrass Theorem, we obtain a useful
characterization of convergent sequences as follows.

Proposition 2.17. A sequence in R is convergent if and only if it is bounded
and all of its convergent subsequences have the same limit.

Proof. If a sequence (an) converges to a, then it is bounded by part (ii) of
Proposition 2.2 and clearly, every subsequence (and not just every convergent
subsequence) of (an) converges to a.

Conversely, assume that (an) is a bounded sequence and there is a ∈ R
such that every convergent subsequence of (an) converges to a. We claim that
an → a. For otherwise, there are ǫ > 0 and positive integers n1 < n2 < · · ·
such that |ank

−a| ≥ ǫ for all k ∈ N. By the Bolzano–Weierstrass Theorem, the
bounded sequence (ank

) has a convergent subsequence, which cannot possibly
converge to a. This is a contradiction. ⊓⊔

In general, proving the convergence of a sequence (an) is difficult since we
must correctly guess the limit of (an) beforehand. There is a way of avoiding
this guesswork, which we now describe.
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A sequence (an) in R is called a Cauchy sequence if for every ǫ > 0,
there is n0 ∈ N such that

|an − am| < ǫ for all n, m ≥ n0.

It is clear that if (an) is a Cauchy sequence in R, then (an+1 − an) → 0 as
n → ∞. The converse, however, does not hold. For example, if an :=

√
n for

n ∈ N, then

an+1 − an =
√

n + 1 −√
n =

1√
n + 1 +

√
n
→ 0,

but (an) is not a Cauchy sequence, because given any n0 ∈ N, we have

a4n0
− an0

=
√

4n0 −
√

n0 =
√

n0 ≥ 1.

The following result gives a useful sufficient condition for a sequence to be
Cauchy. A more general sufficient condition is given in Exercise 25.

Proposition 2.18. Let (an) be a sequence of real numbers and α be a real
number such that α < 1 and

|an+1 − an| ≤ α|an − an−1| for all n ∈ N with n ≥ 2.

Then (an) is a Cauchy sequence.

Proof. For n ∈ N, we have

|an+1 − an| ≤ α|an − an−1| ≤ α2|an−1 − an−2| ≤ · · · ≤ αn−1|a2 − a1|.

Hence for all m, n ∈ N with m > n, we have

|am − an| ≤ |am − am−1| + |am−1 − am−2| + · · · + |an+1 − an|
≤ |a2 − a1|

(
αm−2 + αm−3 + · · · + αn−1

)

= |a2 − a1|αn−1 (1 − αm−n)

(1 − α)

≤ |a2 − a1|αn−1 1

1 − α
.

If a2 = a1, then it is clear that an = a1 for all n ∈ N, and (an) is a Cauchy
sequence. Suppose a2 �= a1 and let ǫ > 0 be given. Since α < 1, by Example
2.7 (i), we see that αn → 0. Consequently, there is n0 ∈ N such that

αn−1 <
ǫ(1 − α)

|a2 − a1|
for all n ∈ N with n ≥ n0.

It follows that |am − an| < ǫ for all m, n ∈ N with m, n ≥ n0. Thus (an) is a
Cauchy sequence. ⊓⊔
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It may be noted that the condition

|an+1 − an| ≤ α|an − an−1| for some α < 1

in the above proposition cannot be weakened to |an+1 − an| < |an − an−1|.
For example, if an :=

√
n for n ∈ N, then

|an+1 − an| =
√

n + 1 −√
n <

√
n −

√
n − 1 = |an − an−1|,

but, as we have just seen, the sequence (an) is not Cauchy.

We are now ready to state and prove the Cauchy Criterion, which was
alluded to earlier. Briefly, it says that in R, the notions of convergent sequences
and Cauchy sequences are equivalent.

Proposition 2.19 (Cauchy Criterion). A sequence (an) in R is convergent
if and only if it is a Cauchy sequence.

Proof. Let (an) be a convergent sequence and an → a. Given any ǫ > 0, there
is n0 ∈ N such that |an − a| < ǫ/2 for all n ≥ n0. Consequently,

|an − am| ≤ |an − a| + |a − am| <
ǫ

2
+

ǫ

2
= ǫ for all n, m ≥ n0.

Hence (an) is a Cauchy sequence.
Conversely, let (an) be a Cauchy sequence. First, we show that (an) is a

bounded sequence. Since (an) is Cauchy, there is n1 ∈ N such that

|an − am| < 1 for all n, m ≥ n1.

Hence
|an| ≤ |an − an1

| + |an1
| < 1 + |an1

| for all n ≥ n1.

If we let α := max{|a1|, . . . , |an1−1|, 1 + |an1
|}, then we have |an| ≤ α for all

n ∈ N. Hence (an) is a bounded sequence. Next, by the Bolzano–Weierstrass
Theorem, (an) has a convergent subsequence (ank

). Let ank
→ a. We show

that in fact an → a. Let ǫ > 0 be given. Since (an) is Cauchy, there is n0 ∈ N
such that

|an − am| <
ǫ

2
for all n, m ≥ n0.

Also, since ank
→ a, there is k0 ∈ N such that

|ank
− a| <

ǫ

2
for all k ≥ k0.

Further, since n1 < n2 < · · ·, there is j ∈ N such that j ≥ k0 and nj ≥ n0.
Now,

|an − a| ≤ |an − anj
| + |anj

− a| <
ǫ

2
+

ǫ

2
= ǫ for all n ≥ n0.

Hence the sequence (an) is convergent. ⊓⊔
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The following example shows how the Cauchy Criterion can be used to
prove the convergence of a sequence.

Example 2.20. Consider the sequence (an) defined by

a1 := 1 and an+1 := 1 +
1

an
for n ∈ N.

First we show that (an) is a Cauchy sequence. It is clear that an ≥ 1 for all
n ∈ N and hence

anan−1 =

(
1 +

1

an−1

)
an−1 = an−1 + 1 ≥ 2 for all n ∈ N with n ≥ 2.

Since

an+1 − an =

(
1 +

1

an

)
−
(

1 +
1

an−1

)
=

1

an
− 1

an−1
=

an−1 − an

anan−1
,

we see that

|an+1 − an| ≤
1

2
|an − an−1| for all n ∈ N with n ≥ 2.

Hence by Proposition 2.18, (an) is a Cauchy sequence and by Proposition 2.19,
it is convergent. Let an → a. Then an+1 → a, and since an+1 = 1 + (1/an),
we have a = 1 + (1/a). Also, an ≥ 1 for all n ∈ N implies that a ≥ 1. Hence
a = (1 +

√
5)/2.

It may be noted that (an) is not a monotonic sequence. In fact, for any
n ∈ N with n ≥ 2, we have an ≤ an+1 if and only if an−1 ≥ an. So we cannot
appeal to Proposition 2.19 to deduce the convergence of (an). ✸

We remark that the Completeness Property of R is crucially used (via
Corollary 2.9 and the Bolzano–Weierstrass Theorem) in the proof that every
Cauchy sequence in R is convergent. Conversely, assuming that every Cauchy
sequence in R is convergent, it is possible to establish the Completeness Prop-
erty of R. (See Exercise 42.) In view of this, the result in Proposition 2.19 is
sometimes referred to as the Cauchy completeness of R.

Notes and Comments

The concept of the convergence of a sequence is extremely crucial in calcu-
lus and analysis. It is the point of departure from ‘discrete mathematics’ to
‘continuous mathematics’. It makes precise the idea of serially numbered real
numbers coming arbitrarily close to a fixed real number. In the next chapter,
this concept will be further extended to state what is meant by the ‘limit’ of a
function defined on a subset of R.



60 2 Sequences

The arguments used to prove the convergence of sequences in some of our
examples are not so standard. The convergence of the sequence (an), where
an = 1+(1/2p)+· · ·+(1/np) for n ∈ N and p > 1, is proved following an article
of Cohen and Knight [18]. Also, the proof (using the generalized binomial
inequality) of the convergence of the sequence (bn), where bn = (1 + (1/n))n

for n ∈ N, is based on the article of Lyon and Ward [46]. Several examples
of sequences that we have discussed in this chapter are, in fact, examples of
‘infinite series’ in disguise. A systematic study of infinite series will be taken
up in Chapter 9.

The Bolzano–Weierstrass Theorem given in the second half of this chapter
is the cornerstone of much of mathematical analysis. Many of the properties
of a nice class of functions (the ‘continuous’ functions, which we shall intro-
duce in the next chapter) are based on this result. Classically, the Bolzano–
Weierstrass Theorem is proved by considering a bounded interval that contains
infinitely many terms of the sequence, dividing it in equal halves, and picking
a half that contains infinitely many terms of the sequence. This process can be
continued and it leads to a nested sequence of intervals in which a limit of a
subsequence is trapped. (See Exercises 33 and 34.) Another standard approach
to prove the Bolzano–Weierstrass Theorem as well as the Cauchy Criterion is
to use the notions of ‘cluster point’, lim sup and lim inf. (See Exercise 16 and
Exercises 35 through 41.) We have bypassed either of these methods and in-
stead used a neat result that every sequence in R has a monotonic subsequence.
This result is easy to prove and can be of interest in itself. It appears, for ex-
ample, in the books of Spivak [57] (Lemma on page 378 of the first edition or
page 451 of the third edition), Newman [49] (Problem 6 and its solution), and
Ross [51] (Theorem 11.3).

Exercises

Part A

1. Which of the following sequences are bounded? Which of them are con-
vergent? In case of convergence, find the limit.

(i) an :=
1

n2
, (ii) an :=

√
n, (iii) an := (−1)n, (iv) an :=

n

2n + 1
,

(v) an :=
√

n(
√

n + 1 −√
n), (vi) an := n3/2(

√
n3 + 1 −

√
n3).

2. Let (an) and (bn) be sequences in R. Under which of the following condi-
tions is the sequence (anbn) convergent? Justify.
(i) (an) is convergent.
(ii) (an) is convergent and (bn) is bounded.
(iii) (an) converges to 0 and (bn) is bounded.
(iv) (an) and (bn) are convergent.
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3. Let a, b ∈ R and (an) be a sequence in R such that an → a. and an ≥ b
for all n ∈ N. Show that a ≥ b. Give an example in which an > a for all
n ∈ N, but an → a.

4. Let a and x be real numbers. If (bn) and (cn) are sequences in R such that

lim
n→∞

bn = 0 = lim
n→∞

cn and a − bn ≤ x ≤ a + cn for n ∈ N,

then show that x = a.
5. If (an) is a sequence in R such that an �= 0 for all n, limn→∞ |an+1/an|

exists and it is less than 1, then show that an → 0.
6. If k ∈ N and x ∈ R with |x| < 1, then show that

lim
n→∞

nkxn = 0.

7. For n ∈ N, let an := n1/n. Show that a1 < a2 < a3 and an > an+1 for all
n ≥ 3. Further, show that

1 < an < 1 +

√
2√

n − 1
for all n ≥ 2

and deduce that an → 1 as n → ∞.
8. Show that the sequence (Bn) defined by

Bn :=

(
1 +

1

n

)n

for n ∈ N

is monotonically increasing. Deduce that the sequence (Bn) is convergent.
(Hint: Given n ∈ N, use the A.M.-G.M. inequality for a1 = · · · = an :=
1/(n + 1) and an+1 := 1. Also, note that Bn ≤ 3 for all n ∈ N.)

9. Show that the sequence (an) is convergent and find its limit if (an) is given
by the following.
(i) a1 := 1 and an+1 := (3an + 2)/6 for n ∈ N.
(ii) a1 := 1 and an+1 := an/(2an + 1) for n ∈ N.
(iii) a1 := 1 and an+1 := 2an/(4an + 1) for n ∈ N.
(iv) a1 := 2 and an+1 :=

√
1 + an for n ∈ N.

(v) a1 := 1 and an+1 :=
√

2 + an for n ∈ N.
(vi) a1 := 2 and an+1 := (1/2) +

√
an for n ∈ N.

(vii) a1 := 1 and an+1 := (1/2) +
√

an for n ∈ N.
10. For n ∈ N, let

an :=
1

2
+

1

4
+ · · · + 1

2n
and bn :=

1

1
+

1

3
+ · · · + 1

2n − 1
.

Show that an → ∞ and bn → ∞. (Hint: Example 2.10 (iii).)
11. Show that (n!)1/n → ∞.
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12. Suppose α and β are real numbers such that 0 ≤ β ≤ α. Let

a1 := α, b1 := β and an+1 :=
an + bn

2
, bn+1 :=

√
anbn for n ∈ N.

Show that (an) is a monotonically decreasing sequence that is bounded be-
low by β, and (bn) is a monotonically increasing sequence that is bounded
above by α. Further, show that 0 ≤ α − β ≤ (α − β)/2n−1 for n ∈ N.
Deduce that (an) and (bn) are convergent and have the same limit.
[Note: The common limit of the sequences (an) and (bn) is called the
arithmetic-geometric mean of the nonnegative real numbers α and β.
It was introduced and studied by Gauss. For further details, see [20].]

13. If a monotonic sequence (an) has a subsequence (ank
) such that ank

→ a,
where a ∈ R or a = ∞ or a = −∞, then show that an → a.

14. Prove that a sequence (an) in R has no convergent subsequence if and
only if |an| → ∞.

15. Let (an) be a sequence of real numbers and let a ∈ R. Show that an → a
if and only if every subsequence of (an) has a subsequence converging to
a. (Hint: Proposition 2.17.)

16. A real number a is called a cluster point of a sequence (an) in R if there
is a subsequence (ank

) of (an) such that ank
→ a.

(i) Show that if an → a, then a is the only cluster point of (an).
(ii) Show that the converse of (i) is not true. In other words, show that

there is a divergent sequence that has a unique cluster point. (Hint:
a2k := 1

2k and a2k+1 := 2k + 1 for k ∈ N.)
(iii) Show that if an → ∞ or if an → −∞, then (an) has no cluster point.
(iv) Show that the converse of (iii) is not true. In other words, show that

there is a sequence without a cluster point that neither tends to ∞
nor tends to −∞. (Hint: an := (−1)nn for n ∈ N.)

17. Let An := 1 + (1/2) + · · ·+ (1/n) for n ∈ N. Show that (An+1 −An) → 0
as n → ∞, but (An) is not a Cauchy sequence.

18. Let An := 1 + (1/22) + · · · + (1/n2) for n ∈ N. Show that there is no real
number α < 1 such that |An+1 − An| ≤ α|An − An−1| for all n ∈ N with
n ≥ 2, but (An) is a Cauchy sequence.

Part B

19. Let x ∈ R and x > 0. Define

An := 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
and Bn :=

(
1 +

x

n

)n

for n ∈ N.

Show that (An) and (Bn) are convergent and have the same limit.
20. Show that the number e := limn→∞

∑n
k=0(1/k!) is irrational. (Hint: For

every n ∈ N, 0 < e −∑n
k=0(1/k!) < (1/n!n). Multiply by n!.)

21. (i) If (an) is a sequence and an → a, then show that (a1+· · ·+an)/n → a.
Here a ∈ R or a = ∞ or a = −∞. Give an example to show that the
converse is not true.
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(ii) Find lim
n→∞

1

n

(
2

5
+

5

11
+ · · · + n2 + 1

2n2 + 3

)
.

22. Suppose α, β, and γ are positive real numbers. Let

a1 := α and an+1 :=
an

βan + γ
for n ∈ N.

Show that (an) is convergent. Further, if a := limn→∞ an, then show that
a = 0 if γ ≥ 1 and a = (1 − γ)/β otherwise. (Hint: Consider the cases
αβ + γ ≥ 1 and αβ + γ < 1.)

23. Suppose α and β are nonnegative real numbers. Let

a1 := α and an+1 :=
√

β + an for n ∈ N.

Show that (an) is convergent. Further, if a := limn→∞ an, then show that
a = 0 if α = 0 = β, and a = (1 +

√
1 + 4β)/2 otherwise. (Hint: Consider

the cases
√

α + β ≤ α and
√

α + β > α.)
24. Suppose α and β are nonnegative real numbers. Let

a1 := α and an+1 := β +
√

an for n ∈ N.

Show that (an) is convergent. Further, if a := limn→∞ an, then show that
a = 0 if α = 0 = β, and a = (1 + 2β +

√
1 + 4β)/2 otherwise. (Hint:

Consider the cases
√

α + β ≤ α and
√

α + β > α.)
25. Let (an) and (bn) be sequences such that |an+1 − an| ≤ bn for all n ∈ N.

Define

Bn :=

n∑

k=1

bk for n ∈ N.

If (Bn) is convergent, then show that (an) is a Cauchy sequence and hence
it is convergent.

26. Let y be any real number with 0 ≤ y < 1. Define sequences (bn) and (yn)
iteratively as follows. Let y1 := 10y and b1 := [y1], and for each n ∈ N,

yn+1 := 10(yn − bn) and bn+1 := [yn+1].

Show that for each n ∈ N we have

0 ≤ yn < 10 and bn ∈ Z with 0 ≤ bn ≤ 9,

and moreover,

y =
b1

10
+

b2

102
+ · · · + bn

10n
+

yn+1

10n+1
.

Deduce that

0 ≤ yn+1

10n+1
<

1

10n
for each n ∈ N

and consequently,
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y = lim
n→∞

(
b1

10
+

b2

102
+ · · · + bn

10n

)
.

[Note: It is customary to call the nonnegative integers b1, b2, . . ., the digits
of y and write the above expression for y as y = 0.b1b2 . . ., and call it the
decimal expansion of y.]

27. Given any m ∈ N, show that there is a unique nonnegative integer k such
that 10k ≤ m < 10k+1. Use Exercise 37 of Chapter 1 repeatedly to show
that there are unique integers a0, a1, . . . , ak between 0 and 9 such that

m = a0 + a1(10) + a2(102) + · · · + ak

(
10k

)
.

28. Given any x ∈ R, show that there is a nonnegative integer k and integers
ak, ak−1, . . . , a1, a0, b1, b2, . . . between 0 and 9 such that

x = ± lim
n→∞

(
ak10k + ak−110k−1 + · · · + a0 +

b1

10
+

b2

102
+ · · · + bn

10n

)
.

(Hint: If |x| < 1, set k = 0 = a0 and apply Exercise 26 to y := |x|, whereas
if |x| ≥ 1, apply Exercise 27 to n := [|x|] and Exercise 26 to y := |x| − n.)
[Note: It is customary to call ak, ak−1, . . . , a0, b1, b2, . . . the digits of x and
write the above expression for x as x = ±akak−1 . . . a0.b1b2 . . ., and call it
the decimal expansion of x.]

29. Given any y ∈ [0, 1), let (yn) and (bn) be the sequences associated to y as
in Exercise 26. We say that the decimal expansion of y is finite if yn = 0
for some n ∈ N and recurring if it not finite but yi = yj for some i, j ∈ N
with i < j. Show that if y ∈ [0, 1) is a rational number, then its decimal
expansion is either finite or recurring. (Hint: Write y in reduced form as
y = p/q. Let r0 := p. Use Exercise 37 of Chapter 1 successively to find
integers q1, r1, q2, r2, . . . such that 10ri−1 = qqi + ri and 0 ≤ ri < q for
i ≥ 1. Now yi = 10ri−1/q and the ri’s take only finitely many values.)
[Note: The converse also holds. see Remark 9.2.]

30. Show that the results of Exercises 26, 27, 28, and 29 are valid with the
number 10 replaced by any integer d > 1 and the number 9 by d − 1.
[Note: The corresponding limiting expression of a real number x is called
the d-ary expansion of x. When d = 2, it is called the binary expan-
sion and when d = 3, it is called the ternary expansion.]

31. Define

a1 := 1 and an+1 :=

(
1 +

(−1)n

2n

)
an for n ∈ N.

(i) For every n ∈ N, show that

|an+1| ≤
(

1 +
1

2n

)(
1 +

1

2n−1

)
· · ·

(
1 +

1

2

)
≤
(

n + 1

n

)n

< 3.

(Hint: Use the A.M.-G.M. inequality.)
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(ii) Use (i) above to show that

|an+1 − an| <
3

2n
for all n ∈ N.

Deduce, using Exercise 25, that (an) is a Cauchy sequence.
(iii) Conclude that (an) is convergent. Is (an) monotonic?

32. Assuming only the algebraic and the order properties of R, and assuming
that every monotonically decreasing sequence that is bounded below is
convergent in R, establish the Completeness Property of R. (Hint: Con-
sider S ⊆ R, a0 ∈ S, and an upper bound α0 of S. If (a0 + α0)/2 is an
upper bound of S, let a1 := a0 and α1 := (a0 + α0)/2; otherwise, there is
a1 ∈ S such that (a0 + α0)/2 < a1 and in this case, let α1 := α0. Con-
tinuing in this manner, obtain a monotonically decreasing sequence (αn)
that is bounded below.) [Compare part (ii) of Proposition 2.8.]

33. (Nested Interval Theorem) Let In := [an, bn], n ∈ N, be closed inter-
vals such that In ⊇ In+1 for all n ∈ N and |bn − an| → 0. Show that there
is a unique x ∈ R such that x ∈ In for all n ∈ N. (Hint: Use Exercise 51
of Chapter 1.)

34. Use the Nested Interval Theorem in Exercise 33 to prove the Bolzano–
Weierstrass Theorem.

35. Let (an) be a sequence in R.
(i) Assume that (an) is bounded above and an �→ −∞. Define

Mn := sup{an, an+1, . . .} for n ∈ N and M := inf{M1, M2, . . .}.

Show that the sequence (Mn) converges to M and M is the largest
cluster point of (an).

(ii) Assume that (an) is bounded below and an �→ ∞. Define

mn := inf{an, an+1, . . .} for n ∈ N and m := sup{m1, m2, . . .}.

Show that the sequence (mn) converges to m and m is the smallest
cluster point of (an).

[See Exercise 16 for the definition of a cluster point.]
36. Let (an) be a sequence in R. Define the limit superior (or the upper

limit) of (an) by

lim sup
n→∞

an :=

⎧
⎨

⎩

lim
n→∞

Mn if (an) is bounded above and an �→ −∞,

∞ if (an) is not bounded above,
−∞ if an → −∞,

where the sequence (Mn) is as defined in Exercise 35. Similarly, define the
limit inferior (or the lower limit) of (an) by

lim inf
n→∞

an :=

⎧
⎨
⎩

lim
n→∞

mn if (an) is bounded below and an �→ ∞,

−∞ if (an) is not bounded below,
∞ if an → ∞,
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where the sequence (mn) is as defined in Exercise 35. If (an) is bounded,
then show that the set C of all cluster points of (an) is nonempty, and
moreover,

lim sup
n→∞

an = lim
n→∞

sup{an, an+1, . . .} = maxC

and
lim inf
n→∞

an = lim
n→∞

inf{an, an+1, . . .} = minC.

37. Determine lim supn→∞ an and lim infn→∞ an if (an) is as defined below.
(i) an := (−1)n

(
1 + 1

n

)
for n ∈ N,

(ii) an := (−1)nn for n ∈ N,
(iii) a1 := 0 and for k ∈ N, a2k := a2k−1/2 and a2k+1 := (1/2)+a2k. (Hint:

a2k = (1/2)− (1/2k) for all k ∈ N.)
38. Let (rn) be a sequence such that Q = {rn : n ∈ N}. [Note that by Exercise

49 (iii) of Chapter 1, such a sequence exists.] Determine the set of all
cluster points of (rn), and also lim infn→∞ rn as well as lim supn→∞ rn.

39. Let (an) be a sequence in R. Prove the following:
(i) lim infn→∞ an ≤ lim supn→∞ an.
(ii) (an) is bounded if and only if both lim infn→∞ an and lim supn→∞ an

are real numbers.
(iii) (an) is convergent if and only if both lim infn→∞ an and lim supn→∞ an

are real numbers and are equal to each other. In this case,

lim inf
n→∞

an = lim
n→∞

an = lim sup
n→∞

an.

(iv) an → ∞ if and only if lim infn→∞ an = ∞ = lim supn→∞ an.
(v) an → −∞ if and only if lim infn→∞ an = −∞ = lim supn→∞ an.

40. Let (an) be a sequence in R. Prove Corollary 2.16 (which is a more elabo-
rate version of the Bolzano–Weierstrass Theorem) by showing that if (an)
is bounded above and an �→ −∞, then (an) has a subsequence that con-
verges to lim supn→∞ an, while if (an) is bounded below and an �→ ∞,
then (an) has a subsequence that converges to lim infn→∞ an.

41. Let (an) be a Cauchy sequence in R. Prove that (an) is convergent by
showing that it is bounded and lim supn→∞ an = lim infn→∞ an.

42. Assuming only the algebraic and the order properties of R, and assuming
that every Cauchy sequence in R is convergent, establish the Completeness
Property of R. (Hint: Consider S ⊆ R and an, αn as in the Hint for
Exercise 32. Then αn − an ≤ (α0 − a0)/2n for all n ∈ N.)
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Continuity and Limits

In the previous chapter we studied real sequences, that is, real-valued functions
defined on the subset N of R. In this chapter we shall consider real-valued
functions whose domains are arbitrary subsets of R. The basic question we
address is the following: Let D ⊆ R, c ∈ R, and let f : D → R be a function.
If a real number x in D is near c, then must there exist a real number l such
that f(x) is near l? In order to answer this and related questions, we develop
the concepts of the continuity of a function and of the limit of a function.

In Section 3.1 below, we introduce the notion of continuity and derive a
number of elementary results. Next, in Section 3.2, we examine this notion in
relation to various properties of functions introduced in Section 1.3. Some im-
portant properties of real-valued continuous functions defined on a closed and
bounded subset of R or on an interval will turn out to be of basic importance
in our subsequent development of calculus and analysis. The fundamental no-
tion of limit of a function is discussed in Section 3.3. All through these, our
treatment will be based on the notion of convergence of sequences and the
results proved in Chapter 2.

3.1 Continuity of Functions

Let D ⊆ R. Consider a function f : D → R and a point c ∈ D. We say that
f is continuous at c if

(xn) any sequence in D and xn → c =⇒ f(xn) → f(c).

If f is not continuous at c, we say that f is discontinuous at c. In case f is
continuous at every c ∈ D, we say that f is continuous on D.

Examples 3.1. (i) Let a and b be real numbers and f : R → R be defined
by f(x) = ax + b for x ∈ R. Then f is continuous on R. To see this, let
c ∈ R and (xn) be any sequence in R such that xn → c. By parts (i) and
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(ii) of Proposition 2.3, axn + b → ac + b, that is, f(xn) → f(c). Thus f is
continuous on R.

(ii) Let f(x) = |x| for x ∈ R. [See Figure 1.4.] Again, f is continuous on
R. This follows by noting that whenever c ∈ R and xn → c, we have
|xn| → |c|, because | |xn| − |c| | ≤ |xn − c| for all n ∈ N by part (ii) of
Proposition 1.8.

(iii) Let f(x) = [x] for x ∈ R. [See Figure 1.8.] If c ∈ N, then f is not continuous
at c, since f(c) = c, c−(1/n) → c, and f(c−(1/n)) = c−1 for all n ∈ N, so
f(c− (1/n))→/ f(c). On the other hand, if c ∈ R \N, then f is continuous
at c. To see this, let ǫ := min{c − [c], [c] + 1 − c}. Then ǫ > 0 and since
xn → c, there is n0 ∈ N such that |xn − c| < ǫ, that is, c− ǫ < xn < c + ǫ
and so [c] < xn < [c] + 1 for all n ≥ n0. Thus f(xn) = [xn] = [c] for all
n ≥ n0. Therefore f(xn) → f(c).

(iv) Let f : R → R be defined by

f(x) =

{
1 if x is rational,
0 if x is irrational.

Then f is discontinuous at every c ∈ R. To see this, we note that if c is
rational and xn := c + (

√
2/n) for n ∈ N, then each xn is irrational and

hence f(xn) = 0 for all n ∈ N, while f(c) = 1. On the other hand, if c is
irrational and xn := ([nc] + 1)/n for n ∈ N, then c < xn < c + (1/n), each
xn is rational, and hence f(xn) = 1 for all n ∈ N, while f(c) = 0. Thus
in both cases, xn → c, but f(xn)→/ f(c). This function is known as the
Dirichlet function. ✸

We first prove a useful result regarding the sign of the values of a function
that is continuous at a point.

Lemma 3.2. Let D ⊆ R, c ∈ D, and let f : D → R be a function that is
continuous at c. If f(c) > 0, then there is δ > 0 such that f(x) > 0 whenever
x ∈ D and |x − c| < δ. Likewise, if f(c) < 0, then there is δ > 0 such that
f(x) < 0 whenever x ∈ D and |x − c| < δ.

Proof. Let f(c) > 0. Suppose that for every δ > 0, there is x ∈ D such that
|x− c| < δ and f(x) ≤ 0. Taking the values 1, 1

2 , 1
3 , . . . for δ, we obtain cn ∈ D

such that |cn − c| < 1/n and f(cn) ≤ 0 for each n ∈ N. Since cn → c and f is
continuous at c, we have f(cn) → f(c). By part (i) of Proposition 2.4 we have
f(c) ≤ 0. But this contradicts our assumption that f(c) > 0. Hence there is
δ > 0 such that f(x) > 0 whenever x ∈ D and |x − c| < δ.

The proof of the case f(c) < 0 is similar. ⊓⊔

Proposition 3.3. Let D ⊆ R, c ∈ D, and let f, g : D → R be functions that
are continuous at c. Then

(i) f + g is continuous at c,
(ii) rf is continuous at c for any r ∈ R,
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(iii) fg is continuous at c,
(iv) if f(c) �= 0, then there is δ > 0 such that f(x) �= 0 whenever x ∈ D and

|x−c| < δ; moreover the function 1/f : D∩(c−δ, c+δ) → R is continuous
at c,

(v) if there is δ > 0 such that f(x) ≥ 0 whenever x ∈ D and |x− c| < δ, then
for any k ∈ N, the function f1/k : D ∩ (c − δ, c + δ) → R is continuous
at c.

Proof. Let (xn) be any sequence in D such that xn → c. Then f(xn) → f(c)
and g(xn) → g(c).

By parts (i), (ii), and (iii) of Proposition 2.3, it follows that

(f + g)(xn) = f(xn) + g(xn) → f(c) + g(c) = (f + g)(c),
(rf)(xn) = rf(xn) → rf(c) = (rf)(c) for any r ∈ R,
(fg)(xn) = f(xn)g(xn) → f(c)g(c) = fg(c).

This proves (i), (ii) and (iii).
Next, assume that f(c) �= 0. Then either f(c) > 0 or f(c) < 0. By Lemma

3.2, there is δ > 0 such that f(x) �= 0 whenever x ∈ D and |x − c| < δ. Now
since xn → c, there is n0 ∈ N such that |xn − c| < δ for all n ≥ n0, and so
f(xn) �= 0. By part (iv) of Proposition 2.3, it follows that

(
1

f

)
(xn) =

1

f(xn)
→ 1

f(c)
=

(
1

f

)
(c).

This proves (iv).
Finally, if f(x) ≥ 0 whenever x ∈ D and |x − c| < δ, then by part (ii) of

Proposition 2.4, it follows that for any k ∈ N, we have
(
f1/k

)
(xn) = (f(xn))1/k → (f(c))1/k = f1/k(c).

This proves (v). ⊓⊔
With notation and hypotheses as in the proposition above, a combined

application of its parts (i) and (ii) shows that the difference f−g is continuous
at c. Likewise, a combined application of parts (iii) and (iv) shows that if
g(c) �= 0, then the quotient f/g is continuous at c. Further, since every positive
rational number r is equal to n/k, where n, k ∈ N, a combined application of
parts (v) and (iii) shows that if there is δ > 0 such that f(x) ≥ 0 whenever
x ∈ D and |x−c| < δ, then the function f r is continuous at c for every positive
rational number r. Similarly, a combined application of parts (v), (iv), and
(iii) shows that if f(c) > 0, then the function f r is continuous at c for every
negative rational number r.

We now show that the composition of continuous functions is continuous.

Proposition 3.4. Let D, E ⊆ R, and let f : D → R and g : E → R be func-
tions such that f(D) ⊆ E. Let c ∈ D be given. Assume that f is continuous
at c and g is continuous at f(c). Then g ◦ f : D → R is continuous at c.
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Proof. Let (xn) be any sequence in D such that xn → c. Then f(xn) → f(c)
since f is continuous at c. Now (f(xn)) is a sequence in E and g is continuous
at f(c). Hence

(g ◦ f)(xn) = g(f(xn)) → g(f(c)) = (g ◦ f)(c).

It follows that g ◦ f is continuous at c. ⊓⊔

One can piece together continuous functions to construct a continuous
function, as the following result shows.

Proposition 3.5. Let D ⊆ R and c ∈ D. Suppose

D1 := {x ∈ D : x ≤ c} and D2 := {x ∈ D : c ≤ x}.
Let f1 : D1 → R and f2 : D2 → R be functions such that f1(c) = f2(c). Then
the function f : D → R defined by

f(x) =

{
f1(x) if x ∈ D1,
f2(x) if x ∈ D2,

is continuous on D if f1 is continuous on D1 and f2 is continuous on D2.

Proof. If c1 ∈ D and c1 < c, then the continuity of f1 at c1 implies the
continuity of f at c1. Similarly if c2 ∈ D and c < c2, then the continuity
of f2 at c2 implies the continuity of f at c2. Hence we only need to show
that f is continuous at c. Let (xn) be any sequence in D such that xn → c.
If there is n1 ∈ N such that xn ≤ c for all n ≥ n1, then f(xn) = f1(xn)
for all n ≥ n1 and the continuity of f1 at c implies that f1(xn) → f1(c) =
f(c). Similarly, if there is n2 ∈ N such that x ≤ xn for all n ≥ n2, then
f(xn) = f2(xn) for all n ≥ n2 and the continuity of f2 at c implies that
f(xn) → f2(c) = f(c). In the remaining case, there are positive integers
ℓ1 < ℓ2 < · · · and m1 < m2 < · · · such that xℓk

≤ c < xmk
for all k ∈ N, and

N = {ℓk : k = 1, 2, . . .} ∪ {mk : k = 1, 2, . . .}. Clearly xℓk
→ c and xmk

→ c as
k → ∞. Moreover, f(xℓk

) = f1(xℓk
) and f(xmk

) = f2(xmk
) for all k ∈ N. By

the continuity of f1 at c, we have f(xℓk
) → f1(c) = f(c) and by the continuity

of f2 at c, we have f(xmk
) → f2(c) = f(c). It follows that f(xn) → f(c). Thus

f is continuous at c. We therefore conclude that f is continuous on D. ⊓⊔
Examples 3.6. (i) Consider a polynomial function p : R → R given by

p(x) = a0 + a1x + · · · + anxn for x ∈ R.

Applying Proposition 3.3 repeatedly, we find that p is continuous on R.
Again, if q : R → R is another polynomial function, then the rational
function p/q is continuous at a point c ∈ R if q(c) �= 0. For example, if
D = R \ {1} and

f(x) :=
x4 + 3x + 2

x − 1
for x ∈ D,

then f is continuous on D.
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(ii) Let f : R → R be defined by

f(x) := |x4 − 3x3 + 2x − 1|1/4 for x ∈ R,

By Propositions 3.3 and 3.4, we see that f is continuous on R.
(iii) Consider a rational number r. Let D := [0,∞) if r ≥ 0 and D := (0,∞)

if r < 0. For x ∈ D, define g(x) := xr. Since the function f : R → R
given by f(x) = x is continuous on R and g(x) = f r(x) for x ∈ D, it
follows from Proposition 3.3 and the remark following its proof that g is
continuous on D.

(iv) Let f : R → R be defined by

f(x) :=

{
x2 if x ≤ 0,
x if x > 0.

Then by Proposition 3.5, f is continuous on R.
(v) Let f : [−1, 1] → R denote the zig-zag function given in Example 1.18. If

c ∈ [−1, 1] and c �= 0, then Proposition 3.5 implies that f is continuous
at c. To show that f is continuous at 0 as well, let (xn) be a sequence in
[−1, 1] such that xn → 0. It can easily be seen that |f(xn)| ≤ |xn| for all
n ∈ N, and so f(xn) → 0. Thus f is continuous at 0. ✸

We conclude this section by giving a criterion for the continuity of a func-
tion at a point that does not involve convergence of sequences.
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Fig. 3.1. Illustration of the ǫ-δ condition for continuity

Proposition 3.7. Let D ⊆ R, c ∈ D, and let f : D → R be a function.
Then f is continuous at c if and only if f satisfies the following ǫ-δ condition:
For every ǫ > 0, there is δ > 0 such that

x ∈ D and |x − c| < δ =⇒ |f(x) − f(c)| < ǫ.
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Proof. Let f be continuous at c. Suppose for a moment that the ǫ-δ condition
does not hold. This means that there is ǫ > 0 such that for every δ > 0, there
is x ∈ D satisfying

|x − c| < δ, but |f(x) − f(c)| ≥ ǫ.

Then there is a sequence (xn) in D such that |xn − c| < 1/n, but |f(xn) −
f(c)| ≥ ǫ for all n ∈ N. But then xn → c and f(xn)→/ f(c). This contradicts
the continuity of f at c.

Conversely, assume the ǫ-δ condition. Let (xn) be any sequence in D such
that xn → c. Let ǫ > 0 be given. Then there is δ > 0 such that

x ∈ D and |x − c| < δ =⇒ |f(x) − f(c)| < ǫ.

Since xn → c, there is n0 ∈ N such that |xn − c| < δ for all n ≥ n0. Hence
|f(xn) − f(c)| < ǫ for all n ≥ n0. Thus f(xn) → f(c). This shows that f is
continuous at c. ⊓⊔

The ǫ-δ condition in the above result is illustrated in Figure 3.1.

3.2 Basic Properties of Continuous Functions

In this section we examine relations between the continuity of a function and
various geometric properties of a function considered earlier in Section 1.3.
Also, we shall introduce the notion of a uniformly continuous function and
discuss its relation with continuity.

Continuity and Boundedness

A bounded function need not be continuous. For instance, we cite the Dirichlet
function given in Example 3.1 (iv). Also, a continuous function need not be
bounded. For example, let D1 := [0,∞) and f1(x) := x for x ∈ D1, or D2 :=
(0, 1] and f2(x) := 1/x for x ∈ D2. An obvious reason why the continuous
function f1 is unbounded is that its domain D1 is unbounded. To identify the
reason why the continuous function f2 is unbounded on its domain D2, we
introduce the following concept.

Let D ⊆ R. We say that D is a closed set if

(xn) any sequence in D and xn → x =⇒ x ∈ D.

Notice that the interval (0, 1] is not a closed set, since (1/n) ∈ (0, 1] for each
n ∈ N and (1/n) → 0, but 0 �∈ (0, 1]. Similarly, it can be seen that the following
intervals are not closed sets:

(a, b], [a, b), (a, b), (a,∞), (−∞, b), where a, b ∈ R.
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On the other hand, the following intervals are closed sets:

[a, b], [a,∞), (−∞, b], (−∞,∞), where a, b ∈ R.

To show that the interval [a, b] is a closed set, consider any sequence (xn) in
[a, b] such that xn → x. Since a ≤ xn ≤ b and xn → x, part (i) of Proposition
2.4 shows that a ≤ x ≤ b, that is, x ∈ [a, b]. Similar proofs can be given to
show that [a,∞) and (−∞, b] are closed sets. It is obvious that R = (−∞,∞)
is a closed set.

We now show that if a function defined on a closed and bounded set is
continuous, then it is necessarily bounded. In fact, we shall show that such a
function attains its bounds on its domain.

Proposition 3.8. Let D be a closed and bounded subset of R, and f : D → R
be a continuous function. Then

(i) f is a bounded function, and
(ii) f attains its bounds on D, that is, there are r and s in D such that

f(r) = inf{f(x) : x ∈ D} and f(s) = sup{f(x) : x ∈ D}.

Proof. (i) Suppose f is not bounded on D. Then for every n ∈ N, there
is xn ∈ D such that |f(xn)| > n. Since D is a bounded set, the sequence
(xn) is bounded. By the Bolzano–Weierstrass Theorem, (xn) has a convergent
subsequence (xnk

). If xnk
→ x, then x ∈ D since D is a closed set. Also, since

f is continuous at x, we have f(xnk
) → f(x). Being convergent, the sequence

(f(xnk
)) is bounded by part (ii) of Proposition 2.2. But |f(xnk

)| > nk for
every k ∈ N and nk → ∞ as k → ∞. This contradiction shows that f is a
bounded function on D.

(ii) Since the function f is bounded on D, we have m, M ∈ R such that

m := inf{f(x) : x ∈ D} and M := sup{f(x) : x ∈ D}.

By Corollary 2.6, there are sequences (rn) and (sn) in D such that f(rn) → m
and f(sn) → M . Since D is a bounded set, the sequences (rn) and (sn)
are bounded. By the Bolzano–Weierstrass Theorem, (rn) has a convergent
subsequence, say (rnk

), and (sn) has a convergent subsequence, say, (smj
). If

rnk
→ r and smj

→ s, then r and s belong to D, since D is a closed set. Also,
since f is continuous at r and s, we have f(rnk

) → f(r) and f(smj
) → f(s).

Hence
f(r) = lim

k→∞
f(rnk

) = lim
n→∞

f(rn) = m

and
f(s) = lim

j→∞
f(smj

) = lim
n→∞

f(sn) = M.

Thus f attains its bounds on D. ⊓⊔
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Examples 3.9. (i) Let a and b be real numbers such that a < b. Since the
interval [a, b] is a closed and bounded subset of R, it follows from the
preceding result that every continuous function defined on [a, b] is bounded
and attains its bounds on [a, b]. For example, if f(x) := x for x ∈ [−1, 2],
then f attains its lower bound at −1 and it attains its upper bound at
2. Also, if f(x) := x2 for x ∈ [−1, 2], then f attains its lower bound at 0
and its upper bound at 2. In general, it is not easy to determine the lower
and the upper bounds of a continuous function on [a, b] and to locate the
points in [a, b] at which they are attained. We shall return to this question
when we consider applications of ‘differentiation’ in Section 5.1.

(ii) If a subset D of R is not closed, then a continuous function on D may not
be bounded on D, and even if it is bounded, it may not attain its bounds
on D. For example, let D := (a, b]. If f(x) := 1/(x − a) for x ∈ D, then
f is continuous on D, but it is not bounded on D. Also, if f(x) := x, for
x ∈ D, then f is continuous and bounded on D, but it does not attain its
lower bound on D since inf{f(x) : x ∈ D} = a and a �∈ D.

(iii) If a subset D of R is not bounded, then a continuous function on D
may not be bounded on D and even if it is bounded on D, it may not
attain its lower or upper bounds on D. For example, let D = [a,∞). If
f(x) := x for x ∈ D, then f is continuous on D, but it is not bounded on
D. Also, if f(x) := (x − a)/(x − a + 1) for x ∈ D, then f is continuous
and bounded on D, but it does not attain its upper bound on D, because
sup{f(x) : x ∈ D} = 1 and f(x) �= 1 for any x ∈ D. ✸

Continuity and Monotonicity

It is easy to see that a function that is monotonic on an interval need not be
continuous. For example, if f(x) := [x] for x ∈ R, then f is monotonic on R,
but it is discontinuous at every c ∈ Z. (See Example 3.1 (iii).) Similarly, a
continuous function defined on an interval need not be monotonic there, as
the example f(x) := |x| for x ∈ R shows. However, we now prove a peculiar
result that says that if a function is strictly monotonic on an interval, then
its inverse function (defined on the range of the given function) is continuous,
irrespective of the continuity of the given function. Note also that the range
of the given function, that is, the domain of the inverse function need not be
an interval. This phenomenon is illustrated by Figure 3.2.

Proposition 3.10. Let I be an interval and f : I → R be a function that is
strictly monotonic on I. Then f−1 : f(I) → R is continuous.

Proof. Since f is strictly monotonic on I, we see that f is one-one and its
inverse f−1 : f(I) → R is well defined. Consider d ∈ f(I). Then there is
unique c ∈ I such that f(c) = d.

Assume first that f is strictly increasing on I. Let ǫ > 0 be given. Suppose
that c is neither the left (hand) endpoint nor the right (hand) endpoint of the
interval I. Then there are c1, c2 ∈ I such that
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c − ǫ < c1 < c < c2 < c + ǫ.

Let d1 := f(c1) and d2 := f(c2). Since f is strictly increasing on I, we have
d1 < d < d2, and since f−1 is also strictly increasing on f(I), we obtain

y ∈ f(I), d1 < y < d2 =⇒ c1 = f−1(d1) < f−1(y) < f−1(d2) = c2,

so that f−1(d)−ǫ < f−1(y) < f−1(d)+ǫ. Thus if we let δ := min{d−d1, d2−d},
we see that δ > 0 and

y ∈ f(I), |y − d| < δ =⇒ |f−1(y) − f−1(d)| < ǫ.

Hence f−1 is continuous at d. [See Figure 3.2.] If c = f−1(d) is the left (hand)
endpoint of the interval I, then since f and f−1 are strictly increasing on I
and f(I) respectively, we have

y ∈ f(I) =⇒ d ≤ y and f−1(d) ≤ f−1(y),

and so the earlier argument works if we let δ := d2 − d. If c = f−1(d) is the
right (hand) endpoint of the interval I, then similarly we have

y ∈ f(I) =⇒ y ≤ d and f−1(y) ≤ f−1(d),

and so the earlier argument works if we let δ := d − d1.
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Fig. 3.2. A discontinuous strictly increasing function with continuous inverse

Thus in all the cases, Proposition 3.7 shows that f−1 is continuous at
d. Since d is an arbitrary point of f(I), we see that f−1 : f(I) → R is a
continuous function. It may be noted that f(I) need not be an interval, as
Figure 3.2 shows.

If f is strictly decreasing on I, then −f is strictly increasing on I, and
by what we have proved above, (−f)−1 : (−f)(I) → R is continuous. Since
f−1(y) = (−f)−1(−y) for every y ∈ f(I), it follows from Proposition 3.4 that
f−1 is a continuous function. ⊓⊔
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Example 3.11. Consider the function f : R → R given by f(x) := x + [x]. If
x1, x2 ∈ R and x1 < x2, then

f(x1) = x1 + [x1] < x2 + [x1] ≤ x2 + [x2] = f(x2).

Hence f is strictly increasing on R. If m ∈ Z, then we have

f(x) = x + m for x ∈ [m, m + 1).

Thus f(R) is the union of the semiopen intervals [2m, 2m + 1), m ∈ Z, that
is, f(R) = {y ∈ R : [y] is even}, and if m ∈ Z, then we have

f−1(y) = y − m for y ∈ [2m, 2m + 1).

In other words,

f−1(y) = y − [y]

2
for y ∈ f(R).

Observe that f−1 is continuous at each point of f(R) even though f is not
continuous at any m ∈ Z. [See Figure 3.3.] ✸
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Fig. 3.3. Graphs of f(x) = x + [x] and its inverse f−1(y) = y − [y]/2

Corollary 3.12. Let I be an interval and f :→ R be a strictly monotonic
function such that f(I) is an interval. Then f is one-one and continuous.

Proof. Since f is strictly increasing on I, it is clear that it is one-one and its
inverse f−1 : f(I) → R is well defined. Let J := f(I) and g := f−1. Then g is
strictly increasing on the interval J , and by Proposition 3.10, g−1 : g(J) → R
is continuous, that is, f : I → R is continuous. ⊓⊔

We shall prove in Proposition 3.14 that the converse of the above corollary
holds. We shall later prove a stronger version of the above corollary (where
strict monotonicity is replaced by monotonicity) in Proposition 3.36.
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Continuity and Convexity

It is easy to see that a continuous function defined on an interval need not
be either convex on that interval or concave on that interval. For example,
if f(x) := x3 for x ∈ R, then f is continuous on R, but it is neither convex
nor concave on R. (Example 1.15 (ii).) On the other hand, if a function is
convex on an interval or if it is concave on an interval, then it is continuous at
all points of that interval other than its endpoints. (See Exercise 47.) At an
endpoint of an interval, a convex (or a concave) function may be discontinuous.
For example, let I := [−1, 1] and let f : I → R be given by

f(x) :=

{
|x| if |x| < 1,
2 if x = −1 or 1.

It can be easily seen that f is convex on I, but f is discontinuous at 1 as well
as at −1.

Continuity and Intermediate Value Property

The following important result shows that a continuous function on an interval
always has the Intermediate Value Property (IVP).

Proposition 3.13 (Intermediate Value Theorem). Let I be an interval
and f : I → R be a continuous function. Then f has the IVP on I. In
particular, f(I) is an interval.

Proof. Let a, b in I with a < b. Then [a, b] ⊆ I. Let r be an intermediate
value between a and b, that is, r ∈ (f(a), f(b)) or r ∈ (f(b), f(a)).

Assume first that f(a) < f(b), so that r ∈ (f(a), f(b)). Define

S := {x ∈ [a, b] : f(x) < r}.

Now a ∈ S, since f(a) < r. Hence S �= ∅. Also, the set S is bounded above
by b. If c := sup S, then by part (i) of Corollary 2.6, there is a sequence (cn)
in S such that cn → c. Since c ∈ [a, b] ⊆ I, f is continuous at c. Hence
f(cn) → f(c). Also, f(cn) < r, since cn ∈ S. By part (i) of Proposition 2.4,
we conclude that f(c) ≤ r. We note that c �= b, because r < f(b). Let

bn := c +
b − c

n
∈ [a, b] for each n ∈ N.

Clearly, bn → c. The continuity of f at c implies that f(bn) → f(c). But since
bn > c and c = supS, we have bn �∈ S, that is, f(bn) ≥ r for all n ∈ N. As
before, part (i) of Proposition 2.4 shows that f(c) ≥ r. In particular, c �= a.
Thus c ∈ (a, b) and f(c) = r.

The case r ∈ (f(b), f(a)) can be proved similarly. ⊓⊔
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The above result (together with Propositions 1.23 and 3.10) has the fol-
lowing striking consequence.

Proposition 3.14 (Continuous Inverse Theorem). Let I be an interval
and f : I → R be a one-one continuous function. Then the inverse function
f−1 : f(I) → R is continuous. In fact, f is strictly monotonic on I and f(I)
is an interval.

Proof. By the Intermediate Value Theorem (Proposition 3.13), the one-one
function f has the IVP. Hence by Proposition 1.23, f is strictly monotonic
and f(I) is an interval. Thus, by Proposition 3.10, f−1 is continuous. ⊓⊔

The above result shows that the converse of Corollary 3.12 holds. However,
the converse of the Intermediate Value Theorem does not hold in general, that
is, a discontinuous function may have the IVP on an interval I. We illustrate
this by the following example.

Example 3.15. Let D := [0, 1] and consider a ‘criss-cross’ function defined
on D whose graph is obtained by the line segments joining (1, 1) to (1

2 ,−1),
(1
2 ,−1) to (1

3 , 1), (1
3 , 1) to (1

4 ,−1), and so on. [See Figure 3.4.] More precisely,
let f : D → R be defined as follows: f(0) := 0 and for x ∈ (0, 1],

f(x) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2k(k + 1)x − 2k − 1 if
1

k + 1
≤ x ≤ 1

k
, k ∈ N, k odd,

−2k(k + 1)x + 2k + 1 if
1

k + 1
≤ x ≤ 1

k
, k ∈ N, k even.

We note that |f(x)| ≤ 1 for all x ∈ [0, 1]. Also, for every k ∈ N, the function
f assumes every value between −1 and 1 on the interval [1/(k + 1), 1/k]. Let
Ik := [1/(k + 1), 1/k] and for x ∈ Ik for k = 1, 2, . . ., define fk(x) := f(x).
Then f is continuous on Ik and fk(1/(k + 1)) = fk+1(1/(k + 1)) for each
k ∈ N. Since (0, 1] =

⋃∞
k=1 Ik, by Proposition 3.5 we see that f is continuous

on (0, 1].
On the other hand, f is not continuous at 0. To see this, let xn := 1/(2n−1)

and yn := 1/(2n) for n ∈ N. Then xn → 0 and yn → 0, but f(xn) = 1,
while f(yn) = −1 for all n ∈ N, so that f(xn)→/ f(0) and f(yn)→/ f(0). This
argument in fact shows that f cannot be made continuous at 0 by redefining
its value at 0.

Next, we show that f has the IVP on the interval [0, 1]. Let [a, b] be any
subinterval of [0, 1]. If a > 0, then f is continuous on [a, b] and hence f as-
sumes every value between f(a) and f(b) by the Intermediate Value Theorem
(Proposition 3.13). Also, if a = 0 and b > 0, then there is a positive integer k
such that (1/k) < b. Now a < 1/(k + 1) < 1/k < b and f assumes every value
between −1 and 1 on the interval [1/(k + 1), 1/k]. This shows that f has the
IVP on [0, 1] although it is not continuous on [0, 1]. ✸
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Fig. 3.4. Graph of the criss-cross function in Example 3.15

Remark 3.16. The following partial converse of the Intermediate Value The-
orem holds. If a one-one function defined on an interval has the IVP, then it
is continuous. This can be seen by noting that such a function is strictly
monotonic and its range is an interval (Proposition 1.23), and then appealing
to Corollary 3.12. Further, Proposition 3.36 will show that any monotonic
function having the IVP on an interval is continuous. ✸

Uniform Continuity

We introduce a concept that in general is stronger than the concept of conti-
nuity of a function. It will be useful in Chapter 6 when we consider ‘integrable’
functions.

Let D ⊆ R and let f : D → R be a function. We say that f is uniformly
continuous on D if

(xn), (yn) any sequences in D and xn − yn → 0 =⇒ f(xn) − f(yn) → 0.

The following result establishes a relation between the continuity and the
uniform continuity of a function.

Proposition 3.17. Let D ⊆ R. Every uniformly continuous function on D
is continuous on D. Moreover, if D is a closed and bounded set, then every
continuous function on D is uniformly continuous on D.

Proof. Let f : D → R be given. First assume that f is uniformly continuous on
D. If c ∈ D and (xn) is any sequence in D such that xn → c, then let yn := c
for all n ∈ N. Since xn − yn → 0, we have f(xn)− f(c) = f(xn)− f(yn) → 0,
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that is, f(xn) → f(c). Thus f is continuous at c. Since this holds for every
c ∈ D, f is continuous on D.

Now assume that D is a closed and bounded set, and f is continuous on
D. Suppose f is not uniformly continuous on D. Then there are sequences
(xn) and (yn) in D such that xn − yn → 0, but f(xn) − f(yn)→/ 0. Con-
sequently, there exist ǫ > 0 and positive integers n1 < n2 < · · · such that
|f(xnk

) − f(ynk
)| ≥ ǫ for all k ∈ N. Since D is a bounded set, the sequence

(xnk
) is bounded. By the Bolzano–Weierstrass Theorem, it has a convergent

subsequence, say, (xnkj
). Let us denote the sequences (xnkj

) and (ynkj
) by

(x̃j) and (ỹj) for simplicity. Let x̃j → c. Then c ∈ D since D is a closed set.
Because xn − yn → 0, we have x̃j − ỹj → 0 and hence ỹj → c as well. Since f
is continuous at c, we obtain f(x̃j) → f(c) and f(ỹj) → f(c). Thus

f(x̃j) − f(ỹj) → f(c) − f(c) = 0.

But this is a contradiction, since |f(x̃j) − f(ỹj)| ≥ ǫ for all j ∈ N. Hence f is
uniformly continuous on D. ⊓⊔

We remark that the continuity of a function on a set D is a local concept,
that is, a function is defined to be continuous on D if it is continuous at every
c ∈ D. On the other hand, the uniform continuity of a function on a set D
takes into account the behavior of the function on the entire set D. In this
sense, uniform continuity is a global concept.

Examples 3.18. (i) Since the interval [a, b] is a closed and bounded set,
it follows from the preceding proposition that every continuous function
on [a, b] is uniformly continuous on [a, b]. This result will be of crucial
importance in our discussion of Riemann integration in Chapter 6.

(ii) If a subset D of R is not closed, then a continuous function on D may
not be uniformly continuous on D. For example, consider D := (a, b] and
f : D → R defined by f(x) := 1/(x − a). Clearly f is continuous on D.
But f is not uniformly continuous on D. To see this, let

xn := a +
b − a

n
and yn := a +

b − a

n + 1
, for n ∈ N.

Then xn − yn = (b − a)/n(n + 1) → 0, but

f(xn) − f(yn) =
n − (n + 1)

b − a
=

1

a − b
for all n ∈ N,

and hence f(xn) − f(yn)→/ 0.
(iii) If a subset D of R is not bounded, then a continuous function on D

may not be uniformly continuous on D. For example, let D = [a,∞) and
f(x) = x2 for x ∈ D. Then f is continuous on D. But f is not uniformly
continuous on D. To see this, let

xn := a + n and yn := a + n − 1

n
, n ∈ N.
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Then xn − yn = 1/n → 0, but

f(xn) − f(yn) = (a + n)2 −
(

a + n − 1

n

)2

= 2 +
2a

n
− 1

n2

for all n ∈ N, and so f(xn) − f(yn)→/ 0. ✸

Finally, we give a criterion for the uniform continuity of a function that
does not involve convergence of sequences. The following result may be com-
pared with the ǫ-δ condition for continuity given in Proposition 3.7.

Proposition 3.19. Let D ⊆ R and f : D → R be a function. Then f is
uniformly continuous on D if and only if f satisfies the following ǫ-δ condition:
For every ǫ > 0, there is δ > 0 such that

x, y ∈ D and |x − y| < δ =⇒ |f(x) − f(y)| < ǫ.

Proof. Let f be uniformly continuous on D. Suppose that there is ǫ > 0 such
that for any given δ > 0, there are x and y in D such that |x − y| < δ, but
|f(x) − f(y)| ≥ ǫ. Considering δ := 1/n for n ∈ N, we obtain sequences (xn)
and (yn) in D such that |xn − yn| < 1/n but |f(xn)− f(yn)| ≥ ǫ for all n ∈ N.
Then xn − yn → 0, but f(xn) − f(yn)→/ 0. This contradicts the assumption
that f is uniformly continuous on D.

Conversely, assume that the ǫ-δ condition holds. Let (xn) and (yn) be any
sequences in D such that xn − yn → 0. Let ǫ > 0 be given. Then there is
δ > 0 such that |f(x) − f(y)| < ǫ, whenever x, y ∈ D and |x − y| < δ. Since
xn − yn → 0, we can find n0 ∈ N such that |xn − yn| < δ for all n ≥ n0. But
then |f(xn) − f(yn)| < ǫ for all n ≥ n0. Thus f(xn) − f(yn) → 0. Hence f is
uniformly continuous on D. ⊓⊔

3.3 Limits of Functions of a Real Variable

In Chapter 2 we have seen what is meant by the limit of a sequence. As
we know, a sequence is a function whose domain is the set N of all natural
numbers. We shall now define the concept of a limit of a function at a point in
R provided the domain of the function satisfies certain conditions. For defining
this concept as well as for proving several basic properties, we shall utilize the
notion of sequences and their properties.

Let D ⊆ R and c ∈ R be such that D contains (c − r, c) and (c, c + r) for
some r > 0, that is, D contains an open interval about c except possibly the
point c itself. Consider a function f : D → R. We say that a limit of f as x
tends to c exists if there is a real number ℓ such that

(xn) any sequence in D \ {c} and xn → c =⇒ f(xn) → ℓ.
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We then write

f(x) → ℓ as x → c or lim
x→c

f(x) = ℓ.

Note that there does exist a sequence in D \ {c} that converges to c. For
example,

xn := c − r

n + 1

belongs to D \ {c} for all n ∈ N and xn → c. In particular, it follows from
part (i) of Proposition 2.2 that limx→c f(x) is unique whenever it exists.

Examples 3.20. (i) Consider the function whose graph is as in Figure 3.5.
More precisely, let D := R, c := 0, and let f : D → R be defined by

f(x) :=

⎧
⎨

⎩

1 if x < 0,
2 if x = 0,
x + 1 if x > 0.

Then limx→0 f(x) = 1. To see this, let (xn) be a sequence in D \ {0} such
that xn → 0. If xn < 0 for any n ∈ N, then f(xn) − 1 = 1 − 1 = 0, and
if xn > 0 for any n ∈ N, then f(xn) − 1 = (xn + 1) − 1 = xn. It follows
that f(xn) → 1. Thus ℓ = 1 is the limit of f as x tends to 0. Note that
f(0) = 2.
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Fig. 3.5. Graph of f(x) :=

8

<

:

1 if x < 0,
2 if x = 0,

x + 1 if x > 0

(ii) Let D := R \ {0}, c := 0 and let f : D → R be defined by

f(x) :=

{
−1 if x < 0,

1 if x > 0.
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If xn := (−1)n/n for n ∈ N, then (xn) is a sequence in D and xn → 0, but
since f(xn) = (−1)n for n ∈ N, the sequence (f(xn)) is divergent, as we
have noted in Example 2.1(ii). Hence a limit of f as x tends to 0 does not
exist. This can also be seen by letting yn := 1/n, zn := −1/n for n ∈ N
and observing that yn → 0, zn → 0, whereas f(yn) → 1, f(zn) → −1.

(iii) Let f : R → R be defined by

f(x) :=

{
1 if x is rational,
0 if x is irrational.

Then for any c ∈ R, a limit of f(x) as x tends to c does not exist. To see
this, let c ∈ R and consider

xn :=
[nc] + 1

n
and yn :=

[nc] +
√

2

n
.

Then for each n ∈ N, c < xn ≤ c + (1/n) and c < yn ≤ c + (
√

2/n). So
xn → c and yn → c. Since each xn is rational, f(xn) = 1 and since each
yn is irrational, f(yn) = 0. Hence f(xn) → 1, whereas f(yn) → 0. Thus a
limit of f(x) as x tends to c does not exist. ✸

We now relate the concepts of continuity and limit.

Proposition 3.21. Let D ⊆ R and c ∈ R be such that (c − r, c + r) ⊆ D for
some r > 0. Consider a function f : D → R. Then f is continuous at c if and
only if limx→c f(x) exists and is equal to f(c).

Proof. Assume that f is continuous at c. Let (xn) be any sequence in D
such that xn → c. By the continuity of f at c, we have f(xn) → f(c). Thus
limx→c f(x) exists and equals f(c).

Conversely, assume that limx→c f(x) exists and is equal to f(c). Let (xn)
be any sequence in D such that xn → c. If there is n0 ∈ N such that xn = c for
all n ≥ n0, then clearly f(xn) → f(c). Otherwise, there are positive integers
n1, n2, . . . such that n1 < n2 < · · · and {n ∈ N : xnk

�= c} = {nk : k ∈
N}. Now, (xnk

) is a sequence in D \ {c} that converges to c, and therefore,
f(xnk

) → f(c). Since f(xn) = f(c) for all N \ {nk : k ∈ N}, it follows that
f(xn) → f(c). Hence f is continuous at c. ⊓⊔

Example 3.22. The function f : R → R given in Example 3.20(i) is not
continuous at 0 since limx→0 f(x) = 1 and f(0) = 2. On the other hand, if we
define g : R → R by

g(x) :=

{
1 if x ≤ 0,
x + 1 if x > 0,

then, as before, we have limx→0 g(x) = 1 and also g(0) = 1. Hence g is
continuous at 0. ✸
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We now prove some results that are useful in calculating the limits of
several functions. First we consider how the algebraic operations on R are
related to limits of functions of a real variable. The following result is known
as the Limit Theorem for Functions.

Proposition 3.23. Let D ⊆ R and c ∈ R be such that D contains (c − r, c)
and (c, c + r) for some r > 0, and f, g : D → R be functions such that

lim
x→c

f(x) = ℓ and lim
x→c

g(x) = m.

Then

(i) lim
x→c

(f + g)(x) = ℓ + m,

(ii) lim
x→c

(rf)(x) = rℓ for any x ∈ R,

(iii) lim
x→c

(fg)(x) = ℓm,

(iv) if ℓ �= 0, then there is δ > 0 such that δ ≤ r and f(x) �= 0 for all x
satisfying 0 < |x − c| < δ; moreover, for the function 1/f : {x ∈ R : 0 <
|x − c| < δ} → R, we have

lim
x→c

(
1

f

)
(x) =

1

ℓ
.

Proof. Consider any sequence (xn) in D \ {c} such that xn → c. Then

f(xn) → ℓ and g(xn) → m.

By parts (i), (ii), and (iii) of Proposition 2.3, we have

(f + g)(xn) = f(xn) + g(xn) → ℓ + m,
(rf)(xn) = rf(xn) → rℓ for any r ∈ R,
(fg)(xn) = f(xn)g(xn) → ℓm.

This proves (i), (ii), and (iii).
To prove (iv), suppose ℓ �= 0. If there is no δ > 0 such that δ ≤ r and

f(x) �= 0 for all x satisfying 0 < |x − c| < δ, then we can find a sequence (cn)
in D \ {c} such that

|cn − c| <
r

n
and f(cn) = 0 for every n ∈ N.

Since cn → c, we have f(cn) → ℓ. But this is not possible since f(cn) = 0
for every n ∈ N, whereas ℓ �= 0. Hence there is δ > 0 such that f(x) �= 0
for all x satisfying 0 < |x − c| < δ, and the function 1/f is defined at all
such x. Moreover, if (xn) is any sequence in {x ∈ R : 0 < |x − c| < δ} such
that xn → c, then f(xn) → ℓ and hence by part (iv) of Proposition 2.3,
1/f(xn) → 1/ℓ. ⊓⊔
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With notation and hypotheses as in the proposition above, a combined
application of its parts (i) and (ii) shows that limx→c(f − g)(x) = ℓ − m.
Likewise, a combined application of parts (iii) and (iv) shows that if m �= 0,
then limx→c(f/g)(x) = ℓ/m.

Next, we show how the order relation on R and the operation of taking
the kth root are preserved under limits.

Proposition 3.24. Let D, c, f , g, ℓ, and m be as in Proposition 3.23.

(i) If there is δ > 0 such that

f(x) ≤ g(x) for all x ∈ R satisfying 0 < |x − c| < δ,

then ℓ ≤ m. Conversely, if ℓ < m, then there is δ > 0 such that

f(x) < g(x) for all x ∈ R satisfying 0 < |x − c| < δ.

In particular, if there is δ > 0 such that g(x) ≥ 0 for all x ∈ R satisfying
0 < |x− c| < δ, then limx→c g(x) ≥ 0, and conversely, if limx→c g(x) > 0,
then there is δ > 0 such that g(x) > 0 for all x ∈ R satisfying 0 < |x−c| <
δ.

(ii) If f(x) ≥ 0 for all x ∈ D, then ℓ ≥ 0 and for any k ∈ N, we have

lim
x→c

f1/k(x) = ℓ1/k.

Proof. Consider a sequence (xn) in D \ {c} such that xn → c.

(i) Suppose there is δ > 0 such that f(x) ≤ g(x) for all x ∈ R satisfying
0 < |x − c| < δ. Then there is n0 ∈ N such that |xn − c| < δ for all n ≥ n0,
and hence f(xn) ≤ g(xn) for all n ≥ n0. Since f(xn) → ℓ and g(xn) → m,
part (i) of Proposition 2.4 shows that ℓ ≤ m.

Conversely, suppose ℓ < m. If there is no δ > 0 such that f(x) < g(x)
for all x ∈ R satisfying 0 < |x − c| < δ, then we can find a sequence (cn) in
D \ {c} such that

|cn − c| <
1

n
and f(cn) ≥ g(cn) for all n ∈ N.

Then cn → c and so

ℓ = lim
n→∞

f(cn) ≥ lim
n→∞

g(cn) = m,

again by part (i) of Proposition 2.4. This contradicts ℓ < m. Hence there is
δ > 0 such that f(x) < g(x) for all x ∈ R satisfying 0 < |x − c| < δ.

The particular case follows by letting f = 0.

(ii) Part (i) implies that ℓ ≥ 0. Let k ∈ N. By part (ii) of Proposition
2.4, it follows that (f(xn))1/k → ℓ1/k. Since (xn) is an arbitrary sequence in
D \ {c} such that xn → c, we have limx→c f1/k(x) = ℓ1/k. ⊓⊔
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With notation and hypotheses as in the above proposition, a combined
application of part (iii) above and part (iii) of Proposition 3.23 shows that
if r is any positive rational number and f(x) ≥ 0 for all x ∈ D, then
limx→c f r(x) = ℓr, since r = m/k, where m, k ∈ N. This, together with
part (iv) of Proposition 3.23, shows that if ℓ > 0, then limx→c f r(x) = ℓr for
any negative rational number r.

Proposition 3.25 (Sandwich Theorem). Let D ⊆ R and c ∈ R be such
that (c − r, c) and (c, c + r) are contained in D for some r > 0. Assume that
f, g, h : D → R are such that

f(x) ≤ h(x) ≤ g(x) for all x ∈ D and lim
x→c

f(x) = ℓ = lim
x→c

g(x).

Then
lim
x→c

h(x) = ℓ.

Proof. Let (xn) be any sequence in D\{c} such that xn → c. Then f(xn) → ℓ,
g(xn) → ℓ, and f(xn) ≤ h(xn) ≤ g(xn) for all n ∈ N. Hence h(xn) → ℓ by the
Sandwich Theorem for sequences. This proves that limx→c h(x) = ℓ. ⊓⊔

Example 3.26. Consider the ‘criss-cross’ function f : [0, 1] → R given in
Example 3.15. Let D := [−1, 1] and define

f̃(x) =

{
f(x) if x ∈ [0, 1],
f(−x) if x ∈ [−1, 0).

Then −1 ≤ f̃(x) ≤ 1 for all x ∈ D. Let h : D → R be defined by h(x) = xf̃(x)
and g : D → R be defined by g(x) = |x|. Since −g(x) ≤ h(x) ≤ g(x) for all
x ∈ D and limx→0 g(x) = 0 = limx→0(−g)(x), the Sandwich Theorem shows
that limx→0 h(x) = 0. ✸

Let us now give a criterion for the existence of a limit of a function of a
real variable that does not involve convergence of sequences. The following
result may be compared with Proposition 3.7.

Proposition 3.27. Let D ⊆ R and c ∈ R be such that (c− r, c) and (c, c + r)
are contained in D for some r > 0, and let consider f : D → R. Then
limx→c f(x) exists if and only if there is ℓ ∈ R satisfying the following ǫ-δ
condition: For every ǫ > 0, there is δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ |f(x) − ℓ| < ǫ.

Proof. Assume that limx→c f(x) exists and is equal to ℓ. Suppose the ǫ-δ
condition does not hold. This means that there is ǫ > 0 such that for every
δ > 0, there is x ∈ D satisfying
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0 < |x − c| < δ, but |f(x) − ℓ| ≥ ǫ.

Taking δ = 1/n for n ∈ N, we see that there is a sequence (xn) in D \ {c}
such that |xn − c| < 1/n, but |f(xn) − ℓ| ≥ ǫ for all n ∈ N. Now xn → c and
f(xn)→/ ℓ. This contradicts the assumption that limx→c f(x) = ℓ.

Conversely, assume the ǫ-δ condition. Let (xn) be any sequence in D \ {c}
such that xn → c. Let ǫ > 0 be given. Then there is δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ |f(x) − ℓ| < ǫ.

Since xn → c, there is n0 ∈ N such that |xn − c| < δ for all n ≥ n0. Hence
|f(xn) − ℓ| < ǫ for all n ≥ n0. Thus f(xn) → ℓ. It follows that limx→c f(x)
exists and is equal to ℓ. ⊓⊔

Next, we consider an analogue of the Cauchy Criterion for the convergence
of a sequence (Proposition 2.19).

Proposition 3.28 (Cauchy Criterion for Limits of Functions). Let
D ⊆ R and c ∈ R be such that (c − r, c) and (c, c + r) are contained in D for
some r > 0, and consider f : D → R. Then limx→c f(x) exists if and only if
for every ǫ > 0, there is δ > 0 such that

x, y ∈ D, 0 < |x − c| < δ and 0 < |y − c| < δ =⇒ |f(x) − f(y)| < ǫ.

Proof. Assume that limx→c f(x) exists and is equal to ℓ. Let ǫ > 0 be given.
By Proposition 3.27, there is δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ |f(x) − ℓ| <
ǫ

2
.

Hence for x, y ∈ D satisfying 0 < |x − c| < δ and 0 < |y − c| < δ, we have

|f(x) − f(y)| ≤ |f(x) − ℓ| + |ℓ − f(y)| <
ǫ

2
+

ǫ

2
= ǫ.

Conversely, assume that the condition given in the statement of the propo-
sition holds. Let ǫ > 0 be given. Then there is δ > 0 such that

x, y ∈ D, 0 < |x − c| < δ and 0 < |y − c| < δ =⇒ |f(x) − f(y)| < ǫ.

Consider a sequence (xn) in D \ {c} such that xn → c. Then there is n0 ∈ N
such that |xn − c| < δ for all n ≥ n0. Consequently,

|f(xn) − f(xm)| < ǫ for all n, m ≥ n0.

Thus (f(xn)) is a Cauchy sequence in R. By the Cauchy Criterion for se-
quences (Proposition 2.19), there is ℓ ∈ R such that f(xn) → ℓ. Hence there
is n1 ∈ N such that n1 ≥ n0 and |f(xn1

) − ℓ| < ǫ. Since 0 < |xn1
− c| < δ, it

follows that

x ∈ D and 0 < |x− c| < δ =⇒ |f(x)− ℓ| ≤ |f(x)− f(xn1
)|+ |f(xn1

)− ℓ| < 2ǫ.

Since ǫ > 0 is arbitrary, Proposition 3.27 shows that limx→c f(x) exists and
is equal to ℓ. ⊓⊔
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We now consider one-sided limits. Let D be a subset of R and f : D → R
be a function. Suppose that c ∈ R is such that (c − r, c) ⊆ D for some r > 0.
We say that a left (hand) limit of f as x tends to c (from the left) exists if
there is a real number ℓ such that

(xn) any sequence in D, xn < c, and xn → c =⇒ f(xn) → ℓ.

We then write

f(x) → ℓ as x → c− or lim
x→c−

f(x) = ℓ.

It is easy to see that if limx→c− f(x) exists, then it is unique.
Similarly, if c ∈ R is such that (c, c+r) ⊆ D for some r > 0, then we define

the right (hand) limit of f(x) as x tends c (from the right) upon replacing
the requirement ‘xn < c’ by the requirement ‘xn > c’ in the definition above.
We then write

f(x) → ℓ as x → c+ or lim
x→c+

f(x) = ℓ.

Results similar to Propositions 3.23, 3.24, 3.25, 3.27, and 3.28 hold for left
limits and for right limits. We also have the following result.

Proposition 3.29. Let D ⊆ R and c ∈ R be such that (c− r, c) and (c, c + r)
are contained in D for some r > 0, and consider f : D → R. Then

lim
x→c

f(x) = ℓ ⇐⇒ lim
x→c−

f(x) = ℓ = lim
x→c+

f(x).

If in addition c ∈ D, then

f is continuous at c ⇐⇒ lim
x→c−

f(x) = f(c) = lim
x→c+

f(x).

Proof. If limx→c f(x) = ℓ, then clearly limx→c− f(x) = ℓ = limx→c+ f(x).
Conversely, assume that limx→c− f(x) = ℓ = limx→c+ f(x). Let (xn) be

any sequence in D \ {c}. Then xn < c or xn > c for any n ∈ N. If there is
n1 ∈ N such that xn < c for all n ≥ n1, then since limx→c− f(x) = ℓ, we see
that f(xn) → ℓ. Also, if there is n2 ∈ N such that xn > c for all n ≥ n2,
then since limx→c+ f(x) = ℓ, we see that again f(xn) → ℓ. In the remaining
case, there are positive integers j1 < j2 < · · · and m1 < m2 < · · · such that
xjk

< c < xmk
for all k ∈ N and N = {jk : k = 1, 2, . . .} ∪ {mk : k = 1, 2, . . .}.

Since limx→c− f(x) = ℓ, we have f(xjk
) → ℓ. Also, since limx→c+ f(x) = ℓ, we

have f(xmk
) → ℓ. Since every n ∈ N is equal to jk or to mk for some k ∈ N,

it follows that f(xn) → ℓ. We therefore conclude that limx→c f(x) = ℓ.
The last statement of the proposition follows from the equivalence proved

above and Proposition 3.21. ⊓⊔
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Next, suppose that D ⊆ R and D contains a semi-infinite interval (a,∞),
where a ∈ R. Consider a function f : D → R. We say that a limit of f as x
tends to infinity exists if there is a real number ℓ such that

(xn) any sequence in D and xn → ∞ =⇒ f(xn) → ℓ.

We then write

f(x) → ℓ as x → ∞ or lim
x→∞

f(x) = ℓ.

Since there does exist a sequence (xn) in D such that xn → ∞, we see that
limx→∞ f(x) is unique. If D ⊆ R contains a semi-infinite interval (−∞, a)
where a ∈ R, then we define limx→−∞ f(x) analogously, and write

f(x) → ℓ as x → −∞ or lim
x→−∞

f(x) = ℓ.

Results similar to 3.23, 3.24, and 3.25 hold for limits as x → ∞ or as
x → −∞. We now give an analogue of Proposition 3.27 for such limits.

Proposition 3.30. Let D ⊆ R be such that (a,∞) is contained in D for some
a ∈ R and let f : D → R be a function. Then limx→∞ f(x) exists if and only
if there is ℓ ∈ R satisfying the following ǫ-α condition: For every ǫ > 0, there
is α ∈ R such that

x ∈ D and x ≥ α =⇒ |f(x) − ℓ| < ǫ.

Proof. Let limx→∞ f(x) exist and equal ℓ. Suppose for a moment that the ǫ-α
condition does not hold. This means that there is ǫ > 0 such that for every
α ∈ R, there is x ∈ D satisfying

x ≥ α, but |f(x) − ℓ| ≥ ǫ.

By choosing α = n for each n ∈ N, we may find a sequence (xn) in D such
that xn ≥ n, but |f(xn) − ℓ| ≥ ǫ for all n ∈ N. Now xn → ∞ and f(xn)→/ ℓ.
This contradicts limx→∞ f(x) = ℓ.

Conversely, assume the ǫ-α condition. Let (xn) be any sequence in D such
that xn → ∞. Let ǫ > 0 be given. Then there is α ∈ R such that

x ∈ D and x ≥ α =⇒ |f(x) − ℓ| < ǫ.

Since xn → ∞, there is n0 ∈ N such that xn ≥ α for all n ≥ n0. Hence
|f(xn) − ℓ| < ǫ for all n ≥ n0. Thus f(xn) → ℓ. So limx→∞ f(x) exists and
equals ℓ. ⊓⊔

Remark 3.31. Let D ⊆ R be such that (a,∞) is contained in D for some
a ∈ R, and let f, g : D → R be functions. We may compare the orders of
magnitude of f and g as x → ∞ just as we compared the orders of magnitude
of sequences (an) and (bn) in Remark 2.11.
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If there are K > 0 and α ∈ R such that |f(x)| ≤ K|g(x)| for all x ≥ α,
then we write f(x) = O(g(x)) as x → ∞ [read f(x) is big-oh of g(x) as x
tends to infinity]. In particular, if g(x) = 1 for all large x, then f(x) = O(1)
as x → ∞, and this means that the function f is bounded. Broadly speaking,
f(x) = O(g(x)) as x → ∞ if the order of magnitude of f is at most the order
of magnitude of g as x → ∞. In case f and g are monotonically increasing
functions and f(x) = O(g(x)) as x → ∞, then we also say that the growth
rate of f is at most the growth rate of g as x → ∞. For example,

10 [x] + 100 = O(x) and
10

[x]
+

100

x
√

x
= O

(
1

x

)
.

Given ǫ > 0, if there is α ∈ R such that |f(x)| ≤ ǫ|g(x)| for all x ≥ α,
then we write f(x) = o(g(x)) as x → ∞ [read f(x) is little-oh of g(x) as x
tends to infinity]. If g(x) �= 0 for all large x ∈ R, then f(x) = o(g(x)) as
x → ∞ means that limx→∞(f(x)/g(x)) exists and is zero. In particular, if
g(x) = 1 for all large x, then f(x) = o(1) as x → ∞, and this means that
f(x) → 0 as x → ∞. Broadly speaking, f(x) = o(g(x)) as x → ∞ if the order
of magnitude of f is less than the order of magnitude of g as x → ∞. In case
f and g are monotonically increasing functions and f(x) = o(g(x)) as x → ∞,
then we also say that the growth rate of f is less than the growth rate of g
as x → ∞. For example,

10 x + 100 = o(x
√

x) and
10

[x]
+

100

x
√

x
= o

(
1√
x

)
.

Suppose there is nonzero ℓ ∈ R that satisfies the following condition: Given
ǫ > 0, there is α ∈ R such that |f(x)−ℓg(x)| < ǫ for all x ≥ α. In this case, we
write f(x) ∼ g(x) as x → ∞ [read f(x) is asymptotically equivalent to g(x) as
x tends to ∞]. Broadly speaking, f(x) ∼ g(x) as x → ∞ if f(x) is of the same
order of magnitude as g(x) as x → ∞. It can be easily seen that ∼ is an equiv-
alence relation on the set of all real-valued functions defined on D. If g(x) �= 0
for all large x, then f(x) ∼ g(x) as x → ∞ means that limx→∞(f(x)/g(x))
exists and is nonzero. If f and g are monotonically increasing functions and
f(x) ∼ g(x) as x → ∞, then we also say that f and g have the same growth
rate as x → ∞. For example,

10 x2 + 100 x + 1000 ∼ x2 and
10

x2
+

100

x3
+

1000

x4
∼ 1

x2
.

More interesting examples will be given in Section 7.1.

If (−∞, a) is contained in D for some a ∈ R, then we may compare the
orders of magnitude of f and g as x → −∞, or if c ∈ R is such that (c− r, c+
r) ⊆ D for some r > 0, then we may compare the orders of magnitude of f
and g as x → c in a similar manner. ✸

As we have described for sequences, we now describe how in some cases ∞
or −∞ can be regarded as a ‘limit’ of a function of a real variable. Let D ⊆ R



3.3 Limits of Functions of a Real Variable 91

and c ∈ R be such that (c − r, c) and (c, c + r) are contained in D for some
r > 0. We say that f(x) tends to ∞ as x tends to c if

(xn) any sequence in D and xn → c =⇒ f(xn) → ∞.

We then write
f(x) → ∞ as x → c.

We give an analogue of Proposition 3.27 for a function that tends to in-
finity.

Proposition 3.32. Let D ⊆ R, c ∈ R be such that (c− r, c) and (c, c + r) are
contained in D for some r > 0, and let f : D → R be a function. Then f(x)
tends to ∞ as x tends to c if and only if the following α-δ condition holds:
For every α ∈ R, there is δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ f(x) > α.

Proof. Let f(x) tend to ∞ as x tends to c. Suppose for a moment that the
α-δ condition does not hold. This means that there is α ∈ R such that for
every δ > 0, there is x ∈ D satisfying

0 < |x − c| < δ, but f(x) ≤ α.

Then there is a sequence (xn) in D\{c} such that |xn−c| < 1/n, but f(xn) ≤ α
for all n ∈ N. Now xn → c and f(xn)→/ ∞. This contradicts the assumption
that f(x) → ∞ as x → c.

Conversely, assume the α-δ condition. Let (xn) be any sequence in D \ {c}
such that xn → c. Let α ∈ R be given. Then there is δ > 0 such that

x ∈ D and 0 < |x − c| < δ =⇒ f(x) > α.

Since xn → c, there is n0 ∈ N such that |xn − c| < δ for all n ≥ n0. Hence
f(xn) > α for all n ≥ n0. Thus f(xn) → ∞. So f(x) → ∞ as x → c. ⊓⊔

In a similar manner, we may define ‘f(x) → −∞ as x → c’ and an equiv-
alent ‘β-δ condition’ can be formulated. Also, one-sided limits (as x → c− or
as x → c+) are similarly treated. Further, we may define

f(x) → ∞ as x → ∞ and f(x) → −∞ as x → ∞

as well as

f(x) → ∞ as x → −∞ and f(x) → −∞ as x → −∞

analogously.

If f(x) → ∞ and g(x) → ℓ, where ℓ ∈ R or ℓ = ∞ or ℓ = −∞, then
results regarding the existence of the ‘limits’ of f(x) + g(x) and f(x)g(x) can
be stated on the lines of the results stated in Remark 2.12.
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Examples 3.33. (i) We have

lim
x→∞

1

x
= 0 = lim

x→−∞
1

x
,

while
1

x
→ ∞ as x → 0+ and

1

x
→ −∞ as x → 0−.

(ii) We have lim
x→∞

x2 + 2x + 3

4x2 + 5x + 6
=

1

4
, since

x2 + 2x + 3

4x2 + 5x + 6
=

1 +
2

x
+

3

x2

4 +
5

x
+

6

x2

for all x ∈ R, x �= 0.

(iii) We have x3 → ∞ as x → ∞ and x3 → −∞ as x → −∞.

The concept of a limit involving ∞ or −∞ is useful in considering ‘asymp-
totes of curves’. Roughly speaking, a straight line is considered to be an
asymptote of a curve if it comes arbitrarily close to that curve. A classi-
fication of the asymptotes, depending on their slopes, is given below.

Let D ⊆ R and f : D → R be a function. We tacitly assume that D
satisfies an appropriate condition needed for defining the relevant limit.

1. A straight line given by y = b, where b ∈ R, is called a horizontal
asymptote of the curve y = f(x) if

lim
x→∞

(f(x) − b) = 0 or lim
x→−∞

(f(x) − b) = 0.

2. A straight line given by y = ax + b, where a, b ∈ R and a �= 0, is called an
oblique asymptote of the curve y = f(x) if

lim
x→∞

(f(x) − ax − b) = 0 or lim
x→−∞

(f(x) − ax − b) = 0.

3. A straight line given by x = c, where c ∈ R, is called a vertical asymp-
tote of the curve y = f(x) if one or more of the following holds:

f(x) → ∞ as x → c−, f(x) → −∞ as x → c−,
f(x) → ∞ as x → c+, f(x) → −∞ as x → c+.

Examples 3.34. (i) Let D := (−∞, 0) ∪ (1,∞) and define f : D → R as
follows:

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x − 1

x − 1
if x > 1,

3x2 + 4x + 1

x
if x < 0.
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For x > 1, we have f(x) = 2 + [1/(x − 1)], and so limx→∞(f(x) − 2) = 0.
Hence the straight line given by y = 2 is a horizontal asymptote of the curve
y = f(x). Also, f(x) → ∞ as x → 1+. Hence the straight line given by x = 1
is a vertical asymptote of the curve y = f(x).

For x < 0, we have f(x) = 3x+4+(1/x), and so limx→−∞(f(x)−3x−4) =
0. Hence the straight line given by y = 3x + 4 is an oblique asymptote of the
curve y = f(x). Also, f(x) → −∞ as x → 0−. Hence the straight line given
by x = 0 is a vertical asymptote of the curve y = f(x).

We can use this information to draw a graph of f as in Figure 3.6.
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Fig. 3.6. Graph of f(x) =



(2x − 1)/(x − 1) if x > 1,
(3x2 + 4x + 1)/x if x < 0,

with its horizontal,

oblique, and vertical asymptotes

(ii) Let P and Q be nonzero polynomial functions that do not have a
common real root. Consider D := R \ E, where E is the set of all real roots
of the polynomial function Q. Define f(x) = P (x)/Q(x) for x ∈ D.

If the degree of P is equal to the degree of Q, then

f(x) = b +
R(x)

Q(x)
for x ∈ D,
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where b ∈ R and R is a polynomial function whose degree is less than the
degree of Q. Since R(x)/Q(x) → 0 as x → ∞ and also as x → −∞, we see
that the straight line given by y = b is a horizontal asymptote of the curve
y = f(x).

If the degree of P is greater than the degree of Q by 1, then

f(x) = ax + b +
R(x)

Q(x)
for x ∈ D,

where a, b ∈ R, a �= 0 and R is a polynomial function whose degree is less than
the degree of Q. Again, since R(x)/Q(x) → 0 as x → ∞ and also as x → −∞,
we see that the straight line given by y = ax + b is an oblique asymptote of
the curve y = f(x).

Let now c ∈ E, that is, c ∈ R and Q(c) = 0. Then it is easy to see that
f(x) → ∞ or f(x) → −∞ (depending on the signs of the leading coefficients
of the polynomial functions P and Q) as x → c− and also x → c+. Hence the
straight line given by x = c is a vertical asymptote of the curve y = f(x).

We now consider limits of monotonic functions. The results given below
may be compared with the corresponding results for limits of monotonic se-
quences (Proposition 2.8 and Remark 2.12).

Proposition 3.35. Let f : (a, b) → R be a monotonically increasing function.
Then

(i) limx→b− f(x) exists if and only if f is bounded above; in this case, we have

lim
x→b−

f(x) = sup{f(x) : x ∈ (a, b)}.

If f is not bounded above, then f(x) → ∞ as x → b−.
(ii) limx→a+ f(x) exists if and only if f is bounded below; in this case, we have

lim
x→a+

f(x) = inf{f(x) : x ∈ (a, b)}.

If f is not bounded below, then f(x) → −∞ as x → a+.

Here a ∈ R or a = −∞, and b ∈ R or b = ∞.

Proof. Consider a sequence (bn) in (a, b) such that bn → b.
(i) Assume that f is bounded above and let M := sup{f(x) : x ∈ (a, b)}.

Given ǫ > 0, there is c ∈ (a, b) such that M − ǫ < f(c). Now since f is
monotonically increasing, we have M − ǫ < f(x) for all x ∈ (c, b). Also, since
bn → b and c < b, there is n0 ∈ N such that c < bn for all n ≥ n0. Hence
M − ǫ < f(bn) for all n ≥ n0. On the other hand, f(bn) ≤ M for all n ∈ N.
Hence f(bn) → M as bn → b. Since (bn) is an arbitrary sequence such that
bn → b, we obtain f(x) → M as x → b.

Assume now that f is not bounded above. Let α ∈ R. Then there is
c ∈ (a, b) such that α < f(c). Again, since f is monotonically increasing,
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α < f(x) for all x ∈ (c, b). Since bn → b and c < b, there is n0 ∈ N such
that c < bn for all n ≥ n0. Hence α < f(bn) for all n ≥ n0. This shows that
f(bn) → ∞ as bn → b. Since (bn) is an arbitrary sequence such that bn → b,
we obtain f(x) → ∞ as x → b.

(ii) The proof of this part is similar to the proof of part (i) above. ⊓⊔

A result similar to the one above holds for a monotonically decreasing
function. (See Exercise 32.)

We shall now use Proposition 3.35 to prove the converse of the Intermediate
Value Theorem (Proposition 3.13) for monotonic functions.

Proposition 3.36. Let I be an interval and f : I → R be a function that is
monotonic on I. If f has the IVP on I, then f is continuous on I.

Proof. Assume first that f is monotonically increasing on I and f has the
IVP on I. Consider c ∈ I.

Suppose that c is neither the left (hand) endpoint nor the right (hand)
endpoint of the interval I. Then there are c1, c2 ∈ I such that c1 < c < c2.
Now the function f is bounded above on the interval (c1, c) and it is bounded
below on the interval (c, c2) by f(c). Hence by Proposition 3.35, f(x) → ℓ1 as
x → c− and f(x) → ℓ2 as x− → c+, where

ℓ1 := sup{f(x) : c1 < x < c} and ℓ2 := inf{f(x) : c < x < c2}.

Clearly, ℓ1 ≤ f(c) ≤ ℓ2. In fact, since f has the IVP on I, we have ℓ1 = f(c) =
ℓ2. Thus by Proposition 3.29, f is continuous at c.

If c is the left (hand) endpoint of the interval I, then the above argument
shows that f(x) → ℓ2 as x → c+ and ℓ2 = f(c), while if c is the right (hand)
endpoint of the interval I, then we have f(x) → ℓ1 as x → c− and ℓ1 = f(c).

Thus in all cases, f is continuous at c. Since c is an arbitrary point of I,
we see that f is continuous on I.

If f is monotonically decreasing on I and f has the IVP on I, then −f is
monotonically increasing on I and −f has the IVP on I. Hence by what we
have proved above, −f is continuous on I, that is, f is continuous on I. ⊓⊔

We conclude this section by stating that Proposition 3.29 about left limits
and right limits can be used to prove that if a function is convex or concave
on an interval, then it is continuous at every point of that interval other than
its endpoints. (See Exercise 47.)

Notes and Comments

Most books on calculus and analysis treat limits of functions of a real variable
first and then discuss the continuity of such a function. We follow, however,
the reverse order. Our definition of continuity of a function relies on the
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concept of limit of a sequence, which is introduced in Chapter 2; the domain
of such a function can be an arbitrary subset of R. Such an approach is unusual
but not new. See, for example, the book by Goffman [27]. Our definition of
the limit of a function at a point c ∈ R also uses the concept of a limit of a
sequence; the assumption that an open interval about c, except possibly c itself,
is contained in the domain of the function ensures the uniqueness of the limit,
whenever it exists. Our discussion of the relationship between continuity and
various geometric properties of a function is based on a remarkable result,
which states that the inverse of a strictly monotonic function defined on an
interval is always continuous.

Our approach of utilizing the limits of sequences to introduce continuity
and limits of functions of a real variable seems to be simple-minded and easier
to understand than the standard approach, which uses the ǫ-δ condition. We
have shown the equivalence of these two approaches toward the end of our
discussion of continuity and of limits.

It is possible to define the limit of a function at a point c under a less-
restrictive assumption on the domain D of the function than what we have
imposed. In fact, it is sufficient to assume that for every r > 0, there is x ∈ D
such that 0 < |x − c| < r. See Exercises 43–45. The assumption imposed by
us in the text is merely for the sake of simplicity.

Exercises

Part A

1. State whether there is a function f : [0, 3] → R that is continuous at 2
and satisfies
(i) f(x) = (x3 − 3x − 2)/(x − 2) for x �= 2,

(ii) f(x) =

{
x if x ∈ [1, 2),
x/2 if x ∈ (2, 3].

2. State whether there is a continuous function f : [0, 1] → R such that for
every n ∈ N,
(i) f((2n − 1)/n) = (−1)n, (ii) f((2n + 1)/n) = 21/n.

3. Let k be an odd positive integer and f(x) = k
√

x for x ∈ R. Show that f
is continuous on R.

4. Let f : R → R satisfy f(x + y) = f(x) + f(y) for all x, y ∈ R. If f is
continuous at 0, then show that (i) f is continuous at every c ∈ R and (ii)
f(sx) = sf(x) for all s, x ∈ R. Deduce that there exists r ∈ R such that
f(x) = rx for all x ∈ R.

5. Let f : R → R satisfy f(x + y) = f(x)f(y) for all x, y ∈ R. If f is
continuous at 0, then show that f is continuous at every c ∈ R.
[Note: An important example of such a function, known as the exponential
function, will be given in Section 7.1.]
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6. Let f : R → R satisfy f(xy) = f(x)f(y) for all x, y ∈ R. If f is continuous
at 1, then show that f is continuous at every c ∈ R, except possibly at
c = 0. Give an example of such a function that is continuous at 1 as well
as at 0. Also, give an example of such a function that is continuous at 1,
but not at 0. (Compare Exercise 19 of Chapter 1.)

7. Let f : (0,∞) → R satisfy f(xy) = f(x) + f(y) for all x, y ∈ (0,∞). If f
is continuous at 1, then show that f is continuous at every c ∈ (0,∞).
[Note: An important example of such a function, known as the logarithmic
function, will be given in Section 7.1.]

8. Let f : R → R be given by

f(x) =

{
ax if x ≤ 0,√

x if x > 0,

where a ∈ R. Show that f is continuous on R.
9. Let f : R → R be given by

f(x) =

{
x if x is rational,
1 − x if x is irrational.

Show that f is continuous only at 1
2 .

10. Let D := {1/n : n ∈ N} ∪ {0} and f : D → R be any function. Show that
f is continuous at 1/n for every n ∈ N, and f is continuous at 0 if and
only if f (1/n) → f(0).

11. Let f : [0, 2] → R be given by

f(x) =

{
x if 0 ≤ x < 1,
3 − x if 1 ≤ x ≤ 2.

Show that f assumes every value between 0 and 2 exactly once on [0, 2],
but f is not continuous on [0, 2].

12. Let f : [0, 1] → R be given by

f(x) =

{
3x/2 if 0 ≤ x < 1

2 ,
(3x − 1)/2 if 1

2 ≤ x ≤ 1.

Show that f([0, 1]) = [0, 1]. Is f continuous on [0, 1]? Does f have the IVP
on [0, 1]?

13. Show that the cubic x3 − 6x + 3 has exactly three real roots. (Hint: Find
f(−3), f(0), f(1), and f(2), and use the IVP.)

14. Let D ⊆ R, c ∈ D, and f : D → R be such that f is continuous at c. Show
that |f | : D → R is continuous at c. Is the converse true?

15. Let D ⊆ R, c ∈ D, and f, g : D → R be such that f and g are continuous
at c. Show that the functions max(f, g), min(f, g) : [a, b] → R given by

max(f, g)(x) = max{f(x), g(x)} and min(f, g)(x) = min{f(x), g(x)}

for x ∈ [a, b] are continuous at c. (Hint: max(f, g) = (f + g + |f − g|)/2
and min(f, g) = (f + g − |f − g|)/2.)
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16. Let f : [a, b] → R be continuous. Use the IVP to show that for any
c1, . . . , cn ∈ [a, b], there is c ∈ [a, b] such that

f(c) =
f(c1) + · · · + f(cn)

n
.

17. If a function f satisfies one of the following conditions, then can it be
continuous? Why?
(i) f : [1, 10] → R, f(1) = 0, f(10) = 11, range of f ⊆ [−1, 0] ∪ [1, 11].
(ii) f : [0, 1] → R and range of f = (−1, 1).
(iii) f : [−1, 1] → R and range of f = [0,∞).

18. Let f : R → R be given by

f(x) =

{
x/(1 + x) if x ≥ 0,
x/(1 − x) if x < 0.

Show that f is continuous and bounded on R. Also, prove that

inf{f(x) : x ∈ R} = −1 and sup{f(x) : x ∈ R} = 1,

but there are no r, s in R such that f(r) = −1 and f(s) = 1.
19. Let D and E be subsets of R such that D is closed and bounded. If

f : D → E is bijective and continuous, then show that f−1 : E → D
is continuous. (Hint: Proposition 2.17.) In particular, this result holds if
D = [a, b]. (Compare Proposition 3.14.)

20. Analyze the following functions for uniform continuity:
(i) f(x) = x, x ∈ R, (ii) f(x) = 1/x, x ∈ (0, 1],
(iii) f(x) = x2, x ∈ (0, 1), (iv) f(x) =

√
1 − x2, x ∈ [−1, 1].

21. Let D and E be subsets of R, and let f : D → R and g : E → R be
functions such that the range of f is contained in E. If f is uniformly
continuous on D and g is uniformly continuous on E, then show that g ◦f
is uniformly continuous on D.

22. Let f : R → R be given by

f(x) =

{
x if x �= 0,
1 if x = 0.

Then limx→0 f(x) = 0, but there is a sequence (xn) such that xn → 0 and
f(xn) �→ 0. Explain.

23. Show that limx→c f(x) does not exist if f : R → R is given by

(i) f(x) = [x] − x, c = 1, (ii) f(x) =
|x + 1|
x + 1

, c = −1.

24. Consider f , g : R → R and c ∈ R. Under which of the following conditions
does limx→c f(x)g(x) exist? Justify.
(i) limx→c f(x) exists.
(ii) limx→c f(x) exists and g is bounded on {x ∈ R : 0 < |x − c| < δ} for

some δ > 0.
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(iii) limx→c f(x) = 0 and g is bounded on {x ∈ R : 0 < |x − c| < δ} for
some δ > 0.

(iv) limx→c f(x) and limx→c g(x) exist.
25. Prove that the following limits exist.

(i) lim
x→0

x[x], (ii) lim
x→0

√
1 + x − 1

x
, (iii) lim

x→∞
7x − 1

x2
, (iv) lim

x→∞
x4 + x

x4 + 1
,

(v) lim
x→0+

√
x√

7 +
√

x + 5
, (vi) lim

x→1

|x − 1| + 1

x + |x + 1| , (iv) lim
x→3

([x] − [2x − 1]).

26. Show that f(x) → ∞ as x → ∞, if f : [0,∞) → R is given by

(i) f(x) =
3x2 + 1

2x + 1
, (ii) f(x) = [x].

27. Let f and g be polynomial functions given by

f(x) = anxn + · · · + a1x + a0 and g(x) = bmxm + · · · + b1x + b0,

where an, . . . , a0, bm, . . . , b0 are in R, an �= 0 and bm �= 0. Show that

lim
x→∞

f(x)

g(x)
=

{
0 if m > n,
am/bm if m = n.

In case m < n, show that

f(x)

g(x)
→ ∞ as x → ∞ if

an

bm
> 0 , and

f(x)

g(x)
→ −∞ as x → ∞ if

an

bm
< 0.

28. Let f : R → R and c ∈ R. If limx→c f(x) exists, then show that

lim
h→0+

[f(c + h) − f(c − h)] = 0.

Is the converse true? Justify your answer.
29. (Limit of Composition) Let D ⊆ R, s0 ∈ R be such that (s0 − r, s0)

and (s0, s0 + r) are contained in D for some r > 0, and let u : D → R be
a function such that lims→s0

u(s) exists. Let t0 := lims→s0
u(s). Suppose

E ⊆ R is such that u(D \ {s0}) ⊆ E and consider a function v : E → R.
Assume either that (t0 − δ, t0) ∪ (t0, t0 + δ) is contained in E for some
δ > 0, limt→t0 v(t) exists, and u(s) �= t0 for every s ∈ D \ {s0}, or that
t0 ∈ E and v is continuous at t0. Then prove that lims→s0

v ◦u(s) = v(t0).
Show also that the condition ‘u(s) �= t0 for every s ∈ D \ {s0}’ or the
requirement of continuity of the function v at t0 cannot be dropped from
this result.

30. Given ǫ > 0, find δ > 0 such that |f(x)− ℓ| < ǫ whenever 0 < |x− c| < δ,
if

(i) f(x) = x2 + 1, c = 1, ℓ = 2, (ii) f(x) =
1

x
, c �= 0, ℓ =

1

c
,

(iii) f(x) =
3x2 + 7x + 2

2x + 4
, c = −2, ℓ = −5/2.
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31. Find the asymptotes of the following curves:

(i) y =
x

x + 1
, x �= −1, (ii) y =

x

x − 1
, x �= 1, (iii) y =

x2

x2 − 1
, x �= ±1,

(vi) y =
x2

x2 + 1
, (v) y =

x2 + 1

x
, x �= 0, (vi) y =

x2 + x − 2

x − 2
, x �= 2.

32. Let f : (a, b) → R be a monotonically decreasing function. Prove the
following results. (Compare Proposition 3.35.)
(i) limx→b− f(x) exists if and only if f is bounded below; in this case, we

have
lim

x→b−
f(x) = inf{f(x) : x ∈ (a, b)}.

If f is not bounded below, then f(x) → −∞ as x → b−.
(ii) limx→a+ f(x) exists if and only if f is bounded above; in this case, we

have
lim

x→a+
f(x) = sup{f(x) : x ∈ (a, b)}.

If f is not bounded above, then f(x) → ∞ as x → a+.

Part B

33. Let k ∈ N and f(x) = x1/k for x ∈ [0,∞). If ǫ ∈ R is such that 0 < ǫ ≤ 1,
define δ := min{(1 + ǫ)n − 1, 1 − (1 − ǫ)n}. Show that δ > 0 and

x ∈ [0,∞) and |x − 1| < δ =⇒ |f(x) − 1| < ǫ.

Also, show that δ is the greatest real number for which this holds.
34. Let f : [0,∞) → R be given by

f(x) =

⎧
⎨

⎩

1 if x = 0,
1/q if x = p/q where p, q ∈ N and p, q have no common factor,
0 if x is irrational.

Show that f is discontinuous at each rational in [0,∞) and it is continuous
at each irrational in [0,∞).
[Note: This function is known as Thomae’s function.]

35. Let f : [a, b] → R be a continuous function satisfying f(a) = f(b). Show
that there are c, d ∈ [a, b] such that d − c = (b − a)/2 and f(c) = f(d).
Deduce that for every ǫ > 0, there are x, y ∈ [a, b] such that 0 < y−x < ǫ
and f(x) = f(y).

36. Prove that a function f : (a, b) → R is convex if and only if it is continuous
on (a, b) and satisfies

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
for all x1, x2 ∈ (a, b).

(Hint: To prove convexity, first show that
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f

(
x1 + · · · + xn

n

)
≤ f(x1) + · · · + f(xn)

n
for all x1, . . . , xn ∈ (a, b)

by observing that it holds if n = 2k, where k ∈ N, and it holds for any
n ∈ N whenever it holds for n + 1; then show that f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y) for all x, y ∈ (a, b) and λ ∈ Q with 0 < λ < 1, and
finally use the continuity of f to complete the argument.)

37. Let D ⊆ R and f : D → R. Prove the following.
(i) If D is bounded and f is uniformly continuous on D, then f is bounded

on D. Is this true if f is merely continuous on D?
(ii) Let (xn) be a Cauchy sequence in D. If f is uniformly continuous on

D, then (f(xn)) is also a Cauchy sequence. Is this true if f is merely
continuous on D?

38. Let f : (a, b) → R be a continuous function. Show that f can be extended
to a continuous function on [a, b] if and only if f is uniformly continuous
on (a, b). (Hint: Exercise 37 (ii) and Proposition 3.17.)

39. Suppose f : D → R satisfies |f(x)−f(y)| ≤ α|x−y|r for all x, y in D and
some constants α ∈ R, r ∈ Q, r > 0. Show that f is uniformly continuous
on D.

40. Let r ∈ Q and r ≥ 0. If f : [0,∞) → R is defined by f(x) = xr, show
that f is uniformly continuous if and only if r ≤ 1. (Hint: If r ≤ 1, then
|xr − yr| ≤ 2|x − y|r for all x, y ∈ [0,∞) by Exercise 54 (ii) of Chapter 1.
If r > 1, then consider xn := n, yn := n + (1/nr−1) for n ∈ N.)

41. Let f , g : D → R be uniformly continuous on D. Are the functions
f + g, fg, 1/f (provided f(x) �= 0 for all x ∈ D) uniformly continuous
on D? What if D is a bounded subset of R? What if D is a closed subset
of R? What if D = [a, b]? Justify your answers.

42. Let D ⊆ R and c ∈ R be such that D contains (c − r, c) and (c, c + r) for
some r > 0. Given any f : D → R, show that limx→c f(x) exists if and
only if the following conditions hold:
(i) For any sequence (xn) in D \ {c} such that xn → c, the sequence

(f(xn)) is bounded.
(ii) For any sequences (xn) and (yn) in D \ {c} such that xn → c, yn → c,

and moreover, both (f(xn)) and (f(yn)) are convergent, we have
limn→∞ f(xn) = limn→∞ f(yn).

(Hint: Proposition 2.17.)
43. Let D ⊆ R and c ∈ R. If for every r > 0, there is x ∈ D such that

0 < |x − c| < r, then c is called a limit point (or an accumulation
point) of D.
(i) Show that c is a limit point of D if and only if there is a sequence

(xn) in D \ {c} such that xn → c.
(ii) If c is a limit point of D, then show that for every r > 0, the set

{x ∈ D : 0 < |x − c| < r} is infinite.
(iii) If D is a finite subset of R, show that D has no limit point.
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(iv) Find all limit points of D if D := N, or D := {1/n : n ∈ N}, or
D := Q, or D := (a, b).

(v) Let (an) be a sequence in R and let D := {an : n ∈ N}. If c is limit
point of D, then show that c is a cluster point of (an). On the other
hand, if an := (−1)n for all n ∈ N, then 1 and −1 are cluster points
of (an), but the set D := {an : n ∈ N} = {1,−1} has no limit point.
(See Exercise 16 of Chapter 2 for the definition of a cluster point of a
sequence.)

44. Let D ⊆ R, c ∈ R, and let f : D → R be a function.
(i) If c is a limit point of D, then we say that a limit of f as x tends to

c exists if there is a real number ℓ such that

(xn) any sequence in D \ {c} and xn → c =⇒ f(xn) → ℓ.

Show that if a limit of f as x tends to c exists, then it is unique.
(ii) If c is not a limit point of D, then show that for any ℓ ∈ R, the

condition

(xn) any sequence in D \ {c} and xn → c =⇒ f(xn) → ℓ

holds vacuously.
45. Let D ⊆ R and c ∈ R be a limit point of D. Prove analogues of Proposi-

tions 3.21, 3.23, 3.24, 3.25, and 3.27.
46. Let f : (a, b) → R be a monotonically increasing function. Show that for

every c ∈ (a, b), both limx→c+ f(x) and limx→c− f(x) exist, and

lim
x→c−

f(x) = sup
a<x<c

f(x) ≤ f(c) ≤ inf
c<x<b

f(x) = lim
x→c+

f(x).

Also, if d ∈ (a, b) and c < d, then show that

lim
x→c+

f(x) = lim
x→d−

f(x).

Further, show that similar results hold for a monotonically decreasing
function.

47. Let I be an interval and f : I → R be a function that is convex on I,
or concave on I. Show that f is continuous at every point of I except
possibly the endpoints of I. (Hint: Let c be an interior point of I and
c1, c2 ∈ I be such that c1 < c < c2. If f is convex on I, then

f(c1) +
f(c) − f(c1)

c − c1
(x − c1) ≤ f(x) ≤ f(c) +

f(c2) − f(c)

c2 − c
(x − c)

for all x ∈ (c, c2) and

f(c) +
f(c) − f(c2)

c2 − c
(c − x) ≤ f(x) ≤ f(c1) +

f(c) − f(c1)

c − c1
(x − c1)

for all x ∈ (c1, c).)
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Differentiation

Differentiation is a process that associates to a real-valued function f another
function f ′, called the derivative of f . This process is local in the sense that
the value of f ′ at a point c depends only on the values of f in a small in-
terval around c. The concept of differentiation originated from two classical
problems:

1. The geometric problem of determining a tangent at a point to a curve in
the plane.

2. The physical problem of determining the speed or the velocity of an object,
such as a particle or a vehicle or a planet.

The notion of a derivative, which we shall study in this chapter, and the
fact that it can often be computed effectively, turns out to be a key to solving
the above two problems. Furthermore, the notion of a derivative has an enor-
mous number of applications both within and outside mathematics. Some of
these applications will be considered in Chapter 5.

In the first section below, we begin by describing in greater detail the
second problem above. This leads to the definition of differentiability. The
concept of differentiability of a function is intimately related to the continuity
of an associated function, and this connection is made explicit by a lemma of
Carathéodory. We first prove Carathéodory’s Lemma and then use it to the
fullest extent possible to derive a number of basic properties of differentiation.
Next, in Section 4.2, we present results known as the Mean Value Theorem
and Taylor’s Theorem, which are extremely useful in calculus and analysis.
In Section 4.3, we show that for differentiable functions, geometric properties
of functions such as monotonicity, convexity, and concavity can be effectively
determined by looking at their derivatives. Finally, in Section 4.4, we describe
L’Hôpital’s Rules, which show how differentiation can be used to compute
certain limits.
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4.1 The Derivative and Its Basic Properties

Suppose we are traveling in a car from one place to another. If at an instant t1
we have covered a distance s1 = s(t1) from the starting point and at another
instant t2 we have covered a distance s2 = s(t2), then it is clear that the
average speed for the journey between these two instants, is

distance

time
=

s(t2) − s(t1)

t2 − t1
.

Now, what if we want to know the precise speed at a particular instant t0? If
the procedure above is followed blindly, then the answer would come out as
zero, and that does not makes sense. So, a natural thing to do is to consider
the average speed

s(t0 + h) − s(t0)

(t0 + h) − t0
=

s(t0 + h) − s(t0)

h
,

where h is rather small (but can be positive or negative), so that t0 +h varies
over points close to t0. It is conceivable that as h approaches 0, the quotient
above approaches what the speed at t0 should be. Also it is clear that the
notion of limit, which was discussed in the previous chapter, would readily
make the last statement precise. Thus, we simply set1

the instantaneous speed at t0 = lim
h→0

s(t0 + h) − s(t0)

h
.

The idea here can easily be extended from a ‘distance function’ s to an arbi-
trary real-valued function f . It is, however, desirable that to form quotients
such as those above, near a point x = c, the function should at least be defined
at points around c. We thus make the following definition.

Let D be a subset of R. An element c ∈ D is said to be an interior point
of D if there is r > 0 such that (c − r, c + r) ⊆ D. A function f : D → R is
said to be differentiable at an interior point c of D if the limit

lim
h→0

f(c + h) − f(c)

h

exists. In this case, the value of the limit is denoted by f ′(c) and is called the
derivative of f at c.

If D ⊆ R is such that every point of D is an interior point of D, then a
function f : D → R is said to be differentiable on D if f is differentiable at

1 In this example, the distance function s is evidently increasing and thus the limit
here would be nonnegative. For an arbitrary linear motion, the function s may
not be increasing and thus the limit could also be negative. It is then customary
to call it the instantaneous velocity rather than the instantaneous speed. In
general, speed is given by the absolute value of the velocity.
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every point of D. In case f is differentiable on D, we obtain a new function
from D to R whose value at c ∈ D is f ′(c). Quite naturally, this function is
denoted by f ′ and is called the derivative (function) of f .

Some alternative notations for the derivative f ′ are

df

dx
, or also

dy

dx
when one writes y = f(x).

Likewise, f ′(c) is sometimes denoted by

df

dx

∣∣∣∣
x=c

, or
dy

dx

∣∣∣∣
x=c

.

At times, physicists use the notation ḟ instead of f ′.

Examples 4.1. (i) If f : R → R is a constant function, then clearly f ′(c) = 0
for every c ∈ R. Thus, the derivative of a constant function is the zero
function.

(ii) If f : R → R is the identity function given by f(x) = x, then

f(c + h) − f(c)

h
=

(c + h) − c

h
= 1 for any c ∈ R.

It follows that f is differentiable on R and f ′(x) = 1.
(iii) If f : R → R is the absolute value function given by f(x) = |x|, then

f(0 + h) − f(0)

h
=

|h|
h

,

and from part (ii) of Example 3.20, we see that the limit of this quotient
as h → 0 does not exist. So f is not differentiable at c = 0. On the other
hand, f is differentiable at each c ∈ R, c �= 0, and f ′(c) is 1 if c > 0 and
−1 if c < 0.

(iv) If f : (−1, 1) → R is defined by f(x) =
√

x2 + x3 = |x|
√

x + 1, then

f(0 + h) − f(0)

h
=

|h|
√

h + 1

h

and thus, as in the previous example, the limit of this quotient as h → 0
does not exist. So f is not differentiable at c = 0.

(v) If f : R → R is defined by f(x) =
3
√

x2 = x2/3, then

f(0 + h) − f(0)

h
=

1
3
√

h

and the limit of this quotient as h → 0 clearly does not exist. So f is not
differentiable at c = 0. ✸
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x

y

−1 0
x

y

0

Fig. 4.1. Graphs of (iv) y =
√

x2 + x3 and (v) y =
3
√

x2

Now let us turn to a geometric interpretation of the notion of derivative and
in particular, a ‘solution’ to the first problem stated at the beginning of this
chapter. So let D ⊆ R be such that every point of D is an interior point of
D and let f : D → R be a function. Given any c ∈ D and h �= 0 such that
c + h ∈ D, the quotient

f(c + h) − f(c)

h

gives the slope of the chord joining the points (c, f(c)) and (c + h, f(c + h))
on the curve y = f(x), x ∈ D. As h → 0, these chords seem to approach a
‘tangent’ to the curve y = f(x) at the point (c, f(c)). It is therefore, reasonable
to define the tangent to the curve y = f(x) at the point (c, f(c)) to be the
line given by the equation

y − f(c) = m(x − c), where m = f ′(c) = lim
h→0

f(c + h) − f(c)

h
,

provided the limit above exists, that is, provided f is differentiable at c. Notice
that the form of the equation for the tangent is such that a vertical line (such
as the one given by x = constant) can never be a tangent to a curve of the form
y = f(x). Further, the (geometric) condition that there is a unique nonvertical
tangent to the curve y = f(x) at a point (c, f(c)) is equivalent to the (analytic)
condition that f is differentiable at c. Thus, intuitively speaking, to say that f
is differentiable at c means that the graph of f is ‘smooth’ at (c, f(c)), that is
to say, the graph has a unique nonvertical tangent at c. In this case the graph
of f has no breaks or sharp edges or cusps at c. This is similar to the intuitive
meaning of the continuity of f at c, namely, that the graph of f is unbroken
at c. For an illustration of these remarks, take another look at Examples 4.1
(iii), (iv), and (v) as well as Figure 1.4 of Chapter 1 and Figure 4.1 above.

We shall now describe a number of basic properties of derivatives and
to prove these, the following characterization of differentiability will be very
useful.
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Proposition 4.2 (Carathéodory’s Lemma). Let D ⊆ R and let c be an
interior point of D. Then a function f : D → R is differentiable at c if and
only if there exists a function f1 : D → R such that f(x)−f(c) = (x− c)f1(x)
for all x ∈ D, and f1 is continuous at c. Moreover, if these conditions hold,
then f ′(c) = f1(c).

Proof. If f is differentiable at c, then we can define f1 : D → R by

f1(x) :=

⎧
⎪⎨
⎪⎩

f(x) − f(c)

x − c
if x ∈ D, x �= c,

f ′(c) if x = c.

It is clear that f1 satisfies the required properties. Conversely, if there exists
a function f1 : D → R with the given properties, then

lim
h→0

f(c + h) − f(c)

h
= lim

h→0
f1(c + h) = f1(c),

where the first equality follows by putting x = c + h in the relation f(x) −
f(c) = (x−c)f1(c) and the second equality follows from Proposition 3.21 since
f1 is continuous at c. This proves that f is differentiable at c and f ′(c) = f1(c).

⊓⊔

Let D ⊆ R and c be an interior point of D. Given a function f : D → R,
a function f1 : D → R satisfying

(i) f(x) − f(c) = (x − c)f1(x) for all x ∈ D, and (ii) f1 is continuous at c

is called an increment function associated with f and c. It is clear that
such an increment function, if it exists, is uniquely determined by f and c.
Carathéodory’s Lemma can be paraphrased by saying that differentiability of
a function f at a point c is equivalent to the existence of an increment function
associated with f and c, and in this case the derivative of f at c is the value
of the increment function at c.

An immediate corollary of Carathéodory’s Lemma is the following.

Proposition 4.3. Let D ⊆ R and c be an interior point of D. If a function
f : D → R is differentiable at c, then f is continuous at c.

Proof. Let f1 be the increment function associated with f and c. Continuity
of f1 at c implies the continuity of f at c since f(x) = f(c) + (x − c)f1(c) for
all x ∈ D. ⊓⊔

Notice that the converse of the above Proposition is not true. In other
words, continuity need not imply differentiability. For example, the absolute
value function is continuous at 0, but it is not differentiable at 0.
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Remark 4.4. Since differentiability implies continuity, all the properties of
continuous functions such as those discussed in Section 3.2 are inherited by
differentiable functions. On the other hand, it may be worthwhile to examine
whether the conditions that imply continuity also imply differentiability. Of-
ten, this is not the case. For example, we have shown in Corollary 3.12 that
if I is an interval and f : I → R is a strictly monotonic function such that
f(I) is an interval, then f is continuous. However, such a function need not
be differentiable. To see this, consider I := [0, 2] and f : I → R defined by

f(x) =

{
x if 0 ≤ x ≤ 1,
3x − 2 if 1 < x ≤ 2.

Then f is strictly increasing and f(I) = [0, 4] is an interval but f is not
differentiable at 1 [since f ′

−(1) = 1 �= 3 = f ′
+(1)]. The same example shows

that the hypothesis of Proposition 3.36, namely that I is an interval and f :
I → R is monotonic and has the IVP on I, does not imply the differentiability
of f on I. As another example, we have indicated in Exercise 47 of Chapter 3
that if I is an interval and f : I → R is convex on I, or concave on I, then f is
continuous at every interior point of I. However, convexity or concavity does
not imply differentiability. To see this, consider the absolute value function
f : [−1, 1] → R defined by f(x) = |x|. As seen earlier, f is convex on [−1, 1] but
fails to be differentiable at an interior point of [−1, 1], namely, at 0. Similarly,
−f is concave on [−1, 1] but fails to be differentiable at 0. ✸

Proposition 4.5. Let D ⊆ R, c be an interior point of D, and f, g : D → R
be functions that are differentiable at c. Then

(i) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c),
(ii) rf is differentiable at c and (rf)′(c) = rf ′(c) for any r ∈ R,
(iii) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c),
(iv) if f(c) �= 0, then there is δ > 0 such that (c − δ, c + δ) ⊆ D and f(x) �= 0

for all x ∈ (c− δ, c + δ); moreover, the function 1/f : (c− δ, c + δ) → R is
differentiable at c, and

(
1

f

)′
(c) = − f ′(c)

f(c)2
,

(v) if f(c) > 0, then there is δ > 0 such that (c − δ, c + δ) ⊆ D and f(x) > 0
for all x ∈ (c − δ, c + δ); moreover, for any k ∈ N, the function f1/k :
(c − δ, c + δ) → R is differentiable at c and

(
f1/k

)′
(c) =

1

k
f(c)(1/k)−1f ′(c).

Proof. Let f1 and g1 denote, respectively, the increment functions associated
with f and g and the point c. Using part (i) of Proposition 3.3, we easily see
that f1 + g1 is the increment function associated with f + g and c. Likewise,



4.1 The Derivative and Its Basic Properties 109

using part (ii) of Proposition 3.3, we see that rf1 is the increment function
associated with rf and c for any r ∈ R. This proves (i) and (ii).

Next, for any x ∈ D, the difference f(x)g(x) − f(c)g(c) can be written as

[f(x) − f(c)]g(x) + f(c)[g(x) − g(c)] = (x − c) [f1(x)g(x) + f(c)g1(x)] .

Moreover, by Proposition 4.3, g is continuous at c and thus by parts (i), (ii),
and (iii) of Proposition 3.3, the function f1g + f(c)g1 is continuous at c. This
implies (iii).

Since c is an interior point of D, by Proposition 4.3 and part (iv) of
Proposition 3.3, we see that if f(c) �= 0, then there is δ > 0 such that
(c − δ, c + δ) ⊆ D and f(x) �= 0 for all x ∈ (c − δ, c + δ), and moreover,
the function 1/f : (c − δ, c + δ) → R is continuous at c. Thus, if f(c) �= 0, we
have

1

f(x)
− 1

f(c)
=

−[f(x) − f(c)]

f(x)f(c)
= (x − c)

[ −f1(x)

f(x)f(c)

]
for x ∈ (c − δ, c + δ).

This yields (iv) since the function −f1/f(c)f is continuous at c.
Finally, suppose k ∈ N and f(c) > 0. Since c is an interior point of D, it

follows from Lemma 3.2 that there is δ > 0 such that (c − δ, c + δ) ⊆ D and
f(x) > 0 for all x ∈ (c− δ, c+ δ). For simplicity, write F (x) := f(x)1/k for x ∈
(c−δ, c+δ). Then part (v) of Proposition 3.3 shows that F : (c−δ, c+δ) → R
is continuous at c, and for any x ∈ (c − δ, c + δ), we have

f(x) − f(c) = [F (x) − F (c)]
[
F (x)k−1 + F (c)F (x)k−2 + · · · + F (c)k−1

]
.

Now since F (x) > 0 for any x ∈ (c − δ, c + δ), we obtain

F (x) − F (c) = (x − c)

[
f1(x)

F (x)k−1 + F (c)F (x)k−2 + · · · + F (c)k−1

]
.

This implies (v) since the function f1/
(
F k−1 + F (c)F k−2 + · · · + F (c)k−1

)
is

continuous at c. ⊓⊔

Remark 4.6. With notation and hypothesis as in the above proposition, a
combined application of its parts (i) and (ii) shows that the difference f − g
is differentiable at c and (f − g)′(c) = f ′(c) − g′(c). Likewise, a combined
application of parts (iii) and (iv) shows that if g(c) �= 0, then the quotient
f/g is differentiable at c and its derivative is given by the following quotient
rule: (

f

g

)′
(c) =

f ′(c)g(c) − f(c)g′(c)

g(c)2
.

Further, given any n ∈ N, successive applications of part (iii) of above propo-
sition [or, if you prefer, induction on n] shows that the nth power fn is differ-
entiable at c and (fn)

′
(c) = nf(c)n−1f ′(c). Moreover, if f(c) �= 0, then using

the previous formula and part (iv), we see that
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(
1

fn

)′
(c) = −nf(c)n−1f ′(c)

f(c)2n
= −nf(c)−n−1f ′(c).

Since the derivative of a constant function is zero, it follows that for any
m ∈ Z, fm is differentiable at c and

(fm)
′
(c) = mf(c)m−1f ′(c), provided f(c) �= 0 in case m < 0.

Furthermore, given any r ∈ Q, we can write r = m/k, where m ∈ Z and k ∈ N,
and then the last formula together with part (v) of the above proposition shows

that if f(c) > 0, then the rth power f r = (fm)
1/k

is differentiable at c and

(
(fm)

1/k
)′

(c) =
1

k
fm[(1/k)−1](c) (fm)

′
(c) =

m

k
f(c)m[(1/k)−1]+m−1f ′(c).

In other words, for any r ∈ Q, we have

(f r)
′
(c) = rf(c)r−1f ′(c),

provided f(c) �= 0 if r is a negative integer and f(c) > 0 if r is not an integer.
✸

Example 4.7. As a particular case of the results in Remark 4.6 and Examples
4.1 (i), (ii), we see that the nth power function is differentiable on R for each
nonnegative integer n, and

d

dx
(xn) = nxn−1.

Moreover, the above result is valid for negative integral powers, provided x �=
0, and for rational nonintegral powers, provided x > 0. In particular,

d

dx
(xr) = rxr−1 for every r ∈ Q and x ∈ (0,∞).

✸

Example 4.8. Using Proposition 4.5 and Example 4.7, it follows that every
polynomial function is differentiable on R and every rational function is dif-
ferentiable at each point of R where it is defined. Moreover, the derivatives of
such functions can also be readily computed. For instance, if f : R \ {1} → R
is given by f(x) = (x4 + 3x + 2)/(x − 1), then we have

f ′(x) =
(4x3 + 3)(x − 1) − (x4 + 3x + 2)

(x − 1)2
=

3x4 − 4x3 − 5

(x − 1)2

for x �= 1. ✸
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To compute the derivative of a composite function u = g(y) where y, in
turn, is a function of x, say y = f(x), the Chain Rule or Substitution Rule
described below is quite useful. Roughly speaking, the Chain Rule can be
stated as follows:

du

dx
=

du

dy
· dy

dx
.

It may be tempting to prove this by just canceling out dy. But that wouldn’t
be correct because we haven’t defined the quantities dy and dx by themselves
even though we have defined dy

dx . We give below a precise statement of the
Chain Rule and a proof using Carathéodory’s Lemma.

Proposition 4.9 (Chain Rule). Let D, E ⊆ R and f : D → R, g : E → R
be functions such that f(D) ⊆ E. Suppose c is an interior point of D such that
f(c) is an interior point of E. If f is differentiable at c and g differentiable
at f(c), then g◦f is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

Proof. Let f1 : D → R be the increment functions associated with f and c.
Then

f(x) − f(c) = (x − c)f1(x) for all x ∈ D.

Also, let g1 : E → R be the increment functions associated with g and f(c).
Then

g(y) − g(f(c)) = (y − f(c))g1(y) for all y ∈ E.

Since f(D) ⊆ E, we can use the above two equations to obtain

g(f(x))− g(f(c)) = [f(x)− f(c)]g1(f(x)) = (x− c)g1(f(x))f1(x) for x ∈ D.

Now, using Propositions 3.3 and 3.4, we see that the function (g1◦f)·f1 : D →
R is continuous at c. Hence by Carathéodory’s Lemma, g ◦ f is differentiable
at c and (g ◦ f)′(c) = g1(f(c))f1(c) = g′(f(c))f ′(c). ⊓⊔
Example 4.10. Consider F : R → R defined by F (x) = (4x3 + 3)7 + 2.
We can of course compute F ′(x) by expanding the seventh power and using
Proposition 4.5 together with the formula for the derivative of the nth power
function. But it is simpler to view F as the composite g ◦f , where u = g(y) =
y7 + 2 and y = f(x) = 4x3 + 2, and apply the Chain Rule. This gives

F ′(x) = g′(f(x))f ′(x) =
[
7(4x3 + 2)6

] (
12x2

)
= 84x2

(
4x3 + 2

)6

for x ∈ R. ✸

We shall now prove a general result about the derivatives of inverse func-
tions. Roughly speaking, this result can be stated as follows.

dx

dy
= is the reciprocal of

dy

dx
when

dy

dx
is nonzero.

A precise statement and a proof using Carathéodory’s Lemma appears below.
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Proposition 4.11 (Differentiable Inverse Theorem). Let I be an inter-
val and c be an interior point of I. Suppose f : I → R is a one-one and
continuous function. Let f−1 : f(I) → I be the inverse function. Then f(c) is
an interior point of f(I). Moreover, if f is differentiable at c and f ′(c) �= 0,
then f−1 is differentiable at f(c) and

(
f−1

)′
(f(c)) =

1

f ′(c)
.

Proof. Let J := f(I). By Proposition 3.14, f is strictly monotonic and J is
an interval. Hence f(c) is an interior point of J . Suppose f is differentiable at
c and f ′(c) �= 0. Let f1 : I → R be the increment function associated with f
and c. Then f1 is continuous at c with f1(c) = f ′(c) and we have

f(x) − f(c) = (x − c)f1(x) for all x ∈ I.

Since f is one-one, for any x ∈ I with x �= c, we have f(x) �= f(c), and
therefore, f1(x) �= 0. Also, f1(c) = f ′(c) �= 0. Thus f1 is never zero on I, and
so 1/f1 is defined on I. Further, since f1 is continuous at c, so is 1/f1. Hence
the equation displayed above can be written as (x − c) = [f(x) − f(c)]/f1(x)
for all x ∈ I. This implies that

f−1(y) − f−1 (f(c)) = (y − f(c))
1

f1 (f−1(y))
for all y ∈ J.

Moreover, by Propositions 3.5 and 3.14, we see that f1 ◦ f−1 is continuous at
f(c). Hence by part (iv) of Proposition 3.3, the reciprocal of f1 ◦ f−1 is also
continuous at f(c). Thus, by Carathéodory’s Lemma, it follows that f−1 is

differentiable at f(c) and
(
f−1

)′
(f(c)) = 1

/
f1

(
f−1(f(c))

)
= 1/f ′(c). ⊓⊔

Differentiation applied successively leads to the notion of higher deriva-
tives. More formally, suppose D ⊆ R and f : D → R is a function that is
differentiable at every point of an interval (c−δ, c+δ) ⊆ D. Then we have the
derivative function f ′ defined on (c− δ, c+ δ). In case f ′ is differentiable at c,
then we say that f is twice differentiable at c and denote the derivative of
f ′ at c by f ′′(c). The quantity f ′′(c) is called the second derivative (or the
second-order derivative) of f at c. Further, if f ′ is differentiable at every
point of an interval about c, then the second derivative function f ′′ is defined
on this interval. In case f ′′ is also differentiable at c, then we say that f is
thrice differentiable at c and denote the derivative of f ′′ at c by f ′′′(c). Sim-
ilarly, one defines n-times differentiability of f and the nth derivative f (n)(c)
for any n ∈ N. The notations

d2f

dx2

∣∣∣∣
x=c

,
d3f

dx3

∣∣∣∣
x=c

, and
dnf

dxn

∣∣∣∣
x=c

are sometimes used instead of f ′′(c), f ′′′(c), and f (n)(c), respectively. In case
f is n times differentiable at c for every n ∈ N, then f is said to be infinitely
differentiable at c.
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To compute higher derivatives, the following formula, known as Leibniz’s
Rule for derivatives, can be quite useful:

(fg)(n) =

n∑

k=0

(
n

k

)
f (k)g(n−k) = f (n)g + nf (n−1)g′ + · · · + nf ′g(n−1) + fg(n),

Here f, g are real-valued functions, both of which are assumed to be n times
differentiable at c and

(
n
k

)
denotes the binomial coefficient as defined in Ex-

ercise 2 of Chapter 1. Also, f (0) and g(0) denote, by convention, f and g
respectively. Leibniz’s Rule for derivatives can be easily proved by induction
on n, using Proposition 4.5 and the Pascal triangle identity:

(
n

k

)
+

(
n

k − 1

)
=

(
n + 1

k

)
.

Example 4.12. If r is any rational number and f : (0,∞) → (0,∞) is given
by f(x) = xr, then f is infinitely differentiable at every c ∈ (0,∞), and
f (n)(c) = r(r − 1) · · · (r − n + 1)cr−n. ✸

Let us now consider the case of a real-valued function defined on a closed
interval. While we can talk about the differentiability of such a function at
any interior point, the definition we have given of differentiability does not
apply to the endpoints. To take care of this omission, we introduce the notions
of left derivative and right derivative as follows.

Let D ⊆ R and c ∈ D be such that (c − r, c] ⊆ D for some r > 0. The left
(hand) limit

lim
x→c−

f(x) − f(c)

x − c
,

if it exists, is called the left (hand) derivative of f at c and is denoted by
f ′
−(c). In the case [c, c+r) ⊆ D for some r > 0, the right (hand) derivative

of f at c is defined similarly and is denoted by f ′
+(c).

If c happens to be an interior point, then it follows from Proposition 3.29
that f is differentiable at c if and only if both f ′

−(c) and f ′
+(c) exist and are

equal.
For example, if f : R → R is the absolute value function, then f ′

−(0) = −1,

whereas f ′
+(0) = 1. On the other hand, if f : R → R is defined by f(x) = x2/3,

then neither f ′
−(0) nor f ′

+(0) exists. In each of these examples, we find that
the function f is not differentiable at 0.

We say that a real-valued function f defined on a closed interval [a, b] is
differentiable if f is differentiable at every point of (a, b), and moreover if
f ′
+(a) and f ′

−(b) exist. In this case, the function f ′ : [a, b] → R defined by

f ′(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′
+(a) if x = a,

f ′(c) if x ∈ (a, b),

f ′
−(b) if x = b,



114 4 Differentiation

is called the derivative of f on [a, b]. If f ′ is differentiable on [a, b], then f is
said to be twice differentiable on [a, b], and we let f ′′ be the derivative of
f ′ on [a, b]. More generally, the nth derivative f (n) of f on [a, b] is defined for
any n ∈ N in a similar way.

It should be noted that Carathéodory’s Lemma continues to be valid for
derivatives at the endpoints of a function f : [a, b] → R. The proof is identical
to that of Proposition 4.2, provided we take limits as h → 0+ in case c = a
and as h → 0− in case c = b. As a consequence, results similar to Propositions
4.3 and 4.5 as well as those in Remark 4.6 are valid for functions f : D → R
when D = [a, b] and c = a or c = b. Moreover, the Chain Rule (Proposition
4.9) is also valid if D is an interval and c is an endpoint of D such that f(c) is
an endpoint or an interior point of an interval contained in E. Likewise, the
Differentiable Inverse Theorem (Proposition 4.11) is valid if c is an endpoint
of I, provided in the conclusion we write “f(c) is an endpoint of J” instead
of “f(c) is an interior point of J”. The proof is essentially the same as before.

Tangents and Normals to Curves

We have discussed earlier the notion of tangent to plane curves of the form
y = f(x). We shall now see how it can be extended to plane curves of more
general type. Also, we will discuss the related notion of normal in the context
of more general curves.

Plane curves of the form y = f(x) admit generalizations to two distinct,
yet overlapping, classes of plane curves. These are as follows.

1. Parametrically Defined Curves: These are the plane curves C given by
(x(t), y(t)), where x, y are real-valued functions2 defined on some subset
D of R, and the parameter t varies over the points of D. Usually, we
express this by simply saying that C is the (parametrically defined) curve
(x(t), y(t)), t ∈ D. For example, the rectangular hyperbola is the curve
(t, 1/t), t ∈ R \ {0}.

2. Implicitly Defined Curves: These are the plane curves C given by
an equation of the form F (x, y) = 0, where F is a real-valued function
defined on some subset E of the plane R2, and (x, y) vary over the points
of E. Usually, we express this by simply saying that C is the (implicitly
defined) curve F (x, y) = 0, (x, y) ∈ E. The reference to the domain E of
F is skipped if E = R2. For example, the circle centered at the origin with
unit radius is the curve x2 + y2 − 1 = 0.

Notice that if D ⊆ R and f : D → R is any function, then the curve y = f(x)
can be viewed as a parametrically defined curve (x(t), y(t)), t ∈ D, where
x(t) := t and y(t) := f(t). Also, it can be viewed as an implicitly defined

2 Generally, one requires that the set D be an interval and the two functions
x, y : D → R be continuous. In most applications, this will be so but we do not
make it a part of the definition.
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curve F (x, y) = 0, (x, y) ∈ E, where E = D × R and F : E → R is given by
F (x, y) := y − f(x).

If C is a parametrically defined curve (x(t), y(t)), t ∈ D, and t0 is an inte-
rior point of D such that both x and y are differentiable at t0 and x′(t0), y′(t0)
are not both zero, then we define the tangent to C at the point (x(t0), y(t0))
to be the line

[y − y(t0)]x
′(t0) − [x − x(t0)]y

′(t0) = 0.

The line passing through (x(t0), y(t0)) and perpendicular to the tangent at
this point, namely, the line given by

[x − x(t0)]x
′(t0) + [y − y(t0)]y

′(t0) = 0,

is called the normal to the curve C at the point (x(t0), y(t0)). In case x′(t0)
or y′(t0) does not exist or (x′(t0), y′(t0)) = (0, 0), we say that the tangent to
C (as well as the normal to C) at (x(t0), y(t0)) is not defined. It may be noted
that the definition of tangent to parametrically defined curves is consistent
with the previous definition for tangent to curves of the form y = f(x). More
generally, if x′(t0) �= 0 and y can be considered a function of x in an open
interval about x0 := x(t0), then by the Chain Rule,

dy

dx

∣∣∣∣
x=x0

=

(
dy

dt

∣∣∣∣
t=t0

)(
dx

dt

∣∣∣∣
t=t0

)−1

=
y′(t0)

x′(t0)
.

The Chain Rule also helps us to formulate the notion of tangents to im-
plicitly defined curves. For example, if F (x, y) = x2+y2−25, then F (x, y) = 0
defines the circle of radius 5 centered at the origin. To find the tangent at a
point, say (3, 4), we differentiate F (x, y) with respect to x, treating y as a
function of x. Thus, using Chain Rule, we obtain

2x + 2y
dy

dx
= 0 and hence

dy

dx

∣∣∣∣
(3,4)

= − x

y

∣∣∣∣
(3,4)

= −3

4
.

This suggests that the tangent to this circle at the point (3, 4) is given by
the line y − 4 = − 3

4 (x − 3), that is, 3x + 4y − 25 = 0. In general, given any
equation F (x, y) = 0, we can try to differentiate with respect to x, treating y
as a function of x. This process is known as implicit differentiation, and it
leads to an equation of the type

P (x, y) + Q(x, y)
dy

dx
= 0.

At a point (x0, y0) ∈ R2 on the curve F (x, y) = 0 (that is, (x0, y0) ∈ R2

satisfying F (x0, y0) = 0) with the additional property that P (x0, y0) and
Q(x0, y0) are defined and Q(x0, y0) �= 0, we define the tangent to F (x, y) = 0
at (x0, y0) to be the line
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y − y0 = m(x − x0), where m =
dy

dx

∣∣∣∣
(x0,y0)

= −P (x0, y0)

Q(x0, y0)
.

It may be checked that this definition is consistent with our previous definition
in the case F (x, y) = y − f(x) for some function f which is differentiable at
x0; note that in this case

dy

dx

∣∣∣∣
(x0,y0)

=
dy

dx

∣∣∣∣
x=x0

.

Sometimes, when dealing with curves defined by F (x, y) = 0, it is useful
to reverse the roles of x and y. Thus, we may also try to differentiate with
respect to y, treating x as a function of y. This leads to an equation of the
type

R(x, y) + S(x, y)
dx

dy
= 0.

Now suppose (x0, y0) ∈ R2 is a point on the curve F (x, y) = 0 such that
dy
dx is not defined at (x0, y0). [Roughly speaking, this corresponds to the case
Q(x0, y0) = 0.] If, however, R(x0, y0) and S(x0, y0) are defined and S(x0, y0) �=
0, then we define the tangent to F (x, y) = 0 at (x0, y0) to be the line

x − x0 = m̃(y − y0) where m̃ =
dx

dy

∣∣∣∣
(x0,y0)

= −R(x0, y0)

S(x0, y0)
.

It may be noted that if both dy
dx and dx

dy are defined and are nonzero at a point

(x0, y0) on the curve F (x, y) = 0, then it follows from the Differentiable Inverse
Theorem (Proposition 4.11) that m̃ = 1/m, and hence the lines obtained by
either of the two approaches are identical. If, however, both dy

dx and dx
dy are not

defined, or if both of them are zero at (x0, y0), then we say that the tangent
to the curve F (x, y) = 0 at the point (x0, y0) is not defined.3

As before, at a point (x0, y0) on a plane curve F (x, y) = 0 where the
tangent is defined, we define the normal to be the unique line passing through
(x0, y0) and perpendicular to the tangent to this curve at (x0, y0).

For example, for the circle x2 + y2−25 = 0, the tangent at the point (5, 0)
can be determined by the latter method of differentiating with respect to y,
treating x as a function of y. Indeed, we see that the tangent is given by the
vertical line x − 5 = 0. On the other hand, for the curve y2 − x2 − x3 = 0,
neither dy

dx nor dx
dy are defined at the origin, and hence the tangent at the origin

is not defined.
3 For algebraic plane curves F (x, y) = 0, where F (x, y) is a polynomial in two

variables, there is an alternative, purely algebraic, method to determine tangents
at a point. In fact, this algebraic approach could be used to define tangents at
every point on the curve including those points at which the tangent is not defined
as far as calculus is concerned. We stick to the method of calculus in this book
but briefly outline the algebraic approach in Exercise 43, and refer to the book
of Abhyankar [1] for more details.
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4.2 The Mean Value and Taylor Theorems

The Mean Value Theorem or, for short, the MVT, is a result that in geometric
terms may be described as follows. For any nice curve of the form y = f(x),
x ∈ [a, b], there exists a point (c, f(c)) on the curve, where c ∈ (a, b), at which
the tangent is parallel to the line joining the endpoints (a, f(a)) and (b, f(b)) of
the curve. [See Figure 4.2.] Here, by ‘nice’ we mean that the curve is unbroken,
that is, f is continuous, and that tangents can be drawn everywhere except
perhaps at the endpoints, that is, f is differentiable on (a, b).

� �
�

�

�

�

�

� � ����

Fig. 4.2. Illustration of the MVT: Tangents at some intermediate points are parallel
to the line joining the endpoints (a, f(a)) and (b, f(b))

As we shall see in the sequel, the MVT is a very useful result in calculus. In
particular, an extension of the MVT, known as Taylor’s Theorem, will allow
us to approximate a large class of functions by polynomial functions.

A special case of the MVT is that in which the end points of the curve
y = f(x), x ∈ [a, b], lie on a horizontal line, that is, f(a) = f(b). In this
case, the MVT amounts to asserting the existence of a point (c, f(c)) on the
curve, where c ∈ (a, b), at which the tangent is parallel to the x-axis, that is,
f ′(c) = 0. We will, in fact, prove this special case first, and deduce the MVT
as a consequence. This special case, known as Rolle’s Theorem, will, in turn,
be deduced from the following simple but useful fact about points of local
extrema.4

Lemma 4.13. Let D ⊆ R and c be an interior point of D. If f : D → R is
differentiable at c and has a local extremum at c, then f ′(c) = 0.

Proof. Suppose f is differentiable at c. By Carathéodory’s Lemma, there is
f1 : D → R such that f1 is continuous at c and

4 It may be a good idea to recall the definitions of points of local extrema, that is,
points of local maximum or local minimum, of a function. See Section 1.3.
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f(x) − f(c) = (x − c)f1(x) for all x ∈ D.

Now, if f has a local maximum at c, then there is δ > 0 such that (c−δ, c+δ) ⊆
D and f(x) − f(c) ≤ 0 for all x ∈ (c − δ, c + δ). So, in this case,

f1(x) ≥ 0 for all x ∈ (c − δ, c) and f1(x) ≤ 0 for all x ∈ (c, c + δ).

Similarly, if f has a local minimum at c, then there is δ > 0 such that (c −
δ, c + δ) ⊆ D and f(x) − f(c) ≥ 0 for all x ∈ (c − δ, c + δ). So, in this case,

f1(x) ≤ 0 for all x ∈ (c − δ, c) and f1(x) ≥ 0 for all x ∈ (c, c + δ).

In any case, by the continuity of f1 at c, it follows that f1(c) = 0, that is,
f ′(c) = 0. ⊓⊔

We pause to give an interesting application of the above lemma before
moving on to Rolle’s Theorem and the MVT. This is a result that is sometimes
ascribed to Darboux and called the IVP for derivatives. To put this result
in perspective, let us first note that if I is an interval and a function f : I → R
is continuously differentiable, that is, if f ′ exists and is continuous, then
by Proposition 3.13, f ′ has the IVP on I. But in general, f ′ need not be
continuous.5 Yet, as the following result shows, f ′ has the IVP.

Proposition 4.14. Let I be an interval and f : I → R be a differentiable
function. Then the derivative function f ′ has the IVP on I.

Proof. Let a, b ∈ I with a < b and r ∈ R be such that f ′(a) < r < f ′(b).
Consider the function g : [a, b] → R defined by

g(x) = f(x) − rx for x ∈ [a, b].

Then g is differentiable and

lim
x→a+

g(x) − g(a)

x − a
= g′(a) = f ′(a) − r < 0.

Therefore, in view of part (i) of Proposition 3.24, it follows that there is δ > 0
such that for all x ∈ (a, a + δ), we have

g(x) − g(a)

x − a
< 0 and hence g(x) < g(a).

Thus, g cannot attain its minimum at a. In a similar way, since g′(b) =
f ′(b) − r > 0, we see that there is δ > 0 such that g(x) < g(b) for all
x ∈ (b − δ, b). Thus, g cannot attain its minimum at b as well. But g is
a continuous function on the closed and bounded set [a, b], and hence by
Proposition 3.8, g attains its minimum at some c ∈ [a, b]. Moreover, c is an
interior point of [a, b], since c cannot equal a or b. Hence it follows from Lemma
4.13 that g′(c) = 0, that is, f ′(c) = r. Thus, f ′ has the IVP on I. ⊓⊔
5 Simple examples to show that the derivative of a differentiable function may not

be continuous can be constructed using trigonometric functions. See, for instance,
Example 7.19 of Chapter 7.
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The above result is sometimes useful for showing that a given function
cannot be the derivative of any other function. For example, if f : [−1, 1] → R
is the integral part function given by f(x) = [x], then it is clear that f
attains the values −1, 0, and 1 but none in between. Hence, f �= F ′ for any
differentiable function F : [−1, 1] → R.

Proposition 4.15 (Rolle’s Theorem). If f : [a, b] → R is continuous on
[a, b] and differentiable on (a, b) and if f(a) = f(b), then there is c ∈ (a, b)
such that f ′(c) = 0.

Proof. Since f is a continuous function on the closed and bounded set [a, b],
it follows from Proposition 3.8 that f is bounded and attains its bounds on
[a, b]. Thus, there are c1, c2 ∈ [a, b] such that

f(c1) = max{f(x) : x ∈ [a, b]} and f(c2) = min{f(x) : x ∈ [a, b]}.
Now if c1 or c2 is an interior point of [a, b], then by Lemma 4.13, we have
f ′(c1) = 0 or f ′(c2) = 0, and the result is proved. Otherwise, both c1 and c2

are endpoints of [a, b], and since f(a) = f(b), we have f(c1) = f(c2). Thus, the
maximum and the minimum values of f on [a, b] coincide. Hence f is constant
on [a, b], and therefore, f ′(c) = 0 for every c ∈ (a, b). ⊓⊔

Rolle’s Theorem can be used together with the IVP of continuous functions
to check the uniqueness and the existence of roots in certain intervals, espe-
cially for polynomials with real coefficients. This is illustrated by the following
examples.

Examples 4.16. (i) If f(x) = x3 + px + q for x ∈ R, where p, q ∈ R and
p > 0, then f has a unique real root. To see this, note that if f had
more than one real root, then there would be a, b ∈ R with a < b and
f(a) = f(b) = 0. Hence by Rolle’s Theorem, there would be c ∈ (a, b) such
that f ′(c) = 0. But f ′(x) = 3x2 + p is not zero for any x ∈ R since p > 0.
On the other hand, f(x) → −∞ as x → −∞ and f(x) → ∞ as x → ∞,
and thus f takes negative as well as positive values. Hence, f(c) = 0 for
some c ∈ R, since f has the IVP on R. Thus f has a unique real root.

(ii) If f(x) = x4+2x3−2 for x ∈ R, then f has a unique root in [0,∞). Indeed,
f ′(x) = 4x3 + 6x2 is positive for all x ∈ (0,∞), while f(0) = −2 < 0 and
f(1) = 1 > 0. Thus Rolle’s Theorem implies that f has at most one root
in [0,∞), while the IVP implies that f has at least one root in [0, 1]. ✸

Note that in the above examples, the functions were clearly continuous
and differentiable. The following negative examples show that the conclusion
of Rolle’s Theorem may not be true if any one of the three conditions on f is
dropped.

Examples 4.17. (i) Consider f : [0, 1] → R defined by f(x) = x for x ∈ [0, 1)
and f(1) = 0. Then f is differentiable on (0, 1) and f(0) = f(1) = 0 but
f ′(c) = 1 �= 0 for every c ∈ (0, 1). Rolle’s Theorem does not apply here
since f is not continuous on [0, 1]. [In fact, continuity fails only at x = 1.]



120 4 Differentiation

(ii) Consider f : [−1, 1] → R defined by f(x) = |x| for x ∈ [−1, 1]. Then f
is continuous on [−1, 1] and f(−1) = f(1) = 0. But f ′(c) = 1 or −1 for
c �= 0. Rolle’s Theorem does not apply here since f is not differentiable
on (−1, 1). [In fact, differentiability fails only at x = 0.]

(iii) Consider f : [0, 1] → R defined by f(x) = x for x ∈ [0, 1]. Then f is
continuous on [0, 1] and differentiable on (0, 1) but f ′(c) = 1 �= 0 for every
c ∈ (0, 1). Rolle’s Theorem does not apply here since f(0) �= f(1). ✸

We are now ready to state and prove the Mean Value Theorem. It may be
remarked that there are, in fact, several versions of the Mean Value Theorem.
The one we state below is among the most commonly used. It is usually
ascribed to Lagrange and sometimes referred to as Lagrange’s Mean Value
Theorem.

Proposition 4.18 (Mean Value Theorem). If a function f : [a, b] → R is
continuous on [a, b] and differentiable on (a, b), then there is c ∈ (a, b) such
that

f(b) − f(a) = f ′(c)(b − a).

Proof. Consider F : [a, b] → R defined by

F (x) = f(x) − f(a) − s(x − a), where s =
f(b) − f(a)

b − a
.

Then F (a) = 0 and our choice of the constant s is such that F (b) = 0. So
Rolle’s Theorem applies to F , and as a result, there is c ∈ (a, b) such that
F ′(c) = 0. This implies that f ′(c) = s, as desired. ⊓⊔

Remark 4.19. If we write b = a + h, then the conclusion of the MVT may
be stated as follows:

f(a + h) = f(a) + hf ′(a + θh) for some θ ∈ (0, 1).

The equivalence with the MVT is easily verified. ✸

Corollary 4.20 (Mean Value Inequality). If a function f : [a, b] → R is
continuous on [a, b] and differentiable on (a, b), and if m, M ∈ R are such that
m ≤ f ′(x) ≤ M for all x ∈ (a, b), then

m(b − a) ≤ f(b) − f(a) ≤ M(b − a).

Proof. The desired inequality is an immediate consequence of the MVT. ⊓⊔

The corollary below is perhaps the most important consequence of the
MVT in calculus.

Corollary 4.21. Let I be an interval containing more than one point, and
f : I → R be any function. Then f is a constant function on I if and only if
f ′ exists and is identically zero on I.
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Proof. If f is a constant function on I, then it is obvious that f ′ exists on I
and f ′(x) = 0 for all x ∈ I. Conversely, if f ′ exists and vanishes identically
on I, then for any x1, x2 ∈ I with x1 < x2, we have [x1, x2] ⊆ I and applying
the MVT to the restriction of f to [x1, x2], we obtain

f(x2) − f(x1) = f ′(c)(x2 − x1) for some c ∈ (x1, x2).

Since f ′(c) = 0, we have f(x1) = f(x2). This proves that f is a constant
function on I. ⊓⊔

Remark 4.22. If D ⊆ R is not an interval, then there can be nonconstant
differentiable functions on D whose derivative is identically zero. For example,
if D = (0, 1) ∪ (1, 2) is a disjoint union of two open intervals and f : D → R
is defined by f(x) = 1 if x ∈ (0, 1) and f(x) = 2 if x ∈ (1, 2), then f is
differentiable and f ′ is identically zero on D but f is not a constant function.
Thus, the hypothesis that I is an interval is essential in Corollary 4.21. ✸

The MVT or the mean value inequality may also be used to approximate a
differentiable function around a point. For example, if m ∈ N and f(x) =

√
x

for x ∈ [m, m + 1], then

√
m + 1 −√

m = f(m + 1) − f(m) = f ′(c) =
1

2
√

c

for some c ∈ R such that m < c < m + 1. Hence

1

2
√

m + 1
<

√
m + 1 −√

m <
1

2
√

m
.

For example, by putting m = 1, we obtain

1 +
1

2
√

2
<

√
2 < 1 +

1

2
and hence

4

3
<

√
2 <

3

2
.

Similarly, putting m = 2, 3, and 4, we can obtain estimates for
√

3 and
√

5.
(See Exercise 28 (i).)

If we want a better approximation, a natural candidate for an approximat-
ing function is a polynomial function. Suppose we want to approximate f by
a polynomial P around a. Naturally, we require f(a) = P (a). Then the sim-
plest approximation is the constant polynomial given by P (x) = f(a), and the
MVT can be used to estimate the error f(x)−P (x) = f(x)−f(a). Next, if we
require f(a) = P (a) and further, f ′(a) = P ′(a), then we may consider a linear
polynomial instead of the constant polynomial f(a). To be able to evaluate
easily a linear polynomial P at a, let us write P (x) = c0 + c1(x − a). Then
the conditions f(a) = P (a) and f ′(a) = P ′(a) are equivalent to c0 = f(a)
and c1 = f ′(a). In general, if f has derivatives up to the nth order, then an
nth-degree polynomial given by

P (x) = c0 + c1(x − a) + c2(x − a)2 + · · · + cn(x − a)n
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will satisfy the conditions

f(a) = P (a), f ′(a) = P ′(a), f ′′(a) = P ′′(a), . . . , f (n)(a) = P (n)(a)

if we take

c0 = f(a), c1 = f ′(a), c2 =
f ′′(a)

2!
, . . . , cn =

f (n)(a)

n!
.

Note that these values are simply obtained by successively differentiating
P (x), substituting x = a, and then comparing with the corresponding deriva-
tive of f at a. This time, the error in the nth-degree approximation P (x) can
be estimated by the following generalization of the MVT.

Proposition 4.23 (Taylor’s Theorem). Let n ∈ Z, n ≥ 0, and f : [a, b] →
R be such that f ′, f ′′, . . . , f (n) exist on [a, b] and further, f (n) is continuous
on [a, b] and differentiable on (a, b). Then there is c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b − a) + · · · + f (n)(a)

n!
(b − a)n +

f (n+1)(c)

(n + 1)!
(b − a)n+1.

Proof. For x ∈ [a, b], let

P (x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n.

Consider F : [a, b] → R defined by

F (x) = f(x) − P (x) − s(x − a)n+1, where s =
f(b) − P (b)

(b − a)n+1
.

Then F (a) = 0 and our choice of s is such that F (b) = 0. So Rolle’s Theorem
applies to F , and as a result, there is c1 ∈ (a, b) such that F ′(c1) = 0. Next,
f ′(a) = P ′(a) and so F ′(a) = 0 as well. Now, Rolle’s Theorem applies to the
restriction of F ′ to [a, c1], and so there is c2 ∈ (a, c1) such that F ′′(c2) = 0.
Further, if n > 1, then F ′′(a) = 0, and so there is c3 ∈ (a, c2) such that
F ′′′(c3) = 0. Continuing in this way, we see that there is c := cn+1 ∈ (a, cn)
such that F (n+1)(c) = 0. Now, P (n+1) is identically zero, since P is a polyno-
mial of degree n. In particular, P (n+1)(c) = 0. Hence f (n+1)(c) = s(n + 1)!,
which, in turn, yields the desired result. ⊓⊔

Remarks 4.24. (i) Note that the MVT corresponds to the case n = 0 of
Taylor’s Theorem. The case n = 1 is sometimes called the Extended Mean
Value Theorem.

(ii) In our statement of Taylor’s Theorem, the point a was the left endpoint
of the interval on which the function f was defined. There is an analogous
version for the right (hand) endpoint. Namely, if f : [a, b] → R is as in the
statement of Taylor’s Theorem, then there is c ∈ (a, b) such that
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f(a) = f(b) + f ′(b)(a − b) + · · · + f (n)(b)

n!
(a − b)n +

f (n+1)(c)

(n + 1)!
(a − b)n+1.

This can be proved in a similar manner or alternatively deduced from our
version of Taylor’s Theorem by applying it to the function g : [a, b] → R
defined by g(x) = f(a + b − x) for x ∈ [a, b], and noting that g(k)(x) =
(−1)kf (k)(a + b − x) for k ∈ N. It follows that if I is any interval, a is any
point of I, and f : I → R is such that f ′, f ′′, . . . , f (n) exist on I and f (n+1)

exists at every interior point of I, then for any x ∈ I, x �= a, there is c between
a and x such that

f(x) = f(a) + f ′(a)(x − a) + · · · + f (n)(a)

n!
(x − a)n +

f (n+1)(c)

(n + 1)!
(x − a)n+1.

The last expression is sometimes referred to as the Taylor formula for f
around a. The polynomial given by

Pn(x) = f(a) + f ′(a)(x − a) + · · · + f (n)(a)

n!
(x − a)n

is called the nth Taylor polynomial of f around a. The difference Rn =
f − Pn is called the remainder of order n. Note that the Taylor formula for
f around a shows that the remainder Rn is given by

Rn(x) =
f (n+1)(c)

(n + 1)!
(x − a)n+1 for some c between a and x.

The above expression for Rn(x) is sometimes called the Lagrange form of
remainder in Taylor formula. This is to distinguish it from some alternative
expressions for the remainder in the Taylor formula that appear in Exercise
49 of this chapter and Exercise 46 of Chapter 6. ✸

The following corollary of the Taylor formula generalizes Corollary 4.21
and gives a characterization of polynomial functions on intervals.

Corollary 4.25. Let I be an interval containing more than one point, and
f : I → R be any function. Let n be a nonnegative integer. Then f is a
polynomial function of degree ≤ n on I if and only if f (n+1) exists and is
identically zero on I.

Proof. If f is a polynomial function on I of degree ≤ n, that is, if there are
a0, a1, . . . , an ∈ R such that

f(x) = anxn + · · · + a1x + a0 for all x ∈ I,

then it is obvious that f (n+1)(x) = 0 for all x ∈ I. To prove the converse, it
suffices to fix some a ∈ I and apply Taylor’s formula for f around a. ⊓⊔
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Example 4.26. Let r ∈ Q and f : [−1, 1] → R be defined by f(x) := (1+x)r.
Given any nonnegative integer k and c ∈ (−1, 1), we clearly have

f (k)(c) = r(r − 1) · · · (r − k + 1)(1 + x)r−k.

Hence, the nth Taylor polynomial of f around 0 is given by

Pn(x) =

n∑

k=0

f (k)(0)

k!
xk =

n∑

k=0

r(r − 1) · · · (r − k + 1)

k!
xk =

n∑

k=0

(
r

k

)
xk.

Notice that if r equals a nonnegative integer n, then f (n+1) is identically zero,
and so the remainder of order n is zero. Thus in this case, by Taylor Theorem,
we recover the binomial expansion for (1 + x)n. ✸

Usually, the nth Taylor polynomial of f around a provides a progressively
better approximation to f around a as n increases. We will study this aspect
in greater detail in Section 5.3. For the moment, let us revisit the estimates
for

√
2 that were obtained from the MVT and see what happens when we

use Taylor’s Theorem. Thus, let m ∈ N and f : [m, m + 1] → R be given by
f(x) :=

√
x. Applying the Taylor formula for f around m, with n = 1, we

have

f(x) = f(m)+ f ′(m)(x−m)+
f ′′(c)

2!
(x−m)2 for some c between m and x.

In particular, for x = m + 1, we get

√
m + 1 =

√
m +

1

2
√

m
− 1

8c
√

c
for some c ∈ (m, m + 1).

For example, by putting m = 1, we obtain

1+
1

2
−1

8
<

√
2 < 1+

1

2
− 1

16
√

2
and hence

11

8
<

√
2 < 1+

1

2
− 1

16(3/2)
=

35

24
,

where in the last inequality we have used the estimate
√

2 < 3
2 , which is

obvious from √
2 < 1 +

1

2
− 1

16
√

2
.

The resulting bounds 11
8 = 1.375 and 35

24 ≈ 1.4583 are, in fact, better than
the bounds 4

3 ≈ 1.33 and 3
2 = 1.5 obtained using the MVT. Needless to say,

the higher order Taylor polynomials would give even better bounds. In this
way, if you are stranded on an island without your calculator and a demon
demands to know a reasonably correct value of

√
2, then Taylor’s Theorem

can save the day for you!
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4.3 Monotonicity, Convexity, and Concavity

Let I be an interval in R and f : I → R be any function. Recall from Chapter
1 that f is said to be (monotonically) increasing on I if x1, x2 ∈ I, x1 < x2

implies f(x1) ≤ f(x2). Also, f is said to be (monotonically) decreasing on
I if x1, x2 ∈ I, x1 < x2 implies f(x1) ≥ f(x2). One says that f is monotonic
on I if it is monotonically increasing on I or monotonically decreasing on I.
The function f is said to be strictly increasing [resp. strictly decreasing]
on I if x1, x2 ∈ I, x1 < x2, implies f(x1) < f(x2) [resp. f(x1) > f(x2)]. Also,
one says that f is strictly monotonic on I if it is strictly increasing on I or
strictly decreasing on I.

As has been pointed out and illustrated in Chapter 1, the notions of mono-
tonicity and strict monotonicity are purely geometric, and a priori they have
no relation with derivatives. However, in the case of differentiable functions,
there is an intimate relationship between derivatives and the notions of mono-
tonicity and strict monotonicity. The key idea can be easily grasped by looking
at the graph of a function. The tangents to the graph of an increasing func-
tion have positive slopes, whereas the tangents to the graph of a decreasing
function have negative slopes. [See, for example, the graph of y = x2 in Fig-
ure 1.2 of Chapter 1.] A more precise analytic formulation of this is given in
the proposition below. In practice, this greatly simplifies checking whether a
differentiable function is increasing or decreasing.

Proposition 4.27. Let I be an interval containing more than one point, and
f : I → R be a differentiable function. Then we have the following:

(i) f ′ is nonnegative throughout I ⇐⇒ f is monotonically increasing on I.
(ii) f ′ is nonpositive throughout I ⇐⇒ f is monotonically decreasing on I.
(iii) f ′ is positive throughout I =⇒ f is strictly increasing on I.
(iv) f ′ is negative throughout I =⇒ f is strictly decreasing on I.

Proof. Suppose x1, x2 ∈ I with x1 < x2. Then [x1, x2] ⊆ I and we can apply
the MVT to the restriction of f to [x1, x2] to obtain

f(x2) − f(x1) = f ′(c)(x2 − x1) for some c ∈ (x1, x2).

Thus, if f ′ is nonnegative throughout I, then f(x1) ≤ f(x2), whereas if f ′

is nonpositive throughout I, then f(x1) ≥ f(x2). This proves the implication
“=⇒” in (i) and (ii). Moreover, we also see from the MVT that if f ′ is positive
throughout I, then f(x1) < f(x2), whereas if f ′ is negative throughout I, then
f(x1) > f(x2). This proves (iii) and (iv).

Now, given any x0 ∈ I and 0 �= h ∈ R such that x0 + h ∈ I, the quotient

f(x0 + h) − f(x0)

h

is always nonnegative if f is monotonically increasing and always nonpositive
if f is monotonically decreasing. Therefore, f ′(x0) ≥ 0 if f is monotonically
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increasing on I, whereas f ′(x0) ≤ 0 if f is monotonically decreasing on I.
This proves the implication “⇐=” in (i) and (ii). ⊓⊔

The following corollary is essentially obtained by combining the first two
and the last two parts of the above proposition.

Corollary 4.28. Let I be an interval containing more than one point, and
f : I → R be a differentiable function. Then we have the following.

(i) f ′ does not change sign throughout I ⇐⇒ f is monotonic on I.
(ii) f ′ is nonzero throughout I =⇒ f is strictly monotonic on I.

Proof. Using parts (i) and (ii) of Proposition 4.27, we obtain (i), while using
the IVP for f ′ (Proposition 4.14) together with parts (iii) and (iv) of Propo-
sition 4.27, we obtain (ii). ⊓⊔

Examples 4.29. (i) Consider the polynomial function f : R → R defined by

f(x) = x4 − 8x3 + 22x2 − 24x + 7.

Then f is differentiable and one can easily check that

f ′(x) = 4x3 − 24x2 + 44x − 24 = 4(x − 1)(x − 2)(x − 3).

Therefore, f ′(x) ≥ 0 if x ≥ 3 or 1 ≤ x ≤ 2, whereas f ′(x) ≤ 0 if x ≤ 1
or 2 ≤ x ≤ 3. Thus, f is monotonically increasing on [1, 2] and on [3,∞),
whereas f is monotonically decreasing on [2, 3] and on (−∞, 1]. In fact,
since f ′ vanishes only at x = 1, 2, and 3, we see that f is strictly increasing
on (1, 2) and on (3,∞), whereas f is strictly decreasing on (2, 3) and on
(−∞, 1). Notice that in an example such as this, it would be extremely
difficult to arrive at the above conclusions directly from the definition.

(ii) Let n ∈ N and consider the nth power function f : R → R defined by
f(x) = xn. Then f ′(x) = nxn−1 for x ∈ R. First, assume that n is odd.
Then f ′(x) ≥ 0 for all x ∈ R. Thus, f is monotonically increasing on R. In
fact, since f ′ vanishes only at x = 0, we see that f is strictly increasing on
(−∞, 0) as well as on (0,∞). Next, assume that n is even. Then f ′(x) ≥ 0
for x ≥ 0 and f ′(x) ≤ 0 for x ≤ 0. Thus, f is monotonically increasing on
[0,∞) and monotonically decreasing on (−∞, 0]. In fact, since f ′ vanishes
only at x = 0, we see that f is strictly increasing on (0,∞) and strictly
decreasing on (−∞, 0). Notice that in this example, we can reach these
conclusions directly from the definition. In fact, we can do a little better.
Namely, we can easily see that if n is odd, then f is strictly increasing on
R, whereas if n is even, then f is strictly increasing on [0,∞) and strictly
decreasing on (−∞, 0]. ✸

As the last example shows, the converse of the implication in part (iii) of
Proposition 4.27 is not true. In fact, it suffices to note that f : R → R defined
by f(x) = x3 is strictly increasing but f ′(0) = 0. Similarly, the function
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g : R → R defined by g(x) = −x3 is strictly decreasing but g′(0) = 0, which
shows that the converse of the implication in part (iv) of Proposition 4.27
is not true as well. As a consequence, the converse of part (ii) of Corollary
4.28 is not true. In other words, these parts give only sufficient conditions
for a differentiable function to be strictly increasing or strictly decreasing or
strictly monotonic. However, with a little more effort, it is possible to give a
necessary and sufficient condition, as shown by the proposition below.

Proposition 4.30. Let I be an interval containing more than one point, and
f : I → R be a differentiable function. Then

(i) f is strictly increasing on I if and only if f ′ is nonnegative throughout I
and f ′ does not vanish identically on any subinterval of I containing more
than one point.

(ii) f is strictly decreasing on I if and only if f ′ is nonpositive throughout I
and f ′ does not vanish identically on any subinterval of I containing more
than one point.

Proof. Let f be strictly increasing on I. Then by part (i) of Proposition 4.27,
f ′ is nonnegative throughout I. Moreover, if f ′ were to vanish identically on
any subinterval J of I containing more than one point, then by Corollary 4.21,
f would be constant on J , and this is a contradiction because f is strictly
increasing. For the converse, first note that by part (i) of Proposition 4.27, f
is monotonically increasing on I. Further, if for some x1, x2 ∈ I with x1 < x2

we have f(x1) = f(x2), then f is constant throughout [x1, x2] and hence f ′

vanishes identically on [x1, x2], which is a contradiction. This proves (i).
The assertion (ii) is proved similarly. ⊓⊔

We now turn to the notions of convexity and concavity. Let us recall that
if I is an interval in R, then f : I → R is said to be convex on I if the graph of
f lies below the line joining any two points on it, whereas f : I → R is said to
be concave on I if the graph of f lies above the line joining any two points on
it. In other words, f is convex on I if for any x1, x2, x ∈ I with x1 < x < x2,
we have f(x) ≤ L(x), whereas f is concave on I if for any x1, x2, x ∈ I with
x1 < x < x2, we have f(x) ≥ L(x), where

L(x) := f(x1) +
f(x2) − f(x1)

x2 − x1
(x − x1) for x ∈ I.

Recall also that f is strictly convex (resp. strictly concave) on I if for
any x1, x2, x ∈ I with x1 < x < x2, we have f(x) < L(x) (resp. f(x) > L(x)).
Equivalently, f is convex or strictly convex or concave or strictly concave on I
according as f(tx1 +(1− t)x2) is ≤ or < or ≥ or > than tf(x1)+ (1− t)f(x2)
for all x1, x2 ∈ I and t ∈ (0, 1).

As noted before, convexity and concavity are purely geometric notions
and a priori they have no relation with derivatives. However, in the case of
differentiable functions, there is an intimate relation between derivatives and
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the notions of convexity and concavity. The key idea can once again be gleaned
by looking at the graphs. Namely, if we draw tangents at each point, then we
see that as we move from left to right, the slopes increase if the function
is convex, whereas the slopes decrease if the function is concave. [See, for
example, the graph of y = x3 in Figure 1.3 of Chapter 1.] A more precise
analytic formulation of this is given in the proposition below. In practice,
this greatly simplifies checking whether a differentiable function is convex or
concave.

Proposition 4.31. Let I be an interval containing more than one point, and
f : I → R be a differentiable function. Then we have the following:

(i) f ′ is monotonically increasing on I ⇐⇒ f is convex on I.
(ii) f ′ is monotonically decreasing on I ⇐⇒ f is concave on I.
(iii) f ′ is strictly increasing on I ⇐⇒ f is strictly convex on I.
(iv) f ′ is strictly decreasing on I ⇐⇒ f is strictly concave on I.

Proof. First, assume that f ′ is monotonically increasing on I. Let x1, x2, x ∈ I
be such that x1 < x < x2. By the MVT, there are c1 ∈ (x1, x) and c2 ∈ (x, x2)
satisfying

f(x) − f(x1) = f ′(c1)(x − x1) and f(x2) − f(x) = f ′(c2)(x2 − x).

Now, c1 < c2 and f ′ is monotonically increasing on I and so

f(x) − f(x1)

x − x1
= f ′(c1) ≤ f ′(c2) =

f(x2) − f(x)

x2 − x
.

Collecting only the terms involving f(x) on the left (hand) side, we obtain

f(x)

(
1

x − x1
+

1

x2 − x

)
≤ f(x1)

x − x1
+

f(x2)

x2 − x
.

Multiplying throughout by (x − x1)(x2 − x)/(x2 − x1), we see that

f(x) ≤ 1

x2 − x1
[f(x1)(x2 − x) + f(x2)(x − x1)] = f(x1)+

f(x2) − f(x1)

x2 − x1
(x−x1).

Thus, f is convex on I.
Conversely, assume that f is convex on I. Let x1, x2, x ∈ I be such that

x1 < x < x2. Then

f(x) ≤ f(x1) +
f(x2) − f(x1)

x2 − x1
(x − x1) = f(x2) −

f(x2) − f(x1)

x2 − x1
(x2 − x),

where the last equality follows by writing x− x1 = (x2 − x1)− (x2 − x). As a
consequence,

f(x) − f(x1)

x − x1
≤ f(x2) − f(x1)

x2 − x1
≤ f(x2) − f(x)

x2 − x
.
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Taking limits as x → x+
1 and x → x−

2 , we obtain

f ′(x1) ≤
f(x2) − f(x1)

x2 − x1
≤ f ′(x2).

Thus, f ′ is monotonically increasing on I. This proves (i). Moreover, the
arguments in the preceding paragraph, with ≤ replaced by <, also prove that if
f ′ is strictly increasing on I, then f is strictly convex on I. Conversely, assume
that f is strictly convex on I. Then by part (i) above, f ′ is monotonically
increasing on I. Further, if for some x1, x2 ∈ I with x1 < x2, we have f ′(x1) =
f ′(x2), then f ′ is constant throughout [x1, x2], and so f ′′ is identically zero
on [x1, x2]. Hence by Corollary 4.25, there are constants a0, a1 ∈ R such that
f(x) = a1x + a0 for all x ∈ [x1, x2]. But this contradicts the strict convexity
of f . Thus, (iii) is proved.

The corresponding results (ii) and (iv) about concave and strictly concave
functions are proved similarly. Alternatively, (ii) and (iv) follow from applying
(i) and (iii) to −f . ⊓⊔

For twice differentiable functions, testing convexity or concavity can some-
times be simpler using the following result.

Proposition 4.32. Let I be an interval containing more than one point, and
f : I → R be a twice differentiable function. Then we have the following:

(i) f ′′ is nonnegative throughout I ⇐⇒ f is convex on I.
(ii) f ′′ is nonpositive throughout I ⇐⇒ f is concave on I.
(iii) f ′′ is positive throughout I =⇒ f is strictly convex on I.
(iv) f ′′ is negative throughout I =⇒ f is strictly concave on I.

Proof. Apply Proposition 4.31 to f and Proposition 4.27 to f ′. ⊓⊔

The following corollary is obtained by combining the first two and the last
two parts of the above proposition.

Corollary 4.33. Let I be an interval containing more than one point, and
f : I → R be a twice differentiable function. Then we have the following:

(i) f ′′ does not change sign throughout I ⇐⇒ f is convex on I or f is concave
on I.

(ii) f ′′ is nonzero throughout I =⇒ f is strictly convex on I or f is strictly
concave on I.

Proof. Apply Proposition 4.31 to f and Corollary 4.28 to f ′. ⊓⊔

Examples 4.34. (i) Consider the polynomial function f : R → R defined by

f(x) := x4 + 2x3 − 36x2 + 62x + 5.

Then f is twice differentiable with f ′(x) = 4x3 + 6x2 − 72x + 62 and



130 4 Differentiation

f ′′(x) = 12x2 + 12x − 72 = 12(x + 3)(x − 2).

Therefore, f ′′(x) ≥ 0 if x ≥ 2 or x ≤ −3, whereas f ′′(x) ≤ 0 if −3 ≤ x ≤ 2.
Thus, f is convex on [2,∞) and on (−∞,−3], whereas f is concave on
[−3, 2]. In fact, since f ′′ vanishes only at x = −3 and 2, we see that f is
strictly convex on (2,∞) and on (−∞,−3), whereas f is strictly concave
on (−3, 2). Notice that in an example such as this, it would be extremely
difficult to arrive at the above conclusions directly from the definition.

(ii) Let n ∈ N and consider the nth-power function f : R → R defined by
f(x) := xn. Then f ′′(x) = n(n−1)xn−2 for x ∈ R. Thus if n is even, then
f is convex on R, whereas if n is odd and n > 1, then f is convex on [0,∞)
and concave on (−∞, 0]. In case n = 1, f is convex as well as concave on
R. In case n > 1, f ′′ vanishes only at x = 0 and hence if n is even, then f
is strictly convex on (0,∞) as well as on (−∞, 0), whereas if n is odd and
n > 1, then f is strictly convex on (0,∞) and strictly concave on (−∞, 0).
Notice that in this example as well, it is not very easy to arrive at the
above conclusions directly from the definition when n is large. [Compare
Examples 1.15 (i), (ii) and Exercise 32 of Chapter 1.] However, we can
directly appeal to Proposition 4.31 instead of Proposition 4.32 to get a
stronger conclusion. Namely, if n is even, then f ′(x) = nxn−1 is strictly
increasing on R and hence f is strictly convex on R, whereas if n is odd
and n > 1, then f ′(x) = nxn−1 is strictly increasing on [0,∞) and on
(−∞, 0], and hence f is strictly convex on [0,∞) and strictly concave on
(−∞, 0]. ✸

The converse of the implication in part (ii) of Corollary 4.33 is not true.
For example, f : R → R defined by f(x) = x4 is strictly convex on R but
f ′′(0) = 0. Similarly, g : R → R defined by g(x) = −x4 is strictly concave
on R but g′′(0) = 0. Thus, part (ii) of Corollary 4.33 gives only a sufficient
condition for a twice differentiable function to be strictly convex or strictly
concave. However, with a little more effort, it is possible to give a necessary
and sufficient condition, as shown by the proposition below.

Proposition 4.35. Let I be an interval containing more than one point, and
f : I → R be a twice differentiable function. Then

(i) f is strictly convex on I if and only if f ′′ is nonnegative throughout I and
f ′′ does not vanish identically on any subinterval of I containing more
than one point.

(ii) f is strictly concave on I if and only if f ′′ is nonpositive throughout I and
f ′′ does not vanish identically on any subinterval of I containing more
than one point.

Proof. Applying Proposition 4.30 to f ′ and using parts (iii) and (iv) of Propo-
sition 4.31, we get the desired results. ⊓⊔
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4.4 L’Hôpital’s Rule

In this section, we shall describe a useful method for finding limits that is
known as L’Hôpital’s Rule.6 Actually, there are several versions of L’Hôpital’s
Rule and the formal statements of these will appear in the form of propositions
or as a part of some remarks.

In its simplest form, L’Hôpital’s Rule says the following. Suppose f, g are
real-valued differentiable functions in an interval (c − r, c + r) about a point
c and suppose f(c) = g(c) = 0. If it so happens that the quotient f ′(x)/g′(x)
of the derivatives is defined in an open interval around c (so that g′(x) �= 0 in
this interval), and moreover,

lim
x→c

f ′(x)

g′(x)
=

f ′(c)

g′(c)
,

then the quotient f(x)/g(x) has a limit as x → c and it is, in fact, the same
limit as that of the quotient of the derivatives, that is,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Since g(c) = 0, it follows from the MVT that the quotient f(x)/g(x) is defined
(that is, g(x) �= 0) for all x �= c in the interval about c where g′(x) �= 0.

For example, let us take c = 0 and f, g : (−1, 1) → R given by

f(x) :=
√

1 + x2 −
√

1 − x2 and g(x) := x for x ∈ (−1, 1).

Then f, g are differentiable on (−1, 1) and f(0) = g(0) = 0, while g′(x) = 1 is
nonzero for every x ∈ (−1, 1). Moreover,

lim
x→c

f ′(x)

g′(x)
= lim

x→0

x
[
(1 + x2)−1/2 + (1 − x2)−1/2

]

1
=

0

1
=

f ′(0)

g′(0)
.

Hence from L’Hôpital’s Rule, we can conclude that

lim
x→0

√
1 + x2 −

√
1 − x2

x
= 0.

In this example, we could have avoided L’Hôpital’s Rule and instead ra-
tionalized the quotient f(x)/g(x) (that is, multiplied the numerator and
denominator by

√
1 + x2 +

√
1 − x2) to compute the limit. However, alge-

braic tricks such as rationalization become increasingly unwieldy if instead
of

√
1 + x2 −

√
1 − x2, f(x) were given by (1 + x2)3/2 − (1 − x2)3/2 or

(1+x2)5/2− (1−x2)7/2. But L’Hôpital’s Rule can still be applied to compute
the limit just as easily.

6 L’Hôpital, sometimes written L’Hospital, is pronounced Lowpeetal.
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The reason why L’Hôpital’s Rule works is quite simple. One just has to
observe that

lim
x→c

f ′(x)

g′(x)
=

f ′(c)

g′(c)
=

lim
x→c

f(x) − f(c)

x − c

lim
x→c

g(x) − g(c)

x − c

= lim
x→c

f(x) − f(c)

g(x) − g(c)
= lim

x→c

f(x)

g(x)
,

where the last step follows since f(c) = g(c) = 0.
It turns out that we can get rid of some of the assumptions in the simple

formulation of L’Hôpital’s Rule given above. Indeed, in the true spirit of deal-
ing with limits as x → c, we need not require that the concerned functions be
defined at the point c. Thus the condition f(c) = g(c) = 0 may be replaced
by the conditions

lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0,

while the condition about the quotient of derivatives may be replaced by the
condition

f ′(x)

g′(x)
→ ℓ as x → c,

assuming, of course, that the above quotient is defined in an open interval
about c except possibly at c. Now for the proof we will have to contend with
some problems. First, a minor problem is that f(c) and g(c) are no longer
defined. This is easily handled by simply defining f(c) = g(c) = 0. A more se-
rious problem is that f ′(c) and g′(c) don’t make sense anymore. To handle this,
one has to deal directly with the quotients such as [f(x) − f(c)]/[g(x) − g(c)].
What we need, in fact, is the following generalization of the MVT.

Proposition 4.36 (Cauchy’s Mean Value Theorem). If f, g : [a, b] → R
are continuous on [a, b] and differentiable on (a, b), then there is c ∈ (a, b)
such that

g′(c)[f(b) − f(a)] = f ′(c)[g(b) − g(a)].

Proof. If g(b) = g(a), the result follows by applying Rolle’s Theorem to g.
Otherwise, we consider F : [a, b] → R defined by

F (x) = f(x) − f(a) − s[g(x) − g(a)], where s =
f(b) − f(a)

g(b) − g(a)
.

Then F (a) = 0 and our choice of the constant s is such that F (b) = 0. So
Rolle’s Theorem applies to F , and as a result, there is c ∈ (a, b) such that
F ′(c) = 0. This implies that sg′(c) = f ′(c), as desired. ⊓⊔

We are now ready to prove the first version of L’Hôpital’s Rule. This one
is called L’Hôpital’s Rule for 0

0 indeterminate forms since it applies to limits
of quotients when both the numerator and the denominator tend to 0. For
convenience, we state and prove below the version for left (hand) limits and
remark later how other versions of L’Hôpital’s Rule for 0

0 indeterminate forms
can be derived.
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Proposition 4.37 (L’Hôpital’s Rule for 0
0 Indeterminate Forms). Let

c ∈ R and f, g : (c − r, c) → R be differentiable functions such that

lim
x→c−

f(x) = 0 and lim
x→c−

g(x) = 0.

Suppose g′(x) �= 0 for all x ∈ (c − r, c), and

f ′(x)

g′(x)
→ ℓ as x → c−.

Then
f(x)

g(x)
→ ℓ as x → c−.

Here ℓ can be a real number or ∞ or −∞.

Proof. Extend f, g to (c − r, c] by putting f(c) = g(c) = 0. Let (xn) be a
sequence in (c − r, c) such that xn → c. Since g′(x) �= 0 for all x ∈ (c − r, c),
by Cauchy’s Mean Value Theorem we see that for each n ∈ N,

f(xn)

g(xn)
=

f(xn) − f(c)

g(xn) − g(c)
=

f ′(cn)

g′(cn)
for some cn between xn and c.

Now xn → c implies that cn → c, and hence the quotient above tends to ℓ as
n → ∞. Thus f(xn)/g(xn) → ℓ. ⊓⊔

Remarks 4.38. (i) L’Hôpital’s Rule for 0
0 indeterminate forms is also valid

for right (hand) limits. The statement and the proof is identical to the above,
except we replace the interval (c − r, c) by (c, c + r) and the symbols x → c−

by x → c+. Combining the versions for left limits and right limits, we obtain
L’Hôpital’s Rule for (two-sided) limits of 0

0 indeterminate forms, which may
be stated as follows.

Let c ∈ R and D = (c − r, c) ∪ (c, c + r) for some r > 0. Let f, g : D → R
be differentiable functions such that limx→c f(x) = 0 and limx→c g(x) = 0.
Suppose g′(x) �= 0 for all x ∈ D, and f ′(x)/g′(x) → ℓ as x → c. Then
f(x)/g(x) → ℓ as x → c. Here ℓ can be a real number or ∞ or −∞.

(ii) Analogues of L’Hôpital’s Rule for 0
0 indeterminate forms are also valid

if instead of considering limits as x → c, where c is a real number, we consider
limits as x → ∞ or as x → −∞. For example, a statement for limits as
x → −∞ would be as follows.

Let a ∈ R and f, g : (−∞, a) → R be differentiable functions such that
f(x) → 0 and g(x) → 0 as x → −∞. Suppose g′(x) �= 0 for all x ∈ (−∞, a),
and f ′(x)/g′(x) → ℓ as x → −∞. Then f(x)/g(x) → ℓ as x → −∞. Here ℓ
can be a real number or ∞ or −∞.

As for the proof, it suffices to assume that a < 0 and apply L’Hôpital’s
Rule for left (hand) limits to the functions F, G : (1/a, 0) → R defined by
F (x) = f(1/x) and G(x) = g(1/x), considering limits as x → 0−. ✸
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The following examples illustrate how limits of certain functions that are
in 0

0 indeterminate form, or that can be converted to 0
0 indeterminate form,

can be computed by making one or more applications of L’Hôpital’s Rule. The
verification that L’Hôpital’s Rule is indeed applicable (that is, the hypotheses
of Proposition 4.37 are satisfied) in each case is left as an exercise.

Examples 4.39. (i) lim
x→2

√
x2 + 5 − 3

x2 − 4
= lim

x→2

x/
√

x2 + 5

2x
=

2/3

4
=

1

6
.

(ii) lim
x→1

x3 − 3x2 + 3x − 1

x3 + x2 − 5x + 3
= lim

x→1

3x2 − 6x + 3

3x2 + 2x − 5
= lim

x→1

6x − 6

6x + 2
= 0.

(iii) We have

lim
x→∞

(
x3 + 4x2 + 13x + 1

)1/3 − x = lim
y→0+

(
1 + 4y + 13y2 + y3

)1/3 − 1

y
.

Using L’Hôpital’s Rule we see that the above limit exists and is equal to

lim
y→0+

1

3

(
1 + 4y + 13y2 + y3

)−2/3 (
4 + 26y + 3y2

)
=

4

3
. ✸

Now we describe another version of L’Hôpital’s Rule, which is useful in
computing limits of ∞

∞ indeterminate forms, that is, of quotients of functions
where both the numerator and the denominator tend to infinity. It turns out
here that the formulation as well as the proof of this rule is valid even when the
numerator does not tend to infinity. But we may still refer to it as L’Hôpital’s
Rule for ∞

∞ indeterminate forms. As before, we state and prove below the
version for left (hand) limits. This time the statement and the proof are such
that they are applicable to left (hand) limits as x approaches a real number
and also (left hand!) limits as x → ∞.

Proposition 4.40 (L’Hôpital’s Rule for ∞
∞ Indeterminate Forms). Let

I be the interval [a, c) where a ∈ R, and either c ∈ R with a < c or c = ∞.
Let f, g : I → R be differentiable functions such that |g(x)| → ∞ as x → c−.
Suppose g′(x) �= 0 for all x ∈ I and

f ′(x)

g′(x)
→ ℓ as x → c−.

Then
f(x)

g(x)
→ ℓ as x → c−.

Here ℓ can be a real number or ∞ or −∞.

Proof. Since g′(x) �= 0 for all x ∈ I, by part (ii) of Corollary 4.27, either g
is strictly increasing on I or g is strictly decreasing on I. Replacing g and f
by −g and −f if necessary, we assume that g is strictly increasing on I. Now,
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since g is strictly increasing on I and g, being continuous, has IVP on I, it
follows that there is a1 ∈ I such that g(x) > 0 for all x ∈ (a1, c).

To begin with, let us consider the case that ℓ is a real number. Let ǫ > 0
be given. Since f ′(x)/g′(x) → ℓ as x → c−, there is a2 ∈ (a1, c) such that

ℓ − ǫ <
f ′(x)

g′(x)
< ℓ + ǫ for all x ∈ (a2, c).

Let hǫ, h2ǫ : I → R be defined by

hǫ := f − (ℓ − ǫ)g and h2ǫ := f − (ℓ − 2ǫ)g.

Then h′
2ǫ(x) > h′

ǫ(x) > 0 for all x ∈ (a2, c). Therefore, by part (iii) of Proposi-
tion 4.27, the functions hǫ and h2ǫ are strictly increasing on (a2, c). We claim
that there is some a3 ∈ (a2, c) such that h2ǫ(x) > 0 for all x ∈ (a3, c). To see
this, assume the contrary. Then we can find an increasing sequence (xn) in
(a2, c) such that xn → c and h2ǫ(xn) ≤ 0 for all n ∈ N. Now, since g(x) → ∞
as x → c−, we have g(xn) → ∞. On the other hand, since hǫ is (strictly)
increasing on (a2, c), we have hǫ(x1) ≤ hǫ(xn) for all n ∈ N, and hence

ǫg(xn) = h2ǫ(xn) − hǫ(xn) ≤ 0 − hǫ(x1), that is, g(xn) ≤ −hǫ(x1)

ǫ

for all n ∈ N. This contradicts the condition that g(xn) → ∞. So, our claim
is proved. Thus, there is a3 ∈ (a2, c) such that

h2ǫ(x) = f(x) − (ℓ − 2ǫ)g(x) > 0, that is, ℓ − 2ǫ <
f(x)

g(x)
for all x ∈ (a3, c).

In a similar way, we see that there is a4 ∈ (a2, c) such that

f(x)

g(x)
< ℓ + 2ǫ for all x ∈ (a4, c).

Thus, if we let a5 := max{a3, a4}, then we have

ℓ − 2ǫ <
f(x)

g(x)
< ℓ + 2ǫ for all x ∈ (a5, c).

Since ǫ > 0 is arbitrary, this proves that f(x)/g(x) → ℓ as x → c−.
Next, suppose ℓ = ∞. In this case we can proceed as above and the

arguments are, in fact, simpler. Let α ∈ R be given. Then there is a2 ∈ (a1, c)
such that f ′(x)/g′(x) > α for all x ∈ (a2, c). Let hα, hα−1 : I → R be defined
by hα := f −αg and hα−1 := f − (α− 1)g. Then h′

α−1(x) > h′
α(x) > 0 for all

x ∈ (a2, c). Therefore, by part (iii) of Proposition 4.27, the functions hα and
hα−1 are strictly increasing on (a2, c). We claim that there is some a3 ∈ (a2, c)
such that hα−1(x) > 0 for all x ∈ (a3, c). To see this, assume the contrary.
Then we can find an increasing sequence (xn) in (a2, c) such that xn → c
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and hα−1(xn) ≤ 0 for all n ∈ N. Now, since g(x) → ∞ as x → c−, we have
g(xn) → ∞. On the other hand, since hα is (strictly) increasing on (a2, c), we
have hα(x1) ≤ hα(xn) for all n ∈ N, and hence

g(xn) = hα−1(xn) − hα(xn) ≤ 0 − hα(x1) for all n ∈ N.

This contradicts the condition that g(xn) → ∞. So our claim is proved. Thus,
there is a3 ∈ (a2, c) such that

hα−1(x) = f(x)− (α− 1)g(x) > 0, that is,
f(x)

g(x)
> α− 1 for all x ∈ (a3, c).

Since α ∈ R is arbitrary, this proves that f(x)/g(x) → ∞ as x → c−.
The case ℓ = −∞ is proved similarly. ⊓⊔

Remark 4.41. L’Hôpital’s Rule for ∞
∞ indeterminate forms is valid for right

(hand) limits as x approaches a real number, and also (right hand!) limits as
x → −∞. The statement is analogous to Proposition 4.40, and is also proved
similarly. Combining the versions for left (hand) limits and right (hand) limits,
we obtain L’Hôpital’s Rule for (two-sided) limits of ∞

∞ indeterminate forms,
which may be stated as follows:

Let c ∈ R and D = (c − r, c) ∪ (c, c + r) for some r > 0. Let f, g : D → R
be differentiable functions such that |g(x)| → ∞ as x → c. Suppose g′(x) �= 0
for all x ∈ D, and f ′(x)/g′(x) → ℓ as x → c. Then f(x)/g(x) → ℓ as x → c.
Here ℓ can be a real number or ∞ or −∞. ✸

Examples 4.42. (i) lim
x→∞

x2 + 2x + 3

3x2 + 2x + 1
= lim

x→∞
2x + 2

6x + 2
= lim

x→∞
2

6
=

1

3
.

(ii) lim
x→∞

x3

x2 − 1
− x3

x2 + 1
= lim

x→∞
2x3

x4 − 1
= lim

x→∞
6x2

4x3
= lim

x→∞
3

2x
= 0. ✸

While L’Hôpital’s Rule is extremely useful in computing limits, it is not
a panacea! There are situations in which it is not applicable. Quite often,
this happens for the simple reason that L’Hôpital’s Rule is applied even when
one of the conditions for it to hold fails. This is illustrated by the following
examples.

Examples 4.43. (i) If f, g : R → R are defined by f(x) := x and g(x) :=√
1 + x2, then f(x) → ∞ and g(x) → ∞ as x → ∞. If we try to apply

L’Hôpital’s Rule, we get a loop:

lim
x→∞

x√
1 + x2

= lim
x→∞

1

2x/2
√

1 + x2

= lim
x→∞

√
1 + x2

x

= lim
x→∞

2x/2
√

1 + x2

1

= lim
x→∞

x√
1 + x2

.
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However, the desired limit exists and can be found directly as follows:

lim
x→∞

x√
1 + x2

= lim
x→∞

1√
(1/x2) + 1

=
1√

0 + 1
= 1.

(ii) If we were to apply L’Hôpital’s Rule indiscriminately to calculate limits
of quotients such as (x + 1)/x as x → 0, we obtain

lim
x→0

x + 1

x
= lim

x→0

1

1
= 1.

But in fact, the limit does not exist; indeed,

x + 1

x
= 1 +

1

x
→ ∞ as x → 0+ and

x + 1

x
→ −∞ as x → 0−.

In this case L’Hôpital’s Rule was not applicable since the given quotient
is neither in 0

0 form nor in ∞
∞ form as x → 0. ✸

Remarks 4.44. (i) Evaluating limits of seemingly different indeterminate
forms such as 0 · ∞ and ∞−∞ is also possible using L’Hôpital’s Rule, since
such forms can be reduced to 0

0 indeterminate forms. More precisely, if c ∈ R
and f, g : (c − r, c) → R are differentiable functions such that

f(x) → 0 and g(x) → ∞ or −∞ as x → c−,

then there is δ > 0 such that δ < r and g(x) �= 0 for all x ∈ (c − δ, c). Now,
1/g(x) → 0 as x → c− and

f(x)g(x) =
f(x)

1/g(x)
for x ∈ (c − δ, c),

and thus a 0 ·∞ indeterminate form is converted to a 0
0 indeterminate form to

which L’Hôpital’s Rule can be applied. Likewise, if f(x) → ∞ and g(x) → ∞,
then there is δ > 0 such that δ < r and f(x) > 0 as well as g(x) > 0 for all
x ∈ (c − δ, c). Now we can write

f(x) − g(x) =
(1/g(x)) − (1/f(x)))

(1/f(x)g(x))
for x ∈ (c − δ, c),

and thus a ∞−∞ indeterminate form is converted to a 0
0 indeterminate form

to which L’Hôpital’s Rule can be applied.

(ii) The power of L’Hôpital’s Rule will be especially evident when we add
to our repertoire of functions the logarithmic, exponential, and trigonometric
functions and try to compute limits involving these functions. This will also
enable us to deal with other indeterminate forms such as 00, ∞0, and 1∞.
These variants of L’Hôpital’s Rule are explained in Remark 7.12. Examples
of limits involving the logarithmic, exponential, and trigonometric functions
appear in Example 7.4 (ii), and Exercises 18 and 19 in the list of Revision
Exercises at the end of Chapter 7, and in all these, L’Hôpital’s Rule is partic-
ularly useful. In Examples 7.18 and 7.19, it will be shown that the converse
of L’Hôpital’s Rule, for ∞

∞ and for 0
0 indeterminate forms, does not hold in

general. ✸
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Notes and Comments

In this chapter, we have derived all the basic properties of differentiation by
appealing to a characterization of differentiability in terms of continuity and
the relevant properties of continuous functions. With this approach, the proofs
seem to become simpler. Another advantage is that we obtain formulas for the
sum, product, quotient, composite, and the inverse of functions in the course of
proving their differentiability and it is not necessary to know them beforehand.
The said characterization of differentiability appears, for example, in the book
of Bartle and Sherbert [8], where it is ascribed to Carathéodory, and used to
derive the Chain Rule and the Differentiable Inverse Theorem. Here, we have
used it more extensively.

The Mean Value Theorem (MVT) and, more generally, Taylor’s Theorem
are among the most useful results in calculus. The importance of the MVT
in calculus mainly stems from the fact that it is crucial in characterizing
constant functions, monotonic functions, and convex/concave functions. Such
characterizations can be proved using only the mean value inequality, which
is obtained here as a corollary of the MVT. On the other hand, it is possible
to give an alternative proof of the mean value inequality using properties of
Riemann integration and without recourse to the MVT. This has prompted
several articles with rather colorful titles. See, for example, the papers by Bers
[10], Boas [14], Cohen [17], and Smith [56].

The study of convex functions, which was initiated in Chapter 1 and fur-
ther continued in this chapter, is now a subject in itself. A quick and elegant
introduction can be found in the first chapter of the little classic on gamma
functions by Artin [2]. For more on the subject of convex analysis, see the
introductory text of van Tiel [63].

Most books on calculus discuss L’Hôpital’s Rule for 0
0 and ∞

∞ indeterminate
forms but prove only the former. On the other hand, some relatively advanced
books such as Rudin [53] give a sleek proof applicable to both versions at once.
A unified proof such as that in Rudin [53] appears to have been inspired by the
article of Taylor [61], where it is given as an improved version of a proof by
Wazewski. For pedagogical reasons, we have chosen to avoid the sleek unified
proof and given instead separate proofs for the two versions. The proof in the
0
0 case is quite standard and follows quickly from Cauchy’s MVT, thanks to
our sequential approach to limits. The proof in the ∞

∞ case uses the Interme-
diate Value Property of derivatives and is essentially based on an argument of
Lettenmeyer, which is also outlined in the article of Taylor [61].

Exercises

Part A

1. Use the definition of a derivative to find f ′(x) if
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(i) f(x) = x2, x ∈ R, (ii) f(x) = 1/x, 0 �= x ∈ R,
(iii) f(x) =

√
x2 + 1, x ∈ R, (iv) f(x) = 1/

√
2x + 3, x ∈ (−3/2,∞).

2. Let f : (a, b) → R be a function such that

|f(x + h) − f(x)| ≤ C|h|r for all x, x + h ∈ (a, b),

where C is a constant and r ∈ Q with r > 1. Show that f is differentiable
on (a, b) and compute f ′(x) for x ∈ (a, b).

3. If f : (a, b) → R is differentiable at c ∈ (a, b), then show that

lim
h→0+

f(c + h) − f(c − h)

2h

exists and equals f ′(c). Is the converse true?
4. Let f : (0,∞) → R satisfy f(xy) = f(x) + f(y) for all x, y ∈ (0,∞). If

f is differentiable at 1, show that f is differentiable at every c ∈ (0,∞)
and f ′(c) = f ′(1)/c. In fact, show that f is infinitely differentiable. If
f ′(1) = 2, find f (n)(3).

5. Let f : R → R satisfy f(x + y) = f(x)f(y) for all x, y ∈ R. If f is
differentiable at 0, then show that f is differentiable at every c ∈ R and
f ′(c) = f ′(0)f(c). In fact, show that f is infinitely differentiable. If f ′(0) =
2, find f (n)(1) for n ∈ N, in terms of f(1).

6. Let f, g : R → R satisfy f(x + y) = f(x)g(y) + g(x)f(y) and g(x + y) =
g(x)g(y) − f(x)f(y) for all x, y ∈ R. If f and g are differentiable at 0,
then show that f and g are differentiable at every c ∈ R, and we have
f ′(c) = g′(0)f(c) + f ′(0)g(c) and g′(c) = g′(0)g(c) − f ′(0)f(c). In fact,
show that f and g are infinitely differentiable.

7. Suppose f, g : R → R satisfy f(x − y) = f(x)g(y) − g(x)f(y) and
g(x − y) = g(x)g(y) + f(x)f(y) for all x, y ∈ R. If f ′

+(0) exists, then
show that f and g are differentiable at every c ∈ R, and f ′(c) = f ′(0)g(c)
and g′(c) = −f ′(0)f(c). In fact, show that f and g are infinitely differ-
entiable. If f ′

+(0) = 2, find f (n)(1) and g(n)(1) in terms of f(1) and g(1).
(Hint: Prove that f is an odd function, g is an even function, f and g are
differentiable at 0 and g′(0) = 0. Use Exercise 6.)

8. Find the points on the curve x2 + xy + y2 = 7 at which (i) the tangent is
parallel to the x-axis, (ii) the tangent is parallel to the y-axis.

9. Find the equation of the tangent at (1
4 , 4) to the parametrically defined

curve x(t) = t−2, y(t) =
√

t2 + 12 for t ∈ (0.1, 1).
10. Find values of the constants a, b, and c for which the graphs of the two

functions f(x) = x2 + ax + b and g(x) = x3 − c, x ∈ R, intersect at the
point (1, 2) and have the same tangent there.

11. Find the tangents to the implicitly defined curve x2y + xy2 = 6 at points

for which x = 1. Also, compute d2y
dx2 at these points.

12. Given n ∈ N, let fn : R → R be defined by fn(x) := xn if x ≥ 0 and
fn(x) := −xn if x < 0. Show that fn is (n − 1)-times differentiable on R,

f
(n−1)
n is continuous on R, but f

(n)
n (0) does not exist.
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13. Let D ⊆ R be symmetric about the origin, that is, −x ∈ D whenever
x ∈ D. If c ∈ D and f : D → R is either an even or an odd function, then
show that the left (hand) derivative f ′

−(c) at c exists if and only if the
right (hand) derivative f ′

+(−c) at −c exists. Further, if either (and hence
both) of these derivatives exists, then show that f ′

−(c) = −f ′
+(−c) if f is

even, and f ′
−(c) = f ′

+(−c) if f is odd. Deduce that if f is differentiable,
then f ′ is an odd (resp. even) function according as f is an even (resp.
odd) function.

14. Let I be an interval, c ∈ I, and f : I → R be any function. Let, as usual,
|f | : I → R be the function defined by |f |(x) = |f(x)| for x ∈ I.
(i) Suppose (c, c + r) ⊆ I for some r > 0 and f ′

+(c) exists. Then show
that |f |′+(c) exists.

(ii) Suppose If (c − r, c) ⊆ I for some r > 0 and f ′
−(c) exists. Then show

that |f |′−(c) exists.
(iii) Suppose (c− r, c + r) ⊆ I for some r > 0 and f ′(c) exists. Then show

that |f |′(c) exists if and only if either there is δ > 0 such that δ ≤ r
and f(x) has the same sign for all x ∈ (c−δ, c+δ), or f(c) = f ′(c) = 0.

15. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the curve y =
ax2 + bx + c. If P3 = (x3, y3) lies on the arc P1P2 and the tangent to the
curve at P3 is parallel to the chord P1P2, show that x3 = (x1 + x2)/2.

16. Show that the x-axis is a normal to the curve y2 = x at (0, 0). If three
normals can be drawn to this curve from a point (a, 0), show that a must
be greater than 1

2 . Find the value of a such that the two normals, other
than the x-axis, are perpendicular to each other.

17. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If
f(a) and f(b) are of different signs and f ′(x) �= 0 for all x ∈ (a, b), then
show that there is a unique x0 ∈ (a, b) such that f(x0) = 0.

18. Show that the cubic 2x3 + 3x2 + 6x + 10 has exactly one real root.
19. Let n ∈ N and f : [a, b] → R be such that f (n−1) is continuous on [a, b]

and f (n) exists in (a, b). If f vanishes at n+1 distinct points in [a, b], then
show that f (n) vanishes at least once in (a, b).

20. Let f : [− 1
2 , 1

2 ] → R be given by

f(x) =

{√
2x − x2 if 0 ≤ x ≤ 1

2 ,√
−2x − x2 if − 1

2 ≤ x ≤ 0.

Show that f(1
2 ) = f(− 1

2 ) but f ′(x) �= 0 for all x with 0 < |x| < 1
2 . Does

this contradict Rolle’s Theorem? Justify your answer.
21. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). If

f(a) < f(b), then show that f ′(c) > 0 for some c ∈ (a, b).
22. Let a > 0 and f : [−a, a] → R be continuous. Suppose f ′(x) exists and

f ′(x) ≤ 1 for all x ∈ (−a, a). If f(a) = a and f(−a) = −a, then show that
f(x) = x for every x ∈ (−a, a).

23. In each of the following cases, find a function f that satisfies all the given
conditions, or else show that no such function exists.



Exercises 141

(i) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f ′(1) = 1,
(ii) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f ′(1) = 2,
(iii) f ′′(x) ≥ 0 for all x ∈ R, f ′(0) = 1, f(x) ≤ 100 for all x > 0,
(iv) f ′′(x) > 0 for all x ∈ R, f ′(0) = 1, f(x) ≤ 1 for all x < 0.

24. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
Suppose f(a) = a and f(b) = b. Show that there is c ∈ (a, b) such that
f ′(c) = 1. Further, show that there are distinct c1, c2 ∈ (a, b) such that
f ′(c1) + f ′(c2) = 2. More generally, show that for every n ∈ N, there are
n distinct points c1, . . . , cn ∈ (a, b) such that f ′(c1) + · · · + f ′(cn) = n.

25. Let a function f : [a, b] → R be continuous and its second derivative f ′′

exist everywhere on the open interval (a, b). Suppose the line segment
joining (a, f(a)) and (b, f(b)) intersects the graph of f at a third point
(c, f(c)), where a < c < b. Prove that f ′′(t) = 0 for some t ∈ (a, b).

26. Use the MVT to prove that for all n ∈ N and a, b ∈ R such that 0 < a ≤ b,
we have nan−1(b − a) ≤ bn − an ≤ nbn−1(b − a).

27. Use the MVT to prove that

1

3(m + 1)2/3
< (m + 1)1/3 − m1/3 <

1

3m2/3
for all m ∈ N.

28. Use the MVT to prove the following inequalities.

(i)
27

16
<

√
3 <

7

4
and

20

9
<

√
5 <

9

4
.

(ii)
19

16
< 21/3 <

4

3
,

17

9
< 71/3 <

23

12
and

1298

625
< 91/3 <

25

12
.

29. Use the MVT to show that 10.049 <
√

101 < 10.05 and 10.24 <
√

105 <
10.25. Also, find better estimates using Taylor’s Theorem with n = 1, that
is, using the Extended MVT.

30. Let f : (a, b) → R and c ∈ (a, b) be such that f is continuous at c and
f ′(x) exist for every x ∈ (a, c) ∪ (c, b). If limx→c f ′(x) exists, then show
that f ′(c) exists and is equal to this limit.

31. (i) Let f, g : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
If f(a) ≤ g(a) and f ′(x) ≤ g′(x) for all x ∈ (a, b), then show that
f(b) ≤ g(b).

(ii) Use (i) to show that 15x2 ≤ 8x3 + 12 ≤ 18x2 for all x ∈ [1.25, 1.5].
Deduce that the range of the function h : [1.25, 1.5] → R given by
h(x) = (2x3 + 3)/3x2 is contained in [1.25, 1.5].

32. Find the nth Taylor polynomial of f around a, that is,

Pn(x) = f(a) + f ′(a)(x − a) + · · · + f (n)(a)

n!
(x − a)n for x ∈ R,

when a = 0 and f(x) equals:

(i)
1

1 − x
, (ii)

1

1 + x
, (iii)

x

1 + x2
.

33. Let I be an interval containing more than one point and f : I → R be
any function.
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(i) Assume that f is differentiable. If f ′ is nonnegative on I and f ′ van-
ishes at only a finite number of points on any bounded subinterval of
I, then show that f is strictly increasing on I.

(ii) Assume that f is twice differentiable. If f ′′ is nonnegative on I and f ′′

vanishes at only a finite number of points on any bounded subinterval
of I, then show that f is strictly convex on I.

(iii) Consider f : R → R given by f(x) = (x − 2n)3 + 2n, where n ∈ Z is
such that x ∈ [2n−1, 2n+1). Show that f is differentiable on R and f ′′

exists on (2n−1, 2n+1), but f ′′
+(2n+1) = 6, whereas f ′′

−(2n+1) = −6
for each n ∈ N. Also show that f is strictly increasing on R although
f ′(2n) = 0 for each n ∈ N. (Compare (i) above and Exercise 12 in the
list of Revision Exercises at the end of Chapter 7.)

(iv) Consider g : R → R given by g(x) = (x − 2n)4 + 8nx, where n ∈ Z is
such that x ∈ [2n − 1, 2n + 1). Show that g is twice differentiable on
R and g′′′ exists on (2n − 1, 2n + 1), but g′′′+ (2n + 1) = 24, whereas
g′′′− (2n + 1) = −24 for each n ∈ N. Also show that g is strictly convex
on R although g′′(2n) = 0 for each n ∈ N. (Compare (ii) above and
Exercise 13 in the list of Revision Exercises at the end of Chapter 7.)

34. Let I be an interval in R and c ∈ I be an interior point. If f : I → R
is monotonically increasing and if the left and right derivatives of f at c,
namely f ′

−(c) and f ′
+(c), exist, then show that f ′

−(c) ≥ 0 and f ′
+(c) ≥ 0.

Further, give examples of monotonically increasing functions f : I → R
for which f ′

−(c) < f ′
+(c) or for which f ′

−(c) > f ′
+(c).

35. Let f : [a, b] → R be such that f ′ is continuous on [a, b] and f ′′ exists on
(a, b). Show that there is c ∈ (a, b) such that

f ′′(c)[f(b) − f(a)] = f ′(c)[f ′(b) − f ′(a)].

36. Let f, g, h : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
Show that there is c ∈ (a, b) such that the 3 × 3 determinant

∣∣∣∣∣∣

f(a) f(b) f ′(c)
g(a) g(b) g′(c)
h(a) h(b) h′(c)

∣∣∣∣∣∣

is zero, that is, f(a)[g(b)h′(c) − h(b)g′(c)] − f(b)[g(a)h′(c) − h(a)g′(c)] +
f ′(c)[g(a)h(b) − h(a)g(b)] = 0. Deduce that if h(x) = 1 for all x ∈ [a, b],
we obtain the conclusion of Cauchy’s Mean Value Theorem (Proposition
4.36). What does the result say if g(x) = x and h(x) = 1 for all x ∈ [a, b]?

37. Let f, g : [a, b] → R be continuous on [a, b] and differentiable on (a, b).
If there is α ∈ R such that |f ′(x)| ≤ α|g′(x)| for all x ∈ (a, b) and if
g′(x) �= 0 for all x ∈ (a, b), then show that |f(b) − f(a)| ≤ α|g(b) − g(a)|.
Is the conclusion valid if the condition “g′(x) �= 0 for all x ∈ (a, b)” is
omitted?

38. Evaluate the following limits:

(i) lim
x→1

(2x − x4)1/2 − x1/3

1 − x3/4
, (ii) lim

x→∞
5x2 − 3x

7x2 + 1
,
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(iii) lim
x→∞

(
x −

√
x + x2

)
, (iv) lim

x→∞

√
x + 2√
x + 1

.

39. Show that if f, g : R → R are functions defined by

f(x) =

{
x + 2 if x �= 0,
0 if x = 0,

and g(x) =

{
x + 1 if x �= 0,
0 if x = 0,

then

lim
x→0

f ′(x)

g′(x)
= 1 but lim

x→0

f(x)

g(x)
= 2.

Does this contradict L’Hôpital’s Rule?
40. Consider the following application of L’Hôpital’s Rule:

lim
x→1

3x2 − 2x − 1

x2 − x
= lim

x→1

6x − 2

2x − 1
= lim

x→1

6

2
= 3.

Is it correct? Justify.
41. Consider f : R \ {1} → R and g : R → R defined by

f(x) :=
1

x − 1
for x �= 1 and g(x) := x for x ∈ R.

Show that

f ′(x)

g′(x)
→ −∞ as x → 1+, but

f(x)

g(x)
→ ∞ as x → 1+.

Does this contradict L’Hôpital’s Rule? Justify.

Part B

42. Let f : (a, b) → R and c ∈ (a, b). Show that the following are equivalent:
(i) f is differentiable at c.
(ii) There exist α ∈ R, δ > 0 and a function ǫ1 : (−δ, δ) → R such that

f(c + h) = f(c) + αh + hǫ1(h) for all h ∈ (−δ, δ) and lim
h→0

ǫ1(h) = 0.

(iii) There exists α ∈ R such that

lim
h→0

|f(c + h) − f(c) − αh|
|h| = 0.

If the above conditions hold, then show that f ′(c) = α.
43. Let C be an algebraic plane curve, that is, let C be implicitly defined

by F (x, y) = 0, where F (x, y) is a nonzero polynomial in two variables x
and y with coefficients in R. Let the (total) degree of F (x, y) be n. Let
P = (x0, y0) be a point on C, so that F (x0, y0) = 0.
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(i) If we let X := x − c and Y := y − d and define g(X, Y ) := f(x, y),
then show that g(X, Y ) is a polynomial in X and Y with g(0, 0) = 0.
Deduce that there is a unique m ∈ N such that m ≤ n and

g(X, Y ) = gm(X, Y ) + gm+1(X, Y ) + · · · + gn(X, Y ),

where gi(X, Y ) is either the zero polynomial or a nonzero homoge-
neous polynomial of degree i, for m ≤ i ≤ n, and gm(X, Y ) �= 0. We
denote the integer m by multP (C), and call it the multiplicity of C
at the point P .

(ii) Show that a tangent to the curve C at the point P is defined (as
far as calculus is concerned) if and only if multP (C) = 1. Moreover,
if multP (C) = 1, then there are α1, β1 ∈ R such that g1(X, Y ) =
α1X +β1Y , and then the line α1(x− c)+β1(y− d) = 0 is the tangent
to C at P .

(iii) Show that if F (x, y) = y − f(x) for some polynomial f(x) in one
variable x, then for the corresponding curve C given by F (x, y) = 0,
we have multP (C) = 1 for every P on C.

(iv) Determine the integer m = multP (C) and a factorization of gm(X, Y )
when P = (0, 0) and C is the curve implicitly defined by F (x, y) :=
y2 − x2 − x3 = 0, or by F (x, y) := y2 − x3 = 0.

[Note: In view of Exercise 70 of Chapter 1, the initial form gm(X, Y )
factors as a product of homogeneous linear polynomials, that is,

gm(X, Y ) =
m∏

i=1

(αiX + βiY ) for some αi, βi ∈ C, 1 ≤ i ≤ m.

In the algebraic approach to tangents, the m (complex) lines given by
αi(x − c) + βi(y − d) = 0 for i = 1, . . . , m, are called the tangent lines to
the curve C at the point P .]

44. Let I be an interval and f : I → R be continuous on I and differentiable
at every interior point of I. If there is a constant α such that |f ′(x)| ≤ α
for all interior points x of I, then show that f is uniformly continuous
on I. Is the converse true? In other words, is it true that if f : I → R is
uniformly continuous on I and differentiable at every interior point of I,
then there is a constant α such that |f ′(x)| ≤ α for all interior points x
of I?

45. Let f : [a, b] → R be such that f ′ is continuous on [a, b] and f ′′ exists on
(a, b). Given any ξ ∈ [a, b], show that there is c ∈ (a, b) such that

f(ξ) − f(a) =
f(b) − f(a)

b − a
(ξ − a) +

f ′′(c)

2
(ξ − a)(ξ − b).

46. Let f(x) be a polynomial. A real number c is called a root of f(x) of
multiplicity m if f(x) = (x − c)mg(x) for some polynomial g(x) such
that g(c) �= 0.
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(i) Let f(x) have r roots (counting multiplicities) in an open interval
(a, b). Show that the polynomial f ′(x) has at least r−1 roots in (a, b).
Also, give an example where f ′(x) has more than r− 1 roots in (a, b).
More generally, for k ∈ N, show that the polynomial f (k)(x) has at
least r − k roots in (a, b).

(ii) If f (k)(x) has s roots in (a, b), what can you conclude about the num-
ber of roots of f(x) in (a, b)?

47. Let f(x) be a polynomial of degree n. Given any a ∈ R, show that

f(x) = f(a) + f ′(a)(x − a) + · · · + f (n)(a)

n!
(x − a)n, for x ∈ R.

Deduce that a is a root of f(x) of multiplicity m if and only if f(a) =
f ′(a) = · · · = f (m−1)(a) = 0 and f (m)(a) �= 0. Further, show that if a is a
root of f of multiplicity m, then

lim
h→0

f(a + h) − f(a)

hm
=

f (m)(a)

m!
.

48. Give an alternative proof of Taylor’s Theorem with a single application of
Rolle’s Theorem by proceeding as follows. Let the notation and hypothesis
be as in the statement of Taylor Theorem (Proposition 4.23). Also, as in
the proof of Taylor’s Theorem, for x ∈ [a, b], let

P (x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n.

Define g : [a, b] → R by

g(x) = f(x)+f ′(x)(b−x)+
f ′′(x)

2!
(b−x)2+· · ·+f (n)(x)

n!
(b−x)n+s(b−x)n+1,

where s = [f(b) − P (b)]/(b − a)n+1 . Show that g(a) = g(b) = f(b). Apply
Rolle’s Theorem to g to deduce Taylor’s Theorem.

49. Let the notation and hypothesis be as in the statement of Taylor’s Theo-
rem (Proposition 4.23). Given any p ∈ N with p ≤ n + 1, show that there
is c ∈ (a, b) such that

f(b) = f(a)+f ′(a)(b−a)+· · ·+f (n)(a)

n!
(b−a)n+

f (n+1)(c)

n!p
(b−a)p(b−c)n−p+1.

[Hint: Proceed as in the previous exercise except to change the (n + 1)th
power to the pth power in the definitions of g(x) and s.] Show that Taylor’s
Theorem is a special case of this result with p = n+1. Further, show that
if I is any interval containing more than one point, a is any point of I,
and f : I → R is such that f ′, f ′′, . . . , f (n) exist on I and f (n+1) exists at
every interior point of I, then for any x ∈ I, there is c between a and x
such that
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f(x) = Pn(x)+Rn,p(x), where Rn,p(x) =
f (n+1)(c)

n!p
(x−a)p(x−c)n−p+1,

and where Pn(x) is the nth Taylor polynomial of f around a.
[Note: The remainder term in the above result, namely Rn,p(x), is called
the Schlömilch form of remainder. It reduces to the Lagrange form
of remainder when p = n + 1, whereas it is called the Cauchy form of
remainder when p = 1.]

50. Let I be an interval containing more than one point and f : I → R be a
convex function.
(i) Show that for every interior point c of I, both f ′

−(c) and f ′
+(c) exist

and f ′
−(c) ≤ f ′

+(c). (Hint: Use Exercise 72 of Chapter 1.)
(ii) Show that for any x1, x2 ∈ I with x1 < x2, we have f ′

+(x1) ≤ f ′
−(x2).

51. Let m ∈ N and f, g : [a, b] → R be such that f, f ′, . . . , f (m−1) as well
as g, g′, . . . , g(m−1) are continuous on [a, b] and f (m), g(m) exist on (a, b).
Suppose f ′(a) = f ′′(a) = · · · = f (m−1)(a) = 0 and g′(a) = g′′(a) = · · · =
g(m−1)(a) = 0, but g(m)(x) �= 0 for all x ∈ (a, b). Prove that there exist
c1, . . . , cm ∈ (a, b) such that

f(b) − f(a)

g(b) − g(a)
=

f ′(c1)

g′(c1)
=

f ′′(c2)

g′′(c2)
= · · · =

f (m)(cm)

g(m)(cm)
.

[Note: This generalizes Cauchy’s Mean Value Theorem.]
52. Let c ∈ R, r > 0, and f : (c − r, c + r) → R be such that f ′′(c) exists.

Show that

lim
h→0+

f(c + h) + f(c − h) − 2f(c)

h2

exists and is equal to f ′′(c). Give an example of a function that is differ-
entiable on (c − r, c + r), for which this limit exists, but f ′′(c) does not
exist. (Hint: L’Hôpital’s Rule.)

53. Let c ∈ R, r > 0, f : (c − r, c + r) → R, and n ∈ N be such that f (n)(c)
exists. Show that

lim
h→0

f(c + h) − f(c) − hf ′(c) − · · · − hn−1
[
f (n−1)(c)/(n − 1)!

]

hn
=

f (n)(c)

n!
.

(Hint: L’Hôpital’s Rule.)
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Applications of Differentiation

The notion of differentiation is remarkably effective in studying the geometric
properties of functions. We have seen already how derivatives are useful in
determining monotonicity, convexity, or concavity for differentiable functions
defined on an interval. We shall study similar applications in this chapter.

First, in Section 5.1 we will see how one can determine the absolute (or
global) minimum or maximum of a large class of functions. Next, in Section
5.2 we shall describe a number of useful tests to determine the local minima
or maxima of a function and to detect the points of inflection. In this way, we
shall be able to locate the ups and downs, the peaks and dips, and the twists
and turns in the graph of a real-valued function. This information is extremely
useful in curve sketching, that is, in drawing graphs of real-valued functions
and identifying their key features. In Section 5.3, we revisit the idea of ap-
proximating functions by simpler functions, which we discussed in Chapter 4
in connection with the MVT and Taylor’s Theorem. We shall discuss here in
greater detail the most widely used methods of approximation, namely, linear
and quadratic approximations. Finally, in Section 5.4, we discuss a method
of Picard for finding fixed points of functions, and a method of Newton for
finding zeros of functions.

5.1 Absolute Minimum and Maximum

We have seen in Proposition 3.8 that a continuous real-valued function defined
on a closed and bounded subset of R is bounded and attains its bounds. In
other words, if D ⊆ R is closed and bounded, and f : D → R is continuous,
then the absolute minimum and the absolute maximum of f on D,
namely,

m := min{f(x) : x ∈ D} and M := max{f(x) : x ∈ D},
exist, and moreover, there are r, s ∈ D such that m = f(r) and M = f(s). A
question that arises naturally is the following: Knowing the function f , how
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does one find the absolute extrema m and M , and the points r and s where
they are attained? It turns out that we can considerably narrow down the
search for the points where the absolute extrema are attained if we look at
the derivative of f . To make this precise, let us first formulate a couple of
definitions.

Given D ⊆ R and f : D → R, a point c ∈ D is called a critical point of
f if c is an interior point of D such that either f is not differentiable at c, or
f is differentiable at c and f ′(c) = 0.

Given D ⊆ R, by a boundary point of D we shall mean a real number
c such that for every r > 0, the interval (c − r, c + r) contains a point of D
as well as a point not belonging to D. For example, if D = [a, b], then the
endpoints a and b are the boundary points of D, whereas the points of (a, b)
are the interior points of D.

Proposition 5.1. Let D be a closed and bounded subset of R, and f : D → R
be a continuous function. Then the absolute minimum as well as the absolute
maximum of f is attained either at a critical point of f or at a boundary point
of D.

Proof. By Proposition 3.8, f attains its absolute minimum as well as its ab-
solute maximum on D. Let c ∈ D be a point at which the absolute minimum
of f is attained. Suppose c is an interior point of D. Then clearly, f has a
local minimum at c. Hence if f is differentiable at c, then by Lemma 4.13,
f ′(c) = 0. It follows that c must be a critical point of D. Thus, c is either a
critical point of f or a boundary point of D.

A similar argument applies to a point at which the absolute maximum of
f is attained. ⊓⊔

In practice, the critical points of a function and the boundary points of its
domain are few in number. Thus, in view of the above proposition, we have a
simple recipe to determine the absolute extrema and the points where they are
attained. Namely, determine the critical points of a function and the boundary
points of its domain; then calculate the values at these points, and compare
these values. The greatest value among them is the absolute maximum, while
the least value is the absolute minimum. This recipe is illustrated by the
following examples.

Examples 5.2. (i) Consider f : [−1, 2] → R defined by

f(x) :=

{
−x if − 1 ≤ x ≤ 0,
2x3 − 4x2 + 2x if 0 < x ≤ 2.

Let us try to find the absolute extrema of f . First, note that by Proposition
3.5, f is continuous on [0, 2]. Next, f is not differentiable at 0 since f ′

−(0) =
−1 and f ′

+(0) = 2. On the other hand,

f ′(x) =

{
−1 if − 1 ≤ x < 0,
6x2 − 8x + 2 = 2(3x − 1)(x − 1) if 0 < x < 2.
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So, f ′(x) = 0 only at x = 1
3 and x = 1. It follows that x = 0, x = 1

3
and x = 1 are the only critical points of f . The boundary points of our
domain [−1, 2] are −1 and 2. Thus we make the following table.

x −1 0
1

3
1 2

f(x) 1 0
8

27
0 4

From this we conclude that the absolute minimum of f is 0, which is
attained at x = 0 as well as at x = 1, whereas the absolute maximum
of f is 4, which is attained at x = 2. Note that although f has a local
maximum at x = 1

3 , it is not the absolute maximum of f .

�

�

��

Fig. 5.1. Rectangle inscribed in a circle of radius r

(ii) Let us show that among all rectangles that can be inscribed in a given
circle, the square has the greatest area. Let r be the radius of the given
circle. If x is the length and y the breadth of an inscribed rectangle [see
Figure 5.1], then 0 ≤ x, y ≤ 2r and x2 + y2 = (2r)2 = 4r2. Now, the
area of the rectangle could be viewed as a function A : [0, 2r] → R given
by A(x) := xy = x

√
4r2 − x2. To compute A′(x) we may use implicit

differentiation. For example, the equation x2 + y2 = 4r2 implies that

2x + 2y
dy

dx
= 0,

and hence at points where y �= 0, that is, x �= 2r, we obtain

dA

dx
= y + x

dy

dx
= y − x2

y
=

y2 − x2

y
=

4r2 − 2x2

y
.
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For 0 ≤ x < 2r, we have

dA

dx
= 0 ⇐⇒ x =

√
2 r.

Thus x =
√

2 r is the only critical point of A, and so we make the following
table:

x 0
√

2 r 2r

A(x) 0 2r2 0

From this we conclude that the area A(x) of the rectangle is maximal
when x =

√
2 r = y, that is, when the rectangle is, in fact, a square. ✸

5.2 Local Extrema and Points of Inflection

Heuristically speaking, a local maximum of a function corresponds to a peak
or a pinnacle in its graph, while a local minimum is something like a dip or
a depression. Let us also recall the formal definition from Chapter 1. Namely,
if D ⊆ R and c is an interior point in D, then f : D → R is said to have a
local minimum at c if there is δ > 0 such that

(c − δ, c + δ) ⊆ D and f(x) ≥ f(c) for all x ∈ (c − δ, c + δ).

On the other hand, f is said to have a local maximum at c if there is δ > 0
such that

(c − δ, c + δ) ⊆ D and f(x) ≤ f(c) for all x ∈ (c − δ, c + δ).

Also, recall that f is said to have a strict local minimum [resp. strict local
maximum] at c if there is δ > 0 such that (c− δ, c+ δ) ⊆ D and f(x) > f(c)
[resp. f(x) < f(c)] for all x ∈ (c − δ, c + δ), x �= c.

For example, consider a function whose graph looks as in Figure 5.2. In
fact, this is the graph of the function f : R → R defined by

f(x) :=

⎧
⎨
⎩

8 if x ≤ −2,
x4 − 2x2 if x ∈ (−2, 2),
10 − x if x ≥ 2.

We see that at x = −1 and x = 1, the function has a strict local minimum,
whereas at x = 0 and x = 2, it has a strict local maximum. At x = −2, it
has a local maximum that is not strict. In fact, there is a (nonstrict) local
minimum as well as a local maximum at every point in (−∞,−2) where the
function is constant, that is, its graph has a plateau.
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21 3 4 50−2 −1−3−4−5
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−2

−1

� x

y

Fig. 5.2. Illustration of local extrema as peaks and dips

To get an idea of the relation between derivatives and the notions of local
minimum/maximum, we may look at the behavior of the above graph around
its peaks or dips (or even a plateau). We see that as we approach a dip (local
minimum) from the left, the graph is decreasing and the tangents have nega-
tive slopes, whereas as we approach it from the right, the graph is increasing
and the tangents have positive slopes. Similarly, as we approach a peak (local
maximum) from the left, the graph is increasing and the tangents have posi-
tive slopes, whereas as we approach it from the right, the graph is decreasing
and the tangents have negative slopes. In case the tangent is defined at a peak
or a dip, then it is necessarily horizontal, that is, it has slope zero. We have
already seen the analytic formulation of the latter property in the form of
Lemma 4.13. This lemma says that if f : D → R is differentiable at an inte-
rior point c of D ⊆ R, then the vanishing of f ′(c) is a necessary condition
for f to have a local extremum at c. We have seen examples [f(x) := x3 for
x ∈ R; c = 0] that show that this condition is not sufficient to guarantee a
local extremum. However, the above observations about the behavior of the
graph lead to some sufficient conditions for a local extremum. We first
state the result for a local minimum.

Proposition 5.3. Let D ⊆ R, c be an interior point of D, and f : D → R be
any function. Then we have the following:

(i) [First Derivative Test for Local Minimum] If f is continuous at c,
and also,
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(a) f is differentiable on (c − r, c) ∪ (c, c + r) for some r > 0, and
(b) there is δ > 0 with δ ≤ r such that f ′(x) ≤ 0 for all x ∈ (c− δ, c), and

f ′(x) ≥ 0 for all x ∈ (c, c + δ),
then f has a local minimum at c.

(ii) [Second Derivative Test for Local Minimum] If f is twice differ-
entiable at c and satisfies f ′(c) = 0 and f ′′(c) > 0, then f has a local
minimum at c.

Proof. (i) If the conditions in (i) are satisfied and δ > 0 is as in subpart (b) of
(i), then by parts (i) and (ii) of Proposition 4.27, we see that f is decreasing
on (c− δ, c) and increasing on (c, c + δ). Now, the continuity of f at c implies
that f(x) → f(c) as x → c (Proposition 3.21), and hence it follows that
f(x) ≥ f(c) for all x ∈ (c − δ, c + δ). Thus, f has a local minimum at c.

(ii) If f ′′(c) exists, then it is tacitly assumed that f ′ exists on (c− r, c+ r)
for some r > 0 with (c − r, c + r) ⊆ D. Now, if f ′(c) = 0 and f ′′(c) > 0, then

lim
x→c

f ′(x)

x − c
= lim

x→c

f ′(x) − f ′(c)

x − c
= f ′′(c) > 0.

Thus, by part (i) of Proposition 3.24, there is δ > 0 such that δ < r and

f ′(x)

x − c
> 0 for all x ∈ (c − δ, c) ∪ (c, c + δ).

In view of this, we see that f satisfies the conditions in (i) above. Hence f has
a local minimum at c. ⊓⊔

The corresponding result for a local maximum is similar, and is stated
below for ease of reference.

Proposition 5.4. Let D ⊆ R, c be an interior point of D, and f : D → R be
any function. Then we have the following:

(i) [First Derivative Test for Local Maximum] If f is continuous at c,
and also,
(a) f is differentiable on (c − r, c) ∪ (c, c + r) for some r > 0, and
(b) there is δ > 0 with δ ≤ r such that f ′(x) ≥ 0 for all x ∈ (c− δ, c), and

f ′(x) ≤ 0 for all x ∈ (c, c + δ),
then f has a local maximum at c.

(ii) [Second Derivative Test for Local Maximum] If f is twice differ-
entiable at c and satisfies f ′(c) = 0 and f ′′(c) < 0, then f has a local
maximum at c.

Proof. Similar to the proof of Proposition 5.3. ⊓⊔

Remarks 5.5. (i) An informal, but easy, way to remember the First Deriva-
tive Test (for local minimum as well as local maximum) is as follows:



5.2 Local Extrema and Points of Inflection 153

f ′ changes from − to + at c =⇒ f has a local minimum at c;
f ′ changes from + to − at c =⇒ f has a local maximum at c;

Note, however, that apart from differentiability in an open interval about c,
except possibly at c, the continuity at the point c is essential. For example,
we can use this test to ascertain that the absolute value function has a local
minimum at 0. Likewise, it can be used to ascertain that f : R → R defined
by f(x) := −|x| has a local maximum at 0. However, it can not be applied to
check whether the integer part function has a local extremum at, say, x = 0.
[See Figure 1.5.]

(ii) The Second Derivative Test (for local minimum as well as local max-
imum) is valid under a restrictive hypothesis, namely, twice differentiability,
and usually needs more checking (values of both the derivatives). But it has
the advantage of being short and easy to remember.

(iii) While the First Derivative Test and the Second Derivative Test provide
sufficient conditions for a local extremum, neither of them is necessary, that
is, a function can have a local extremum at a point but may not satisfy the
hypothesis of either of these tests. We have, in fact, seen in Chapter 1 an
example of a function [the piecewise linear zigzag function in Example 1.18]
that has a local minimum at 0 but is not decreasing on (−δ, 0] and increasing
on [0, δ) for any δ > 0. It can easily be seen that this function does not satisfy
the hypothesis of the First Derivative Test as well as of the Second Derivative
Test, even though it has a local minimum at 0. Easier counterexamples appear
in Examples 5.6 (ii) and (iii) below. Notice that the negative of these functions
provide examples of functions that have a local maximum but do not satisfy
the hypothesis of any of the tests.

(iv) If in subpart (b) of the First Derivative Test for local minimum, we
change the inequalities ‘f ′(x) ≤ 0’ and ‘f ′(x) ≥ 0’ to the corresponding strict
inequalities ‘f ′(x) < 0’ and ‘f ′(x) > 0’, then we can conclude that f has a
strict local minimum at the corresponding point. Similarly in the case of a
local maximum. More generally, we can reach the conclusion about f having
a strict local extremum if in addition to the hypothesis of the First Derivative
Test, we require that f ′ not vanish identically on any subinterval of (c − δ, c)
or of (c, c + δ) containing more than one point. Thus, f ′ is allowed to vanish
at a few stray points but not on a continuous segment with c as one of its
endpoints. On the other hand, if the hypothesis of the Second Derivative Test
is satisfied, then we have, in fact, a strict local extremum. These assertions
are easily proved by gleaning through the proofs of Propositions 5.3 and 5.4
and using Propositions 4.27 and 4.30. ✸

Examples 5.6. (i) Consider f : R → R defined by

f(x) :=
1

x4 − 2x2 + 7
.

Note that since x4−2x2 +7 = (x2−1)2 +6 > 0 for all x ∈ R, the function
f is well defined and differentiable on R. Moreover,
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f ′(x) =
−(4x3 − 4x)

(x4 − 2x2 + 7)2
=

−4x(x − 1)(x + 1)

(x4 − 2x2 + 7)2
for x ∈ R.

Thus, f ′ vanishes only at x = −1, 0, 1. Now we can make a table as follows.

Interval (−∞,−1) (−1, 0) (0, 1) (1,∞)

Sign of f ′ + − + −

In view of this, from the First Derivative Test, we can conclude that f
has a local minimum at x = 0 and local maxima at x = −1 and x = 1.
Notice that in this example, it would be quite complicated to compute f ′′

and use the Second Derivative Test.
(ii) Consider f : (−1, 1) → R defined by

f(x) :=

{
x2 if 0 < |x| < 1,
−1 if x = 0.

Then it is clear that f(0) < f(x) for all nonzero x ∈ (−1, 1), and thus f
has a strict local minimum at x = 0. However, the conditions of the First
Derivative Test are not satisfied. Indeed, f is differentiable on (−1, 0) as
well as on (0, 1) and f ′ changes sign from − to + at x = 0 but f is not
continuous at 0.

(iii) Consider f : R → R defined by f(x) := x4. Then f(0) = 0 < f(x) for all
nonzero x ∈ R, and thus f has a strict local minimum at x = 0. However,
the conditions of the Second Derivative Test are not satisfied. Indeed, f
is twice differentiable and f ′(0) = 0, but f ′′(0) is not positive. ✸

Points of Inflection

We shall now move on to a more subtle attribute of (the graph of) a real-
valued function, namely, the geometric notion of a point of inflection, which
was defined in Chapter 1. Briefly, this is a point at which convexity changes
to concavity or vice versa. More precisely, given any D ⊆ R and f : D → R,
an interior point c ∈ D is said to be a point of inflection for f if there is
δ > 0 with (c − δ, c + δ) ⊆ D such that f is convex on (c − δ, c) and concave
on (c, c + δ), or vice versa. Also, recall that c is said to be a strict point of
inflection of f if there is δ > 0 with (c − δ, c + δ) ⊆ R such that f is strictly
convex on (c − δ, c) and strictly concave on (c, c + δ), or vice versa.

A typical example is f : R → R given by f(x) := x3 [see Figure 1.3 (iv)],
for which 0 is a point of inflection; in fact, 0 is a strict point of inflection for
this function.

Characterizations of convexity and concavity in terms of derivatives dis-
cussed in Chapter 4 lead to the following result about points of inflection.
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Proposition 5.7 (Necessary and Sufficient Conditions for a Point of
Inflection). Let D ⊆ R, c be an interior point of D. Let f : D → R be any
function. Then we have the following:

(i) Suppose f is differentiable on (c−r, c)∪(c, c+r) for some r > 0. Then c is
a point of inflection for f if and only if there is δ > 0 with δ ≤ r such that
f ′ is monotonically increasing on (c − δ, c), whereas f ′ is monotonically
decreasing on (c, c + δ), or vice versa.

(ii) Suppose f is twice differentiable on (c − r, c) ∪ (c, c + r) for some r > 0.
Then c is a point of inflection for f if and only if there is δ > 0 with δ ≤ r
such that f ′′ is nonnegative throughout (c−δ, c), whereas f ′′ is nonpositive
throughout (c, c + δ), or vice versa.

Proof. Part (i) follows from parts (i) and (ii) of Proposition 4.31, while part
(ii) follows from parts (i) and (ii) of Proposition 4.32. ⊓⊔

The above results can be used to obtain weaker but concise conditions that
are necessary or sufficient for an interior point in the domain of a function to
be a point of inflection.

Proposition 5.8. Let D ⊆ R, c be an interior point of D, and f : D → R be
any function. Then we have the following:

(i) [Necessary Condition for a Point of Inflection] Let f be twice dif-
ferentiable at c. If c is a point of inflection for f , then f ′′(c) = 0.

(ii) [Sufficient Conditions for a Point of Inflection] Let f be thrice dif-
ferentiable at c. If f ′′(c) = 0 and f ′′′(c) �= 0, then c is a point of inflection
for f .

Proof. (i) If f ′′(c) exists, then it is tacitly assumed that f ′ exists on (c−r, c+r)
for some r > 0 with (c − r, c + r) ⊆ D. If c is a point of inflection for f , then
by part (i) of Proposition 5.7, there is δ > 0 with δ ≤ r such that

f ′ is increasing on (c − δ, c) and decreasing on (c, c + δ), or vice versa.

Now f ′, being differentiable at c, is continuous at c, and therefore we have

f ′(x) ≤ f ′(c) for all x ∈ (c − δ, c) and f ′(c) ≥ f ′(x) for all x ∈ (c, c + δ),

or vice versa (that is, the inequalities ≤ and ≥ above are interchanged). Hence

0 ≤ lim
x→c−

f ′(x) − f ′(c)

x − c
= f ′′(c) = lim

x→c+

f ′(x) − f ′(c)

x − c
≤ 0,

or vice versa (that is, the inequalities ≤ above change to ≥). In any case, we
readily see that f ′′(c) = 0.

(ii) If f ′′′(c) exists, then it is tacitly assumed that f ′′ exists on (c−r, c+r)
for some r > 0 with (c − r, c + r) ⊆ D. Suppose now that f ′′(c) = 0 and
f ′′′(c) �= 0. We may first assume that f ′′′(c) < 0. Then
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lim
x→c

f ′′(x)

x − c
= lim

x→c

f ′′(x) − f ′′(c)

x − c
= f ′′′(c) < 0.

Hence by part (i) of Proposition 3.24, there is δ > 0 with δ ≤ r such that
f ′′(x)/(x − c) < 0 for all x ∈ (c − δ, c) ∪ (c, c + δ). Consequently,

f ′′(x) > 0 for all x ∈ (c − δ, c) and f ′′(x) < 0 for all x ∈ (c, c + δ).

Thus, by part (ii) of Proposition 5.7, c is a point of inflection for f . A similar
argument holds if f ′′(c) = 0 and f ′′′(c) > 0. ⊓⊔
Remarks 5.9. (i) The condition in part (i) of the above proposition is not
sufficient. Consider, for example, f : R → R defined by f(x) := x4. Then 0 is
not a point of inflection for f , but f ′′(0) = 0.

(ii) The condition in part (ii) is not necessary. Consider, for example,
f : R → R defined by f(x) := x5. Then 0 is a point of inflection for f , but
f ′′′(0) = 0.

(iii) If in part (i) of Proposition 5.7 we change the words ‘monotonically
increasing’ and ‘monotonically decreasing’ to ‘strictly increasing’ and ‘strictly
decreasing’, respectively, then we obtain a necessary and sufficient condition
that c is a strict point of inflection for f . Likewise, in part (ii) of Proposition
5.7, if in addition to the condition about the sign of f ′′, we require that f ′′

not vanish identically on any subinterval of (c− δ, c) or of (c, c+ δ) containing
more than one point, then we obtain a necessary and sufficient condition for
c to be a strict point of inflection for f . On the other hand, if the sufficient
condition in part (ii) of Proposition 5.8 is satisfied, then c is, in fact, a strict
point of inflection for f . These assertions are easily proved by gleaning through
the proofs of Propositions 5.7 and 5.8 and appealing to parts (iii) and (iv) of
Proposition 4.31 as well as parts (i) and (ii) of Proposition 4.35. ✸

As an illustration of the various tests obtained in this section and also in
Section 4.3, let us work out an example in which we first use these tests to
identify several features of the function or its graph. We shall also see how,
equipped with this knowledge, one can make a rough sketch of the graph.

Example 5.10. Consider f : R → R defined by f(x) := x3 − 6x2 + 9x + 1.
Then

f ′(x) = 3x2 − 12x + 9 = 3(x − 1)(x − 3) and f ′′(x) = 6x − 12 = 6(x − 2).

Thus, f ′(x) = 0 only at x = 1 and 3, while f ′′(x) = 0 only at x = 2. Moreover,
we can make tables as follows:

Interval (−∞, 1) (1, 3) (3,∞)

Sign of f ′ + − +

Interval (−∞, 2) (2,∞)

Sign of f ′′ − +

In view of this [together with Propositions 4.27, 5.3, 5.4, 4.31, 5.7, and 5.8],
we obtain the following:
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• f is (strictly) increasing on (−∞, 1) as well as on (3,∞), and f is (strictly)
decreasing on (1, 3).

• f has a (strict) local maximum at x = 1 and a (strict) local minimum at
x = 3.

• f is (strictly) concave on (−∞, 2) and (strictly) convex on (2,∞).
• 2 is a (strict) point of inflection for f .

Now we can make a rough sketch of the curve y = f(x) by plotting a few
points [for example, f(0) = 1, f(1) = 5, f(2) = 3, f(3) = 1, and f(4) = 5]
and using the above facts. It will look like the graph in Figure 5.3. ✸
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Fig. 5.3. Graph of y = x3 − 6x2 + 9x + 1

5.3 Linear and Quadratic Approximations

By way of motivating Taylor’s Theorem, we have discussed in Chapter 4 how
the MVT and its generalizations are helpful in evaluating functions approxi-
mately. In this section, we shall formalize these aspects and give some basic
features of the simplest of such approximations that are used in practice,
namely, the linear and quadratic approximations.

Let D ⊆ R and c be an interior point of D. If f : D → R is differentiable
at c, then the function L : R → R defined by

L(x) := f(c) + f ′(c)(x − c) for x ∈ R

is called the linear approximation to f around c. Note that L(x) is the first
Taylor polynomial of f around c. Geometrically speaking, y = L(x) represents
a line, which is precisely the tangent to the curve y = f(x) at the point
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Fig. 5.4. Linear approximation or tangent line approximation around a point

(c, f(c)). For this reason, L is also called the tangent line approximation
to f around c.

The difference
e1(x) := f(x) − L(x) for x ∈ D

is called the error at x in the linear approximation to f around c.

Proposition 5.11. Let D ⊆ R and c be an interior point of D. If f : D → R
is differentiable at c, then the linear approximation L to f around c is indeed
an approximation to f around c, that is,

lim
x→c

L(x) = f(c) or equivalently, lim
x→c

e1(x) = 0.

In fact, e1(x) rapidly approaches zero as x → c in the sense that

lim
x→c

e1(x)

x − c
= 0.

Moreover, given any b ∈ D with b �= c, if Ib denotes the open interval with c
and b as its endpoints and if f ′ exists and is continuous on Ib as well as its
endpoints c and b, f ′′ exists on Ib, and |f ′′(x)| ≤ M2(b) for all x ∈ Ib, then
we have the following error bound:

|e1(b)| ≤
M2(b)

2
|b − c|2.

Proof. It is obvious from the definition of L that

lim
x→c

L(x) = f(c) or equivalently, lim
x→c

e1(x) = 0.

The assertion about rapid vanishing of e1(x) follows by noting that
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lim
x→c

e1(x)

x − c
= lim

x→c

f(x) − f(c) − f ′(c)(x − c)

x − c
= f ′(c) − f ′(c) = 0.

Finally, if b ∈ D and b �= c, then applying Taylor’s Formula (Remark 4.24),
with I = Ib and n = 1, we see that there is ξ between c and b such that

e1(b) = f(b) − f(c) − f ′(c)(b − c) =
f ′′(ξ)

2
(b − c)2.

This implies the desired error bound for |e1(b)|. ⊓⊔

Example 5.12. Let D := {x ∈ R : x �= 1} and consider f : D → R defined
by f(x) := 1/(1 − x). Then f ′(x) = 1/(1 − x)2 for x ∈ D and in particular,
f ′(0) = 1. Thus, the linear approximation to f around 0 is given by

L(x) = f(0) + f ′(0)(x − 0) = 1 + x for x ∈ R.

The error bound e1 for f − L in this case can be worked out as follows.
Given b ∈ (−1, 1), b �= 0, let us consider two cases. First, suppose b > 0 and
Ib = (0, b). Then

|f ′′(x)| =
2

(1 − x)3
≤ 2

(1 − b)3
for x ∈ Ib.

Thus, in this case we may take M2(b) = 2/(1 − b)3 and by Proposition 5.11
conclude that |e1(b)| ≤ b2/(1− b)3. For instance, if 0 < b < 0.1, then we have
|e1(b)| ≤ (0.1)2/(0.9)2 < 0.014. Next, suppose b < 0 and Ib = (b, 0). Then

|f ′′(x)| =
2

(1 − x)3
≤ 2 for x ∈ Ib.

Thus, in this case we may take M2(b) = 2 and by Proposition 5.11 conclude
that |e1(b)| ≤ b2. For instance, if −0.1 < b < 0, then we have |e1(b)| ≤ (0.1)2 =
0.01. ✸

As the above example shows, linear approximation gives a reasonable ap-
proximation to the values of a function around a point where it is differ-
entiable. However, if one wants to do better, then one may take recourse
to quadratic approximation, which is available provided the relevant second
derivative exists.

Let, as before, D ⊆ R and c be an interior point of D. If f : D → R is
twice differentiable at c, then the function Q : R → R defined by

Q(x) := f(c) + (x − c)f ′(c) +
(x − c)2

2
f ′′(c) for x ∈ R

is called the quadratic approximation to f around c. Note that Q(x) is
the second Taylor polynomial of f around c. Geometrically speaking, y =
Q(x) represents a parabola passing through the point (c, f(c)) such that this
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parabola and the curve y = f(x) have a common tangent at (c, f(c)). The
difference

e2(x) := f(x) − Q(x) for x ∈ D

is called the error at x in the quadratic approximation to f around c.

Proposition 5.13. Let D ⊆ R and c be an interior point of D. If f : D → R
is twice differentiable at c, then the quadratic approximation Q to f around c
is indeed an approximation to f around c, that is,

lim
x→c

Q(x) = f(c) or equivalently, lim
x→c

e2(x) = 0.

In fact, e2(x) approaches zero as x → c doubly rapidly in the sense that

lim
x→c

e2(x)

(x − c)2
= 0.

Moreover, given any b ∈ D with b �= c, if Ib denotes the open interval with c
and b as its endpoints and if f ′′ exists and is continuous on Ib as well as at
its endpoints c and b, f ′′′ exists on Ib, and |f ′′′(x)| ≤ M3(b) for all x ∈ Ib,
then we have the following error bound:

|e2(b)| ≤
M3(b)

3!
|b − c|3.

Proof. It is obvious from the definition of Q that

lim
x→c

Q(x) = f(c) or equivalently, lim
x→c

e2(x) = 0.

The assertion about doubly rapid vanishing of e2(x) follows by noting that by
L’Hôpital’s Rule for 0

0 indeterminate forms, we have

lim
x→c

e2(x)

(x − c)2
= lim

x→c

f ′(x) − f ′(c) − f ′′(c)(x − c)

2(x − c)
=

1

2
[f ′′(c) − f ′′(c)] = 0.

Finally, if b ∈ D and b �= c, then applying Taylor’s Formula (Remark 4.24),
with I = Ib and n = 2, we see that there is η ∈ Ib such that

e2(b) = f(b) − f(c) − f ′(c)(b − c) − f ′′(c)

2
(b − c)2 =

f ′′′(η)

3!
(b − c)3.

This implies the desired inequality for |e2(b)|. ⊓⊔

Now let us revisit Example 5.12 and see what the quadratic approximation
and the corresponding error bound look like.

Example 5.14. Consider f : (−1, 1) → R defined by f(x) := 1/(1 − x) and
c := 0. Then f ′(x) = 1/(1 − x)2 and f ′′(x) = 2/(1 − x)3 for x ∈ (−1, 1). In



5.4 The Picard and Newton Methods 161

particular, f ′(0) = 1 and f ′′(0) = 2. Thus, the quadratic approximation to f
around 0 is given by

Q(x) = f(0) + f ′(0)(x − 0) +
f ′′(0)

2
(x − 0)2 = 1 + x + x2.

The error bound e2 for f − Q in this case can be worked out as follows.
Given b ∈ (−1, 1), b �= 0, let us consider two cases. First, suppose b > 0 and
Ib = (0, b). Then

|f ′′′(x)| =
6

(1 − x)4
≤ 6

(1 − b)4
for x ∈ Ib.

Thus, in this case we may take M3(b) = 6/(1 − b)4 and by Proposition 5.13
conclude that |e2(b)| ≤ |b|3/(1−b)4. For instance, if 0 < b < 0.1, then we have
|e2(b)| ≤ (0.1)3/(0.9)4 < 0.0016. Next, suppose b < 0 and Ib = (b, 0). Then

|f ′′(x)| =
6

(1 − x)4
≤ 6 for x ∈ Ib.

Thus, in this case we may take M3(b) = 6 and by Proposition 5.13 conclude
that |e2(b)| ≤ |b|3. For instance, if −0.1 < b < 0, then we have |e2(b)| ≤
(0.1)3 = 0.001. ✸

It may be noted that in the above example, the estimates have become
sharper than those in Example 5.12. In a similar way, if we were to consider
cubic approximations, quartic approximations, and so on, the estimates would
become more and more sharp. These higher-degree approximations and the
corresponding error bounds can be obtained in an analogous manner. See
Exercise 21.

5.4 The Picard and Newton Methods

The title of this section refers to methods that can be used to obtain approx-
imate solutions to the following two interrelated problems:

1. The problem of finding a fixed point of a function, namely, if D ⊆ R and
f : D → D, then the problem is to find x ∈ D such that f(x) = x.

2. The problem of finding a solution of an equation, namely, if D ⊆ R and
f : D → R, then the problem is to find x ∈ D such that f(x) = 0.

To see that these problems are interrelated, it suffices to note that if f : D → D
and if we set F (x) = f(x) − x, then finding a fixed point of f is equivalent
to finding a solution to F (x) = 0. On the other hand, if f : D → R and if
we set F (x) = x + h(x)f(x) where h : D → R is so chosen that h(x) �= 0
and x + h(x)f(x) ∈ D for all x ∈ D, then finding a solution of f(x) = 0 is
equivalent to finding a fixed point of F : D → D.
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Finding a Fixed Point

Let us first take up the problem of finding fixed points. For simplicity, we shall
restrict ourselves to the case of functions from a closed and bounded interval
of R into itself. In this case, the existence of a fixed point is guaranteed if the
function satisfies a mild condition such as continuity.

Proposition 5.15. If f : [a, b] → [a, b] is continuous, then f has a fixed point.

Proof. Let F : [a, b] → R be defined by F (x) = f(x) − x. Since a ≤ f(x) ≤ b
for all x ∈ [a, b], we have,

F (a) = f(a) − a ≤ 0 and F (b) = f(b) − b ≥ 0.

Also, since f is continuous, so is F . Hence by Proposition 3.13, F has the IVP
on [a, b]. So, there is c ∈ [a, b] such that F (c) = 0, that is, f(c) = c. ⊓⊔

Examples 5.16. (i) While a fixed point in [a, b] exists for a continuous func-
tion f : [a, b] → [a, b], it need not be unique. Consider, for example,
f : [0, 1] → [0, 1] defined by f(x) := x, where every point of [0, 1] is a fixed
point of f .

(ii) The condition that f be defined on a closed subset of R is essential for
the existence of a fixed point. For example, if f : [0, 1) → R is defined by
f(x) := (1 + x)/2, then f maps [0, 1) into itself, and f is continuous. But
f has no fixed point in [0, 1). Indeed, (1 + x)/2 = x only when x = 1.

(iii) The condition that f be defined on a bounded subset of R is essential for
the existence of a fixed point. For example, if f : [1,∞) → R is defined
by f(x) := x + (1/x), then f maps [1,∞) into itself, and f is continuous.
But clearly, f has no fixed point in [1,∞).

(iv) The condition that f be defined on an interval in R is essential for the
existence of a fixed point. For example, if D = [−2,−1] ∪ [1, 2] and f :
D → R is defined by f(x) := −x, then f maps D into itself, and f is
continuous. But f has no fixed point in D. ✸

Suppose we know that a function f : [a, b] → [a, b] has a fixed point. Then
a natural question is whether we can find it. It is not easy, in general, to find it
exactly. A simple and effective method given by Picard seeks to achieve what
may be the next best alternative to finding a fixed point exactly, namely, to
find it approximately. In geometric terms, the basic idea of the Picard method
can be described as follows.

First, pick any point P0 = (x0, f(x0)) on the curve y = f(x). Project P0

horizontally to a point Q0 on the diagonal line y = x, and then, project the
point Q0 vertically onto the curve y = f(x) to obtain a point P1 = (x1, f(x1)).
Again, project P1 horizontally to Q1 on y = x and then, project Q1 vertically
onto y = f(x) to obtain P2 = (x2, f(x2)). This process can be be repeated
a number of times. Often, it will weave a cobweb in which the fixed point of
f , that is, the point of intersection of the curve y = f(x) and the diagonal
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line y = x, gets trapped. [See Figure 5.5 (i).] In fact, we shall see that such
trapping occurs if the slopes of tangents to the curve y = f(x) are smaller
(in absolute value) than the slope of the diagonal line y = x. When the slope
condition is not met, then the points P0, P1, P2, . . . may move away from a
fixed point. [See Figure 5.5 (ii).]
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Fig. 5.5. Picard sequence that is (i) converging to a fixed point, and (ii) diverging
away from a fixed point

In analytic terms, the Picard method can be described as follows. Given
any x0 ∈ [a, b], we recursively define a sequence (xn) by

xn = f(xn−1) for n ∈ N.

Such a sequence (xn) is called a Picard sequence for the function f (with its
initial point x0). It is clear that if a Picard sequence (xn) for f is convergent
and f is continuous, then the limit x of (xn) is a fixed point of f . Indeed,

f(x) = f
(

lim
n→∞

xn

)
= f

(
lim

n→∞
xn−1

)
= lim

n→∞
f (xn−1) = lim

n→∞
xn = x.

A sufficient condition for the convergence of a Picard sequence, which is a
formal analogue of the geometric condition on slopes mentioned above, is
given by the following result. It is to be noted here that the same condition
guarantees the uniqueness of a fixed point.

Proposition 5.17 (Picard Convergence Theorem). If f : [a, b] → [a, b]
is continuous on [a, b] and differentiable on (a, b) with |f ′(x)| < 1 for all
x ∈ (a, b), then f has a unique fixed point. Furthermore, any Picard sequence
for f is convergent and converges to the unique fixed point of f .
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Proof. By Proposition 5.15, f has a fixed point in [a, b]. If there are two fixed
points c1, c2 ∈ [a, b], then by the MVT, there is c ∈ (a, b) such that

|c1 − c2| = |f(c1) − f(c2)| = |f ′(c)||c1 − c2| < |c1 − c2|,

which is a contradiction. Thus, f has a unique fixed point.
Let c∗ denote the unique fixed point of f . Consider any x0 ∈ [a, b], and

let (xn) be the Picard sequence for f with its initial point x0. Now, given any
n ∈ N, by the MVT, there is cn−1 between xn−1 and c∗ such that

xn − c∗ = f(xn−1) − f(c∗) = f ′(cn−1) (xn−1 − c∗) .

As a consequence, |xn − c∗| ≤ |xn−1 − c∗| for all n ∈ N. We shall now show
that xn → c∗. First, note that since xn ∈ [a, b] for n ≥ 0, the sequence (xn) is
bounded. Thus, by Proposition 2.17, it suffices to show that every convergent
subsequence of (xn) has c∗ as its limit. Let x ∈ R and (xnk

) be a subsequence
of (xn) such that xnk

→ x. Then

∣∣xnk+1
− c∗

∣∣ ≤ |xnk+1 − c∗| ≤ |xnk
− c∗| .

But both the sequences (|xnk
− c∗|) and

(∣∣xnk+1
− c∗

∣∣) converge to |x − c∗|.
So, by the Sandwich Theorem, |xnk+1 − c∗| → |x − c∗| as k → ∞. On the
other hand,

lim
k→∞

|xnk+1 − c∗| = lim
k→∞

|f(xnk
) − f(c∗)| = |f(x) − f(c∗)|.

It follows that |f(x) − f(c∗)| = |x − c∗|. Now, if x �= c∗, then by the MVT,
there is c ∈ (a, b) such that

|x − c∗| = |f(x) − f(c∗)| = |f ′(c)||x − c∗| < |x − c∗|,

which is a contradiction. This proves that xn → c∗. ⊓⊔

Remark 5.18. The proof of Picard’s Convergence Theorem becomes simpler
if instead of assuming |f ′(x)| < 1 for all x ∈ (a, b), we make the stronger
assumption that there is α < 1 such that |f ′(x)| < α for all x ∈ (a, b). In
this case we can also obtain the ‘rate of convergence’ for the Picard sequence.
[See Exercise 32.] An alternative set of conditions for the convergence of the
Picard sequence is given in Exercise 28. The Picard Convergence Theorem
itself admits several generalizations and extensions. Some of these are outlined
in Exercise 29. ✸

Examples 5.19. (i) Consider f : [0, 2] → R defined by f(x) := (1 + x)1/5.
Then 0 ≤ f(x) ≤ 31/5 < 2 for all x ∈ [0, 2]. Thus, f maps the interval
[0, 2] into itself. Moreover, f is continuous on [0, 2], differentiable on (0, 2),
and

|f ′(x)| =
1

5(1 + x)4/5
≤ 1

5
< 1 for x ∈ [0, 2].
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Thus, by the Picard convergence theorem, f has a unique fixed point,
and successively better approximations to this fixed point are given by
the successive terms of a Picard sequence for f . For example, if we take
x0 = 0, then the first few terms of the corresponding Picard sequence for
f are roughly given by x1 = 1, x2 = 1.148698, x3 = 1.1652928, and x4 =
1.1670872. It may be noted that finding a fixed point of f is equivalent to
finding the root of the quintic polynomial x5 − x− 1 in the interval [0, 2].

(ii) Consider f : [0, 1] → R defined by f(x) := x2/2. Then f maps [0, 1]
into itself. Moreover, f is continuous on [0, 1], differentiable on (0, 1) and
|f ′(x)| = |x| < 1 for all x ∈ (0, 1). Thus, by the Picard convergence
theorem, f has a unique fixed point and any Picard sequence for f will
converge to this fixed point. Indeed, it is easily verified that 0 is the only
fixed point of f in [0, 1]. Note that in this case there is no α < 1 such that
|f ′(x)| < α for all x ∈ (0, 1).

(iii) The condition |f ′(x)| < 1 for all x ∈ (a, b) is essential for the uniqueness
of a fixed point. For example, if f : [a, b] → R is defined by f(x) := x,
then f maps [a, b] into itself, and every point of [a, b] is a fixed point of f .
Here, f ′(x) = 1 for all x ∈ (a, b).

(iv) When the condition |f ′(x)| < 1 for all x ∈ (a, b) is not satisfied, a function
can still have a unique fixed point c∗ but the Picard sequence (xn) with its
initial point x0 �= c may not converge to c∗. For example, if f : [−1, 1] → R
is defined by f(x) := −x, then f maps [−1, 1] into itself, f is differentiable
and |f ′(x)| = 1 for all x ∈ [−1, 1]. Clearly, c∗ = 0 is the unique fixed point
of f , but if x0 �= 0, then the corresponding Picard sequence looks like
−x0, x0,−x0, x0, . . .; in other words, it oscillates between x0 and −x0 and
never reaches the fixed point. In geometric terms, the cobweb that we
hope to weave just traces out a square over and over again. ✸

Remark 5.20. When the hypothesis of the Picard Convergence Theorem is
satisfied, a Picard sequence for f : [a, b] → [a, b] with arbitrary x0 ∈ [a, b] as
its initial point will converge to a fixed point. It is natural to expect that if
x0 is closer to the fixed point, then the convergence will be rapid. But since
we do not know the fixed point to begin with, it may not be clear how one
picks a ‘good’ initial point x0. To this end, observe that a fixed point of f
is necessarily in its range. The range is usually smaller than [a, b]. Thus, it
is better that x0 be picked from f([a, b]). For example, if f : [0, 1] → [0, 1] is
given by f(x) := (x+1)/4, then the range of f equals

[
1
4 , 1

2

]
, and so we should

choose x0 to be this smaller subinterval. In fact, this simple observation can
be extended further. A fixed point of f lies not only in the range of f but
also in the ranges of the composites f ◦ f , f ◦ f ◦ f , and so on. Thus, if Rn

is the range of the n-fold composite f ◦ · · · ◦ f , then a fixed point is in each
Rn as n varies over N. If only a single point belongs to each Rn (n ∈ N),
then we have found our fixed point! In fact, the Picard method amounts to
starting with any x0 ∈ [a, b] and considering the image of x0 under the n-fold
composite f ◦ · · · ◦ f of f . For example, if, as before, f : [0, 1] → [0, 1] is given
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by f(x) = (x + 1)/4, then it is easy to see that the n-fold composite of f , say
fn, and its range are given by

fn(x) =
x + (4n − 1)/3

4n
and Rn := fn([0, 1]) =

[
1

3

(
1 − 1

4n

)
,
1

3

(
1 +

2

4n

)]
.

It is clear, therefore, that 1
3 is the only point in each Rn (n ∈ N), and this is

the unique fixed point of f (as can also be verified directly from the definition
of f). Of course, in general, it is not practical to determine the ranges of the
n-fold composites of f for all n ∈ N. So it is simpler to use the Picard method.
But the Picard method will be more effective if the above observations are
used to some extent in choosing the initial point. ✸

Finding a Solution of an Equation

We now turn to the second problem mentioned earlier, namely, the problem
of finding a solution of f(x) = 0, where f is a real-valued function defined on
a subset of R. For simplicity, we shall restrict ourselves to the case in which
f is defined on a closed and bounded interval of R. In this case, the existence
of a solution is guaranteed if the IVP is available.

Proposition 5.21. If f : [a, b] → R is continuous and if f(a) and f(b) have
opposite signs, then f(x) = 0 has a solution in [a, b].

Proof. The result is an immediate consequence of the fact that a continuous
function on [a, b] has the IVP. ⊓⊔

Suppose we know that f : [a, b] → R is such that the equation f(x) = 0
has a solution. Then a natural question is whether we can find it. It is not
easy, in general, to find an exact solution.1 A method given by Newton seeks
to achieve what may be the next best alternative to finding an exact solution,
namely, to find an approximate solution. In geometric terms, the basic idea
of the Newton method can be described as follows.

First, pick any point P0 = (x0, f(x0)) on the curve y = f(x). Draw a
tangent to this curve at P0 and if it intersects the x-axis at (x1, 0), then

1 In fact, this is a very difficult problem even for the nicest of functions, namely
polynomial functions. In the special case of linear and quadratic equations, there
are simple and well-known formulas for their solutions. For the solutions of cubic
and quartic equations, there are more intricate formulas, ascribed to Cardan and
Ferrari, which express the solutions in terms of the coefficients of the polynomial
using the basic operations of algebra, namely, addition, subtraction, multiplica-
tion, division, and extraction of roots. After several unsuccessful attempts to find
a similar formula for a general polynomial equation of degree 5 or more, it was
proved by Abel that no such formula exists. In other words, a general equation
of degree 5 or more is not solvable by radicals. An elegant proof of Abel’s result
was given by Galois, who also gave a criterion for an equation to be solvable by
radicals. For more on these topics, we refer to the book of Tignol [64].
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consider the corresponding point P1 = (x1, f(x1)). Again, draw the tangent
to y = f(x) at P1 and if it intersects the x-axis at (x2, 0), then consider the
corresponding point P2 = (x2, f(x2)). This process can be repeated a number
of times. Often, it will rapidly bring us near to the point of intersection of
the curve y = f(x) and the x-axis, that is, to the solution of f(x) = 0. In
effect, each time we replace the curve by the tangent line approximation and
utilize the fact that linear equations can be solved. It is clear, however, that
the procedure will fail if at some point, the tangent is parallel to the x-axis.
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Fig. 5.6. Newton sequence approaching a solution of an equation

In analytic terms, the Newton method (sometimes also called the
Newton–Raphson method) can be described as follows. Choose any x0 ∈
[a, b] such that f ′(x0) exists and f ′(x0) �= 0. Given any n ∈ N and xn−1 ∈ [a, b]
such that f ′(xn−1) �= 0, we let xn be the root of the linear approximation

L(x) = f(xn−1) + f ′(xn−1)(x − xn−1)

to f around xn−1. In other words,

xn = xn−1 −
f(xn−1)

f ′(xn−1)
.

Such a sequence (xn) is called a Newton sequence for the function f (with
its initial point x0). It is clear that if a Newton sequence (xn) for f is conver-
gent and f ′ is bounded, then the limit x of (xn) satisfies f(x) = 0. Indeed,
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f(x) = f
(

lim
n→∞

xn−1

)
= lim

n→∞
f (xn−1) = lim

n→∞
f ′(xn−1) (xn−1 − xn) = 0.

A sufficient condition for the convergence of a Newton sequence can be derived
from the Picard Convergence Theorem as follows.

Proposition 5.22 (Convergence of Newton Sequences). Let f : [a, b] →
R be differentiable with f ′(x) �= 0 for all x ∈ [a, b], and

x − f(x)

f ′(x)
∈ [a, b] for all x ∈ [a, b].

Assume that f ′ is continuous on [a, b], differentiable on (a, b), and

∣∣∣∣
f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ < 1 for all x ∈ (a, b).

Then there is a unique x∗ ∈ [a, b] such that f(x∗) = 0. Furthermore, the
Newton sequence for f with any initial point x0 ∈ [a, b] converges to x∗.

Proof. Define F : [a, b] → R by

F (x) := x − f(x)

f ′(x)
for x ∈ [a, b].

Then F is continuous on [a, b], differentiable on (a, b), and F maps the interval
[a, b] into itself. Notice that x ∈ [a, b] is a fixed point of F if and only if
f(x) = 0. Moreover, for any x ∈ [a, b], we have

|F ′(x)| =

∣∣∣∣1 − [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ =

∣∣∣∣
f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ < 1.

Therefore, by the Picard Convergence Theorem, F has a unique fixed point x∗

in [a, b], which is then the unique root of f in [a, b]. Furthermore, if x0 ∈ [a, b]
is any initial point, then the Newton sequence for f is, in fact, the Picard
sequence for F , and hence it converges to x∗. ⊓⊔

Examples 5.23. (i) Consider f :
[

5
4 , 3

2

]
→ R defined by f(x) := x3 − 3.

Then f is continuous on
[
5
4 , 3

2

]
and

f
(5

4

)
=

125

64
− 3 < 0, while f

(3

2

)
=

27

8
− 3 > 0.

Hence, by Proposition 5.21, f has a root in
[
5
4 , 3

2

]
. In this case, the iterative

formula for the Newton sequence is given by

xn = xn−1 −
x3

n−1 − 3

3x2
n−1

=
2

3
xn−1 +

1

x2
n−1

provided xn−1 �= 0.

Thus, if we take x0 = 5
4 , then we obtain
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x1 = 1.473333 . . . , x2 = 1.442900 . . . , x3 = 1.442249 . . . .

On the other hand, if we take x0 = 3
2 , then we obtain

x1 = 1.444444 . . . , x2 = 1.442252 . . . , x3 = 1.442249 . . . .

This indicates that both the Newton sequences converge to the same limit,
which is approximately 1.442249 · · · . In fact, this is quite in accordance
with the theory because

x − f(x)

f ′(x)
=

2x3 + 3

3x2
∈
[
5

4
,
3

2

]
for all x ∈

[
5

4
,
3

2

]
,

since 15x2 ≤ 8x3 + 12 and 4x3 + 6 ≤ 9x2. (See Exercise 31 (ii) of Chapter
4.) Moreover, for x ∈

(
5
4 , 3

2

)
, we have

∣∣∣∣
f(x)f ′′(x)

[f ′(x)]2

∣∣∣∣ =

∣∣∣∣
(x3 − 3)6x

9x4

∣∣∣∣ =
2

3

|x3 − 3|
x3

≤ 2

3
< 1.

Thus, the hypothesis of Proposition 5.22 is satisfied. Hence the equation
f(x) = 0 has a unique solution in

[
5
4 , 3

2

]
and any Newton sequence con-

verges to it.
(ii) To illustrate how the Newton sequence behaves where there is more than

one solution, consider f : [−2, 4] → R defined by f(x) := x2 − 2x − 3 =
(x + 1)(x − 3). [See Figure 5.7 (i).] Clearly f(x) = 0 has two solutions
x = −1 and x = 3. Now, f ′(x) = 2(x− 1), and thus the Newton sequence
for f with any initial point x0 �= 1 is given by

xn = xn−1 −
x2

n−1 − 2xn−1 − 3

2(xn−1 − 1)
=

x2
n−1 + 3

2(xn−1 − 1)
, provided xn−1 �= 1.

It is not difficult to show that if x0 < 1, then (xn) converges to the root
−1 of f , whereas if x0 > 1, then (xn) converges to the root 3 of f . [See
Exercise 23.]

(iii) Consider f : [−10, 10] → R defined by

f(x) :=

{√
x − 1 if x ≥ 1,

−
√

1 − x if x < 1.

In this case, we have

f ′(x) =

{
1/(2

√
x − 1) if x > 1,

1/(2
√

1 − x) if x < 1.

The Newton sequence for f with any initial point x0 �= 1 is given by

xn = xn−1 − 2(xn−1 − 1) = −xn−1 + 2.

Since xn − 1 = −(xn−1 − 1), we have xn = 1 + (−1)n(x0 − 1). Thus, the
Newton sequence oscillates between x0 and 2−x0. [See Figure 5.7 (ii).] ✸
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Fig. 5.7. Graphs of (i) y = x2 − 2x − 3 and (ii) y =

 √
x − 1 if x ≥ 1,

−
√

1 − x if x < 1

As the above examples show, a Newton sequence may not always converge
to the desired root, but when it does converge, the rate of convergence is
quite rapid and just a few iterations give us values that are fairly close to the
desired root. The conditions for convergence given in Proposition 5.22, which
is a consequence of the Picard Convergence Theorem, are rather unwieldy and
difficult to check in practice. However, there are alternative sets of sufficient
conditions such as those given by the following result.

Proposition 5.24. Let f : [a, b] → R be such that f(r) = 0 for some r ∈ [a, b].
If f ′ is nonzero throughout [a, b] and f ′ is monotonic on [a, b], then r is the
unique solution of f(x) = 0 in [a, b] and the Newton sequence for f with any
initial point x0 ∈ [a, b] converges to r.

Proof. Since f(r) = 0 and f ′ is nonzero throughout [a, b], it follows from
Rolle’s Theorem that r is the unique solution of f(x) = 0 in [a, b]. Moreover,
since f ′ has the IVP on [a, b] (Proposition 4.14), we see that either f ′ is positive
throughout [a, b] or negative throughout [a, b]. Also, since f ′ is monotonic on
[a, b], there are four possible cases according as f ′ is positive or f ′ is negative,
and f ′ is monotonically increasing or f ′ is monotonically decreasing.

To begin with, suppose f ′ is positive and monotonically increasing on [a, b].
Choose an arbitrary initial point x0 ∈ [a, b]. Let (xn) denote the Newton
sequence for f with its initial point x0. If x0 = r, then clearly, xn = r for all
n ∈ N and so xn → r. Now assume that x0 > r. Then by the MVT, there is
c ∈ (r, x0) such that

f(x0)

x0 − r
=

f(x0) − f(r)

x0 − r
= f ′(c).

Moreover, since f ′ is positive and monotonically increasing on [a, b], we have
0 < f ′(c) ≤ f ′(x0). Hence f(x0) > 0 and (f(x0)/f ′(x0)) ≤ x0 − r. Thus,

r = x0 − (x0 − r) ≤ x0 −
f(x0)

f ′(x0)
< x0.
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Since x1 := x0 − (f(x0)/f ′(x0)), we see that r ≤ x1 < x0. [See Figure 5.8
(i).] Now, if x1 �= r, then x1 > r and we can proceed as before to obtain
r ≤ x2 < x1. Continuing in this way, we see that the Newton sequence (xn)
has the property that either xn = r for some n ∈ N (in which case xm = r
for all m > n) or (xn) is strictly decreasing and bounded below by r. In the
latter event, by part (ii) of Proposition 2.8, xn → s for some s ∈ [a, b] with
r ≤ s. But then, f(s) = 0 and hence s = r. Thus, in any event, xn → r.
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Fig. 5.8. Newton iterates for f with its initial point x0 when f ′ is positive and
monotonically increasing and (i) x0 > r, (ii) x0 < r, where r ∈ R with f(r) = 0

Next, assume that x0 < r. [See Figure 5.8 (ii).] Using the MVT as before,
we see this time that there is d ∈ (x0, r) such that

f(x0)

x0 − r
=

f(x0) − f(r)

x0 − r
= f ′(d).

Again, since f ′ is positive and monotonically increasing on [a, b], we have
0 < f ′(x0) ≤ f ′(d). Hence (f(x0)/f ′(x0)) ≤ x0 − r. Thus,

x1 := x0 −
f(x0)

f ′(x0)
≥ r.

This means that we are in one of the previous cases, where the initial value
is ≥ r. Consequently, xn → r. This proves the proposition when f ′ is positive
and monotonically increasing on [a, b].

If f ′ is negative and monotonically decreasing on [a, b], then it suffices to
consider −f and note that the Newton sequences for −f and f are identical,
provided both have the same initial point.
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Fig. 5.9. Newton iterates for f : [a, b] → R when f ′ is negative and monotonically
increasing, and for its ‘reflection’ g : [a, b] → R defined by g(x) := f(a + b − x)

If f ′ is negative and monotonically increasing, then it suffices to consider
its ‘reflection’ along the vertical line x = (b − a)/2, that is, the function
g : [a, b] → R defined by g(x) := f(a + b − x) for x ∈ [a, b], and note the
following. First, g is differentiable and s := a + b − r is a solution of g(x) = 0
in [a, b]. Next, g′ is positive and monotonically increasing on [a, b]. Further, if
(xn) is the Newton sequence for f with its initial point x0, then (a + b − xn)
is the Newton sequence for g with its initial point a + b − x0. Finally, if
a + b − xn → s, then xn → r. [See Figure 5.9.]

If f ′ is positive and monotonically decreasing, then it suffices to consider
−f and use the result of the previous paragraph. ⊓⊔

Corollary 5.25. Suppose f : [a, b] → R is twice differentiable and f(r) = 0
for some r ∈ [a, b]. If f ′ is nonzero throughout [a, b] and f ′′ does not change
sign throughout [a, b], then r is the unique solution of f(x) = 0 in [a, b] and
the Newton sequence for f with any initial point x0 ∈ [a, b] converges to r.

Proof. Applying part (i) of Corollary 4.28 to f ′, we see that f ′ is monotonic
on [a, b]. Now use Proposition 5.24. ⊓⊔

To end this section, we remark that if f(x) is a polynomial of degree
≥ 2, then f ′(x) and f ′′(x) are nonzero polynomials of smaller degree, and, in
particular, they have finitely many roots. Thus, the real line can be divided
into finitely many intervals in each of which f ′ and f ′′ are nonzero and do not
change signs. In particular, for any root r of f , we can find a, b ∈ R such that
the restriction of f to [a, b] satisfies the hypothesis of Corollary 5.25. In this
way, we may say that the Newton method is always applicable to polynomials,
provided we keep away from points at which the derivative vanishes.
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Notes and Comments

The applications of differentiation to various tests for local extrema and points
of inflection are bread-and-butter topics in calculus courses, so much so that
many students think of these tests as definitions of the concepts such as local
minimum, local maximum, and point of inflection. However, these concepts are
basically of a geometric nature. In fact, this was the reason why we introduced
these concepts in Chapter 1 before discussing the notion of derivative. In a
similar way, many students try to use the Second Derivative Test when asked
to find the absolute extrema of a real-valued function (on, say, a closed and
bounded interval). The fact of the matter is that for finding absolute extrema,
this test is neither necessary nor sufficient! To emphasize this point, we have
arranged the discussion of absolute minima and maxima before the discussion
of the Second Derivative Test, which is useful in finding local maxima and
minima.

The method of Picard that we have discussed in the last section of this
chapter is perhaps a starting point of an area of mathematics, known as fixed
point theory, that has grown considerably over the years. Fixed point theorems
such as the Picard Convergence Theorem and its generalizations are extremely
useful in proving the existence and uniqueness of solutions of certain differen-
tial equations with prescribed initial conditions. For an introduction, we refer
to the delightful book of Simmons [55]. The method of Newton for finding
approximate solutions can be found toward the beginning of any book on nu-
merical analysis. The fact that it converges very rapidly is almost folklore.
But precise results about conditions that ensure the convergence of Newton
sequences seem a bit difficult to locate. Results similar to the last proposition
in this chapter can be found, for example, in the little booklet of Vilenkin [65]
and the substantive book on calculus by Klambauer [40].

Exercises

Part A

1. In each of the following, find the greatest and the least value of f : D → R
where D ⊆ R and f are given by the following:
(i) D := [0, 2] and f(x) := 4x3 − 8x2 + 5x,
(ii) D := R and f(x) := (x + 2)2/(x2 + x + 1),
(iii) D := [−2, 5] and f(x) := 1 + 12|x| − 3x2.

2. Given any constants a, b ∈ R with a > b, find the value of x at which the
difference

(
x/

√
x2 + a2

)
−
(
x/

√
x2 + b2

)
has the maximum value.

3. If n ∈ N is odd and the polynomial 1 + x + (1/2!)x2 + · · · + (1/n!)xn has
only one real root x = c, then show that

1 + x +
x2

2!
+ · · · + xn

n!
+

xn+1

(n + 1)!
≥ cn+1

(n + 1)!
for all x ∈ R.
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4. A window is to be made in the form of a rectangle surmounted by a
semicircular portion with diameter equal to the base of the rectangle. The
rectangular portion is to be of clear glass and the semicircular portion is
to be of colored glass admitting only half as much light per square foot
as the clear glass. If the total perimeter of the window frame is to be p
feet, find the dimensions of the window which will admit the maximum
amount of light.

5. The stiffness of a rectangular beam is proportional to the product of its
breadth and the cube of its thickness but is not related to its length. Find
the proportions of the stiffest beam that can be cut from a cylindrical log
of diameter d inches.

6. A post office will accept a box for shipment only if the sum of its length
and its girth (that is, distance around) does not exceed 84 inches. Find
the dimensions of the largest acceptable box with a square end.

7. A wire of length ℓ inches is cut into two pieces, one being bent to form a
square and the other to form an equilateral triangle. How should the wire
be cut (i) if the sum of the two areas is minimum? (ii) if the sum of the
two areas is maximum?

8. Let D ⊆ R and c be an interior point of D. If f : D → R is twice
differentiable at c and f ′′(c) �= 0, then prove that f has a local extremum
at c if and only if f ′(c) = 0.

9. Let D ⊆ R, c be an interior point of D and f : D → R be differentiable
at c. If c is a point of inflection for f , then is it necessarily true that
f ′(c) = 0? On the other hand, if f ′(c) = 0, then is it necessarily true
that either f has a local extremum at c or c is a point of inflection for f?
(Compare Example 7.19.)

10. Find the local maxima and the local minima of f : [0, 1] → R defined by
f(x) = xm(1 − x)n for x ∈ [0, 1], where m and n are positive integers.

11. For which constants a, b, c, d ∈ R does the function f(x) = ax3 + bx2 +
cx + d, x ∈ R, have (i) a local maximum at −1, (ii) 1 as its point of
inflection, and (iii) f(−1) = 10 and f(1) = −6?

12. Sketch the following curves after locating intervals of increase/decrease, in-
tervals of convexity/concavity, points of local maxima/minima, and points
of inflection. How many times and approximately where does the curve
cross the x-axis?
(i) y = 2x3 + 2x2 − 2x − 1 (ii) y = x3 − 6x2 + 9x + 1,
(iii) y = x2/(x2 + 1), (iv) y = 1/(1 + x2),
(v) y = x/(x − 1), x �= 1 (vi) y = x/(x + 1), x �= −1,
(vii) y = x2/(x2 − 1), x �= ±1, (viii) y = (x2 + 1)/x, x �= 0,
(ix) y = 1+12|x|−3x2, x ∈ [−2, 5], (x) y = (x2 +x−2)/(x−2), x �= 2.

13. Sketch a continuous curve y = f(x) having the following properties:
f(−2) = 8, f(0) = 4, f(2) = 0; f ′(2) = f ′(−2) = 0;
f ′(x) > 0 for |x| > 2, f ′(x) < 0 for |x| < 2;
f

′′

(x) < 0 for x < 0 and f
′′

(x) > 0 for x > 0.
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14. Consider f : R → R given by f(x) = (x − 2n)3 + 2n, where n ∈ Z is such
that x ∈ [2n − 1, 2n + 1). Show that 2n is a point of inflection for f , for
each n ∈ N. (Compare Exercise 33 of Chapter 4.)

15. Use linear approximation to find an approximate value of
(i) (8.01)4/3 + (8.01)2 − (8.01)−1/3, (ii) (9.1)3/2 + (9.1)−1/2.

16. (i) Find an approximate value of
√

3 using the linear approximation to
f(x) =

√
x for x around 4.

(ii) Let f(x) =
√

x +
√

x + 1 − 4. Show that there is a unique x0 ∈ (3, 4)
such that f(x0) = 0. Using the linear approximation to f around 3,
find an approximation x1 of x0. Find x0 exactly and determine the
error |x1 − x0|.

17. Consider the following functions:
(i) f(x) :=

√
1 + x, x ≥ −1, (ii) f(x) := 1/

√
1 − x, x ≤ 1.

For each of them, find:
(a) The linear approximation L(x) around 0.
(b) An estimate for the error e1(x) when x > 0 and when x < 0. Also,

find an upper bound for |e1(x)| that is valid for all x ∈ (0, 0.1), and
an upper bound for |e1(x)| that is valid for all x ∈ (−0.1, 0).

(c) The quadratic approximation Q(x) around 0.
(d) An estimate for the error e2(x) when x > 0 and when x < 0. Also, an

upper bound for |e2(x)| that is valid for all x ∈ (0, 0.1), and an upper
bound for |e2(x)| that is valid for all x ∈ (−0.1, 0).

18. Let D ⊆ R and c be an interior point of D. Suppose F : D → R is the
polynomial function defined by F (x) = a0 + a1(x − c) + a2(x − c)2 for
x ∈ D. If a function f : D → R is differentiable at c, then show that F is
the linear approximation to f around c if and only if

f(c) = F (c) = a0, f ′(c) = F ′(c) = a1, and a2 = 0,

whereas if f is twice differentiable at c, then show that F is the quadratic
approximation to f around c if and only if

f(c) = F (c) = a0, f ′(c) = F ′(c) = a1, and f ′′(c) = F ′′(c) = a2.

19. Let f(x) :=
√

x +
(
1/

√
x
)

for x > 0. Write down the linear and the
quadratic approximations L(x) and Q(x) to f(x) around 4. Find the errors
f(4.41)− L(4.41) and f(4.41)− Q(4.41).

20. Let D ⊆ R and c be an interior point of D. If f : D → R is continuous
at c and we let e0(x) = f(x) − f(c) for x ∈ D, then show that e0(x) → 0
as x → c. Moreover, given any b ∈ D with b �= c, if Ib denotes the
open interval with c and b as its endpoints, and if f ′ exists on Ib and
|f ′(x)| ≤ M1(b) for all x ∈ Ib, then show that |e0(b)| ≤ M1(b)|b − c|.

21. Let D ⊆ R and c be an interior point of D. If f : D → R is n times
differentiable at c and Pn(x) denotes the nth Taylor polynomial of f
around c and if en(x) := f(x) − Pn(x) for x ∈ D, then show that the
limit of en(x)/x − c)n as x → c is zero. Moreover, given any b ∈ D
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with b �= c, if Ib denotes the open interval with c and b as its endpoints,
f ′, . . . , f (n) are continuous on the closed interval between c and b, f (n+1)

exists on Ib, and if |f (n+1)(x)| ≤ Mn+1(b) for all x ∈ Ib, then show that

|en(b)| ≤ Mn+1(b)

(n + 1)!
|b − c|n+1.

(Hint: L’Hôpital’s Rule for 0
0 indeterminate forms and Taylor’s formula.)

22. Consider f : [0, 1] → R defined by f(x) = 1/(1 + x2). Use the Picard
Convergence Theorem to show that f has a unique fixed point in [0, 1]
and any Picard sequence with its initial point x0 ∈ [0, 1] will converge to
this fixed point. Compute the first few values of the Picard sequence for
f when x0 = 0.

23. Consider f : R → R defined by f(x) = x2 − 2x − 3. If x0 �= 1, then
show that the Newton sequence with its initial point x0 converges to −1
if x0 < 1, and to 3 if x0 > 1,

24. Consider f : R → R defined by f(x) = x4 − x3 − 75. Show that there is a
unique r1 ∈ [3, 4] such that f(r1) = 0 and there is a unique r2 ∈ [−3,−2]
such that f(r2) = 0. Use the Newton method with initial point

(i) x0 = 3, (ii) x0 = −3,
to find approximate values of the solutions r1 and r2 of f(x) = 0.

25. Consider f : R → R defined by f(x) = (x − 1)1/3. Show that the Newton
sequence for f with its initial point x0 �= 1 is unbounded.

Part B

26. Let f : R → R be such that

f ′(x) = 6(x − 1)(x − 2)2(x − 3)3(x − 4)4 for all x ∈ R.

Find all the points (in R) at which f has a local extremum. Also, find all
the points of inflection for f .

27. Let I be an interval in R, f : I → R, and c be an interior point of I.
(i) Suppose there is n ∈ N such that f (2n) exists at c, and f ′(c) = f ′′(c) =

· · · = f (2n−1)(c) = 0. If f (2n)(c) < 0, then show that f has a strict
local maximum at c, whereas if f (2n)(c) > 0, then show that f has a
strict local minimum at c. (Hint: Taylor’s formula.)

(ii) Suppose there is n ∈ N such that f (2n+1) exists at c, and f ′′(c) =
f ′′′(c) = · · · = f (2n)(c) = 0. If f (2n+1)(c) �= 0, then show that c is a
strict point of inflection for f . (Hint: Taylor’s formula.)

(iii) Suppose that f is infinitely differentiable at c and f ′(c) = 0, but
f (k)(c) �= 0 for some k ∈ N. Show that either f has a strict local
extremum at c, or c is a strict point of inflection for f .

28. Let f : [a, b] → [a, b] be continuous and monotonic. Then show that for any
x0 ∈ [a, b], the Picard sequence for f with its initial point x0 converges to
a fixed point of f . (Hint: Show that the Picard sequence (xn) is monotonic
by considering separately the cases x0 ≤ x1 and x0 ≥ x1.)
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29. Let D ⊆ R and f : D → R be such that f(D) ⊆ D. Prove the following
generalizations and extensions of the Picard Convergence Theorem.
(i) If D is closed and f is a contraction (that is, there is α ∈ R with

0 ≤ α < 1 such that |f(x) − f(y)| ≤ α|x − y| for all x, y ∈ D), then
f has a unique fixed point, and any Picard sequence will converge to
this fixed point. Give an example to show that if f is a contraction
but D is not closed, then f need not have a fixed point. (Hint: See
Example 5.16 (ii).)

(ii) If D is closed and bounded, and f is contractive (that is, |f(x) −
f(y)| < |x − y| for all x, y ∈ D, x �= y), then f has a unique fixed
point, and any Picard sequence will converge to this fixed point. Give
an example to show that if f is a contractive but D is not closed and
bounded, then f need not have a fixed point. (Hint: See the proof of
Proposition 5.17 and Example 5.16 (iii).)

(iii) If D is a closed and bounded interval, and f is nonexpansive (that
is, |f(x) − f(y)| ≤ |x − y| for all x, y ∈ D), then f has a fixed point
in D but it may not be unique. Give an example to show that if f
is nonexpansive but D is not a closed and bounded interval, then f
need not have a fixed point. (Hint: See the proof of Proposition 5.15
and Example 5.16 (iv).)

30. Let f : (a, b) → R be a differentiable function such that f ′ is bounded on
(a, b), and f has a root r ∈ (a, b). For x ∈ (a, b), x �= r, let Jx denote
the open interval between r and x. Assume that if f(x) > 0, then f is
convex on Jx, while and if f(x) < 0, then f is concave on Jx. Show that
the Newton sequence with any initial point x0 ∈ (a, b) converges to a root
of f in (a, b).

31. Let a, b ∈ R with a < b and f : (a, b) → R be any function.
(i) Suppose f is differentiable and there is c ∈ (a, b) such that f(c) = c. If

f ′ is continuous at c and |f ′(c)| < 1, then show that there is a closed
subinterval I of (a, b) with c ∈ I such that f maps I into itself, c is
the only fixed point of f in I, and the Picard sequence with any initial
point x0 ∈ I converges to c.

(ii) Suppose f is twice differentiable, f ′(x) �= 0 for all x ∈ (a, b), and there
is r ∈ (a, b) such that f(r) = 0. If f ′′ is continuous at c, then show
that there is a closed subinterval I of (a, b) with r ∈ I such that r is
the only solution of f(x) = 0 in I, and the Newton sequence with any
initial point x0 ∈ I converges to r.

32. (Linear convergence of the Picard method) Let f : [a, b] → [a, b]
be a continuous function such that f ′ exists and is bounded on (a, b).
If f has a fixed point c∗ ∈ [a, b], then show that there is a constant
α ∈ R such that given any Picard sequence (xn) for f with its initial
point x0 ∈ [a, b], we have |xn − c∗| ≤ α|xn−1 − c∗| for all n ∈ N. Deduce
that |xn − c∗| ≤ αn|x0 − c∗| for all n ∈ N.
[Note: In case α < 1, the former inequality shows that the terms of the
Picard sequence give a successively better approximation of the fixed point
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c∗ of f . This inequality can also be interpreted to say that the Picard
sequence converges linearly. On the other hand, the latter inequality
gives an error bound for the (nth term of the) Picard sequence.]

33. (Quadratic convergence of the Newton method) Let f : [a, b] → R
be a differentiable function such that f ′ is continuous on [a, b], f ′(x) �= 0
for all x ∈ [a, b], f ′′ exists and is bounded on (a, b). If f(r) = 0 for some
r ∈ [a, b], then show that r is the unique solution of f(x) = 0 in [a, b]
and there is a constant α ∈ R such that given any Newton sequence
(xn) for f with its initial point x0 ∈ [a, b], we have |xn − r| ≤ α |xn−1 −
r|2, provided xn−1, xn ∈ [a, b]. Deduce that |xn − r| ≤ α2n−1|x0 − r|2n

,
provided x1, . . . , xn ∈ [a, b].
[Note: In case α < 1, the former inequality shows that the terms of the
Newton sequence give a successively better approximation of the solu-
tion r of f(x) = 0. This inequality can also be interpreted to say that
the Newton sequence converges quadratically. On the other hand, the
latter inequality gives an error bound for the (nth term of the) Newton
sequence.]

34. Let (xn) be a sequence in R and c ∈ R such that xn → c. Assume that
there is n0 ∈ N such that xn �= c for all n ≥ n0. If there is a real number
p such that

α := lim
n→∞

|xn − c|
|xn−1 − c|p

exists and is nonzero, then p is called the order of convergence of (xn)
to c and α is called the corresponding asymptotic error constant.
(i) Let f : (a, b) → (a, b) and x0 ∈ (a, b) be such that the Picard sequence

(xn) for f with its initial point x0 converges to some x∗ ∈ (a, b). If f
is continuous at x∗, then show that x∗ is a fixed point of f . Further, if
f is p times differentiable at x∗ and f ′(x∗) = · · · = f (p−1)(x∗) = 0 but
f (p)(x∗) �= 0, then show that the order of convergence of (xn) to x∗

is p and the corresponding asymptotic error constant is |f (p)(x∗)|/p!.
(Hint: Note that xn − x∗ = f(xn−1) − f(x∗) − f ′(x∗)(xn−1 − x∗) −
· · · − f (p−1)(x∗)(xn−1 − x∗)p−1/(p − 1)!, and use L’Hôpital’s Rule.)

(ii) Let f : (a, b) → R and x0 ∈ (a, b) be such that f is differentiable and
f ′(x) �= 0 for all x ∈ (a, b). Assume that the Newton sequence (xn) for
f with its initial point x0 converges to some r ∈ (a, b). If f ′ is bounded
on (a, b), then show that r is a solution of f(x) = 0. Further, if f is
twice differentiable at r and f ′′(r) �= 0, then show that the order
of convergence of (xn) to r is 2, and the corresponding asymptotic
error constant is |f ′′(r)|/2|f ′(r)|. (Hint: Note that f(xn−1)(xn − r) =
[f ′(xn−1) − (f(xn−1) − f(r)) /(xn−1 − r)](xn−1 − r) for n ∈ N.)
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Integration

In this chapter, we embark upon a project that is of a very different kind
as compared to our development of calculus and analysis so far, namely the
project of finding the ‘area’ of a planar region of a certain kind. This leads us
to the theory of integration propounded by Riemann. Although this theory
would seem unrelated to continuity and differentiability of functions, it has
deep underlying connections. These connections manifest themselves mainly in
the form of a central result known as the Fundamental Theorem of Calculus. In
Section 6.1 below, we motivate and formulate a definition of Riemann integral.
Later in this section we prove a useful characterization of the integrability of
functions, and also a key property of the Riemann integral known as domain
additivity. Next, in Section 6.2, we establish a number of basic properties of
integrable functions. The Fundamental Theorem of Calculus and several of
its consequences are proved in Section 6.3. In Section 6.4, we show that the
Riemann integral of a function can be approximated by certain sums involving
its values at more or less randomly chosen points. This approach yields an
alternative definition of the Riemann integral via a result of Darboux.

6.1 The Riemann Integral

Consider a nonnegative bounded function defined on an interval [a, b]. Let us
investigate whether we can assign a meaning to what can be called the ‘area’
of the region that lies under the graph of such a function, between the lines
x = a, x = b and above the x-axis. The only thing that we shall assume is
that the area of a rectangle [x1, x2] × [y1, y2] is equal to (x2 − x1)(y2 − y1).
Following Archimedes, our problem can be approached by subdividing the
interval [a, b] into a finite number of subintervals and then finding the sum
of the areas of rectangles inscribed within the region and also the sum of the
areas of rectangles that circumscribe the region. [See Figure 6.1.]

While the sum of the areas of the inscribed rectangles ought to be less than
the expected ‘area’ of the region, the sum of the areas of the circumscribing
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Fig. 6.1. Approximating the ‘area’ under a curve by means of inscribed or circum-
scribing rectangles

rectangles ought to be larger than it. Further, if the given function is ‘well
behaved’, both these sums should come close to the expected ‘area’ of the
region if the subdivision of the interval is made finer and finer.

To proceed formally, we introduce the following concept. By a partition
of an interval [a, b] (where a, b ∈ R and a < b) we mean a finite ordered set
{x0, x1, . . . , xn} of points in [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

The simplest partition of [a, b] is given by P1 := {a, b}. More generally, for
n ∈ N, the partition Pn := {x0, x1, . . . , xn}, where

xi = a +
i(b − a)

n
for i = 0, 1, . . . , n,

subdivides the interval [a, b] into n subintervals, each of length (b− a)/n. We
may refer to Pn as the partition of [a, b] into n equal parts. It is clear that
as n becomes larger, the subdivision of [a, b] corresponding to Pn becomes
uniformly finer.

Let f : [a, b] → R be a bounded function. Let us define

m(f) := inf{f(x) : x ∈ [a, b]} and M(f) := sup{f(x) : x ∈ [a, b]}.

Given a partition P = {x0, x1, . . . , xn} of [a, b], let

mi(f) := inf{f(x) : x ∈ [xi−1, xi]} and Mi(f) = sup{f(x) : x ∈ [xi−1, xi]}

for i = 1, . . . , n. Clearly,

m(f) ≤ mi(f) ≤ Mi(f) ≤ M(f) for all i = 1, . . . , n.

We define the lower sum and the upper sum for the function f with respect
to the partition P as follows:
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L(P, f) :=
n∑

i=1

mi(f)(xi − xi−1) and U(P, f) :=
n∑

i=1

Mi(f)(xi − xi−1).

We note that if f is nonnegative, then the lower sum is the sum of the areas
of the inscribed rectangles and the upper sum is the sum of the areas of the
circumscribing rectangles mentioned earlier.

Proposition 6.1. Let f : [a, b] → R be a bounded function. Then for any
partition P of [a, b], we have

m(f)(b − a) ≤ L(P, f) ≤ U(P, f) ≤ M(f)(b − a).

Proof. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Since m(f) ≤ mi(f) ≤
Mi(f) ≤ M(f) for each i = 1, . . . , n and

∑n
i=1(xi − xi−1) = b− a, the desired

inequalities follow. ⊓⊔

Our goal is to look for partitions of [a, b] with respect to which the lower
sums are as large as possible and the upper sums are as small as possible, so
that the expected ‘area’ will get tightly caught between the lower sums and
the upper sums. With this mind, we define

L(f) := sup{L(P, f) : P is a partition of [a, b]}

and
U(f) := inf{U(P, f) : P is a partition of [a, b]}.

It is natural to expect that L(f) ≤ U(f). To prove this, we need the following
concepts. Given a partition P of [a, b], we say that a partition P ∗ of [a, b] is
a refinement of P if every point of P is also a point of P ∗. Given partitions
P1 and P2 of [a, b], the partition P ∗ consisting entirely of the points of P1 and
the points of P2 is called the common refinement of P1 and P2.

Lemma 6.2. Let f : [a, b] → R be a bounded function.

(i) If P is partition of [a, b], and P ∗ is a refinement of P , then

L(P, f) ≤ L(P ∗, f) and U(P ∗, f) ≤ U(P, f),

and consequently,

U(P ∗, f) − L(P ∗, f) ≤ U(P, f) − L(P, f).

(ii) If P1 and P2 are partitions of [a, b], then L(P1, f) ≤ U(P2, f).
(iii) L(f) ≤ U(f).

Proof. (i) Let P = {x0, x1, . . . , xn} be a partition of [a, b]. First let us assume
that a refinement P ∗ of P contains just one additional point x∗. Then xi−1 ≤
x∗ ≤ xi for some i ∈ {1, . . . , n}. Using the abbreviations ‘ℓ’ and ‘r’ for ‘left’
and ‘right’ respectively, define
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M∗
ℓ := sup{f(x) : x ∈ [xi−1, x

∗]} and M∗
r := sup{f(x) : x ∈ [x∗, xi]}.

Clearly, M∗
ℓ and M∗

r are both less than or equal to Mi(f). Also, we have
xi − xi−1 = (xi − x∗) + (x∗ − xi−1) and therefore,

U(P, f) − U(P ∗, f) = Mi(f)(xi − xi−1) − M∗
ℓ (x∗ − xi−1) − M∗

r (xi − x∗)

= (Mi(f) − M∗
ℓ )(x∗ − xi−1) + (Mi(f) − M∗

r )(xi − x∗)

≥ 0 + 0 = 0.

If a refinement P ∗ of P contains several additional points, we repeat the above
argument several times and again obtain U(P ∗, f) ≤ U(P, f). The proof of
L(P, f) ≤ L(P ∗, f) is similar. Subtracting, we obtain U(P ∗, f) − L(P ∗, f) ≤
U(P, f) − L(P, f).

(ii) Let P ∗ denote the common refinement of partitions P1 and P2. Then
in view of (i) above,

L(P1, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P2, f).

(iii) Let us fix a partition P0 of [a, b]. By (ii) above, we have L(P0, f) ≤
U(P, f) for any partition P of [a, b]. Hence L(P0, f) is a lower bound of
the set {U(P, f) : P is a partition of [a, b]}. Since U(f) is the greatest lower
bound of this set, we have L(P0, f) ≤ U(f). Now, since P0 is an arbi-
trary partition of [a, b], we see that U(f) is an upper bound of the set
{L(P0, f) : P0 is a partition of [a, b]}. Again, since L(f) is the least upper
bound of this set, we have L(f) ≤ U(f). ⊓⊔

If a bounded function f : [a, b] → R is nonnegative, and if we wish to define
the ‘area’ of the region lying under the graph of f , between the lines x = a,
x = b, and above the x-axis with the help of inscribed and circumscribing
rectangles, then the ‘area’ must be at least L(f) and it can be at most U(f).
Thus, if L(f) = U(f), then it would be appropriate to define the area to be
this common value. This motivates the following definition.

Let f : [a, b] → R be a bounded function. Then f is said to be integrable
(on [a, b]) if L(f) = U(f). In this case, the common value L(f) = U(f) is
called the Riemann integral of f (on [a, b]) and it is denoted by

∫ b

a

f(x)dx or simply by

∫ b

a

f.

The notation
∫ b

a f(x)dx emphasizes that f is ‘integrated’ as a function of
the ‘variable’ x. While the Riemann integral of f does not depend on the
name of the variable, this notation is useful when several variables are being
considered. The number U(f) is known as the upper Riemann integral
of f and the number L(f) as the lower Riemann integral of f . Thus, a
bounded function on [a, b] is integrable if its upper Riemann integral is equal
to its lower Riemann integral.
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If, in addition, f is nonnegative, then the area of the region under the
curve given by y = f(x), x ∈ [a, b], is defined to be the Riemann integral of f :

Area(Rf ) :=

∫ b

a

f(x)dx, where Rf := {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.

We shall show later that in general, if f : [a, b] → R is any integrable func-
tion, then its Riemann integral is equal to Area(Rf+)−Area(Rf−), where f+

and f− are the positive and the negative parts of f . (See Remark 6.19.) In
this sense, the Riemann integral of f represents, in general, the ‘signed area’
delineated by the curve y = f(x), x ∈ [a, b].

Admittedly, the definition of a Riemann integral of a bounded function
f : [a, b] → R is rather involved. This is because we need to consider lower sums
for the function f with respect to all possible partitions of [a, b] and calculate
their supremum on the one hand, and also consider the corresponding upper
sums and calculate their infimum on the other. We shall presently give several
examples to illustrate what it takes to decide whether a bounded function on
[a, b] is integrable. When the definition of a Riemann integral has been well
understood, it will be relatively easy to deduce its interesting properties and
use them to obtain important results.

Now we give an elementary but useful estimate for the absolute value of a
Riemann integral.

Proposition 6.3 (Basic Inequality for Riemann Integrals). Suppose
f : [a, b] → R is an integrable function and there are α, β ∈ R such that
β ≤ f ≤ α. Then

β(b − a) ≤
∫ b

a

f(x)dx ≤ α(b − a).

In particular, if |f | ≤ α, then

∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ α(b − a).

Proof. Since β ≤ f(x) ≤ α for all x ∈ R, we see that β ≤ m(f) and M(f) ≤ α.
Let P := {a, b} denote the trivial partition of [a, b]. Then we have

β(b− a) ≤ m(f)(b− a) = L(P, f) and U(P, f) = M(f)(b− a) ≤ α(b− a).

Hence it follows that

β(b − a) ≤ L(f) =

∫ b

a

f(x)dx = U(f) ≤ α(b − a).

If |f | ≤ α, then letting β := −α, we obtain the desired conclusion. ⊓⊔
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We work out a few examples to show how the integrability of a function
can be investigated from first principles.

Examples 6.4. (i) Consider the constant function on [a, b] defined by f(x) :=
1 for all x ∈ [a, b]. Then for every partition P = {x0, x1, . . . , xn} of [a, b],
we have mi(f) = 1 = Mi(f) for all i = 1, . . . , n and so

L(P, f) = U(P, f) =
n∑

i=1

1 · (xi − xi−1) = b − a.

Hence L(f) = b−a = U(f). Thus f is integrable and its Riemann integral
is equal to b − a.
The above reasoning shows that if r ∈ R and f(x) := r for all x ∈ [a, b],
then f is integrable on [a, b] and

∫ b

a

r dx = r(b − a).

(ii) Consider the Dirichlet function on [a, b] defined by

f(x) :=

{
1 if x ∈ [a, b] and x is a rational number,
0 if x ∈ [a, b] and x is an irrational number.

Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Since each [xi−1, xi]
contains a rational number as well as an irrational number, we see that
mi(f) = 0 and Mi(f) = 1 for all i = 1, . . . , n, and so

L(P, f) =
n∑

i=1

0·(xi−xi−1) = 0, but U(P, f) =
n∑

i=1

1·(xi−xi−1) = b−a.

Hence L(f) = 0 and U(f) = b − a. Since a < b, we have L(f) �= U(f),
that is, f is not integrable.

(iii) Consider the identity function on [a, b] defined by f(x) := x for all x ∈
[a, b]. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Since Mi(f) = xi

and mi(f) = xi−1 for i = 1, . . . , n, we have

U(P, f) =

n∑

i=1

xi(xi − xi−1) and L(P, f) =

n∑

i=1

xi−1(xi − xi−1).

Hence

U(P, f) − L(P, f) =

n∑

i=1

(xi − xi−1)
2

and

U(P, f) + L(P, f) =

n∑

i=1

(x2
i − x2

i−1) = b2 − a2.
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It follows that

U(P, f) =
b2 − a2

2
+

1

2

n∑

i=1

(xi − xi−1)
2

and

L(P, f) =
b2 − a2

2
− 1

2

n∑

i=1

(xi − xi−1)
2.

Now given ǫ > 0, there is a partition P = {x0, x1, . . . , xn} of [a, b] such
that

∑n
i=1(xi − xi−1)

2 < ǫ. For example, let P := Pn be the partition of
[a, b] into n equal parts, where n ∈ N is so chosen that (b − a)2/n < ǫ.
Then

n∑

i=1

(xi − xi−1)
2 =

n∑

i=1

(b − a)2

n2
=

(b − a)2

n
< ǫ.

Hence we have

U(f) ≤ b2 − a2

2
+

ǫ

2
and L(f) ≥ b2 − a2

2
− ǫ

2
for every ǫ > 0.

It follows that U(f) ≤ (b2−a2)/2 and L(f) ≥ (b2−a2)/2. But L(f) ≤ U(f)
by part (iii) of Lemma 6.2. This shows that L(f) = (b2 − a2)/2 = U(f),
that is, f is integrable and

∫ b

a

f(x)dx =
b2 − a2

2
.

This result will be generalized in Example 6.24 (i). ✸

The foregoing examples indicate that it is not easy to determine whether
a bounded function on [a, b] is integrable, and when the function is in fact
integrable, it may be even more difficult to evaluate its Riemann integral. We
shall first take up the question of determining whether a bounded function
on [a, b] is integrable. We give a simple criterion for this purpose and use it
extensively in Section 6.2, not only to find large classes of integrable functions,
but also to obtain many important properties of the Riemann integral. The
more involved question concerning the evaluation of the Riemann integral will
be discussed in Sections 6.3, 6.4, and later in Section 8.6.

Proposition 6.5 (Riemann Condition). Let f : [a, b] → R be a bounded
function. Then f is integrable if and only if for every ǫ > 0, there is a partition
Pǫ of [a, b] such that

U(Pǫ, f) − L(Pǫ, f) < ǫ.

Proof. Suppose that the stated condition is satisfied. Then for every ǫ > 0,
we have

0 ≤ U(f) − L(f) ≤ U(Pǫ, f) − L(Pǫ, f) < ǫ.
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Hence L(f) = U(f), that is, f is integrable.
Conversely, assume that f is integrable. Let ǫ > 0 be given. By the defini-

tions of U(f) and L(f), there are partitions Qǫ and Q̃ǫ of [a, b] such that

U(Qǫ, f) < U(f) +
ǫ

2
and L(Q̃ǫ, f) > L(f) − ǫ

2
.

Let Pǫ denote the common refinement of Qǫ and Q̃ǫ. Then by part (i) of
Lemma 6.2, we have

L(f) − ǫ

2
< L(Q̃ǫ, f) ≤ L(Pǫ, f) ≤ U(Pǫ, f) ≤ U(Qǫ, f) < U(f) +

ǫ

2
.

Since L(f) = U(f), it follows that

U(Pǫ, f) − L(Pǫ, f) < ǫ,

as desired ⊓⊔
We give below a nontrivial example to illustrate the relative ease gained

by the use of the Riemann condition, as compared to the difficulty we faced
earlier in showing the integrability of the identity function (Example 6.4 (iii)),
which is a particular case of the function considered in this nontrivial example.

Example 6.6. Let a, b ∈ R with 0 ≤ a < b, m ∈ N, and f(x) := xm for all
x ∈ [a, b]. Consider a partition P = {x0, x1, . . . , xn} of [a, b]. Then Mi(f) = xm

i

and mi(f) = xm
i−1 for i = 1, . . . , n, and so

U(P, f) − L(P, f) =

n∑

i=1

(xm
i − xm

i−1)(xi − xi−1).

Also, we have for i = 1, . . . , n,

(xm
i − xm

i−1) = (xm−1
i + xm−2

i xi−1 + · · · + xix
m−2
i−1 + xm−1

i−1 )(xi − xi−1)

and 0 ≤ xm−1−j
i xj

i−1 ≤ bm−1 for j = 0, 1, . . . , m − 1. Hence we obtain

U(P, f) − L(P, f) ≤ mbm−1
n∑

i=1

(xi − xi−1)
2.

Now given ǫ > 0, there is a partition P = {x0, x1, . . . , xn} of [a, b] such that∑n
i=1(xi − xi−1)

2 < ǫ. For example, we may take P := Pn to be the partition
of [a, b] into n equal parts, where n ∈ N is so chosen that (b−a)2/n < ǫ. Then
it follows that

U(P, f) − L(P, f) ≤ mbm−1
n∑

i=1

(
b − a

n

)2

= mbm−1 (b − a)2

n
< mbm−1ǫ.

Since ǫ > 0 is arbitrary, the Riemann condition is satisfied, and hence f
is integrable. It may be noted that this procedure gives no clue about the
evaluation of the Riemann integral of f . The evaluation will be accomplished
in Example 6.24 (i). For a direct approach, see Exercise 40. ✸
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Next, we prove an important and useful result that says that if [a, b] is
divided into two subintervals, then the Riemann integral of f : [a, b] → R is the
sum of the Riemann integrals of the restrictions of f to the two subintervals.
This corresponds to the geometric notion that if a region R splits into two
nonoverlapping regions R1 and R2, then the area of R is equal to the sum of
the areas of R1 and R2.

Proposition 6.7 (Domain Additivity of Riemann Integrals). Let
f : [a, b] → R be a bounded function and let c ∈ (a, b). Then f is integrable
on [a, b] if and only if f is integrable on [a, c] and on [c, b]. In this case,

∫ b

a

f(x)dx =

∫ c

a

f(x)dx +

∫ b

c

f(x)dx.

Proof. Assume that f is integrable on [a, b]. Let ǫ > 0 be given. Then there is a
partition Pǫ of [a, b] such that U(Pǫ, f)−L(Pǫ, f) < ǫ, thanks to the Riemann
condition. Adjoining c to the points of Pǫ, if c is not already a point of Pǫ,
we obtain a refinement P ∗

ǫ = {x0, x1, . . . , xk, . . . , xn} of Pǫ, where c = xk for
some k ∈ {1, . . . , n − 1}. Part (i) of Lemma 6.2 shows that

0 ≤ U(P ∗
ǫ f) − L(P ∗

ǫ , f) ≤ U(Pǫ, f) − L(Pǫ, f) < ǫ.

Now Q∗
ǫ := {x0, x1, . . . , xk} is a partition of [a, c] and if g denotes the restric-

tion of f to [a, c], then we have

U(Q∗
ǫ , g) − L(Q∗

ǫ , g) =

k∑

i=1

[Mi(g) − mi(g)](xi − xi−1)

=

k∑

i=1

[Mi(f) − mi(f)](xi − xi−1)

≤
n∑

i=1

[Mi(f) − mi(f)](xi − xi−1)

= U(P ∗
ǫ , f) − L(P ∗

ǫ , f),

which is less than ǫ. Hence the Riemann condition shows that g is integrable,
that is, f is integrable on [a, c]. Similarly, it can be seen that f is integrable
on [c, b].

Conversely, assume that f is integrable on [a, c] and on [c, b]. Let g and
h denote the restrictions of f to [a, c] and to [c, b] respectively. Let ǫ > 0 be
given. By the Riemann condition, there are partitions Qǫ of [a, c] and Rǫ of
[c, b] such that

U(Qǫ, g) − L(Qǫ, g) <
ǫ

2
and U(Rǫ, h) − L(Rǫ, h) <

ǫ

2
.

Let Pǫ denote the partition of [a, b] obtained from the points of Qǫ followed
by the points of Rǫ. Then Pǫ contains the point c. Therefore,
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U(Pǫ, f) = U(Qǫ, g) + U(Rǫ, h) and L(Pǫ, f) = L(Qǫ, g) + L(Rǫ, h),

and so U(Pǫ, f)−L(Pǫ, f) < ǫ/2 + ǫ/2 = ǫ. Thus, by the Riemann condition,
f is integrable on [a, b].

Let α := U(Pǫ, f) and β := L(Pǫ, f). Evidently,

β ≤
∫ b

a

f(x)dx ≤ α.

Also, since α = U(Qǫ, g) + U(Rǫ, h) and β = L(Qǫ, g) + L(Rǫ, h), we have

β ≤
∫ c

a

f(x)dx +

∫ b

c

f(x)dx ≤ α.

Since α − β < ǫ, it follows that
∣∣∣∣∣

∫ c

a

f(x)dx +

∫ b

c

f(x)dx −
∫ b

a

f(x)dx

∣∣∣∣∣ < ǫ.

Since ǫ > 0 is arbitrary, we see that
∫ b

a

f(x)dx =

∫ c

a

f(x)dx +

∫ b

c

f(x)dx,

as desired. ⊓⊔

We shall see in the next two sections that the domain additivity plays a
crucial role in several proofs.

Remark 6.8. According to our convention stated in Chapter 1, we have as-
sumed a < b while defining the Riemann integral of f : [a, b] → R. In order
to obtain uniformity of presentation and simplicity of notation, we adopt the
following definitions: If a = b, then every f : [a, b] → R is integrable and

∫ b

a

f(x)dx := 0,

whereas if a > b and f : [b, a] → R is integrable, then
∫ b

a

f(x)dx := −
∫ a

b

f(x)dx.

We emphasize that the Riemann integral of f : [a, b] → R is defined over the
subset {x : a ≤ x ≤ b} of R and that we have not associated any direction
or orientation with this subset. What we have mentioned above are mere
conventions; they are not results that follow from our definition. In view of
the domain additivity (Proposition 6.7), these conventions imply that

∫ d

c

f(x)dx =

∫ d

a

f(x)dx −
∫ c

a

f(x)dx

for any points c and d in [a, b]. ✸
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6.2 Integrable Functions

In this section we shall use the Riemann condition to prove the integrability
of a wide variety of functions. We shall also consider algebraic and order
properties of the Riemann integral. Readers who wish to directly look at the
fundamental connection between differentiation and Riemann integration may
pass on to the next section, assuming only that every continuous function on
[a, b] is integrable. This is proved in part (ii) of the following proposition.

Proposition 6.9. Let f : [a, b] → R be a function.

(i) If f is monotonic, then it is integrable.
(ii) If f is continuous, then it is integrable.

Proof. (i) Assume that f : [a, b] → R is monotonically increasing. Then f is
bounded since f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b]. If P = {x0, x1, . . . , xn} is
any partition of [a, b], then we have Mi(f) = f(xi) and mi(f) = f(xi−1) for
i = 1, . . . , n, and so

U(P, f) − L(P, f) =

n∑

i=1

[f(xi) − f(xi−1)](xi − xi−1).

If f(b) = f(a), then f(x) = f(a) for all x ∈ [a, b], and we see that U(P, f) =
f(a)(b−a) = L(P, f) for every partition P of [a, b]. If f(b) > f(a), we proceed
as follows. Let ǫ > 0 be given. Consider a partition Pǫ = {x0, x1, . . . , xn} of
[a, b] such that xi − xi−1 < ǫ/[f(b)− f(a)] for i = 1, . . . , n. Then we have

U(Pǫ, f) − L(Pǫ, f) <

n∑

i=1

[f(xi) − f(xi−1)]
ǫ

f(b) − f(a)
=

[f(b) − f(a)]ǫ

f(b) − f(a)
= ǫ.

Hence by the Riemann condition, f is integrable.
A similar proof holds if f is monotonically decreasing.

(ii) Assume that f : [a, b] → R is continuous. Then f is bounded by part
(i) of Proposition 3.8. Also, by Proposition 3.17, f is uniformly continuous.
Let ǫ > 0 be given. By Proposition 3.19, there is δ > 0 such that

x, y ∈ [a, b], |x − y| < δ =⇒ |f(x) − f(y)| <
ǫ

b − a
.

Let Pǫ = {x0, x1, . . . , xn} be a partition of [a, b] such that xi − xi−1 < δ for
i = 1, . . . , n. Now for each i = 1, . . . , n, and x, y ∈ [xi−1, xi], we have

f(x) − f(y) <
ǫ

b − a
.

Taking the supremum for x ∈ [xi−1, xi] and the infimum for y ∈ [xi−1, xi], we
obtain Mi(f) − mi(f) ≤ ǫ/(b − a). Hence
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U(Pǫ, f)−L(Pǫ, f) =
n∑

i=1

[Mi(f)−mi(f)](xi−xi−1) ≤
ǫ

b − a

n∑

i=1

(xi−xi−1) = ǫ.

Hence by the Riemann condition, f is integrable. ⊓⊔

The above proposition shows that monotonicity or continuity of a function
is a sufficient condition for its integrability. Since a monotonic function need
not be continuous (for example, f(x) := 0 if a ≤ x ≤ (a + b)/2 and f(x) := 1
if (a + b)/2 < x ≤ b) and a continuous function need not be monotonic
(for example, f(x) := |x − (a + b)/2| if x ∈ [a, b]), it follows that neither
monotonicity nor continuity is a necessary condition for integrability. In fact,
Corollary 6.11 shows that if f is monotonic or continuous on a finite number of
‘pieces’ constituting the interval [a, b], then it is integrable on [a, b]. To obtain
this result, we first show that a ‘piecewise’ integrable function is integrable.

Proposition 6.10. Let f : [a, b] → R be a bounded function. Suppose there
are c1 < · · · < cn in [a, b] such that the function f is integrable on each
of the subintervals [a, a1], [b1, a2], . . . , [bn−1, an], [bn, b], whenever a1, . . . , an,
b1, . . . , bn in [a, b] are such that

a1 ≤ c1 < b1 < a2 < c2 < b2 < · · · < an < cn ≤ bn,

where the equality a1 = c1 holds only if c1 = a and the equality cn = bn holds
only if cn = b. Then f is integrable on [a, b] and

∫ b

a

f(x)dx =

∫ c1

a

f(x)dx +

∫ c2

c1

f(x)dx + · · · +
∫ b

cn

f(x)dx.

Proof. First we assume that there is only one point c1 ∈ [a, b] such that c1 �= a,
c1 �= b, and f is integrable on the subintervals [a, a1] and [b1, b] whenever
a1, b1 ∈ [a, b] are such that a1 < c1 < b1.

If f is constant on [a, b], then it is integrable on [a, b], as we saw in Example
6.4 (i). Assume now that f is not constant on [a, b], and so M(f) �= m(f). Let
ǫ > 0 be given. Choose a1 and b1 in [a, b] such that

a1 < c1 < b1 and b1 − a1 <
ǫ

3[M(f) − m(f)]
.

Let g1 denote the restriction of f to [a, a1] and h1 denote the restriction of f
to [b1, b]. Then g1 and h1 are given to be integrable on [a, a1] and on [b1, b]
respectively. By the Riemann condition, there are partitions P1 of [a, a1] and
Q1 of [b1, b] such that

U(P1, g1) − L(P1, g1) <
ǫ

3
and U(Q1, h1) − L(Q1, h1) <

ǫ

3
.

Let Pǫ denote the partition of [a, b] obtained from the points of P1 followed
by the points of Q1. Thus Pǫ contains the points a1 and b1. Now,
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U(Pǫ, f) = U(P1, g1) + M∗
1 (b1 − a1) + U(Q1, h1)

and
L(Pǫ, f) = L(P1, g1) + m∗

1(b1 − a1) + L(Q1, h1),

where

M∗
1 = sup{f(x) : x ∈ [a1, b1]} and m∗

1 = inf{f(x) : x ∈ [a1, b1]}.

Since M∗
1 − m∗

1 ≤ M(f) − m(f), it follows that

U(Pǫ, f) − L(Pǫ, f) <
ǫ

3
+ [M(f) − m(f)] · ǫ

3[M(f)− m(f)]
+

ǫ

3
= ǫ.

By the Riemann condition, we see that f is integrable on [a, b]. Hence, by the
domain additivity (Proposition 6.7), we have

∫ b

a

f(x)dx =

∫ c1

a

f(x)dx +

∫ b

c1

f(x)dx.

If c1 = a, then we let a1 := a, and if c1 = b, then we let b1 := b in the above
argument and complete the proof.

In the general case involving n points c1, . . . , cn in [a, b], the integrability
of f follows by arguing as above repeatedly. ⊓⊔

Corollary 6.11. Let f : [a, b] → R be a bounded function. Assume that there
are points c1 < c2 < · · · < cn in [a, b] such that on each of the subintervals
[a, c1), (c1, c2), . . . , (cn−1, cn), (cn, b], the function f is either monotonic or
continuous. Then f is integrable on [a, b].

Proof. Consider points a1, b1, . . . , an, bn ∈ [a, b] such that

a1 ≤ c1 < b1 < a2 < c2 < b2 < · · · < an < cn ≤ bn,

where the equality a1 = c1 holds only if c1 = a and the equality cn = bn

holds only if cn = b. Proposition 6.9 shows that f is integrable on each of the
subintervals [a, a1], [b1, a2], . . ., [bn−1, an], and [bn, b]. Hence by Proposition
6.10, f is integrable on [a, b]. ⊓⊔

We shall now use Proposition 6.10 to prove an interesting property of the
Riemann integral. Roughly speaking, it says that if the values of an integrable
function are arbitrarily changed at a finite number of points, then the modified
function is also integrable and its Riemann integral is equal to the Riemann
integral of the given function.

Proposition 6.12. Let f : [a, b] → R be integrable, and g : [a, b] → R be such
that {x ∈ [a, b] : g(x) �= f(x)} = {c1, . . . , cn}. Then g is integrable and

∫ b

a

g(x)dx =

∫ b

a

f(x)dx.
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Proof. Since f is bounded, and g differs from f at only a finite number of
points, there is α > 0 such that |f(x)| ≤ α and |g(x)| ≤ α for all x ∈ [a, b].

To show that g is integrable, consider points a1, b1, . . . , an, bn ∈ [a, b] such
that a1 ≤ c1 < b1 < a2 < c2 < b2 < · · · < an < cn ≤ bn, where the equality
a1 = c1 holds only if c1 = a and the equality cn = bn holds only if cn = b. Now
g(x) = f(x) for all x in each of the subintervals [a, a1], [b1, a2], . . ., [bn−1, an],
[bn, b], except if c1 = a and/or cn = b. If c1 = a, then a1 = a and g is clearly
integrable on [a, a1], while if cn = b, then bn = b and g is clearly integrable on
[bn, b]. Otherwise, since f is integrable on [a, b], Proposition 6.7 shows that f
is integrable on each of the subintervals [a, a1], [b1, a2], . . ., [bn−1, an], [bn, b].
In other words, g is integrable on each of these subintervals. Since the points
a1, b1, . . . , an, bn (satisfying the above inequalities) are arbitrary, it follows
from Proposition 6.10 that g is integrable on [a, b].

To show that the Riemann integral of g is equal to the Riemann integral
of f , let ǫ > 0 be given. Choose points a1, b1, . . . , an, bn ∈ [a, b] satisfying the
above-mentioned inequalities and also satisfying (bj − aj) < ǫ/2nα for each
j = 1, . . . , n. By the domain additivity (Proposition 6.7), we see that

∫ b

a

f(x)dx −
∫ b

a

g(x)dx =
n∑

j=1

∫ bj

aj

f(x)dx −
n∑

j=1

∫ bj

aj

g(x)dx.

By the basic inequality for Riemann integrals (Proposition 6.3), we have

∣∣∣∣∣

∫ bj

aj

f(x)dx

∣∣∣∣∣ ≤ α(bj−aj) and

∣∣∣∣∣

∫ bj

aj

g(x)dx

∣∣∣∣∣ ≤ α(bj−aj) for j = 1, . . . , n.

Hence
∣∣∣∣∣

∫ b

a

f(x)dx −
∫ b

a

g(x)dx

∣∣∣∣∣ ≤ α
n∑

j=1

(bj − aj) + α
n∑

j=1

(bj − aj) = 2nα · ǫ

2nα
= ǫ.

Since ǫ > 0 is arbitrary, we conclude that the Riemann integral of f is equal
to the Riemann integral of g. ⊓⊔

Examples 6.13. (i) Let f(x) := [x], the integral part of x, for all x ∈ [a, b].
Since f is (monotonically) increasing, it is integrable. This conclusion
also follows by noting that f is bounded, and if m1, . . . , mn are the inte-
gers belonging to [a, b], then f is continuous on each of the subintervals
[a, m1], (m1, m2), . . ., (mn−1, mn), (mn, b].

(ii) Let f(x) := |x|, the absolute value of x, for all x ∈ [a, b]. Since f is
continuous, it is integrable.

(iii) Let f : [a, b] → R be a polynomial function, or more generally, a rational
function whose denominator does not vanish at any point in [a, b]. Then
f is continuous on [a, b], and hence it is integrable.
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(iv) Let f : [0, 1] → R be the ‘infinite-steps function’ given by

f(x) :=

{
0 if x = 0,
1/n if 1/(n + 1) < x ≤ 1/n for some n ∈ N.

[See Figure 6.2.] Since f is (monotonically) increasing on [0, 1], it is inte-
grable. Note that f is discontinuous at infinitely many points in [0, 1].
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0

Fig. 6.2. Graphs of an ‘infinite-steps function’ and a ‘broken-line function’

(v) Let f : [−1, 1] → R be the zigzag function defined in Example 1.17 (iv).
Since f is continuous (as shown in Example 3.6 (v)), it is integrable.
Note that f is alternately increasing and decreasing on infinitely many
subintervals of [−1, 1] and thus, f is ‘piecewise monotonic’ on [−1, 1].

(vi) Let f : [0, 1] → R be the ‘broken-line function’ given by

f(x) :=

{
0 if x = 0 or x = 1/n for some n ∈ N,
1 otherwise.

[See Figure 6.2.] Here Proposition 6.10 is not directly applicable to f .
Nevertheless, we can use it to show that f is integrable as follows. Let
ǫ > 0 be given, and choose n0 ∈ N such that 1/n0 < ǫ/2. Let a1 := 1/n0,
and g denote the restriction of f to [a1, 1]. Since g is bounded, and it is
not continuous only at 1/n0, 1/(n0 − 1), . . . , 1/2, 1, Corollary 6.11 shows
that g is integrable. By the Riemann condition, there is a partition Qǫ of
[a1, 1] such that U(Qǫ, g) − L(Qǫ, g) < ǫ. Let Pǫ denote the partition of
[0, 1] obtained by adding the point 0 to the partition Qǫ of [a1, 1]. Since

sup{f(x) : 0 ≤ x ≤ a1} = 1 and inf{f(x) : 0 ≤ x ≤ a1} = 0,

we have
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U(Pǫ, f) = 1 ·(a1−0)+U(Qǫ, g) and L(Pǫ, f) = 0 ·(a1−0)+L(Qǫ, g).

Thus

U(Pǫ, f) − L(Pǫ, f) = (a1 − 0) + U(Qǫ, g) − L(Qǫ, g) <
ǫ

2
+

ǫ

2
= ǫ.

Hence by the Riemann condition, f is integrable. ✸

Remark 6.14. The integrability of a bounded function f : [a, b] → R is
intimately related to the nature of the set of points in [a, b] at which f is
discontinuous. This connection is briefly explained in the Notes and Comments
at the end of this chapter. For more details, one can consult the references
cited there. See also Exercise 54 in this regard. ✸

Algebraic and Order Properties

First we consider how Riemann integration behaves with respect to the alge-
braic operations on functions.

Proposition 6.15. Let f, g : [a, b] → R be integrable functions. Then

(i) f + g is integrable and
∫ b

a (f + g)(x)dx =
∫ b

a f(x)dx +
∫ b

a g(x)dx,

(ii) rf is integrable for any r ∈ R and
∫ b

a
(rf)(x)dx = r

∫ b

a
f(x)dx,

(iii) fg is integrable,
(iv) if there is δ > 0 such that |f(x)| ≥ δ and all x ∈ [a, b], then 1/f is

integrable,
(v) if f(x) ≥ 0 for all x ∈ [a, b], then for any k ∈ N, the function f1/k is

integrable.

Proof. Let ǫ > 0 be given. By the Riemann condition, there are partitions Q
and R of [a, b] such that

U(Q, f) − L(Q, f) < ǫ and U(R, g) − L(R, g) < ǫ.

Let Pǫ denote the common refinement of Q and R. Then by part (i) of Lemma
6.2, we have

U(Pǫ, f) − L(Pǫ, f) ≤ U(Q, f) − L(Q, f) < ǫ

and
U(Pǫ, g) − L(Pǫ, g) ≤ U(R, g) − L(R, g) < ǫ.

(i) Let Pǫ = {x0, x1, . . . , xn}. For any i = 1, . . . , n, we have

Mi(f + g) ≤ Mi(f) + Mi(g) and mi(f + g) ≥ mi(f) + mi(g).

Multiplying both sides of these inequalities by xi − xi−1 and summing from
i = 1 to i = n, we obtain
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U(Pǫ, f + g) ≤ U(Pǫ, f) + U(Pǫ, g) and L(Pǫ, f + g) ≥ L(Pǫ, f) + L(Pǫ, g).

Hence

U(Pǫ, f+g)−L(Pǫ, f+g) ≤ U(Pǫ, f)−L(Pǫ, f)+U(Pǫ, g)−L(Pǫ, g) < ǫ+ǫ = 2ǫ.

Since ǫ > 0 is arbitrary, the Riemann condition shows that the function f + g
is integrable. Further, if we let α := U(Pǫ, f) + U(Pǫ, g) and β := L(Pǫ, f) +
L(Pǫ, g), then we have

β ≤ L(Pǫ, f +g) ≤ L(f +g) =

∫ b

a

(f +g)(x)dx = U(f +g) ≤ U(Pǫ, f +g) ≤ α.

Also, we have

β ≤ L(f) + L(g) =

∫ b

a

f(x)dx +

∫ b

a

g(x)dx = U(f) + U(g) ≤ α.

Thus, we see that

∣∣∣∣∣

∫ b

a

f(x)dx +

∫ b

a

g(x)dx −
∫ b

a

(f + g)(x)dx

∣∣∣∣∣ ≤ α − β < 2ǫ.

Since this is true for every ǫ > 0, we obtain

∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx +

∫ b

a

g(x)dx.

(ii) Let r ∈ R. If r = 0, then rf(x) = 0 for all x ∈ [a, b] and (ii) follows
easily. Now assume that r > 0. Then for any partition P of [a, b], we see that

L(P, rf) = rL(P, f) and U(P, rf) = rU(P, f).

Hence
L(rf) = rL(f) = rU(f) = U(rf).

On the other hand, if r < 0, then for any partition P of [a, b], we see that

L(P, rf) = rU(P, f) and U(P, rf) = rL(P, f),

and so
L(rf) = rU(f) = rL(f) = U(rf).

In both the cases, we see that rf is integrable and

∫ b

a

(rf)(x)dx = r

∫ b

a

f(x)dx.

(iii) For any i = 1, . . . , n, and x, y ∈ [xi−1, xi], we have
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(fg)(x) − (fg)(y) = f(x)[g(x) − g(y)] + [f(x) − f(y)]g(y)

≤ |f(x)| |g(x) − g(y)| + |g(y)| |f(x) − f(y)|
≤ M(|f |)[Mi(g) − mi(g)] + M(|g|)[Mi(f) − mi(f)].

Taking the supremum for x in [xi−1, xi] and the infimum for y in [xi−1, xi],
we obtain

Mi(fg) − mi(fg) ≤ M(|f |)[Mi(g) − mi(g)] + M(|g|)[Mi(f) − mi(f)].

Multiplying both sides of this inequality by xi−xi−1 and summing from i = 1
to i = n, we obtain

U(Pǫ, fg) − L(Pǫ, fg)
≤ M(|f |)[U(Pǫ, g) − L(Pǫ, g)] + M(|g|)[U(Pǫ, f) − L(Pǫ, f)]
< [M(|f |) + M(|g|)]ǫ.

Since ǫ > 0 arbitrary, the Riemann condition shows that the function fg is
integrable.

(iv) Let δ > 0 be such that |f(x)| ≥ δ for all x ∈ [a, b]. For any i = 1, . . . , n
and x, y ∈ [xi−1, xi], we have

1

f(x)
− 1

f(y)
=

f(y) − f(x)

f(x)f(y)
≤ |f(x) − f(y)|

|f(x)| |f(y)| ≤ 1

δ2
[Mi(f) − mi(f)].

Taking the supremum for x in [xi−1, xi] and the infimum for y in [xi−1, xi],
we obtain

Mi

(
1

f

)
− mi

(
1

f

)
≤ 1

δ2
[Mi(f) − mi(f)]

and consequently

U

(
Pǫ,

1

f

)
− L

(
Pǫ,

1

f

)
≤ 1

δ2
[U(Pǫ, f) − L(Pǫ, f)] <

ǫ

δ2
.

Again, since ǫ > 0 is arbitrary while δ > 0 is fixed, the Riemann condition
shows that the function 1/f is integrable.

(v) Let k ∈ N and write F = f1/k for simplicity. First we assume that
there is δ > 0 such that f(x) ≥ δ for all x ∈ [a, b]. For any x, y in [a, b], we see
that f(x) − f(y) = F (x)k − F (y)k can be written as

[F (x) − F (y)][F (x)k−1 + F (x)k−2F (y) + · · · + F (x)F (y)k−2 + F (y)k−1].

Now

F (x)k−jF (y)j−1 ≥ δ(k−j)/kδ(j−1)/k = δ(k−1)/k > 0 for j = 1, . . . , k,

and so
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F (x) − F (y) =
f(x) − f(y)

F (x)k−1 + F (x)k−2F (y) + · · · + F (x)F (y)k−2 + F (y)k−1

≤ f(x) − f(y)

kδ(k−1)/k
.

If P = {x0, x1, . . . , xn} is any partition of [a, b] and x, y ∈ [xi−1, xi] for some
i = 1, . . . , n, then

F (x) − F (y) ≤ |f(x) − f(y)|
kδ(k−1)/k

≤ Mi(f) − mi(f)

kδ(k−1)/k
.

Taking the supremum for x in [xi−1, xi] and the infimum for y in [xi−1, xi],
we obtain

Mi(F ) − mi(F ) ≤ Mi(f) − mi(f)

kδ(k−1)/k
for i = 1, . . . , n.

Multiplying both sides of this inequality by xi−xi−1 and summing from i = 1
to i = n, we obtain

U(P, F ) − L(P, F ) ≤ 1

kδ(k−1)/k
[U(P, f) − L(P, f)].

Since f is integrable, the Riemann condition shows that F is also integrable.
Next, we consider the general case of any nonnegative integrable function f

on [a, b]. Let δ > 0 and define g : [a, b] → R by g(x) := f(x)+δ and G := g1/k.
Then g is integrable by part (i) above, and g(x) ≥ δ for all x ∈ [a, b]. It follows
from what we have proved above that G is integrable. Moreover, since f is
nonnegative, we have

G − δ1/k = (f + δ)1/k − δ1/k ≤ f1/k = F ≤ (f + δ)1/k = G,

and therefore,
L(G − δ1/k) ≤ L(F ) ≤ U(F ) ≤ U(G).

But

L(G−δ1/k) = L(G)−δ1/k(b−a) =

∫ b

a

G(x)dx−δ1/k(b−a) = U(G)−δ1/k(b−a).

This shows that

0 ≤ U(F ) − L(F ) ≤ U(G) − L(G − δ1/k) = δ1/k(b − a).

Since δ1/k → 0 as δ → 0, we see that F = f1/k is integrable. ⊓⊔

We remark that there is no simple way to express the Riemann integral
of fg in terms of the Riemann integrals of f and g. In Proposition 6.25, we
shall give a method of evaluating the Riemann integral of fg under additional
assumptions.
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With notation and hypotheses as in the above proposition, a combined
application of its parts (i) and (ii) shows that the difference f −g is integrable
and ∫ b

a

(f − g)(x)dx =

∫ b

a

f(x)dx −
∫ b

a

g(x)dx.

Further, given any n ∈ N, successive applications of part (iii) of the above
proposition show that the nth power fn is integrable. Likewise, a combined
application of parts (iii) and (iv) shows that if there is δ > 0 such that
|g(x)| ≥ δ for all x ∈ [a, b], then the quotient f/g is integrable. Also, a
combined application of parts (iii) and (v) shows that if f(x) ≥ 0 for all
x ∈ [a, b], then given any positive r ∈ Q, the rth power f r is integrable since
r = n/k, where n, k ∈ N.

The results obtained in Proposition 6.15 are in line with analogous results
for continuity and differentiability of functions (Propositions 3.3 and 4.5). On
the other hand, a composition of integrable functions need not be integrable, in
contrast to the facts that a composition of continuous functions is continuous
and a composition of differentiable functions is differentiable (Propositions 3.4
and 4.9).

Example 6.16. Let f : [0, 1] → R be given by

f(x) :=

{
0 if x = 0,
1 if 0 < x ≤ 1.

Since f is continuous on (0, 1], it follows from Corollary 6.11 that f is inte-
grable. Consider Thomae’s function g : [0, 1] → R defined by

g(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

1 if x = 0 ∈ [0, 1],
1/q if x ∈ Q ∩ [0, 1] and x = p/q, where p, q ∈ N

are relatively prime,
0 otherwise.

We show that g is also integrable. Let ǫ > 0 be given. First note that the set
{x ∈ [0, 1] : g(x) ≥ ǫ/2} is finite, say {c1, . . . , cℓ}. This follows by observing
that if we choose n0 ∈ N such that 1/n0 < ǫ/2, then there are only finitely
many rational numbers in [0, 1] having denominators less than n0. Let Pǫ =
{x0, x1, . . . , xn} be a partition of [0, 1] such that (xi − xi−1) < ǫ/4ℓ for i =
1, . . . , n. Since there is an irrational number in [xi−1, xi], we have mi(g) = 0
for i = 1, . . . , n, and so L(Pǫ, g) = 0. Also, we note the following: g(x) ≤ 1
for all x ∈ [0, 1], the points c1, . . . , cℓ belong to at most 2ℓ subintervals of Pǫ,
and if x ∈ [0, 1] belongs to any of the remaining subintervals, then g(x) < ǫ/2.
Hence we have

U(Pǫ, g) =

n∑

i=1

Mi(g)(xi − xi−1) < 1 · ǫ

4ℓ
· 2ℓ +

ǫ

2

n∑

i=1

(xi − xi−1) = ǫ.
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Thus U(Pǫ, g) − L(Pǫ, g) < ǫ − 0 = ǫ. The Riemann condition implies that g
is integrable. In fact,

∫ 1

0

g(x)dx = inf{U(P, g) : P is a partition of [a, b]} = 0.

Now the composite functions g ◦ f and f ◦ g are both defined on [0, 1], and

g ◦ f(x) = 1 for all x ∈ [0, 1], whereas f ◦ g(x) =

{
1 if x ∈ Q,
0 if x �∈ Q.

Thus from Examples 6.4 (i) and (ii), we see that g ◦ f is integrable, whereas
f ◦ g is not integrable. ✸

Remark 6.17. In Example 6.16, the function g is not continuous. (In fact,
the set of discontinuities of g is Q∩ [0, 1]. See Exercise 34 of Chapter 3.) It is
possible to construct an integrable function f : [0, 1] → R and a continuous
function g : [0, 1] → [0, 1] such that f ◦ g is not integrable. [See Problem 28 of
Chapter 3 in [52], or the article [45].] On the other hand, if f : [a, b] → R is
integrable, φ : [α, β] → [a, b] is differentiable, φ′ is integrable, and |φ′| ≥ δ for
some δ > 0, then f ◦ φ is integrable. (See part (ii) of Proposition 6.26.) Also,
if f : [a, b] → R is integrable and φ : [m(f), M(f)] → R is continuous, then
φ ◦ f is integrable. (See Exercise 42.) ✸

Next, we consider how Riemann integration behaves with respect to the
order relation on functions.

Proposition 6.18. Let f, g : [a, b] → R be integrable.

(i) If f ≤ g, then
∫ b

a f(x)dx ≤
∫ b

a g(x)dx.

(ii) The function |f | is integrable and
∣∣∣
∫ b

a
f(x)dx

∣∣∣ ≤
∫ b

a
|f |(x)dx.

Proof. (i) Assume that f(x) ≤ g(x) for all x ∈ [a, b]. Then for any partition
P of [a, b], we have U(P, f) ≤ U(P, g), and so

∫ b

a

f(x)dx = U(f) ≤ U(g) =

∫ b

a

g(x)dx.

(ii) Let ǫ > 0 be given. By the Riemann condition, there is a partition Pǫ

of [a, b] such that U(Pǫ, f) − L(Pǫ, f) < ǫ. Let Pǫ = {x0, x1, . . . , xn}. For any
i = 1, . . . , n and x, y ∈ [xi−1, xi], we have

|f |(x) − |f |(y) ≤ |f(x) − f(y)| ≤ Mi(f) − mi(f).

Taking the supremum for x in [xi−1, xi] and the infimum for y in [xi−1, xi],
we obtain

Mi(|f |) − mi(|f |) ≤ Mi(f) − mi(f) for i = 1, . . . , n.
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Multiplying both sides of this inequality by xi−xi−1 and summing from i = 1
to i = n, we obtain

U(Pǫ, |f |) − L(Pǫ, |f |) ≤ U(Pǫ, f) − L(Pǫ, f) < ǫ.

Now the Riemann condition shows that |f | is integrable. Further, since
−|f |(x) ≤ f(x) ≤ |f |(x) for all x ∈ [a, b], by part (i) above we see that

∫ b

a

−|f |(x)dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f |(x)dx.

But
∫ b

a −|f |(x)dx = −
∫ b

a |f |(x)dx by part (ii) of Proposition 6.15. Hence

∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f |(x)dx,

as desired. ⊓⊔

Remark 6.19. If f : [a, b] → R is any function, then

f = f+ − f−, where f+ =
|f | + f

2
and f− =

|f | − f

2
.

Note that both f+ and f− are nonnegative functions defined on [a, b], and

f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0} for all x ∈ [a, b].

The functions f+ and f− are known as the positive part and the negative
part of f , respectively. By part (ii) of the above proposition, and parts (i)
and (ii) of Proposition 6.15, we see that f is integrable if and only if f+ and
f− are integrable, and then

∫ b

a

f(x)dx =

∫ b

a

f+(x)dx −
∫ b

a

f−(x)dx = Area(Rf+) − Area(Rf−),

where Rf+ := {(x, y) ∈ R2 : a ≤ x ≤ b and 0 ≤ y ≤ f(x)} and Rf− :=
{(x, y) ∈ R2 : a ≤ x ≤ b and f(x) ≤ y ≤ 0}.

As remarked earlier, this suggests that the Riemann integral of f on [a, b]
can be interpreted as the ‘signed area’ of the corresponding region. ✸

6.3 The Fundamental Theorem of Calculus

Differentiation and integration are the two most important processes in cal-
culus and analysis. As we have remarked in the introduction of Chapter 4,
differentiation is a local process, that is, the value of the derivative at a point
depends only on the values of the function in a small interval about that
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point. On the other hand, integration is a global process in the sense that
the integral of a function depends on the values of the function on the en-
tire interval. Further, these processes are defined in entirely different manners
without any apparent connection between them. Indeed, from a geometric
point of view, differentiation corresponds to finding (slopes of) tangents to
curves, while integration corresponds to finding areas under curves. At first
glance, there seems to be no reason for these two geometric processes to be
intimately related.

In this section, we shall obtain a wonderful result, known as the Fun-
damental Theorem of Calculus or, for short, the FTC, which says that the
processes of differentiating a function and integrating it are inverse to each
other. Roughly speaking, if one differentiates a function over an interval and
then integrates it, one gets back the original function. Also, if one first inte-
grates a function and then differentiates it, again one gets back the original
function. We remark that the proof of the FTC depends only on the Riemann
condition and the domain additivity proved in Section 6.1.

Let us recall that if f : [a, b] → R is differentiable, then we obtain a new
function f ′ : [a, b] → R, called the derivative of f . Likewise, if f : [a, b] → R is
integrable, then we obtain a new function F : [a, b] → R defined by

F (x) =

∫ x

a

f(t)dt for x ∈ [a, b].

Indeed, in view of Proposition 6.7, f is integrable on [a, x] for every x ∈ [a, b],
and F (a) = 0 in accord with our convention. Hence the function F is well
defined on [a, b]. To begin with, we shall study an important property of this
function.

Proposition 6.20. Let f : [a, b] → R be integrable and F : [a, b] → R be
defined by

F (x) :=

∫ x

a

f(t)dt.

Then F is continuous on [a, b].
In fact, F satisfies a Lipschitz condition on [a, b]: there is α > 0 such

that
|F (x) − F (y)| ≤ α|x − y| for all x, y ∈ [a, b].

Proof. Since f is integrable on [a, b], it is bounded on [a, b], that is, there is
α > 0 such that |f(t)| ≤ α for all t ∈ [a, b].

Let c ∈ [a, b]. Then for x ∈ [a, b], by the domain additivity (Proposition
6.7), we have

F (x) − F (c) =

∫ x

a

f(t)dt −
∫ c

a

f(t)dt =

∫ x

c

f(t)dt.

Hence by the basic inequality for Riemann integrals (Proposition 6.3),
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|F (x) − F (c)| =

∣∣∣∣
∫ x

c

f(t)dt

∣∣∣∣ ≤ α |x − c|.

This implies that F is continuous at c.
Since x and c are arbitrary points in [a, b], and α does not depend on them,

we see that f satisfies a Lipschitz condition on [a, b]. ⊓⊔

The above proposition says that although an integrable function f may
be discontinuous on [a, b], the function F : [a, b] → R obtained by integrat-
ing f from a to x ∈ [a, b] is continuous on [a, b]. We shall see below in the
second part of the FTC that if f happens to be continuous on [a, b], then F
is differentiable on [a, b]. Thus, integration is a smoothing process, unlike the
process of differentiation (since the derivative of a differentiable function may
not turn out to be differentiable).

In order to state the main result of this section in a concise form, we
introduce the following concept. Let I be an interval containing more than one
point and f : I → R be any function. We say that f has an antiderivative
on I if there is a differentiable function F : I → R such that f = F ′. Such
a function F is called an antiderivative or a primitive of f . It follows
from Corollary 4.21 that if an antiderivative of f exists, then it is unique up
to addition of a constant. Just before stating Rolle’s Theorem (Proposition
4.15), we showed that the integral part function is not the derivative of any
function. Thus there exist functions that have no antiderivative.

Proposition 6.21 (Fundamental Theorem of Calculus). Let f : [a, b] →
R be integrable.

(i) If f has an antiderivative F , then

∫ x

a

f(t)dt = F (x) − F (a) for all x ∈ [a, b].

(ii) Let F : [a, b] → R be defined by

F (x) =

∫ x

a

f(t)dt.

If f is continuous at c ∈ [a, b], then F is differentiable at c and

F ′(c) = f(c).

In particular, if f is continuous on [a, b], then F is an antiderivative of f
on [a, b].

Proof. (i) Let f : [a, b] → R be integrable and have an antiderivative F . If
x = a, then in view of our convention,

∫ x

a

f(t)dt =

∫ a

a

f(t)dt = 0 = F (x) − F (a).



6.3 The Fundamental Theorem of Calculus 203

Now assume that x ∈ (a, b] and let g denote the restriction of f to [a, x].
Then in view of Proposition 6.7, g is integrable. Let ǫ > 0 be given. By the
Riemann condition, there is a partition Pǫ = {x0, x1, . . . , xn} of [a, x] such
that U(Pǫ, g) − L(Pǫ, g) < ǫ. By the MVT (Proposition 4.18) applied to F ,
for each i = 1, . . . , n, there is si ∈ (xi−1, xi) such that

F (xi) − F (xi−1) = F ′(si)(xi − xi−1) = f(si)(xi − xi−1) = g(si)(xi − xi−1).

Hence

F (x) − F (a) =

n∑

i=1

[F (xi) − F (xi−1)] =

n∑

i=1

g(si)(xi − xi−1),

and so
L(Pǫ, g) ≤ F (x) − F (a) ≤ U(Pǫ, g).

Since we also have

L(Pǫ, g) ≤
∫ x

a

g(t)dt ≤ U(Pǫ, g),

it follows that
∣∣∣∣F (x) − F (a) −

∫ x

a

g(t)dt

∣∣∣∣ ≤ U(Pǫ, g) − L(Pǫ, g) < ǫ.

Because this inequality holds for every ǫ > 0, we see that

∫ x

a

f(t)dt =

∫ x

a

g(t)dt = F (x) − F (a),

as desired.

(ii) Let f be continuous at c ∈ [a, b]. Then by Proposition 3.7, for any
given ǫ > 0, there is δ > 0 such that

t ∈ [a, b] and |t − c| < δ =⇒ |f(t) − f(c)| < ǫ.

Now if x ∈ [a, b] and x �= c, then we have

F (x) − F (c)

x − c
=

1

x − c

∫ x

c

f(t)dt =
1

x − c

(∫ x

c

[f(t) − f(c)]dt

)
+ f(c),

since
∫ x

c f(c)dx = f(c)(x− c) (as in Example 6.4 (i)). Next, if 0 < |x− c| < δ,
then |f(t) − f(c)| < ǫ for all t in the closed interval between c and x, and
hence, in view of the basic inequality for Riemann integrals (Proposition 6.3),

∣∣∣∣
F (x) − F (c)

x − c
− f(c)

∣∣∣∣ ≤
1

|x − c| · ǫ|x − c| = ǫ.



204 6 Integration

If c ∈ (a, b), then it follows that F is differentiable at c and

F ′(c) = lim
x→c

F (x) − F (c)

x − c
= f(c).

If c = a, then it also follows that the right (hand) derivative F ′
+(c) of F at c

exists and equals f(c), whereas if c = b, then the left (hand) derivative F ′
−(c)

of F at c exists and equals f(c). This proves (ii). ⊓⊔

Remarks 6.22. (i) In view of part (i) of the FTC, if an integrable function
f : [a, b] → R has an antiderivative F , then F is called an indefinite integral
of f , and it is denoted by

∫
f(x)dx. Note, however, that this notation is

somewhat ambiguous since an indefinite integral of f is unique only up to an
additive constant. For this reason, one writes

∫
f(x)dx = F (x) + C,

where C denotes an arbitrary constant. Notice that in this case,

∫ b

a

f(x)dx = F (b) − F (a),

where the right (hand) side is independent of the choice of an indefinite inte-
gral. The right (hand) side of the above equality is sometimes denoted by

[
F (x)

]b

a
or F (x)

∣∣b
a
.

With this in mind, the Riemann integral of f : [a, b] → R is sometimes
referred to as the definite integral of f over [a, b].

(ii) The following stronger version of part (ii) of the FTC can be proved
by slightly modifying its proof.

If c ∈ [a, b) and limx→c+ f(x) exists, then the right (hand) derivative F ′
+(c)

of F at c exists and equals this limit. Likewise, if c ∈ (a, b] and limx→c− f(x)
exists, then the left (hand) derivative F ′

−(c) of F at c exists and equals this
limit.

In proving this version, one appeals to analogues of Proposition 3.27 for
right (hand) and left (hand) limits, and also to Proposition 6.12 because here
the value f(c) of f at c can be arbitrary.

Simple examples show that the converse of part (ii) of the FTC does
not hold, that is, F may be differentiable without f being continuous. (See
Exercise 14.) In fact, the converse of its stronger version also does not hold,
that is, F ′

+(c) may exist and equal f(c), even if limx→c+ f(x) does not exist.
(See Proposition 7.17.)

(iii) We have seen in Part (ii) of the FTC that every continuous function
on [a, b] has an antiderivative. However, an integrable function may not have
an antiderivative. This follows by noting that there are integrable functions



6.3 The Fundamental Theorem of Calculus 205

that do not have the IVP, a property possessed by all derivative functions
(Proposition 4.14). On the other hand, a function on [a, b] may have a deriva-
tive (i) that is not bounded (Exercise 47 of Chapter 7), or (ii) that is bounded,
but not integrable (Volterra’s example given on pages 56–57 of [35]), or (iii)
that is integrable but not continuous (Example 7.19). ✸

The two parts of the FTC can be combined to obtain a necessary and
sufficient condition for a function to have a continuous derivative on [a, b].
The following result is known as the Fundamental Theorem of Riemann
Integration.

Proposition 6.23. Let F : [a, b] → R be a function. Then F is differentiable
and F ′ is continuous on [a, b] if and only if there is a continuous function
f : [a, b] → R such that

F (x) = F (a) +

∫ x

a

f(t)dt for all x ∈ [a, b].

In this case, we have F ′(x) = f(x) for all x ∈ [a, b].

Proof. Assume that F is differentiable and F ′ is continuous on [a, b]. Then
F ′ is integrable and F is its antiderivative on [a, b]. Hence by part (i) of the
FTC, we have

∫ x

a

F ′(t)dt = F (x) − F (a) for all x ∈ [a, b].

Letting f := F ′, we obtain the desired representation of F .
Conversely, assume that there is a continuous function f : [a, b] → R such

that

F (x) = F (a) +

∫ x

a

f(t)dt for all x ∈ [a, b].

Then by part (ii) of the FTC, F is differentiable and F ′(x) = 0+ f(x) = f(x)
for all x ∈ [a, b], as desired. ⊓⊔

As mentioned in the beginning of this section, the FTC shows that the
processes of differentiation and integration are inverse to each other. The FTC
is the major link between the so called ‘differentiable calculus’ and ‘integral
calculus’. Also, part (i) of the FTC provides the most widely used method of
evaluating Riemann integrals. Of course, in order to employ it, one must be
able to conjure up a function whose derivative is the given function f . It is not
always easy to do so, but some corollaries of the FTC (Propositions 6.25 and
6.26) are useful in this regard. On the other hand, part (ii) of the FTC can be
used to construct a differentiable function whose derivative is equal to a given
continuous function on an interval. We shall illustrate this powerful technique
in Chapter 7 while introducing the logarithmic and arctangent functions.
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Examples 6.24. (i) Let r be a rational number and r �= −1. Consider a > 0
and f : [a, b] → R defined by f(x) = xr. Then f is continuous on [a, b], as
we have seen in Example 3.6 (iii). Hence f is integrable. Also, it follows
from Example 4.7 that if F (x) := xr+1/(r + 1) for x ∈ [a, b], then F ′ = f .
Hence part (i) of the FTC shows that

∫ b

a

xrdx = F (b) − F (a) =
br+1 − ar+1

r + 1
.

(In Corollary 7.10, this result will be generalized to the case that r is a
real number.) It is easy to see that if r is a positive integer, then the above
result holds even when a ≤ 0, and if r is a negative integer �= −1, then
the above result also holds when a < 0 and b < 0.

(ii) Let a, b ∈ R with a < 0 < b, and define f : [a, b] → R by f(x) = x2 if
a ≤ x ≤ 0 and f(x) = x if 0 < x < b. Then f is continuous on [a, b], as we
have seen in Example 3.6 (iv). Hence f is integrable. Let F1(x) = x3/3
for x ∈ [a, 0] and F2(x) = x2/2 for x ∈ [0, b]. Then

∫ b

a

f(x)dx =

∫ 0

a

f(x)dx +

∫ b

0

f(x)dx = 0 − a3

3
+

b2

2
− 0 =

b2

2
− a3

3

by the domain additivity and by (i) above. ✸

Now we consider two important consequences of the FTC that yield the
two most powerful methods of evaluating integrals. The first result is about
the Riemann integral of the product of two functions.

Proposition 6.25 (Integration by Parts). Let f : [a, b] → R be a differ-
entiable function such that f ′ is integrable. Assume that g : [a, b] → R is
integrable and has an antiderivative G on [a, b]. Then

∫ b

a

f(x)g(x)dx = f(b)G(b) − f(a)G(a) −
∫ b

a

f ′(x)G(x)dx.

Proof. Let H := fG. Then H ′ = fG′ + f ′G = fg + f ′G, by part (iii) of
Proposition 4.5. Since f and G are differentiable, they are continuous and
hence integrable. Also, since f ′ and g are assumed to be integrable, it follows
from parts (i) and (iii) of Proposition 6.15 that the function fg + f ′G is
integrable. Hence by part (i) of the FTC,

∫ b

a

[f(x)g(x) + f ′(x)G(x)]dx = H(b) − H(a) = f(b)G(b) − f(a)G(a).

This together with part (i) of Proposition 6.15 proves the proposition. ⊓⊔

In the notation of Remark 6.22 (i), the conclusion of the above proposition
can be stated as follows:
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∫ b

a

f(x)g(x)dx =

[
f(x)

∫
g(x)dx

]b

a

−
∫ b

a

(
f ′(x)

∫
g(x)dx

)
dx,

with the understanding that on the right (hand) side,
∫

g(x)dx denotes the
same indefinite integral of g at both places. (Recall that two indefinite integrals
of g differ by an additive constant.)

Next, we consider the method of substitution for evaluating a Riemann
integral. The following result has two parts; while the proofs of both are
based on the FTC, each is applicable in a different situation.

Proposition 6.26 (Integration by Substitution). Let φ : [α, β] → R be a
differentiable function such that φ′ is integrable on [α, β], and let φ ([α, β]) =
[a, b].

(i) If f : [a, b] → R is continuous, then the function (f ◦ φ)φ′ : [α, β] → R is
integrable and ∫ φ(β)

φ(α)

f(x)dx =

∫ β

α

f(φ(t))φ′(t)dt.

(ii) If f : [a, b] → R is integrable and φ′(t) �= 0 for every t ∈ (α, β), then the
function (f ◦ φ)|φ′| : [α, β] → R is integrable and

∫ b

a

f(x)dx =

∫ β

α

f(φ(t))|φ′(t)|dt.

Proof. (i) Let f : [a, b] → R be continuous and for x ∈ [a, b], define F (x) :=∫ x

a
f(u)du. Part (ii) of the FTC shows that the function F : [a, b] → R is

differentiable and F ′ = f . Now consider the function H : [α, β] → R defined
by H := F ◦ φ. Then by the Chain Rule (Proposition 4.9), we have

H ′(t) = F ′(φ(t))φ′(t) = f(φ(t))φ′(t) for all t ∈ [a, b].

Since the function f ◦ φ is continuous and the function φ′ is integrable, the
function (f ◦ φ)φ′ is integrable by part (iii) of Proposition 6.15. Hence part
(i) of the FTC shows that

∫ β

α

f(φ(t))φ′(t)dt = H(β) − H(α) =

∫ φ(β)

a

f(x)dx −
∫ φ(α)

a

f(x)dx.

Thus, if φ(α) ≤ φ(β), then the domain additivity (Proposition 6.7) shows that

∫ β

α

f(φ(t))φ′(t)dt =

∫ φ(β)

φ(α)

f(x)dx,

and if φ(β) ≤ φ(α), then we obtain the same result since in accord with our

convention,
∫ φ(β)

φ(α)
f(x)dx = −

∫ φ(α)

φ(β)
f(x)dx. This proves the desired result.
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(ii) Let f : [a, b] → R be integrable and φ′(t) �= 0 for all t ∈ (α, β) and
ψ := (f ◦ φ)|φ′|. We first show that L(f) ≤ L(ψ).

By the IVP of φ′ (Proposition 4.14), either φ′(t) > 0 for all t ∈ (α, β),
or φ′(t) < 0 for all t ∈ (α, β). Suppose φ′(t) > 0 for all t ∈ (α, β). Then,
by part (iii) of Proposition 4.27, φ is strictly increasing on [α, β], φ(α) = a
and φ(β) = b. Consider a partition P := {x0, x1, . . . , xn} of [a, b] and let
ti := φ−1(xi) for i = 0, 1, . . . , n. Then α = t0 < t1 < · · · < tn = β and by part
(i) of the FTC, we have

∫ ti

ti−1

|φ′(t)|dt =

∫ ti

ti−1

φ′(t)dt = φ(ti) − φ(ti−1) = xi − xi−1 for i = 1, . . . , n.

Also, since f([xi−1, xi]) = (f ◦ φ)([ti−1, ti]) for i = 1, . . . , n, we see that

L(P, f) =
n∑

i=1

mi(f)(xi − xi−1) =
n∑

i=1

∫ ti

ti−1

mi(f ◦ φ)|φ′(t)|dt.

For i = 1, . . . , n, let φi and ψi denote the restrictions of φ and ψ to [ti−1, ti]
respectively. Then |φ′

i| is integrable on [ti−1, ti] and mi(f ◦ φ)|φ′
i| ≤ ψi for

i = 1, . . . , n. Hence we obtain

L(P, f) ≤
n∑

i=1

L(mi(f ◦ φ)|φ′
i|) ≤

n∑

i=1

L(ψi).

Let ǫ > 0 be given. For each i = 1, . . . , n, there is a partition Qi of [ti−1, ti]
such that

L(ψi) −
ǫ

n
< L(Qi, ψi).

If Q denotes the partition of [α, β] obtained from the points of Q1, . . . , Qn,
then

n∑

i=1

L(ψi) <
n∑

i=1

L(Qi, ψi) + ǫ = L(Q, ψ) + ǫ ≤ L(ψ) + ǫ.

It follows that L(P, f) < L(ψ) + ǫ for every ǫ > 0, and so L(P, f) ≤ L(ψ).
Taking the supremum over all partitions P of [a, b], we have L(f) ≤ L(ψ).

Next, let us assume that φ′(t) < 0 for all t ∈ (α, β). Then by part (iv) of
Proposition 4.27, φ is strictly decreasing on [α, β], φ(α) = b, and φ(β) = a.
For i = 0, 1, . . . , n, if we define ti := φ−1(xn−i), then the argument given
above for proving L(f) ≤ L(ψ) works equally well because

∫ ti

ti−1

|φ′(t)|dt = −
∫ ti

ti−1

φ′(t)dt = −
[
φ(ti) − φ(ti−1)

]
= xn−i+1 − xn−i

and f([xn−i, xn−i+1]) = (f ◦ φ)([ti−1, ti]), so that

L(P, f) =

n∑

i=1

mn−i+1(f)(xn−i+1 − xn−i) =

n∑

i=1

∫ ti

ti−1

mi(f ◦ φ)|φ′(t)|dt.
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Hence L(f) ≤ L(ψ). Similarly, we can show that U(f) ≥ U(ψ). Since f is
integrable, that is, since L(f) = U(f), we see that L(ψ) = U(ψ), that is, ψ is
integrable and

∫ b

a

f(x)dx =

∫ β

α

ψ(t)dt =

∫ β

α

(f ◦ φ)|φ′(t)|dt,

as desired. ⊓⊔

While the proof of part (ii) of the above proposition is rather involved, it
may be noted that the result is proved without assuming the continuity of the
function f . If we let f(x) := 1 for all x ∈ [a, b] in this result, then we obtain

b − a =

∫ β

α

|φ′(t)|dt.

This shows that the absolute value of the derivative of the function φ acts as
the change of scale factor in the method of substitution. For example, if p is
a nonzero real number, q ∈ R, and φ(t) := pt + q for all t ∈ [α, β], then the
change of scale factor is the constant |p|.

Examples 6.27. (i) To evaluate
∫ 1

0 x
√

1 − x dx, let f(x) := x and g(x) :=√
1 − x for x ∈ [0, 1]. Then f ′(x) = 1 for x ∈ [0, 1]. Also, if we let

G(x) := −(2/3)(1−x)3/2, then G′(x) = g(x) for x ∈ [0, 1], that is, G′ = g.
Integrating by Parts (Proposition 6.25), we obtain

∫ 1

0

x
√

1 − x dx = 0 − 0 −
∫ 1

0

(
−2

3

)
(1 − x)3/2dx =

2

3

∫ 1

0

(1 − x)3/2dx.

If we let F (x) := −(2/5)(1 − x)5/2 for x ∈ [0, 1], then F ′(x) = (1 − x)3/2

for x ∈ [0, 1] and hence

∫ 1

0

x
√

1 − x dx =
2

3
[F (1) − F (0)] =

2

3

[
0 −

(
−2

5

)]
=

4

15
.

(ii) To evaluate
∫ 1

0 t
√

1 − t2 dt, let φ(t) := 1− t2 for t ∈ [0, 1] and f(x) :=
√

x
for x ∈ [0, 1]. Since φ(0) = 1, φ(1) = 0, and φ′(t) = −2t for all t ∈ [0, 1].
Integration by Substitution (part (ii) of Proposition 6.26) yields

∫ 1

0

t
√

1 − t2 dt =
1

2

∫ 1

0

f(φ(t))|φ′(t)|dt =
1

2

∫ 1

0

f(x)dx =
1

2

∫ 1

0

√
x dx.

Now if we let F (x) := (2/3)x3/2 for x ∈ [0, 1], then

1

2

∫ 1

0

√
x dx =

1

2
[F (1) − F (0)] =

1

2

(
2

3
− 0

)
=

1

3
.

Thus
∫ 1

0
t
√

1 − t2dt = 1
3 . ✸
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We shall now prove an interesting application of the method of integration
by substitution. If the degree of a polynomial function defined on an interval
is at most one, then we give a formula for its Riemann integral in terms of the
values of the function at the two endpoints of the interval, and if the degree is
at most two, then we give such a formula in terms of the values of the function
at the two endpoints and the midpoint of the interval. These formulas will be
useful when we attempt to find approximations of the Riemann integral of an
arbitrary integrable function in Section 8.6.

Proposition 6.28. Let f : [a, b] → R be a polynomial function of degree m.
(i) If m ≤ 1, then

∫ b

a

f(x)dx =
(b − a)

2
[f(a) + f(b)].

(ii) If m ≤ 2, then

∫ b

a

f(x)dx =
(b − a)

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
.

Proof. Consider the function φ : [0, 1] → R given by φ(t) := (b−a)t+a. Then
φ(0) = a and φ(1) = b. Define g := f ◦ φ. By Proposition 6.26, we have

∫ b

a

f(x)dx =

∫ 1

0

f(φ(t))φ′(t)dt = (b − a)

∫ 1

0

g(t)dt.

It is clear that g is also a polynomial function of degree m.

(i) Let m ≤ 1. Then there are c1, c0 ∈ R such that g(t) := c1t + c0 for all
t ∈ [0, 1], and hence ∫ 1

0

g(t)dt =
c1

2
+ c0.

But since g(0) = c0 and g(1) = c1 + c0, we see that

∫ 1

0

g(t)dt =
1

2
[g(1) + g(0)].

Further, since g(0) = f(a) and g(1) = f(b), we conclude that

∫ b

a

f(x)dx =
(b − a)

2
[f(a) + f(b)],

as desired.

(ii) Let m ≤ 2. Then there are c2, c1, c0 ∈ R such that g(t) := c2t
2+c1t+c0

for all t ∈ [0, 1], and hence

∫ 1

0

g(t)dt =
c2

3
+

c1

2
+ c0.
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But since g(0) = c0, g(1) = c2 + c1 + c0, and g
(

1
2

)
= c2

4 + c1

2 + c0, we see that

∫ 1

0

g(t)dt =
1

6
(2c2 + 3c1 + 6c0)

=
1

6

[
g(1) + 4g

(1

2

)
− 5g(0) + 6g(0)

]

=
1

6

[
g(0) + 4g

(1

2

)
+ g(1)

]
.

Further, since g(0) = f(a), g(1
2 ) = f

(
a+b
2

)
, and g(1) = f(b), we conclude that

∫ b

a

f(x)dx =
(b − a)

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
,

as desired. ⊓⊔

6.4 Riemann Sums

Let f : [a, b] → R be a bounded function. In view of the Riemann condition,
f is integrable if and only if there is a sequence (Pn) of partitions of [a, b]
such that U(Pn, f) − L(Pn, f) → 0. Although we have made good use of the
Riemann condition to prove several interesting results in the previous section,
there are a number of difficulties in employing it to test the integrability of an
arbitrary bounded function and, if such a function is found to be integrable,
then to compute its Riemann integral. First, the calculation of U(P, f) and
L(P, f), for a given partition P , involves finding the absolute maxima and
minima of f over several subintervals of [a, b]. This task is rarely easy. Second,
it is not clear how to go about choosing a partition Pn, n ∈ N, so as to obtain
U(Pn, f)−L(Pn, f) → 0. Finally, when f is known to be integrable, how does
one actually find at least an approximate value of its integral? In this section,
we shall address these questions.

To overcome the first difficulty mentioned above, namely, of having to
calculate several maxima and minima of f , we give an alternative approach.
While calculating maxima and minima of f over several subintervals of [a, b]
may be difficult, evaluating f at several points of [a, b] is relatively easy. With
this in mind, we introduce the following concept. Let P = {x0, x1, . . . , xn} be
a partition of [a, b], and let si be a point in the ith subinterval [xi−1, xi] for
i = 1, . . . , n. Then

S(P, f) :=

n∑

i=1

f(si)(xi − xi−1)

is called a Riemann sum for f corresponding to P . Note that the upper
sum U(P, f) and the lower sum L(P, f) are determined by P and f , whereas a
Riemann sum S(P, f) depends on P and f , and also on the choice of the points
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si ∈ [xi−1, xi] for i = 1, . . . , n. Now we give a criterion for the integrability of
f in terms of Riemann sums.

Proposition 6.29 (Cauchy Condition). Let f : [a, b] → R be a bounded
function. Then f is integrable on [a, b] if and only if for every ǫ > 0, there is
a partition Pǫ of [a, b] such that

|S(Pǫ, f) − T (Pǫ, f)| < ǫ

for any Riemann sums S(Pǫ, f) and T (Pǫ, f) for f corresponding to Pǫ.

Proof. Suppose f is integrable. Let ǫ > 0 be given. Then by the Riemann
condition, there is a partition Pǫ of [a, b] such that U(Pǫ, f)−L(Pǫ, f) < ǫ. If
S(Pǫ, f) and T (Pǫ, f) are any Riemann sums for f corresponding to Pǫ, then

L(Pǫ, f) ≤ S(Pǫ, f) ≤ U(Pǫ, f) and L(Pǫ, f) ≤ T (Pǫ, f) ≤ (Pǫ, f).

It follows that

|S(Pǫ, f) − T (Pǫ, f)| ≤ U(Pǫ, f) − L(Pǫ, f) < ǫ.

Conversely, assume that the condition stated in the proposition holds.
Given ǫ > 0, let P = {x0, x1, . . . , xn} be a partition of [a, b] such that the
difference between any two Riemann sums for f corresponding to P is less
than ǫ/3. Now for i = 1, . . . , n, there is si ∈ [xi−1, xi] such that

Mi(f) < f(si) +
ǫ

3(b − a)
.

Let

S(P, f) :=

n∑

i=1

f(si)(xi − xi−1).

From our choice of si , i = 1, . . . , n, it follows that

U(P, f) < S(P, f) +
ǫ

3
.

Similarly, for i = 1, . . . , n, there is ti ∈ [xi−1, xi] such that

mi(f) > f(ti) −
ǫ

3(b − a)
.

Let

T (P, f) :=

n∑

i=1

f(ti)(xi − xi−1).

From our choice of ti , i = 1, . . . , n, it follows that

L(P, f) > T (P, f) − ǫ

3
.
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Further, since S(P, f) − T (P, f) < ǫ/3, we have

U(P, f) − L(P, f) < S(P, f) +
ǫ

3
− T (P, f) +

ǫ

3
< ǫ.

Hence by the Riemann condition, f is integrable. ⊓⊔

Let us now take up the second question regarding the choice of a partition
P so as to make U(P, f) − L(P, f) small. The discussion at the beginning of
this chapter suggests that we may start with any partition of [a, b] and refine
it successively. An important point to note here is the following: Mere addition
of new points would not make the difference between the corresponding upper
and lower sums tend to zero; the new points need to be so chosen that the
length of the largest subinterval of the refined partition is smaller than the
length of the largest subinterval of the given partition. This consideration
leads us to the following notion.

For a partition P of [a, b], we define the mesh of P to be the length of the
largest subinterval of P . Thus, if P = {x0, x1, . . . , xn}, then

µ(P ) := max{xi − xi−1 : i = 1, . . . , n}.

Now we shall prove an important result, which, roughly speaking, says
that upper sums U(P, f) approximate the upper integral U(f) and lower sums
approximate the lower integral L(f) if the mesh µ(P ) of P is made small.

Lemma 6.30. Let f : [a, b] → R be a bounded function. Given any ǫ > 0,
there is δ > 0 such that for every partition P of [a, b] with µ(P ) < δ, we have

0 ≤ U(P, f) − U(f) < ǫ and 0 ≤ L(f) − L(P, f) < ǫ,

and consequently
L(f) − ǫ < S(P, f) < U(f) + ǫ,

where S(P, f) is any Riemann sum for f corresponding to P .

Proof. Let ǫ > 0 be given. Since U(f) is the infimum of the set of all upper
sums for f and L(f) is the supremum of the set of all lower sums for f ,
there are partitions P1 and P2 of [a, b] such that U(P1, f) < U(f) + ǫ/2 and
L(P2, f) > L(f) − ǫ/2. Let P0 denote the common refinement of P1 and P2.
Then by part (i) of Lemma 6.2, we have

U(P0, f) < U(f) +
ǫ

2
and L(P0, f) > L(f) − ǫ

2
.

Let α > 0 be such that |f(x)| ≤ α for all x ∈ [a, b]. If the partition P0 contains
n0 points, define δ := ǫ/4αn0. Consider any partition P = {x0, x1, . . . , xn} of
[a, b] such that µ(P ) < δ. Let P ∗ denote the common refinement of P and P0.
Again, by part (i) of Lemma 6.2, we have

U(P ∗, f) ≤ U(P, f) and U(P ∗, f) ≤ U(P0, f).
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We observe that positive contributions to the difference U(P, f) − U(P ∗, f)
can arise only when a point x∗ of the partition P0 lies in an open interval
(xi−1, xi) induced by the partition P . Further, any such contribution is at
most 2αµ(P ). This follows by noting that if x∗ ∈ (xi−1, xi), and if

M∗
ℓ = sup{f(x) : x ∈ [xi−1, x

∗]} and M∗
r = sup{f(x) : x ∈ [x∗, xi]},

then the contribution to U(P, f) − U(P ∗, f) arising from the point x∗ is

Mi(f)(xi − xi−1) − M∗
ℓ (x∗ − xi−1) − M∗

r (xi − x∗)
= (Mi(f) − M∗

ℓ )(x∗ − xi−1) + (Mi(f) − M∗
r )(xi − x∗)

≤ 2α[(x∗ − xi−1) + (xi − x∗)]
= 2α(xi − xi−1)
≤ 2αµ(P ).

Since the total number of points in the partition P0 is n0, we immediately
see that

U(P, f) − U(P ∗, f) ≤ n0 · 2αµ(P ) < 2αn0δ =
ǫ

2
.

Thus for every partition P of [a, b] with µ(P ) < δ, we have

U(P, f) < U(P ∗, f) +
ǫ

2
≤ U(P0, f) +

ǫ

2
< U(f) +

ǫ

2
+

ǫ

2
= U(f) + ǫ.

In a similar manner, we can show that for every partition P of [a, b] with
µ(P ) < δ, we have

L(P, f) > L(f) − ǫ.

Finally, if S(P, f) is any Riemann sum for f corresponding to a partition P
with µ(P ) < δ, then

L(f) − ǫ < L(P, f) ≤ S(P, f) ≤ U(P, f) < U(f) + ǫ,

as desired. ⊓⊔

Proposition 6.31 (Theorem of Darboux). Let f : [a, b] → R be a bounded
function. If f is integrable, then given any ǫ > 0, there is δ > 0 such that for
every partition P of [a, b] with µ(P ) < δ, we have

∣∣∣∣∣S(P, f) −
∫ b

a

f(x)dx

∣∣∣∣∣ < ǫ,

where S(P, f) is any Riemann sum for f corresponding to P .
Conversely, assume that there is r ∈ R satisfying the following condition:

Given ǫ > 0, there is a partition P of [a, b] such that

|S(P, f) − r| < ǫ,

where S(P, f) is any Riemann sum for f corresponding to P . Then f is inte-
grable and its Riemann integral is equal to r.
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Proof. Suppose f is integrable. Let ǫ > 0 be given. It follows from Lemma
6.30 that there is δ > 0 such that for every partition P of [a, b] with µ(P ) < δ
and any Riemann sum S(P, f) for f corresponding to P , we have

∫ b

a

f(x)dx − ǫ = L(f) − ǫ < S(P, f) < U(f) + ǫ =

∫ b

a

f(x)dx + ǫ,

as desired.
Conversely, let r ∈ R satisfy the stated condition. Let ǫ > 0 be given and

P := {x0, x1, . . . , xn} denote a partition of [a, b] such that |S(P, f) − r| < ǫ,
where S(P, f) is any Riemann sum for f corresponding to P . If S(P, f) and
T (P, f) are Riemann sums for f corresponding to P , then

|S(P, f) − T (P, f)| ≤ |S(P, f) − r| + |r − T (P, f)| < ǫ + ǫ = 2ǫ.

Since ǫ > 0 is arbitrary, the Cauchy condition (Proposition 6.29) shows that
f is integrable. To show that the Riemann integral of f is equal to r, we
note, as in the proof of (Proposition 6.29), that there are si, ti ∈ [xi−1, xi] for
i = 1, . . . , n such that if we let

S(P, f) :=

n∑

i=1

f(si)(xi − xi−1) and T (P, f) :=

n∑

i=1

f(ti)(xi − xi−1),

then
U(P, f) < S(P, f) + ǫ and T (P, f) − ǫ < L(P, f).

Since L(P, f) ≤
∫ b

a
f(x)dx ≤ U(P, f), we see that

r − 2ǫ < T (P, f) − ǫ <

∫ b

a

f(x)dx < S(P, f) + ǫ < r + 2ǫ.

Since this holds for every ǫ > 0, the Riemann integral of f is equal to r. ⊓⊔

Remark 6.32. As an immediate consequence of the above result, we note
that if f : [a, b] → R is integrable and if (Pn) is a sequence of partitions of
[a, b] such that µ(Pn) → 0, then

L(Pn, f) →
∫ b

a

f(x)dx and U(Pn, f) →
∫ b

a

f(x)dx,

and moreover, if S(Pn, f) is any Riemann sum for f corresponding to Pn, then

S(Pn, f) →
∫ b

a

f(x)dx.

It may be emphasized that the only requirement here is that µ(Pn) → 0;
the actual partition points and the points in the subintervals at which f is
evaluated can be chosen with sole regard to the convenience of summation.
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This enables us to find approximations of the Riemann integral of f when
we are not able to evaluate it exactly. For example, if f does not have an
antiderivative, or if we are simply not able to think of an antiderivative of f ,
or if the evaluation of an antiderivative of f at a and b is impossible, then part
(i) of the FTC (Proposition 6.21) becomes inoperative as far as the evaluation
of the Riemann integral of f is concerned, and we may resort to calculating
it approximately. On the other hand, if the Riemann integral of f can be
evaluated by employing part (i) of the FTC, then limits of Riemann sums for
f can be found. ✸

Examples 6.33. (i) Let f(x) := 1/x for x ∈ [a, b], where either a > 0 or
b < 0. Then f is integrable, because it is continuous on [a, b]. Since we
have not introduced any function F such that F ′ = f , it is not possible at
this stage to evaluate the Riemann integral of f . For simplicity, consider
a = 1 and b = 2. Let n ∈ N and Pn := {1, 1 + (1/n), . . . , 1 + (n/n)}
be the partition of [1, 2] into n equal parts. Consider the left endpoints
sn,i := 1 + (i − 1)/n for i = 1, . . . , n. Then µ(Pn) = 1/n → 0 and

S(Pn, f) =

n∑

i=1

1

1 + (i − 1)/n

(
i

n
− i − 1

n

)
=

n∑

i=1

1

n + i − 1
.

Hence by Proposition 6.31,

1

n
+

1

n + 1
+ · · · + 1

2n
=

n∑

i=1

1

n + i − 1
→

∫ 2

1

1

x
dx as n → ∞.

(ii) Let f(x) := 1/(1 + x2) for x ∈ [a, b]. Again, f is integrable, because it is
continuous on [a, b]. As in the previous example, we have not introduced
any function F such that F ′ = f so far. This time, for simplicity, consider
a = 0 and b = 1. Let n ∈ N and Pn := {0, 1/n, . . . , n/n} be the partition
of [0, 1] into n equal parts and consider the right endpoints sn,i := i/n for
i = 1, . . . , n. Then µ(Pn) = 1/n → 0 and

S(Pn, f) =

n∑

i=1

1

1 + (i/n)2

(
i

n
− i − 1

n

)
=

n∑

i=1

n2

n2 + i2
· 1

n
=

n∑

i=1

n

n2 + i2
.

Hence by Proposition 6.31,

n

n2 + 12
+

n

n2 + 22
+ · · ·+ n

n2 + n2
=

n∑

i=1

n

n2 + i2
→

∫ 1

0

1

1 + x2
dx as n → ∞.

(iii) Consider

an :=

n∑

i=1

1√
n2 + in

=
1√

n2 + n
+

1√
n2 + 2n

+ · · ·+ 1√
n2 + n2

for n ∈ N.
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Then

an =
1

n

n∑

i=1

1√
1 + (i/n)

=

n∑

i=1

1√
1 + (i/n)

(
i

n
− i − 1

n

)
for all n ∈ N.

We observe that if we consider f : [0, 1] → R defined by f(x) := 1/
√

1 + x
and let Pn := {0, 1/n, . . . , n/n} and sn,i := i/n for n ∈ N and i = 1, . . . , n,
then an = S(Pn, f). In this case, f clearly has an antiderivative, namely
F : [0, 1] → R given by F (x) = 2

√
1 + x. Since µ(Pn) = 1/n → 0, we have

by Proposition 6.31 and part (i) of the FTC (Proposition 6.21),

n∑

i=1

1√
n2 + in

→
∫ 1

0

1√
1 + x

dx = F (1) − F (0) = 2(
√

2 − 1) as n → ∞.

(iv) Let r be a nonnegative rational number and consider

an :=

n∑

i=1

ir

nr+1
=

1r + 2r + · · · + nr

nr+1
for n ∈ N.

Then

an =
1

n

n∑

i=1

(
i

n

)r

=

n∑

i=1

(
i

n

)r (
i

n
− i − 1

n

)
for all n ∈ N.

As in the previous example, it follows that

n∑

i=1

ir

nr+1
→

∫ 1

0

xrdx =
1

r + 1
as n → ∞. ✸

Notes and Comments

Given a bounded function f : [a, b] → R, we have produced two candidates,
namely U(f) and L(f), for being designated the integral of f ; when they coin-
cide, we say that f is integrable and the common value is called its Riemann
integral. While this approach demands patience and careful attention on the
part of the reader to begin with, it is a natural way to formulate a plausible
definition of ‘area’. Hence we have preferred it to an alternative approach of
defining integrability in terms of the existence of a ‘limit’ of Riemann sums.
Actually, such an alternative approach goes beyond the concept of a limit of
a sequence or of a function of a real variable introduced earlier. Indeed, it
involves the limit of a ‘net’ of real numbers.

We have deduced all the essential features of the set of integrable functions
from a single criterion called the Riemann condition. It is simple to state and
easy to use. It does not involve the concept of a mesh of a partition. While
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we have given a number of sufficient conditions for a bounded function f on
[a, b] to be integrable, we have not discussed a characterization of integrability
in terms of the nature of the set of points of [a, b] at which f is discontinuous.
This characterization involves the notion of (Lebesgue) measure, or at least
the notion of a subset of R having (Lebesgue) measure zero. It can be stated
as follows: A bounded function f : [a, b] → R is integrable if and only if the
set of discontinuities of f has (Lebesgue) measure zero. We refer the reader
to Theorem 11.33 of Rudin [53] or to Theorem 7.34 of Goldberg [28] for this
result. It can be used to derive some of the main properties of the Riemann
integral rather neatly. (See, for example, Section 7.3 of Goldberg [28].) A
weaker condition involving the notion of a subset of R having content zero is
discussed in Exercises 53–57.

The Fundamental Theorem of Calculus (FTC) has two parts. The first
says in essence that the integral of the derivative of a function gives back the
function and the second says that the derivative of the integral of a function
again gives back the function. These two parts are variously known as the First
Fundamental Theorem of Calculus and the Second Fundamental Theorem of
Calculus. We have given proofs of these two parts that are independent of
each other. When the given function is continuous, the first part can be easily
deduced from the second. (See Exercise 16.) The methods of Integration by
Parts and Integration by Substitution are derived from the FTC under minimal
hypotheses.

In the section on Riemann sums, we have introduced the concept of the
mesh of a partition and used it to obtain approximations of a Riemann integral
on the one hand, and also to calculate limits of certain sequences, each term
of which is a Riemann sum. Again, we have carefully avoided any mention of
‘limits’ as the mesh of a partition approaches zero since that would involve a
more general notion of ‘limit’, which we do not wish to discuss in this book.
The reader may consult the description of the ‘Riemann net’ given on page
230 of the book of Joshi [38].

Exercises

Part A

1. Let c ∈ [a, b] and f : [a, b] → R be given by

f(x) :=

{
0 if a ≤ x ≤ c,
1 if c < x ≤ b.

Show from first principles that f is integrable on [a, b]. Also, prove that
this follows from Proposition 6.10.

2. Let c ∈ (a, b) and f : [a, b] → R be given by
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f(x) :=

{
(x − c)/(a − c) if a ≤ x ≤ c,
(x − c)/(b − c) if c < x ≤ b.

Show from first principles that f is integrable on [a, b]. Also, prove that
this follows from Proposition 6.10. (Hint: For n ∈ N, consider the partition
Pn := {a, a + (c − a)/n, . . ., a + (c − a)(n − 1)/n, c, c + (b − c)/n, . . .,
c + (b − c)(n − 1)/n, b}.)

3. Let f : [0, 1] → R be given by

f(x) :=

{
1 + x if x is rational,
0 if x is irrational.

Is f integrable?
4. Let f : [a, b] → R be integrable. Show that the Riemann integral of f

is the unique real number r satisfying the following condition: For every
ǫ > 0, there is a partition Pǫ of [a, b] such that

r − ǫ < L(Pǫ, f) ≤ r ≤ U(Pǫ, f) < r + ǫ.

5. Let f : [0, 3] → R be defined by

f(x) :=

⎧
⎨
⎩

0 if 0 ≤ x ≤ 1,
2 if 1 < x ≤ 2,

−1 if 2 < x ≤ 3.

Show that f is neither monotonic nor continuous on [0,3], but f is inte-
grable on [0, 3]. Find the Riemann integral of f .

6. Let f, g : [a, b] → R be bounded functions. Show that

L(f) + L(g) ≤ L(f + g) and U(f + g) ≤ U(f) + U(g).

Hence conclude that if f and g are integrable, then so is f + g, and the
Riemann integral of f + g is equal to the sum of the Riemann integrals of
f and g.

7. Let f, g : [a, b] → R be integrable. Show that the functions max(f, g) :
[a, b] → R and min(f, g) : [a, b] → R given by

max(f, g)(x) = max{f(x), g(x)} and min(f, g)(x) = min{f(x), g(x)}

are integrable. (Hint: max(f, g) = (f + g + |f − g|)/2 and min(f, g) =
(f + g − |f − g|)/2.)

8. Give examples of bounded functions f, g : [a, b] → R that are not inte-
grable, but |f |, f + g, and fg are all integrable.

9. Let f : [a, b] → R be a function. Show that f is integrable if (i) rf is
integrable for some nonzero r ∈ R, or (ii) if f is bounded, f(x) �= 0 for all
x ∈ [a, b], and 1/f is integrable.
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10. Let f : [a, b] → R be any function. Suppose there is r ∈ R and for each
n ∈ N, there are integrable functions gn, hn : [a, b] → R with gn ≤ f ≤ hn

such that
∫ b

a gn(x)dx → r and
∫ b

a hn(x)dx → r as n → ∞. Show that f is
integrable and the Riemann integral of f is equal to r.

11. Let f : [a, b] → R be integrable and f(x) ≥ 0 for all x ∈ [a, b]. Show that∫ b

a f(x)dx ≥ 0. If, in addition, f is continuous and
∫ b

a f(x)dx = 0, then
show that f(x) = 0 for all x ∈ [a, b]. Give an example of an integrable

function on [a, b] such that f(x) ≥ 0 for all x ∈ [a, b] and
∫ b

a
f(x)dx = 0,

but f(x) �= 0 for some x ∈ [a, b].
12. Evaluate the following limits.

(i) lim
h→0

1

h

∫ x+h

x

du

u +
√

u2 + 1
, (ii) lim

x→0

1

x3

∫ x

0

t2dt

t4 + 1
,

(iii) lim
x→0

1

x6

∫ x2

0

t2dt

t6 + 1
, (iv) lim

x→x0

x

x − x0

∫ x

x0

f(t)dt,

(v) lim
x→x0

x

x2 − x2
0

∫ x

x0

f(t)dt, provided f is continuous at x0.

13. If x :=

∫ y

0

dt√
1 + t2

, find
d2y

dx2
.

14. Let a, b, c ∈ R with a < c < b and for j = 1, 2, 3, consider fj : [a, b] → R
given by

(i) f1(x) :=

{
0 if x ≤ c,
1 if c < x,

(ii) f2(x) :=

{
0 if x �= c,
1 if x = c,

(iii) f3(x) :=

{
(x − c)/(a − c) if x ≤ c,
(x − c)/(b − c) if c < x.

For j = 1, 2, 3, let Fj(x) :=
∫ x

a
fj(t)dt, x ∈ [a, b]. Find Fj for j = 1, 2, 3.

Verify that f1 is discontinuous at c, F1 is continuous but not differentiable
at c, f2 is discontinuous at c, F2 is differentiable at c but F ′

2(c) �= f2(c),
f3 is continuous at c but not differentiable at c, F3 is differentiable at c
and F ′

3(c) = f3(c).
[Note: There is an integrable function f : [a, b] → R such that f is discon-
tinuous at c, but the corresponding function F : [a, b] → R is differentiable
at c and F ′(c) = f(c). See Proposition 7.17.]

15. Let n ∈ N. Find a function f : [−1, 1] → R for which f (n)(0) exists, but
f (n+1)(0) does not. (Hint: Begin with the absolute value function and use
part (ii) of Proposition 6.20 repeatedly.)

16. If f : [a, b] → R is continuous, then prove part (i) of the FTC using
part (ii) of the FTC. (Hint: Two antiderivatives of f differ by an additive
constant.)

17. Let f : [a, b] → R be continuous and consider the function F : [a, b] → R
given by F (x) :=

∫ x

a
f(t)dt for x ∈ [a, b]. If f(x) ≥ 0 for all x ∈ [a, b], then

show that F is monotonically increasing on [a, b], and if f monotonically
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increasing on [a, b], then F is convex on [a, b]. (Hint: Part (i) of Proposition
4.27 and Part (i) of Proposition 4.31.)

18. Let f : [a,∞) → R be a bounded function such that f is integrable on
[a, x] for every x ≥ a. Let F (x) :=

∫ x

a
f(t)dt for x ≥ a. Show that F is

uniformly continuous on [a,∞).
19. Let f : [0,∞) → R be continuous and f(x) ≥ 0 for all x ∈ [0,∞). If for

each b > 0, the area bounded by the x-axis, the lines x = 0, x = b, and
the curve y = f(x) is given by

√
b2 + 1 − 1, determine the function f.

20. Let p be a real number and let f : R → R be a continuous function
such that f(x + p) = f(x) for all x ∈ R. (Such a function is said to

be periodic.) Show that the integral
∫ a+p

a
f(t)dt has the same value for

every real number a. (Hint: Part (ii) of Proposition 6.21.)
21. Let f : [a, b] → R be continuous. Show that for every x ∈ [a, b],

∫ x

a

[∫ u

a

f(t)dt

]
du =

∫ x

a

(x − u)f(u)du.

22. Let f : [a, b] → R be integrable. Define G : [a, b] → R by

G(x) :=

∫ b

x

f(t)dt.

Show that G is continuous on [a, b]. Further, show that if f is continuous
at c ∈ [a, b], then G is differentiable at c and G′(c) = −f(c). (Hint:
Propositions 6.7, 6.20, and 6.21.)

23. Let g : [c, d] → R be such that g([c, d]) ⊆ [a, b], and let f : [a, b] → R be
integrable. Define G : [c, d] → R by

G(y) :=

∫ g(y)

a

f(t)dt.

If g is differentiable at y0 ∈ [c, d] and f is continuous at g(y0), then show
that G is differentiable at y0 and G′(y0) = f(g(y0))g

′(y0).
24. (Leibniz’s Rule for Integrals) Let f be a continuous function on [a, b]

and u, v be differentiable functions on [c, d]. If the ranges of u and v are
contained in [a, b], prove that

d

dx

∫ v(x)

u(x)

f(t)dt =

[
f(v(x))

dv

dx
− f(u(x))

du

dx

]
.

25. For x ∈ R, let F (x) :=

∫ 2x

1

1

1 + t2
dt and G(x) :=

∫ x2

0

1

1 +
√
|t|

dt. Find

F ′ and G′.
26. Let f : [0,∞) → R be continuous. Find f(2) if for all x ≥ 0,

(i)

∫ x

0

f(t)dt = x2(1 + x), (ii)

∫ f(x)

0

t2dt = x2(1 + x),

(iii)

∫ x2

0

f(t)dt = x2(1 + x), (iv)

∫ x2(1+x)

0

f(t)dx = x.



222 6 Integration

27. Let n, m ∈ N. Find lim
m→∞

∫ 1

0

xn

(1 + x)m
dx and lim

n→∞

∫ 1

0

xn

(1 + x)m
dx.

28. Find lim
n→∞

∫ 1

0

nxn−1

1 + x
dx. (Hint: Proposition 6.25.)

29. Let f : [a, b] → R be a differentiable function. If F is an antiderivative of
f on [a, b], then show that

∫ b

a

f2(x)dx = F (b)F ′(b) − F (a)F ′(a) −
∫ b

a

F (x)F ′′(x)dx.

30. Evaluate (i)

∫ 1/4

0

x√
1 − 4x2

dx, (ii)

∫ 8

1

x1/3(x4/3 − 1)1/2dx.

(Hint: Proposition 6.26.)
31. Let f : [a, b] → R be a differentiable function such that f ′ is continuous

on [a, b] and f ′(x) �= 0 for all x ∈ [a, b]. If f([a, b]) = [c, d], then show that
f−1 : [c, d] → R is integrable and

∫ d

c

f−1(y)dy = f−1(d)d − f−1(c)c −
∫ f−1(d)

f−1(c)

f(x)dx.

(Hint: Propositions 6.25 and 6.26.)
32. Let f : [a, b] → R be a bounded function and define g : [−b,−a] → R by

g(t) := f(−t). Show that L(g) = L(f) and U(g) = U(f). Deduce that
g is integrable on [−b,−a] if and only if f is integrable on [a, b] and in
that case the Riemann integral of g is equal to the Riemann integral of f .
(Compare the proof of part (ii) of Proposition 6.26.)

33. Let f : [a, b] → R be integrable and for n ∈ N, let Pn be a partition of

[a, b] such that U(Pn, f)−L(Pn, f) → 0. Show that U(Pn, f) →
∫ b

a
f(x)dx,

L(Pn, f) →
∫ b

a f(x)dx, and also S(Pn, f) →
∫ b

a f(x)dx, where S(Pn, f) is
a Riemann sum for f corresponding to Pn. (Compare Proposition 6.5 and
Lemma 6.30.)

34. Let f : [a, b] → R be an integrable function. If (Pn) is a sequence of parti-
tions of [a, b] such that µ(Pn) → 0, then show that U(Pn, f)−L(Pn, f) →
0. Is the converse true?

35. Let f : [a, b] → R be a bounded function. Without using Lemma 6.30,
show that f is Riemann integrable if and only if there is r ∈ R satisfying
the following condition: Given ǫ > 0, there is a partition Pǫ of [a, b] such
that |S(P, f)− r| < ǫ, where P is any refinement of Pǫ and S(P, f) is any
Riemann sum for f corresponding to P .

36. Assuming that f is integrable on [0, 1], show that

lim
n→∞

1

n

[
f

(
1

n

)
+ f

(
2

n

)
+ · · · + f

(n

n

)]
=

∫ 1

0

f(x)dx.
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37. Consider the sequence whose nth term is given by the following. In each
case, determine the limit of the sequence by expressing the nth term as a
Riemann sum for a suitable function.

(i)
1

n17

n∑

i=1

i16, (ii)
1

n5/2

n∑

i=1

i3/2, (iii)

n∑

i=1

1√
in + n2

,

(iv)
1

n

{
n∑

i=1

(
i

n

)
+

2n∑

i=n+1

(
i

n

)3/2

+

3n∑

i=2n+1

(
i

n

)2
}

.

38. Do lim
n→∞

n∑

i=1

1√
i + n

and lim
n→∞

1

n18

n∑

i=1

i16 exist? If yes, find them.

39. Find an approximate value of 11/3 + 21/3 + · · · + 10001/3.

Part B

40. Let a, b ∈ R with 0 ≤ a < b and m ∈ N, and let f : [a, b] → R be defined
by f(x) := xm. Show from the first principles that

∫ b

a

f(x)dx =
bm+1 − am+1

m + 1
.

(Hint: If P = {x0, x1, . . . , xn} is a partition of [a, b], then for each j =
0, 1, . . . , m, we have L(P, f) ≤ ∑n

i=1 xm−j
i xj

i−1(xi−xi−1) ≤ U(P, f). Also,
∑m

j=0

[∑n
i=1 xm−j

i xj
i−1(xi − xi−1)

]
= bm+1 − am+1.)

41. Let f : [a, b] → R be a bounded function. For c ∈ (a, b), let f1 and f2

denote the restrictions of f to the subintervals [a, c] and [c, b] respectively.
Prove the following:
(i) L(f) = L(f1) + L(f2), (ii) U(f) = U(f1) + U(f2).
[Note: The results in (i) and (ii) are refined versions of Proposition 6.7,
and may be referred to as Domain Additivity of Lower Riemann
Integrals and Domain Additivity of Upper Riemann Integrals,
respectively.]

42. Let f : [a, b] → R be integrable and φ : [m(f), M(f)] → R be continuous.
Show that φ ◦ f : [a, b] → R is integrable. (Hint: Given ǫ > 0, find δ > 0
using the uniform continuity of φ. There is a partition P of [a, b] such
that U(P, f) − L(P, f) < δ2. Divide the sum in U(P, f) − L(P, f) into
two classes depending on whether Mi(f)−mi(f) is less than δ, or greater
than or equal to δ. Use the Riemann condition for φ ◦ f .)

43. Let f1, . . . , fm : [a, b] → R be integrable functions and let rj :=
∫ b

a
fj(x)dx

for j = 1, . . . , m. Show that the function
√

f2
1 + · · · + f2

m is integrable and

√
r2
1 + · · · + r2

m ≤
∫ b

a

√
f2
1 (x) + · · · + f2

m(x) dx.

(Hint: Note that
∑m

j=1 r2
j =

∑m
j=1 rj

∫ b

a fj(x)dx =
∫ b

a

(∑m
j=1 rjfj(x)

)
dx

and use Proposition 1.12.)
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44. Let m, n ∈ Z with m, n ≥ 0. Show that

∫ 1

0

xm(1 − x)n dx =
m! n!

(m + n + 1)!
.

(Hint: If n ∈ N and Im,n denotes the given integral, then using Integration
by Parts, Im,n = [n/(m + 1)]Im+1,n−1, and Im+n,0 = 1/(m + n + 1).)

45. Let a ∈ R and n ∈ Z with n ≥ 0. Show that
∫ a

0

(a2 − x2)n dx =
(2nn!)2

(2n + 1)!
· a2n+1.

Deduce that

1 − 1

3

(
n
1

)
+

1

5

(
n
2

)
− 1

7

(
n
3

)
+ · · · + (−1)n

2n + 1

(
n
n

)
=

(2nn!)2

(2n + 1)!
.

(Hint: If n ∈ N and In denotes the given integral, then In = a2In−1 −∫ a

0 x[x(a2 − x2)n−1]dx, and using Integration by Parts, In = a2[2n/(2n +
1)]In−1, and I0 = a.)

46. (Taylor’s Theorem with Integral Remainder) Let n be a nonnega-
tive integer and let f : [a, b] → R be such that f ′, f ′′, . . . , f (n+1) exist and
f (n+1) is continuous on [a, b]. Show that

f(b) = f(a)+f ′(a)(b−a)+· · ·+ f (n)(a)

n!
(b−a)n+

1

n!

∫ b

a

(b−t)nf (n+1)(t)dt.

Further, show that the remainder is equal to

(b − a)n+1

n!

∫ 1

0

(1 − s)nf (n+1)(a + s(b − a))ds.

(Hint: Induction on n and Integration by Parts.)
[Note: The integral remainder does not involve an undetermined number
c ∈ (a, b).]

47. (Taylor’s Theorem for Integrals) Let n ∈ N and f : [a, b] → R be such
that f ′, f ′′, . . . , f (n−1) exist on [a, b], and further, f (n−1) is continuous on
[a, b] and differentiable on (a, b). Show that there is c ∈ (a, b) such that

∫ b

a

f(x)dx = f(a)(b − a) + · · · + f (n−1)(a)

n!
(b − a)n +

f (n)(c)

(n + 1)!
(b − a)n+1.

(Hint: For x ∈ [a, b], define F (x) :=
∫ x

a f(t)dt and apply Proposition 4.23.)
48. (Theorem of Bliss) Let f, g : [a, b] → R be integrable. For each n ∈ N,

consider a partition Pn := {xn,0, xn,1, . . . , xn,kn
} of [a, b], and for i =

1, . . . , kn, let sn,i, tn,i ∈ [xn,i−1, xn,i], and let

S̃(Pn, fg) :=

kn∑

i=1

f(sn,i)g(tn,i)(xn,i − xn,i−1).
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If µ(Pn) → 0 as n → ∞ and if g is continuous on [a, b], then show that

S̃(Pn, fg) →
∫ b

a
f(x)g(x)dx as n → ∞. (Hint: Note that S(Pn, fg) :=

∑kn

i=1 f(sn,i)g(sn,i)(xn,i − xn,i−1) →
∫ b

a f(x)g(x)dx and use the uniform
continuity of g.)

49. Let f : [a, b] → R be a monotonic function. If G : [a, b] → R is differen-
tiable and G′ is continuous, then show that there is c ∈ [a, b] such that

∫ b

a

f(x)G′(x)dx = f(b)G(b) − f(a)G(a) − G(c)[f(b) − f(a)].

(Hint: Given any partition P = {x0, x1, . . . , xn} of [a, b], consider the
sum

∑n
i=1 f(xi)[G(xi) − G(xi−1)]. Write it as f(b)G(b) − f(a)G(a) −∑n

i=1 G(xi−1)[f(xi) − f(xi−1)] and also as
∑n

i=1 f(xi)G
′(si)(xi − xi−1)

for some si ∈ [xi−1, xi]. Use the Theorem of Bliss (Exercise 48) and
the inequalities m(g)[f(b) − f(a)] ≤ ∑n

i=1 G(xi−1)[f(xi) − f(xi−1)] ≤
M(g)[f(b) − f(a)].)

50. (First Mean Value Theorem for Integrals) Let f : [a, b] → R be
a continuous function and g : [a, b] → R be a nonnegative integrable
function. Use the IVP of f to show that there is c ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Give examples to show that neither the continuity of f nor the nonnega-
tivity of g can be omitted.
[Note: For another version of this result, see Exercise 72.]

51. (Second Mean Value Theorem for Integrals) Let f : [a, b] → R be
a monotonic function and g : [a, b] → R be either a nonnegative integrable
function or a continuous function. Show that there is c ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = f(a)

∫ c

a

g(x)dx + f(b)

∫ b

c

g(x)dx.

Give an example to show that the monotonicity of f cannot be omitted.
(Hint: Without loss of generality, suppose f is (monotonically) increasing.
Let G(x) :=

∫ x

a
g(t)dt for x ∈ [a, b]. If g is a nonnegative integrable func-

tion, then f(a)G(b) ≤
∫ b

a f(x)g(x)dx ≤ f(b)G(b). If g is continuous, use
Exercise 49.)

52. Let D be a bounded subset of R and f : D → R be a bounded function.
Suppose D ⊆ [a, b] for a, b ∈ R and f∗ : [a, b] → R is defined by

f∗(x) :=

{
f(x) if x ∈ D,
0 otherwise.

The function f is said to be integrable (on D) if the function f∗ is
integrable (on [a, b]). In this case, we define the Riemann integral of f
(on D) by
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∫

D

f(x)dx :=

∫ b

a

f∗(x)dx.

(i) Show that the above definition is independent of the interval [a, b]
containing D.

(ii) Show that analogues of Propositions 6.15 and 6.18 hold for integrable
functions on D.

53. A bounded subset E of R is said to be of (one-dimensional) content
zero if the following condition holds: For every ǫ > 0, there is a finite
number of closed intervals whose union contains E and the sum of whose
lengths is less than ǫ. Prove the following statements:
(i) A subset of a set of content zero is of content zero.
(ii) A finite union of sets of content zero is of content zero.
(iii) If E is of content zero and ∂E denotes the boundary of E, then E∪∂E

is of content zero.
(iv) A set E is of content zero if and only if the interior of E is empty and

∂E is of content zero.
(v) Every finite subset of R is of content zero.
(vi) The infinite set {1/n : n ∈ N} is of content zero.
(vii) The infinite set Q ∩ [0, 1] is not of content zero.

54. Let D be a bounded subset of R and f : D → R be a bounded function. If
the boundary ∂D of D is of content zero and if the set of discontinuities
of f is also of content zero, then show that f is integrable. In particular,
if D is of content zero, then show that f is integrable and its Riemann
integral is equal to zero. (Compare Remark 6.8.)

55. Let f : [a, b] → R be a bounded function. If the set of discontinuities of f
is of content zero, show that f is integrable. Is the converse true? (Hint:
Exercise 34 of Chapter 3 and Example 6.16.)

56. Let D be a bounded subset of R. Let 1D : D → R be defined by 1D(x) := 1
for all x ∈ D. Prove the following statements:
(i) 1D is integrable if and only if ∂D is of content zero.

[Note: If 1D is integrable, then
∫

D 1D(x)dx is called the length of the
set D.]

(ii) The length of D is zero if and only if D is of content zero.
(iii) If f : D → R is a bounded function and D0 ⊆ D is such that ∂D is of

content zero, then f is integrable on D0.
57. Let f : [a, b] → R be integrable, and g : [a, b] → R be a bounded function

such that the set {x ∈ [a, b] : g(x) �= f(x)} is of content zero. Show that
g is integrable and ∫ b

a

g(x)dx =

∫ b

a

f(x)dx.

(Compare Proposition 6.12.)
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Elementary Transcendental Functions

In this chapter we shall use the theory of Riemann integration developed in
Chapter 6 to introduce some classical functions, known as the logarithmic,
exponential, and trigonometric functions. Collectively, these are called the
elementary transcendental functions. In Sections 7.1 and 7.2 below we
give formal definitions of these functions and derive several of their interesting
properties. In this process, the important real numbers e and π will also be
formally defined.

In the earlier chapters, we have scrupulously avoided any mention of the
logarithmic, exponential, and trigonometric functions since their very defi-
nitions had to be postponed. As a result, several interesting examples and
counterexamples could not be given earlier. Many of these arise from the
function obtained by taking the sine of the reciprocal of the identity function.
These are discussed in Section 7.3.

The trigonometric functions enable us to introduce polar coordinates of
a point in the plane other than the origin. This is done in Section 7.4 and
in this context, we also give a formal definition of the angle between two
line segments emanating from a point as well as of the angle between two
intersecting curves.

In the final section of this chapter, we show that the elementary tran-
scendental functions are indeed transcendental, that is, they are not algebraic
functions.

In the section on exercises, we have given problems of theoretical im-
portance as well as of problems of practical use. The latter include several
trigonometric results that are listed for ready reference. In addition to this
section of exercises, we include a section devoted to revision exercises in which
the reader will revisit many concepts considered earlier in this book in relation
to the new supply of functions that is made available in this chapter.
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7.1 Logarithmic and Exponential Functions

We have seen in Example 4.7 that if r ∈ Q and g : (0,∞) → R is the rth-
power function defined by g(x) := xr, then g′(x) = rxr−1 for all x ∈ (0,∞).
This implies that for every rational number s, except s = −1, the sth-power
function can be integrated in terms of a similar function. In fact,

d

dx

(
xs+1

s + 1

)
= xs provided s �= −1.

To deal with the exceptional case s = −1, a new function has to be introduced,
and we shall do so in this section. This will in fact enable us to define and
study real powers of positive real numbers.

The function f : (0,∞) → R defined by f(t) = 1/t is continuous. Hence it
is Riemann integrable on every closed and bounded subinterval of (0,∞). For
x ∈ (0,∞), we define the natural logarithm of x by

lnx :=

∫ x

1

1

t
dt.

The function ln : (0,∞) → R is known as the logarithmic function. We
write lnx, rather than ln(x), for the value of the logarithmic function at
x ∈ (0,∞).

Clearly, ln 1 = 0. Moreover, since 1/t ≥ 0 for all t ∈ (0,∞), we have
lnx ≥ 0 if x > 1, while lnx ≤ 0 if 0 < x < 1.

Proposition 7.1 (Properties of the Logarithmic Function).

(i) ln is a differentiable function on (0,∞) and

(ln)′x =
1

x
for every x ∈ (0,∞).

(ii) ln is strictly increasing as well as strictly concave on (0,∞).
(iii) lnx → ∞ as x → ∞, whereas lnx → −∞ as x → 0+.
(iv) For every y ∈ R, there is a unique x ∈ (0,∞) such that lnx = y. In other

words, ln : (0,∞) → R is a bijective function.

Proof. (i) Since the function g : (0,∞) → R given by g(t) = 1/t is contin-
uous, the Fundamental Theorem of Calculus (Proposition 6.21) shows that
the function ln is differentiable on (0,∞) and (ln)′x = g(x) = 1/x at every
x ∈ (0,∞).

(ii) Since the derivative of ln is positive on (0,∞), it follows from part (iii)
of Proposition 4.27 that ln is strictly increasing on (0,∞). Further, since

(ln)′′x = − 1

x2
< 0 for every x ∈ (0,∞),



7.1 Logarithmic and Exponential Functions 229

it follows from part (iv) of Proposition 4.32 that ln is strictly concave on
(0,∞).

(iii) Given any positive integer n ≥ 2, we have

lnn =

∫ n

1

1

t
dt =

n∑

k=2

∫ k

k−1

1

t
dt ≥

n∑

k=2

∫ k

k−1

1

k
dt =

n∑

k=2

1

k

since (1/t) ≥ (1/k) for all 0 < t ≤ k, whereas

ln
1

n
= −

∫ 1

1/n

1

t
dt = −

n∑

k=2

∫ 1/(k−1)

1/k

1

t
dt

≤ −
n∑

k=2

∫ 1/(k−1)

1/k

(k − 1)dt = −
n∑

k=2

1

k

since −(1/t) ≤ −(k − 1) for all 0 < t ≤ 1/(k − 1). Because
∑n

k=2(1/k) →
∞ as n → ∞ by part (ii) of Example 2.13, we see that the function ln is
neither bounded above nor bounded below on (0,∞). Also, since ln is (strictly)
increasing on (0,∞), it follows from Proposition 3.35 that lnx → ∞ as x → ∞
and lnx → −∞ as x → 0+.

(iv) The function ln is one-one since it is strictly increasing. Now, let y ∈ R.
Since lnx → −∞ as x → 0+, there is some x0 > 0 such that lnx0 < y and
since ln x → ∞ as x → ∞, there is some x1 > 0 such that y < lnx1. But
by part (i) above, the function ln is continuous on the interval [x0, x1]. So,
the IVP (Proposition 3.13) shows that there is some x ∈ (x0, x1) such that
lnx = y. Thus the function ln : (0,∞) → R is bijective. ⊓⊔

An immediate consequence of part (iv) of Proposition 7.1 is that there is
a unique positive real number e such that ln e = 1. This number e plays a
significant role in analysis.

An elementary estimate for the number e can be obtained by noting that

ln 2 =

∫ 2

1

1

t
dt ≤

∫ 2

1

1 dt = 1

and

ln 4 =

∫ 4

1

1

t
dt =

∫ 2

1

1

t
dt +

∫ 4

2

1

t
dt ≥

∫ 2

1

1

2
dt +

∫ 4

2

1

4
dt =

1

2
+

1

2
= 1.

Since ln : (0,∞) → R is increasing, it follows that

2 ≤ e ≤ 4.

Better lower and upper bounds for the number e can be obtained. (See, for
example, Exercise 7.) The first few digits in the decimal expansion of e are
given by
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e = 2.71828182 . . . .

In fact, e is an irrational number (Exercise 20 of Chapter 2), and furthermore,
e is a transcendental number, that is, it is not a root of any nonzero polynomial
with rational coefficients. (See [7] for a proof.)

The geometric properties of the logarithmic function proved in Proposition
7.1 can be used to draw its graph as in Figure 7.1.

0
x

y

�

1 2 3e

1

y = ln x

0
x

y

y = exp x

1−1

�1

2−2

Fig. 7.1. Graphs of the logarithmic and the exponential functions

It follows from part (i) of Proposition 7.1 that the function ln is infinitely
differentiable on (0,∞) and for k = 1, 2, . . ., we have

(ln)(k)x = (−1)k−1(k − 1)! x−k, x ∈ (0,∞).

Hence the nth Taylor polynomial for ln about 1 is given by

Pn(x) = ln 1 +

n∑

k=1

(ln)(k)1

k!
(x − 1)k =

n∑

k=1

(−1)k−1

k
(x − 1)k, x ∈ R.

In particular, the linear and the quadratic approximations of ln around 1
are given by

L(x) = P1(x) = x − 1 and Q(x) = P2(x) = (x − 1) − (x − 1)2

2
, x ∈ R.

Let us now turn to the inverse of the logarithmic function. The inverse of
the bijective function ln : (0,∞) → R is known as the exponential function
and is denoted by exp : R → (0,∞). We write exp x, rather than exp(x), for
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the value of the exponential function at x ∈ R. Thus for any x ∈ R and any
y ∈ (0,∞), we have

exp x = y ⇐⇒ ln y = x.

Note that by definition, expx > 0 for all x ∈ R. Moreover, since ln 1 = 0 and
ln e = 1, we have exp 0 = 1 and exp 1 = e.

Proposition 7.2 (Properties of the Exponential Function).

(i) exp is a differentiable function on R and

(exp)′x = exp x for every x ∈ R.

(ii) exp is strictly increasing as well as strictly convex on R.
(iii) expx → ∞ as x → ∞, whereas expx → 0 as x → −∞.

Proof. (i) Let x ∈ R and c ∈ (0,∞) be such that ln c = x. Since the function
ln : (0,∞) → R is differentiable at c and (ln)′c = 1/c �= 0, Proposition 4.11
shows that the inverse function exp : R → (0,∞) is differentiable at x = ln c
and

(exp)′(x) = exp′(ln c) =
1

(ln)′c
= c = exp x.

(ii) Since the derivative of exp is positive on R, it follows from part (iii) of
Proposition 4.27 that exp is strictly increasing on R.

Further, since

(exp)′′x = (exp)′x = expx > 0 for all x ∈ R,

it follows from part (iii) of Proposition 4.32 that exp is strictly convex on R.
(iii) Since the range of the function exp is the domain of the function

ln, namely, the interval (0,∞), we see that exp is not bounded above on R,
whereas inf{expx : x ∈ R} = 0. Also, since exp is (strictly) increasing on R, it
follows from Proposition 3.35 that expx → ∞ as x → ∞, whereas exp x → 0
as x → −∞. ⊓⊔

The geometric properties of the exponential function proved in Proposition
7.2 can be used to draw its graph as in Figure 7.1.

It follows from part (i) of Proposition 7.2 that the function exp is infinitely
differentiable on R and for k = 1, 2, . . ., we have

(exp)(k)x = exp x for all x ∈ R.

Hence the nth Taylor polynomial for exp about 0 is given by

Pn(x) = exp 0 +

n∑

k=1

(exp)(k)(0)

k!
(x − 0)k = 1 +

n∑

k=1

xk

k!
, x ∈ R.
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In particular, the linear and the quadratic approximations of exp around 0
are given by

L(x) = P1(x) = 1 + x and Q(x) = P2(x) = 1 + x +
x2

2
, x ∈ R.

The logarithmic and the exponential functions have interesting behavior
with respect to the multiplication and addition of real numbers. This is made
precise in the following result.

Proposition 7.3. (i) For any positive real numbers x1 and x2, we have

lnx1x2 = lnx1 + lnx2.

(ii) For any real numbers x1 and x2, we have

exp(x1 + x2) = (expx1)(expx2).

Proof. (i) Fix x2 ∈ (0,∞) and consider the function f : (0,∞) → R given by
f(x) = lnxx2 − lnx. Then

f ′(x) =
1

xx2
x2 −

1

x
= 0 for all x ∈ (0,∞).

Hence f(x) = f(1) = lnx2 − ln 1 = lnx2 for all x ∈ (0,∞). In particular,
f(x1) = lnx1x2 − lnx1 = lnx2. This proves (i).

(ii) Let x1 and x2 be real numbers. Define y1 := exp x1 and y2 = exp x2.
Then y1 and y2 are positive real numbers and by (i) above, we see that
ln y1y2 = ln y1 + ln y2 = x1 + x2. Consequently, exp(x1 + x2) = y1y2 =
(expx1)(expx2). ⊓⊔

In the examples below, we consider some important limits involving the
functions ln and exp.

Examples 7.4. 1.
(i) By the definition of derivative and the earlier observations that ln 1 = 0,

(ln)′1 = 1, exp 0 = 1, and (exp)′0 = 1, we obtain

lim
h→0

ln(1 + h)

h
= 1 and lim

h→0

exp h − 1

h
= 1.

(ii) Since (ln)′x = 1/x for x ∈ (0,∞) and lnx → ∞ as x → ∞, while
(exp)′x = x for x ∈ R and expx → ∞ as x → ∞, L’Hôpital’s Rule
for ∞

∞ indeterminate forms (Proposition 4.40) shows that

lim
x→∞

lnx

x
= 0 and lim

x→∞
x

exp x
= 0.
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0
x

y

y = ex

y = lnx

y = x

y = x2

y =
√

x

�

�

1

1

Fig. 7.2. Illustration of the growth rate: Graphs of f(x) = ln x, f(x) =
√

x,
f(x) = x, f(x) = x2, and f(x) = ex (for x > 0)

In a similar manner, it can be easily seen that for any k ∈ N, we have

lim
x→∞

lnx

x1/k
= 0 and lim

x→∞
xk

expx
= 0.

These limits show that the growth rate of ln x is less than that of any
root of x, while the growth rate of expx is more than that of any positive
integral power of x as x tends to ∞ (Remark 3.31). This can be illustrated
by the graphs of the curves y = lnx, y =

√
x, y = x, y = x2 and y = ex

(for x > 0) drawn in Figure 7.2. ✸

Real Powers of Positive Numbers

The logarithmic and exponential functions enable us to define the bth power
of a, where a is any positive real number and b is any real number. Recall
that if r is any rational number, then we have defined in Chapter 1 the rth
power ar of any a ∈ (0,∞). We observe that

ln ar = r ln a for all a ∈ (0,∞) and r ∈ Q.

To see this, consider the function f : (0,∞) → R given by

f(x) = lnxr − r lnx.

Then by part (i) of Proposition 7.1 and the Chain Rule (Proposition 4.9), we
have
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f ′(x) =
1

xr
rxr−1 − r

1

x
= 0 for all x ∈ (0,∞),

and so f(x) = f(1) = ln 1r−r ln 1 = 0−0 = 0 for all x ∈ (0,∞). In particular,
the equation f(a) = 0 gives ln ar = r ln a. Thus we have

ar = exp(r ln a) for all a ∈ (0,∞) and r ∈ Q.

Since the number exp(r ln a) is well defined for any real (and not just rational)
number r, we are naturally led to the following definition. Let a be a positive
number and b be a real number. The bth power of a is defined by

ab := exp(b lna).

Here a is called the base and b is called the exponent. If b is a rational
number, this definition of ab coincides with our earlier definition as we have
just seen. Clearly, the equality ab := exp(b ln a) is equivalent to the equality
ln ab = b lna for a > 0 and b ∈ R. We note that ab > 0 for all a ∈ (0,∞) and
b ∈ R.

Let us consider the special case a = e, that is, when the base is the unique
positive real number satisfying ln e = 1. Then we have

ex = exp(x ln e) = exp x for all x ∈ R.

We have thus found a short notation for expx, namely ex, where x ∈ R. From
now on, we may employ this notation.

The following result gives an alternative way of determining ex for x ∈ R.

Proposition 7.5. For any x ∈ R, we have

lim
h→0

(1 + xh)1/h = ex.

In particular, we have
e = lim

h→0
(1 + h)1/h.

Proof. The first assertion is obvious if x = 0. Suppose x ∈ R and x �= 0. Now,

lim
h→0

ln(1 + xh)

xh
= lim

h→0

ln(1 + h)

h
= 1,

as we have noted before. Consequently,

lim
h→0

ln(1 + xh)1/h = lim
h→0

ln(1 + xh)

h
= x

[
lim
h→0

ln(1 + xh)

xh

]
= x.

Now since the exponential function is continuous at x, we obtain

lim
h→0

(1+xh)1/h = lim
h→0

exp
(
ln(1 + xh)1/h

)
= exp

(
lim
h→0

ln(1 + xh)1/h

)
= exp x.

This proves the first assertion. The particular case is obtained by considering
x = 1. ⊓⊔
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In Examples 2.10 (i) and (ii), we have stated that the sequences (an) and
(bn) defined by

an :=

n∑

k=0

1

k!
and bn :=

(
1 +

1

n

)n

for n ∈ N

are convergent and have the same limit. Now we shall show that this common
limit is equal to e.

Corollary 7.6. For any x ∈ R, we have

lim
n→∞

(
1 +

x

n

)n

= ex.

In particular, we have

e = lim
n→∞

(
1 +

1

n

)n

.

Proof. Consider the sequence (hn) defined by hn = 1/n for n ∈ N. Then
hn → 0. Hence the desired results follow from Proposition 7.5. ⊓⊔

Returning to the general power ab with base a ∈ (0,∞) and exponent
b ∈ R, let us consider the following two functions. For a fixed a ∈ (0,∞), the
power function fa : R → R with base a, and for a fixed b ∈ R, the power
function gb : (0,∞) → R with exponent b, are defined by

fa(x) := ax and gb(x) := xb.

Note that fa(x) > 0 for all x ∈ R and gb(x) > 0 for all x ∈ (0,∞). We study
the basic properties of these functions in Propositions 7.7 and 7.9.

Proposition 7.7 (Properties of Power Function with Fixed Base).
Let a be a positive real number and fa : R → (0,∞) be the power function
with base a given by fa(x) := ax. Then we have the following:

(i) fa is a differentiable function on R and

f ′
a(x) = (ln a)ax = (ln a)fa(x) for every x ∈ R.

(ii) If a > 1, then fa is strictly increasing as well as strictly convex on R.
If a < 1, then fa is strictly decreasing as well as strictly convex on R.
If a = 1, then fa(x) = 1 for all x ∈ R.

(iii) If a �= 1, then fa is not bounded above on R. More precisely, if a > 1, then
fa(x) → ∞ as x → ∞, whereas fa(x) → 0 as x → −∞, and if a < 1,
then fa(x) → ∞ as x → −∞, whereas fa(x) → 0 as x → ∞.

(iv) If a �= 1, then the function fa : R → (0,∞) is bijective and its inverse
f−1

a : (0,∞) → R is given by

f−1
a (x) =

lnx

ln a
for x ∈ (0,∞).
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(v) For any x1 and x2 in R, we have

fa(x1 + x2) = fa(x1)fa(x2), that is, ax1+x2 = ax1ax2 .

(vi) For any x1 and x2 in R, we have

[fa(x1)]
x2 = fa(x1x2) = [fa(x2)]

x1 , that is, (ax1)
x2 = ax1x2 = (ax2)

x1 .

Proof. (i) Since fa(x) = exp(x ln a) for x ∈ R and (exp)′ = exp, the Chain
Rule (Proposition 4.9) shows that

f ′
a(x) = (ln a) exp(x ln a) = (ln a)ax = (ln a)fa(x).

(ii) Let a > 1. Then ln a > 0 and hence the derivative f ′
a of fa is positive

on R. This shows that fa is strictly increasing on R. Further, since

f ′′
a (x) = (ln a)f ′

a(x) = (ln a)2fa(x) > 0 for all x ∈ R,

it follows that fa is strictly convex on R. Similar arguments yield the desired
results for fa if a < 1. If a = 1, then f1(x) = 1x = ex ln 1 = e0 = 1 for all
x ∈ R.

(iii) If a > 1, then ln a > 0 and so fa(x) = e(ln a)x → ∞ as x → ∞,
whereas fa(x) → 0 as x → −∞. Similarly, if a < 1, then ln a < 0 and so
fa(x) = e(ln a)x → ∞ as x → −∞, whereas fa(x) → 0 as x → ∞. This shows
that if a �= 1, then fa is not bounded above on R.

(iv) Let a �= 1. The bijectivity of fa : R → (0,∞) follows from the bijectiv-
ity of the function exp : R → (0,∞) and the fact that ln a �= 0. For x ∈ (0,∞),
we have

fa(ln x/ lna) = aln x/ ln a = exp ([lnx/ lna] ln a) = exp(lnx) = x.

Hence f−1
a (x) = lnx/ ln a for x ∈ (0,∞).

(v) For any x1 and x2 in R, we have

exp ((x1 + x2) ln a) = exp(x1 ln a + x2 ln a) = exp(x1 ln a) exp(x2 ln a),

and thus, fa(x1 + x2) = fa(x1)fa(x2), as desired.

(vi) For any x1 and x2 in R, we have

[fa(x1)]
x2 = (ax1)x2 = exp(x2 ln ax1) = exp(x2x1 ln a) = ax2x1 = fa(x2x1).

Interchanging x1 and x2, we have

[fa(x2)]
x1 = fa(x1x2).

Since x2x1 = x1x2, we obtain the desired result. ⊓⊔
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Fig. 7.3. Graphs of the power function fa with base (i) a = 2, and (ii) a = 1/2

The geometric properties of the function fa proved in Proposition 7.7 can
be used to draw its graph as in Figure 7.3, when a = 2 and a = 1

2 .

Remark 7.8. Let a > 0 and fa(x) := ax for x ∈ R. If a �= 1, then the inverse
f−1

a : (0,∞) → R of the function fa : R → (0,∞) exists and it is denoted by
loga; this is known as the logarithmic function with base a. Thus we have

loga x =
lnx

ln a
, x ∈ (0,∞).

Clearly, if a = e, then loga = loge = ln. For this reason, the number e is often
referred to as the base of the natural logarithm. Another commonly used
base is a = 10. The function log10 is often written simply as log. Thus

log x =
lnx

ln 10
, x ∈ (0,∞).

The first few digits in the decimal expansion of ln 10 are given by

ln 10 = 2.30258509 . . . .

This enables us to compute the value of log x if we know lnx, and vice versa
for x ∈ (0,∞). ✸

Proposition 7.9 (Properties of the Power Function with Fixed Ex-
ponent). Let b be a real number and gb : (0,∞) → (0,∞) be the power
function with exponent b given by gb(x) := xb. Then we have the following:

(i) gb is a differentiable function on (0,∞) and

g′b(x) = bxb−1 = bgb−1(x) for every x ∈ (0,∞).
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(ii) If b > 0, then gb is strictly increasing, and if b < 0, then gb is strictly
decreasing on (0,∞). Further, if b > 1 or b < 0, then gb is strictly convex,
and if 0 < b < 1, then gb is strictly concave on (0,∞). If b = 0, then
gb(x) = 1, and if b = 1, then gb(x) = x for all x ∈ (0,∞).

(iii) If b �= 0, then gb is not bounded above on (0,∞). More precisely, if b > 0,
then gb(x) → ∞ as x → ∞, whereas gb(x) → 0 as x → 0, and if b < 0,
then gb(x) → ∞ as x → 0, whereas gb(x) → 0 as x → ∞.

(iv) If b �= 0, then the function gb : (0,∞) → (0,∞) is bijective and the
function g1/b : (0,∞) → (0,∞) is the inverse of gb.

(v) For any x1 and x2 in (0,∞), we have

gb(x1x2) = gb(x1)gb(x2), that is, (x1x2)
b = xb

1x
b
2.

Proof. (i) Since gb(x) = exp(b lnx) for x ∈ (0,∞), the Chain Rule (Proposi-
tion 4.9) shows that

g′b(x) =
b

x
exp(b lnx) = bxb−1 = bgb−1(x).

(ii) We note that for each b ∈ R, the function gb is positive on (0,∞). Hence
by (i) above, the derivative g′b of gb is positive on (0,∞) or negative on (0,∞)
according as b > 0 or b < 0. This shows that gb is strictly increasing on (0,∞)
or strictly decreasing on (0,∞) according as b > 0 or b < 0. Further,

g′′b (x) = bg′b−1(x) = b(b − 1)gb(x) for all x ∈ (0,∞).

Hence it follows that gb is strictly convex on (0,∞) or strictly concave on
(0,∞) according as b ∈ (−∞, 0) ∪ (1,∞) or b ∈ (0, 1). If b = 0, then g0(x) =
e0 ln x = e0 = 1, and if b = 1, then g1(x) = eln x = x for all x ∈ (0,∞).

(iii) If b > 0, then by the properties of the function ln, gb(x) = eb ln x → ∞
as x → ∞, whereas gb(x) → 0 as x → 0. Similarly, we obtain the desired
results for gb if b < 0. This shows that if b �= 0, then gb is not bounded above
on (0,∞).

(iv) Let b �= 0. The bijectivity of gb : (0,∞) → (0,∞) follows from the
bijectivity of the functions ln : (0,∞) → R and exp : R → (0,∞). Also,

g1/b(gb(x)) = g1/b(x
b) = exp[(lnxb)/b] = exp(lnx) = x for all x ∈ (0,∞).

Similarly, gb(g1/b(x)) = x for all x ∈ (0,∞). Thus g1/b is the inverse of gb.

(v) For any x1, x2 ∈ (0,∞), we have

exp(b lnx1x2) = exp b(lnx1 + lnx2) = exp(b lnx1) exp(b lnx2),

and thus, gb(x1x2) = gb(x1)gb(x2), as desired. ⊓⊔

The geometric properties of the function gb proved in Proposition 7.9 can
be used to draw its graph when b =

√
2 and b = 1/

√
2 as in Figure 7.4.

The following result is a generalization of Example 6.24 (i).
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Corollary 7.10. Let r be a real number such that r �= −1. Let a and b be real
numbers such that 0 < a < b, and f : [a, b] → R be given by f(x) := xr. Then
f is integrable and ∫ b

a

f(x)dx =
br+1 − ar+1

r + 1
.

Proof. Since f is continuous on [a, b], it is integrable. Define F : [a, b] → R by
F (x) := xr+1/(r + 1). By part (i) of Proposition 7.9, F is differentiable and
F ′(x) = xr for all x ∈ [a, b]. Hence part (i) of the FTC (Proposition 6.21)
shows that ∫ b

a

f(x)dx = F (b) − F (a) =
br+1 − ar+1

r + 1
,

as desired. ⊓⊔

Remark 7.11. Parts (v) and (vi) of Proposition 7.7 and and part (v) of
Proposition 7.9 are known as the ‘laws of exponents’ or the ‘laws of in-
dices’. We list them below:

(i) ar+s = arar for all a ∈ (0,∞) and r, s ∈ R,
(ii) (ar)

s
= ars for all a ∈ (0,∞) and r, s ∈ R,

(iii) (a1a2)
r = (a1)

r(a2)
r for all a1, a2 ∈ (0,∞) and r ∈ R.

For integral powers, we have stated these earlier in Section 1.1. ✸

Remark 7.12. Let D ⊆ R and f, g : D → R be functions such that f(x) > 0
for all x ∈ D. Consider the function h : D → R defined by

h(x) := f(x)g(x).
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Properties of the function h can be studied by considering the function k :
D → R defined by

k(x) := lnh(x) = g(x) ln f(x).

For example, let D := (0,∞), and f, g : D → R be defined by f(x) := x and
g(x) := 1/x. As we have seen in Example 7.4 (ii), k(x) := (ln x)/x → 0 as
x → ∞, and hence

lim
x→∞

x1/x = 1.

We note that the indeterminate forms 00, ∞0, and 1∞ involving the functions
f and g can be reduced to the indeterminate form 0 · ∞ (treated in Remark
4.44) involving the functions ln f and g, since

(i) f(x) → 0 and g(x) → 0 =⇒ ln f(x) → −∞ and g(x) → 0,
(ii) f(x) → ∞ and g(x) → 0 =⇒ ln f(x) → ∞ and g(x) → 0,
(iii) f(x) → 1 and g(x) → ∞ =⇒ ln f(x) → 0 and g(x) → ∞.

Revision Exercise 22 given at the end of this chapter can be worked out using
these considerations. ✸

7.2 Trigonometric Functions

Using the logarithmic function defined in Section 7.1, the reciprocal of any
linear polynomial can be integrated. Indeed, up to a constant multiple, such
a function is given by 1/(x − α), where α ∈ R, and we have

d

dx

(
ln(x − α)

)
=

1

x − α
for x ∈ R, x > α.

The next question that naturally arises is whether we can integrate the re-
ciprocal of a quadratic polynomial, say x2 + ax + b, where a, b ∈ R. If this
quadratic happens to be the square of a linear polynomial, say (x−α)2, then
the answer is easy because

d

dx

( −1

x − α

)
=

1

(x − α)2
for x ∈ R, x �= α.

Further, if the quadratic factors into distinct linear factors, that is, if

x2 + ax + b = (x − α)(x − β) for some α, β ∈ R, α > β,

then we have

1

x2 + ax + b
=

1

α − β

[
1

x − α
− 1

x − β

]
=

1

α − β

d

dx

(
ln

x − α

x − β

)
for x > α.

If, however, the quadratic x2+ax+b has no real root, then we face a difficulty.
The simplest example of this kind is the quadratic x2 + 1. To be able to
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integrate the reciprocal of this polynomial, a new function has to be introduced
and we shall do it in this section. In the ‘Notes and Comments’ at the end of
this chapter, we shall indicate how every rational function can be integrated
using only this new function, the logarithmic function, and, of course, the
rational functions themselves.

The function f : R → R defined by f(t) := 1/(1+ t2) is continuous. Hence
it is Riemann integrable on every closed and bounded interval. For x ∈ R, we
define the arctangent of x by

arctanx :=

∫ x

0

1

1 + t2
dt.

The function arctan : R → R is known as the arctangent function. The
reason for this terminology will be explained in Section 8.4 when we discuss
the ‘length’ of an arc of a circle. We write arctanx, rather than arctan(x), for
the value of the arctangent function at x ∈ R.

Clearly, arctan 0 = 0, and since 1/(1 + t2) ≥ 0 for all t ∈ R, we have
arctanx ≥ 0 if x > 0, while arctanx ≤ 0 if x < 0.

Proposition 7.13 (Properties of the Arctangent Function and Defi-
nition of π).

(i) arctan is a differentiable function on R and

(arctan)′x =
1

1 + x2
for every x ∈ R.

(ii) arctan is strictly increasing on R. Also, it is strictly convex on (−∞, 0)
and strictly concave on (0,∞).

(iii) arctan is an odd function. Also, it is bounded on R. We define

π := 2 sup{arctanx : x ∈ (0,∞)}.

Then arctanx → π/2 as x → ∞, whereas arctanx → −π/2 as x → −∞.
(iv) For every y ∈ (−π/2, π/2), there is a unique x ∈ R such that arctanx = y.

In other words, arctan : R → (−π/2, π/2) is a bijective function.

Proof. (i) Since the function f : R → R given by f(t) = 1/(1 + t2) is con-
tinuous, the Fundamental Theorem of Calculus (Proposition 6.21) shows that
the function arctan is differentiable at every x ∈ R and (arctan)′x = f(x) =
1/(1 + x2) for every x ∈ R.

(ii) Since the derivative of arctan is positive on R, it follows from part (iii)
of Proposition 4.27 that arctan is strictly increasing on R. Further, since

(arctan)′′x = − 2x

1 + x2
,

which is positive for all x ∈ (−∞, 0) and negative for all x ∈ (0,∞), it follows
from parts (iii) and (iv) of Proposition 4.32 that arctan is strictly convex on
(−∞, 0) and strictly concave on (0,∞).
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(iii) For x ∈ R, we have

arctan(−x) =

∫ −x

0

1

1 + t2
dt = −

∫ x

0

1

1 + s2
ds = − arctanx,

by employing the substitution s = −t. Hence arctan is an odd function.
Next, we show that arctan is a bounded function. By the Mean Value

Theorem (Proposition 4.18), we have

arctan 1 − arctan 0 = (arctan)′c =
1

1 + c2
for some c ∈ (0, 1).

Since 1/(1 + c2) < 1 for every c ∈ R and arctan 0 = 0, we have

arctan 1 < 1.

Now let x ∈ (1,∞). By Cauchy’s Mean Value Theorem (Proposition 4.36)
for the function arctan restricted to the interval [1, x] and the function g :
[1, x] → R given by g(t) = −1/t, we obtain

arctanx − arctan 1

g(x) − g(1)
=

(arctan)′c

g′(c)
=

c2

1 + c2
for some c ∈ (1, x).

This shows that

arctanx = arctan1 +

(
− 1

x
+ 1

)
c2

1 + c2
< 1 + 1 − 1

x
= 2 − 1

x
.

Hence 0 < arctanx < 2 for every x ∈ (0,∞). Since arctan is an odd func-
tion, we see that 0 > arctanx > −2 for every x ∈ (−∞, 0). Thus arctan
is bounded above and bounded below on R. Consequently, there is a well-
defined real number π such that π = 2 sup{arctanx : x ∈ (0,∞)}, that is,
π/2 = sup{arctanx : x ∈ (0,∞)}. Now since arctan is (strictly) increasing,
it follows from Proposition 3.35 that arctanx → π/2 as x → ∞. Again, since
arctan is an odd function, arctanx → −π/2 as x → −∞.

(iv) The function arctan is one-one since it is strictly increasing. Let y ∈
(−π/2, π/2). Since arctanx → −∞ as x → −π/2, there is some x0 ∈ R
such that arctanx0 < y and since arctanx → ∞ as x → π/2, there is some
x1 ∈ R such that y < arctanx1. But by part (i) above, the function arctan
is continuous on the interval [x0, x1]. So, the IVP (Proposition 3.13) shows
that there is some x ∈ (x0, x1) such that arctanx = y. Thus the function
arctan : R → (−π/2, π/2) is bijective. ⊓⊔

The geometric properties of arctan obtained in the above proposition can
be used to draw its graph as follows.

Let us estimate the number π = 2 sup{arctanx : x ∈ (0,∞)}. We have
seen in the proof of part (iii) of the above proposition that arctanx < 2 for
every x ∈ (0,∞). Hence π ≤ 4. Further, this proof shows that
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Fig. 7.5. Graph of the arctangent function

arctan 1 =
1

1 + c2
for some c ∈ (0, 1)

and so arctan 1 > 1
2 . Also, we have shown that for x ∈ (1,∞),

arctanx = arctan1 +

(
1 − 1

x

)
c2

1 + c2
for some c ∈ (1, x).

Since c2/(1 + c2) > 1
2 for any c ∈ (1,∞), we see that

arctanx >
1

2
+

(
1 − 1

x

)
1

2
= 1 − 1

2x
, x ∈ (1,∞).

Hence 2 arctanx > 2 − (1/x) for each x ∈ (0,∞), showing that π ≥ 2. Thus

2 ≤ π ≤ 4.

The number π is traditionally ‘defined’ as the area of a circular disk of radius 1
or as half the perimeter of a circle of radius 1. But these definitions presuppose
the notions of ‘area’ or ‘length’. In Chapter 8, we shall reconcile our definition
of π with the traditional definitions after giving precise definitions of ‘area’
and ‘length’.

Better lower and upper bounds for the number π can be obtained. (See,
for example, Exercise 16.) The first few digits in the decimal expansion of π
are given by

π = 3.14159265 . . . .

In fact, π is an irrational number (Exercise 57), and furthermore, π is tran-
scendental, that is, it is not a root of any nonzero polynomial with rational
coefficients. (See [7] for a proof.)

Let us now turn to the inverse of the arctangent function. The inverse of
the bijective function arctan : R → (−π/2, π/2) is known as the tangent
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function and is denoted by tan : (−π/2, π/2) → R. We write tanx, rather
than tan(x), for the value of the tangent function at x ∈ (−π/2, π/2). The
function tan is characterized by the following:

x ∈ (−π/2, π/2) and tanx = y ⇐⇒ y ∈ R and arctan y = x.

Note that tan x > 0 for x ∈ (0, π/2), while tan x < 0 for x ∈ (−π/2, 0).
Moreover, since arctan 0 = 0, we have tan 0 = 0.

−π/2 π/20
x

y

Fig. 7.6. Graph of the tangent function on (−π/2, π/2)

Proposition 7.14 (Properties of the Tangent Function).

(i) tan is a differentiable function on (−π/2, π/2) and

(tan)′x = 1 + tan2 x for every x ∈
(
−π

2
,
π

2

)
.

(ii) tan is strictly increasing on (−π/2, π/2). Also, it is strictly concave on
(−π/2, 0) and strictly convex on (0, π/2).

(iii) tan is an odd function on (−π/2, π/2). Also, tanx → ∞ as x → π/2,
whereas tan x → −∞ as x → −π/2.

Proof. (i) Let x ∈ (−π/2, π/2) and c ∈ R be such that arctan c = x.
Since the function arctan : R → (−π/2, π/2) is differentiable at c and
(arctan)′c = 1/(1 + c2) �= 0, Proposition 4.11 shows that the inverse func-
tion tan : (−π/2, π/2) → R is differentiable at x = arctan c and
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(tan)′x =
1

(arctan)′c
= 1 + c2 = 1 + tan2 x.

(ii) Since the derivative of tan is positive on (−π/2, π/2), it follows from
part (iii) of Proposition 4.27 that tan is strictly increasing on (−π/2, π/2).
Further, since

(tan)′′x =
d

dx

(
1 + tan2 x

)
= 2 tan x

(
1 + tan2 x

)
for x ∈

(
−π

2
,
π

2

)
,

and since tanx > 0 for x ∈ (0, π/2), while tan x < 0 for x ∈ (−π/2, 0),
it follows from parts (iii) and (iv) of Proposition 4.32 that tan is strictly
concave on (−π/2, 0) and it is strictly convex on (0, π/2).

(iii) Let x ∈ (−π/2, π/2) and y = tanx. Then

tan(−x) = tan(− arctany) = tan(arctan(−y)) = −y = − tanx.

Thus tan is an odd function on (−π/2, π/2).
Since the range of the function tan is the domain of the function arctan,

namely R, we see that tan is neither bounded above nor bounded below on
(−π/2, π/2). Also, since tan is (strictly) increasing on (−π/2, π/2), it follows
from Proposition 3.35 that tanx → ∞ as x → π/2 and tanx → −∞ as
x → −π/2. ⊓⊔

The geometric properties of tan obtained in the above proposition can be
used to draw its graph as in Figure 7.6.

Sine and Cosine Functions

To begin with, we define the sine function and the cosine function on the
interval (−π/2, π/2) by

sin x :=
tan x√

1 + tan2 x
and cosx :=

1√
1 + tan2 x

for x ∈
(
−π

2
,
π

2

)
.

It is clear from the definition that

tan x =
sin x

cosx
for x ∈

(
−π

2
,
π

2

)
.

Further, the properties of the tangent function (Proposition 7.14) yield the
following:

1. sin 0 = 0 and cos 0 = 1.
2. sin(−x) = − sin x and cos(−x) = cosx for all x ∈ (−π/2, π/2).
3. 0 < sin x < 1 for all x ∈ (0, π/2) and −1 < sin x < 0 for all x ∈ (−π/2, 0),

while 0 < cosx < 1 for all x ∈ (−π/2, π/2).
4. sinx → 1 as x → (π/2)− and sinx → −1 as x → (−π/2)+, while cosx → 0

as x → (π/2)− or as x → (−π/2)+.
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5. Both sin and cos are differentiable on (−π/2, π/2) and satisfy

(sin)′x = cosx and (cos)′x = − sinx for all x ∈
(
−π

2
,
π

2

)
.

It follows that sin is strictly increasing on (−π/2, π/2), while cos is strictly
increasing on (−π/2, 0) and strictly decreasing on (0, π/2). Also, since

(sin)′′x = (cos)′x = − sinx and (cos)′′x = (− sin)′x = − cosx for x ∈
(
−π

2
,
π

2

)
,

we see that sin is strictly convex on (−π/2, 0) and strictly concave on (0, π/2),
while cos is strictly concave on (−π/2, π/2).

The geometric properties of sin and cos obtained above can be used to
draw their graphs as in Figure 7.7.
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Fig. 7.7. Graphs of the sine function and the cosine function on (−π/2, π/2)

By the definition of derivative and the earlier observations that sin 0 = 0,
(sin)′0 = 1, cos 0 = 1, and (cos)′0 = 0, we obtain the following important
limits:

lim
h→0

sin h

h
= 1 and lim

h→0

cosh − 1

h
= 0.

We now define sin and cos at π/2 as follows:

sin
π

2
:= 1 and cos

π

2
:= 0.

Next, we extend sin and cos to R by requiring

sin(x + π) := − sinx and cos(x + π) := − cosx for x ∈ R.

It follows that

1. sin(x + 2π) = sinx and cos(x + 2π) = cosx for all x ∈ R.
2. sin(−x) = sin x and cos(−x) = cosx for all x ∈ R, that is, sin is an odd

function and cos is an even function on R.
3. sinx = 0 if and only if x = kπ for some k ∈ Z, and cosx = 0 if and only

if x = (2k + 1)π/2 for some k ∈ Z.



7.2 Trigonometric Functions 247

Recalling that tanx = sinx/ cosx for x ∈ (−π/2, π/2), we extend the
function tan to R \ {(2k + 1)π/2 : k ∈ Z} as follows:

tan x :=
sin x

cosx
for x ∈ R \ {(2k + 1)π/2 : k ∈ Z}.

Then we have

tan(x+π) =
sin(x + π)

cos(x + π)
=

− sinx

− cosx
= tanx for x ∈ R\{(2k+1)π/2 : k ∈ Z}.

Hence for each k ∈ Z,

tan x → ∞ as x → (2k + 1)π

2

−
and tanx → −∞ as x → (2k + 1)π

2

+

.

In view of the above remarks, the graphs of the (extended) sine, cosine, and
tangent functions can be drawn as in Figures 7.8, 7.9, and 7.10, respectively.

�

��� ���� ������������������
�

� � �� ����������

Fig. 7.8. Graph of the sine function on R
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Fig. 7.9. Graph of the cosine function on R

We shall now consider the differentiability of the functions sin, cos, and tan.

Proposition 7.15. The functions sin and cos are differentiable on R and
satisfy

(sin)′x = cosx and (cos)′x = − sin x for all x ∈ R.

Also, the function tan is differentiable on R \ {(2k + 1)π/2 : k ∈ Z} and

(tan)′x = 1 + tan2 x for all R \ {(2k + 1)π/2 : k ∈ Z}.
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Proof. We have mentioned before that both sin and cos are differentiable on
(−π/2, π/2) and their derivatives satisfy the relations stated in the proposi-
tion. Also, from our extension of sin and cos to R, it is clear that this holds
at every x ∈ R, x �= (2k + 1)π/2 for any k ∈ Z.

Let us now prove that sin is differentiable at π/2 and its derivative at π/2
is 0. First, note that sin x → 1 and cosx → 0 as x → (π/2)−, and sinπ/2 = 1.
Hence by L’Hôpital’s Rule for 0

0 indeterminate forms 4.37, we have

lim
x→(π/2)−

sin x − sin(π/2)

x − (π/2)
= lim

x→(π/2)−

cosx

1
= 0.

Next, let u = x − π. Then as x → (π/2)+, we have u → (−π/2)+ and
sin x = sin(u+π) = − sinu. Also, sinu → −1 and cosu → 0 as u → (−π/2)+.
Hence again by L’Hôpital’s Rule, we have

lim
x→(π/2)+

sin x − sin(π/2)

x − (π/2)
= lim

u→(−π/2)+

− sinu − 1

u + (π/2)
= lim

u→(−π/2)+

− cosu

1
= 0.

This proves (sin)′(π/2) = 0. Similarly, it can be shown that for each k ∈ Z,

(sin)′
(
(2k + 1)

π

2

)
= 0 = cos

(
(2k + 1)

π

2

)
,

(cos)′
(
(4k + 1)

π

2

)
= −1 = − sin

(
(4k + 1)

π

2

)
,

(cos)′
(
(4k − 1)

π

2

)
= 1 = − sin

(
(4k − 1)

π

2

)
.

Thus sin and cos are are differentiable on R and their derivatives satisfy the
relations stated in the proposition.

The differentiability of the function tan and the formula for its derivative
follow from parts (iii) and (iv) of Proposition 4.5. ⊓⊔

The above proposition implies that sin and cos are infinitely differentiable
on R, and for k ∈ N, their kth derivatives are given by

(sin)(k)x =

{
(−1)k/2 sin x if k is even,

(−1)(k−1)/2 cosx if k is odd,

and

(cos)(k)x =

{
(−1)k/2 cosx if k is even,
(−1)(k+1)/2 sin x if k is odd.

Hence the nth Taylor polynomial for sin about 0 is given by

Pn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − x3

3!
+

x5

5!
− · · · + (−1)(n−1)/2 xn

n!
if n is odd,

x − x3

3!
+

x5

5!
− · · · + (−1)(n−2)/2 xn−1

(n − 1)!
if n is even.
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3π
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−3π
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−π
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−π π
x

y

Fig. 7.10. Graph of the tangent function on R

In particular, the linear as well as the quadratic approximation of sin around
0 is given by

L(x) = Q(x) = x, x ∈ R.

Similarly, the nth Taylor polynomial for cos about 0 is given by

Pn(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 − x2

2!
+

x4

4!
− · · · + (−1)n/2 xn

n!
if n is even,

1 − x2

2!
+

x4

4!
− · · · + (−1)(n−1)/2 xn−1

(n − 1)!
if n is odd.

In particular, the linear and the quadratic approximations of cos around 0 are
given by

L(x) = 1 and Q(x) = 1 − x2

2
, x ∈ R.

We now prove an important identity and the addition formulas for the
functions sin and cos.

Proposition 7.16.

(i) For all x ∈ R, we have the identity

sin2 x + cos2 x = 1.

(ii) For all x1 and x2 in R, we have the addition formulas
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sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2

and
cos(x1 + x2) = cosx1 cosx2 − sin x1 sin x2.

Proof. (i) Consider the function f : R → R given by

f(x) := sin2 x + cos2 x for x ∈ R.

We have f ′(x) = 2 sinx cosx + 2 cosx(− sin x) = 0 for all x ∈ R and hence
f(x) = f(0) = sin2 0 + cos2 0 = 0 + 1 = 1 for all x ∈ R. This proves (i).

(ii) To derive the addition formulas, fix x2 ∈ R and define g, h : R → R by

g(x) := cosx sin(x + x2) − sin x cos(x + x2) for x ∈ R

and
h(x) := sinx sin(x + x2) + cosx cos(x + x2) for x ∈ R.

Then it can be easily checked that g′(x) = 0 = h′(x) for all x ∈ R and hence

g(x) = g(−x2) = sin x2 and h(x) = h(−x2) = cosx2.

Putting x = x1 in these equations, we obtain

cosx1 sin(x1 + x2) − sin x1 cos(x1 + x2) = sinx2

and
sin x1 sin(x1 + x2) + cosx1 cos(x1 + x2) = cosx2.

Solving these two linear equations for sin(x1 +x2) and cos(x1 +x2), we obtain

sin(x1 + x2) = sinx1 cosx2 + cosx1 sin x2

and
cos(x1 + x2) = cosx1 cosx2 − sin x1 sin x2,

as desired. ⊓⊔

We now consider the reciprocals of the functions sin, cos, and tan. The
cosecant function and the secant function are defined by

cscx :=
1

sin x
if x ∈ R, x �= kπ for any k ∈ Z,

and

secx :=
1

cosx
if x ∈ R, x �= (2k + 1)

π

2
for any k ∈ Z.

The cotangent function is defined by
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cot x :=
cosx

sinx
if x ∈ R, x �= kπ for any k ∈ Z.

Thus cotx is the reciprocal of tanx if x �= kπ/2 for any k ∈ Z.

The functions sin, cos, tan, csc, sec, and cot are known as the trigono-
metric functions. Several elementary results concerning these functions are
given in Exercises 27–33. They follow from their definitions and from Propo-
sition 7.16.

Let us now consider the inverse trigonometric functions. The function
f : (−π/2, π/2) → R defined by f(x) = tanx is bijective. Its inverse is the
function arctan : R → (−π/2, π/2) with which we started our discussion in
this section. This function is also denoted by tan−1. Thus

tan−1 : R → (−π/2, π/2)

is the function characterized by the following:

y ∈ R and tan−1 y = x ⇐⇒ x ∈ (−π/2, π/2) and tanx = y.

Also, as we have seen in part (i) of Proposition 7.13,

(tan−1)′y =
1

1 + y2
for all y ∈ R.

The function g : [−π/2, π/2] → [−1, 1] defined by g(x) := sinx is bijective.
Its inverse is denoted by sin−1 or by arcsin. Thus

sin−1 : [−1, 1] → [−π/2, π/2]

is the function characterized by the following:

y ∈ [−1, 1] and sin−1 y = x ⇐⇒ x ∈ [−π/2, π/2] and sinx = y.

By the Continuous Inverse Theorem (Proposition 3.14), the function sin−1

is continuous on [−1, 1]. Also, the derivative formula for the inverse func-
tion (Proposition 4.11) shows that for y ∈ (−1, 1) and y = sin x with
x ∈ (−π/2, π/2), we have

(sin−1)′y =
1

f ′(x)
=

1

cosx
=

1√
1 − sin2 x

=
1√

1 − y2
.

Thus sin−1 is differentiable on (−1, 1).
Similarly, the function h : [0, π] → [−1, 1] defined by h(x) := cosx is

bijective. Its inverse is denoted by cos−1 or by arccos. Thus

cos−1 : [−1, 1] → [0, π]

is the function characterized by the following:
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y ∈ [−1, 1] and cos−1 y = x ⇐⇒ x ∈ [0, π] and cosx = y.

By Proposition 3.14, the function cos−1 is continuous on [−1, 1]. Also, as
before, for y ∈ (−1, 1) and y = cosx with x ∈ (0, π), we have

(cos−1)′y =
1

g′(x)
=

1

− sinx
=

−1√
1 − cos2 x

=
−1√
1 − y2

.

Thus cos−1 is differentiable on (−1, 1).
The graphs of the inverse trigonometric functions sin−1 : [−1, 1] →

[−π/2, π/2] and cos−1 : [−1, 1] → [0, π] are shown in Figure 7.11.
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−π/2
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y = sin−1 x
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Fig. 7.11. Graphs of sin−1 : [−1, 1] → [−π/2, π/2] and cos−1 : [−1, 1] → [0, π]

The function f1 : (0, π) → R defined by f1(x) := cotx is bijective. Its
inverse is denoted by cot−1 . Thus

cot−1 : R → (0, π)

is the function characterized by the following:

y ∈ R and cot−1 y = x ⇐⇒ x ∈ (0, π) and cotx = y.

The function g1 : [0, π/2) ∪ (π/2, π] → (−∞,−1] ∪ [1,∞) defined by
g1(x) := cscx is bijective. Its inverse is denoted by csc−1. Thus

csc−1 : (−∞,−1] ∪ [1,∞) → [0, π/2) ∪ (π/2, π]

is the function characterized by the following:

y ∈ R, |y| ≥ 1 and csc−1 y = x ⇐⇒ x ∈ R, 0 < |x| ≤ π/2 and cscx = y.
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The function h1 : [0, π/2) ∪ (π/2, π] → (−∞,−1] ∪ [1,∞) defined by
h1(x) := secx is bijective. Its inverse is denoted by sec−1. Thus

sec−1 : (−∞,−1] ∪ [1,∞) → [0, π/2) ∪ (π/2, π]

is the function characterized by the following:

y ∈ R, |y| ≥ 1 and sec−1 y = x ⇐⇒ x ∈ [0, π], x �= π/2 and secx = y.

The formulas for the derivatives of the functions cot−1, csc−1, and sec−1

are given in Exercise 40. For various relations involving the inverse trigono-
metric functions, see Exercises 34–39.

7.3 Sine of the Reciprocal

In this section we study the composition of the reciprocal function x �→ 1/x
and the sine function. We also study some related functions. To begin with,
consider the function f : R \ {0} → R defined by

f(x) = sin
1

x
, x �= 0.

The reason for paying special attention to this function is that it has many
interesting properties and it provides, along with other associated functions,
several examples and counterexamples for various statements in calculus and
analysis. We have deferred these examples till now since the trigonometric
functions were introduced only in Section 7.2.

Properties of the sine function developed earlier yield the following:

1. f is an odd function.
2. f is a bounded function. In fact, −1 ≤ f(x) ≤ 1 for all x ∈ R \ {0}.
3. f(x) = 0 if and only if x = 1/kπ for some nonzero k ∈ Z, while f(x) = 1

if and only if x = 2/(4k + 1)π for some k ∈ Z, and f(x) = −1 if and only
if x = 2/(4k − 1)π for some k ∈ Z.
The graph of the function f drawn in Figure 7.12 shows that it oscillates
between 1 and −1 more and more rapidly as we approach 0 from the left
or from the right.

4. f is continuous on R \ {0} since the reciprocal function x �→ 1/x is con-
tinuous on R \ {0} and the sine function is continuous on R (Proposition
3.4).

5. f is not uniformly continuous on (0, δ) for any δ > 0. This follows by
noting that if xn = 1/nπ and yn = 2/(4n + 1)π for n ∈ N, then for all
large n, we have xn, yn ∈ (0, δ) and xn − yn → 0, but since f(xn) = 0,
f(yn) = 1, we see that f(xn) − f(yn)→/ 0. Similarly, f is not uniformly
continuous on (−δ, 0) for any δ > 0.
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y = sin
1

x

1

−1

x

y

Fig. 7.12. Graph of f : R \ {0} → R given by f(x) = sin 1

x

However, if D ⊆ R and there is δ > 0 such that D ⊆ (−∞,−δ] ∪ [δ,∞),
then f is uniformly continuous on D. This can be seen as follows. Let (xn)
and (yn) be any sequences in D such that xn − yn → 0. Then

sin
1

xn
− sin

1

yn
= 2 cos

1

2

(
1

xn
+

1

yn

)
sin

1

2

(
1

xn
− 1

yn

)

= −2 cos

(
xn + yn

2xnyn

)
sin

(
xn − yn

2xnyn

)
for all n ∈ N.

(See Exercise 28.) Since |xn| ≥ δ and |yn| ≥ δ for all n ∈ N, we see that
(xn − yn)/2xnyn → 0 and hence

|f(xn) − f(yn)| =

∣∣∣∣sin
1

xn
− sin

1

yn

∣∣∣∣ ≤ 2

∣∣∣∣sin
(

xn − yn

2xnyn

)∣∣∣∣ → 0 as n → ∞.

6. f is infinitely differentiable at every nonzero x ∈ R, thanks to the Chain
Rule (Proposition 4.9). In particular, we have

f ′(x) = − 1

x2
cos

1

x
and f ′′(x) =

2

x3
cos

1

x
− 1

x4
sin

1

x
for x ∈ R \ {0}.

It is clear that for any δ > 0, f ′ and f ′′ are not bounded on (0, δ) as well
as on (−δ, 0).

7. For any δ > 0, f is not monotonic on (0, δ) as well as on (−δ, 0). To see
this, let xk := 1/kπ for nonzero k ∈ Z; note that f ′(xk) = (−1)k+1k2π2

and apply part (i) of 4.28.
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8. For any δ > 0, f is neither convex nor concave on (0, δ) as well as on
(−δ, 0). To see this, let xk := 1/kπ for nonzero k ∈ Z; note that f ′′(xk) =
(−1)kk3π3 and apply part (i) of Corollary 4.33.

We remark that similar properties are possessed by the real-valued function
g : R \ {0} → R defined by

g(x) = cos
1

x
, x �= 0.

(See Exercise 43.)
Let r0 ∈ R, and consider the function f0 : R → R defined by

f0(x) =

{
f(x) if x �= 0,
r0 if x = 0.

It follows from Corollary 6.11 that for any a, b ∈ R with a < b, f0 is Riemann
integrable on [a, b]. Consider now the function F0 : R → R defined by

F0(x) :=

∫ x

0

f0(t)dt.

Observe that this function does not depend on the choice of r0 ∈ R, thanks
to Proposition 6.12. Let c ∈ R, c �= 0. Since f0 is continuous at c, part (ii)
of the Fundamental Theorem of Calculus (Proposition 6.21) shows that the
function F0 is differentiable at c and F ′

0(c) = f0(c) = f(c). However, it is not
clear how the functions f0 and F0 behave near 0. We now analyze this case
separately. This analysis will show that the converse of a stronger version of
part (ii) of the FTC stated in Remark 6.22 (ii) does not hold.

Proposition 7.17. Let f0 and F0 be as defined above.

(i) f0 is not continuous at 0. In fact, neither limx→0+ f0(x) nor limx→0− f0(x)
exists.

(ii) F0 is differentiable at 0 and F ′
0(0) = 0, that is,

lim
x→0

1

x

∫ x

0

sin
1

t
dt = 0.

Proof. (i) Let xn = 1/nπ and yn = 2/(4n + 1)π for n ∈ N. Then (xn) and
(yn) are sequences of positive real numbers such that xn → 0 and yn → 0, but
f(xn) = 0 and f(yn) = 1 for all n ∈ N, and so f(xn) → 0, whereas f(yn) → 1.
Thus it follows that limx→0+ f(x) does not exist. Since f is an odd function,
limx→0− f(x) does not exist. Finally, since f0(x) = f(x) for all nonzero x ∈ R,
(i) is proved.

(ii) Let x ∈ R, x > 0. By Proposition 6.20, we have

F0(x) − F0(0) =

∫ x

0

sin
1

t
dt = lim

r→0+

∫ x

r

sin
1

t
dt.
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Fix r ∈ R such that 0 < r ≤ x. Substituting t = 1/u and then integrating by
parts (that is, using Propositions 6.26 and 6.25), we obtain

∫ x

r

sin
1

t
dt =

∫ 1/r

1/x

(sin u)
1

u2
du = x2 cos

1

x
− r2 cos

1

r
− 2

∫ 1/r

1/x

cosu

u3
du.

Since

0 ≤
∫ 1/r

1/x

∣∣∣
cosu

u3

∣∣∣ du ≤
∫ 1/r

1/x

1

u3
du =

1

2
(x2 − r2),

we see that
∣∣∣∣
∫ x

0

sin
1

t
dt

∣∣∣∣ ≤ lim
r→0+

∣∣∣∣
∫ x

r

sin
1

t
dt

∣∣∣∣ ≤ lim
r→0+

(x2 + r2 + x2 − r2) = 2x2.

Thus for every x ∈ (0,∞), we have

∣∣∣∣
1

x

∫ x

0

sin
1

t
dt

∣∣∣∣ ≤ 2x and so lim
x→0+

F0(x) − F0(0)

x − 0
= lim

x→0+

1

x

∫ x

0

sin
1

t
dt = 0.

Replacing x by −x and noting that sin is an odd function, we also obtain

lim
x→0−

F0(x) − F0(0)

x − 0
= lim

x→0−

1

x

∫ x

0

sin
1

t
dt = 0.

Hence the desired result follows by Proposition 3.29. ⊓⊔

We remark that a similar result holds for the cosine of the reciprocal. (See
Exercise 44.)

We shall now study some functions associated with the function f0. They
are obtained by multiplying f0 by the identity function and by the square of
the identity function.

Example 7.18. Consider the function f1 : R → R defined by

f1(x) =

{
x sin(1/x) if x �= 0,
0 if x = 0.

Properties of the function f developed earlier yield the following:

1. f1 is an even function.
2. f1 is a bounded function. In fact, −1 < f1(x) < 1 for all x ∈ R. To see

this, note that f1(x) = sin(1/x)/(1/x) if x �= 0, and −y < sin y < y for all
nonzero y ∈ R (as can be seen by a simple application of the MVT). Since
limh→0 sinh/h = 1, it follows that f1(x) → 1 as x → ∞ or as x → −∞.

3. The oscillations of the function f1, inherited from the function f , are
‘damped’ near 0, because |f1(x)| ≤ |x| for all x ∈ R. This behavior of f1

is shown in Figure 7.13.
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Fig. 7.13. Illustration of damped oscillations: Graph of f1 : R → R given by
f1(0) = 0 and f1(x) = x sin 1

x
for x �= 0

4. f1 is continuous on R. To see this, we note that f1 is a product of two
functions each of which is continuous on R \ {0}, and moreover, f1 is
continuous at 0, because if (xn) is any sequence such that xn → 0, then
we have |f(xn)| ≤ |xn|, and so f(xn) → 0.

5. f1 is infinitely differentiable at every nonzero x ∈ R, thanks to part (iv)
of Proposition 4.5. In particular, we have

f ′
1(x) = sin

1

x
− 1

x
cos

1

x
and f ′′

1 (x) = − 1

x3
sin

1

x
for x ∈ R \ {0}.

It is clear that for any δ > 0, f ′
1 and f ′′

1 are not bounded on (0, δ) as well
as on (−δ, 0).

6. For any δ > 0, f1 is not monotonic on (0, δ) as well as on (−δ, 0). To see
this, let xk := 1/kπ for nonzero k ∈ Z; note that f ′

1(xk) = (−1)k+1kπ and
apply part (i) of Corollary 4.28.

7. For any δ > 0, f1 is neither convex nor concave on (0, δ) as well as on
(−δ, 0). To see this, let yk := 2/(2k + 1)π for nonzero k ∈ Z; note that
f ′′
1 (yk) = (−1)k+1(k + (1/2))3π3 and apply part (i) of Corollary 4.33.

8. The right (hand) and the left (hand) derivatives of f1 at 0 do not exist,
that is, the limits

lim
x→0+

f1(x) − f1(0)

x − 0
= lim

x→0+
sin

1

x
and lim

x→0−

f1(x) − f1(0)

x − 0
= lim

x→0−

sin
1

x

do not exist, as we have seen in part (i) of Proposition 7.17.

The function |f1| has an absolute minimum (although it is not a strict
minimum) at 0. However, there is no δ > 0 such that f is decreasing on
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(−δ, 0] and f is increasing on [0, δ), because |f1|(1/kπ) = 0 for all nonzero
k ∈ Z, while |f1|(2/(2k + 1)π) = 2/|2k + 1|π for all k ∈ Z. This phenomenon
was earlier illustrated in Example 1.18 of infinitely many zigzags.

The function f1 can be used to conclude that the converse of L’Hôpital’s
rule for ∞

∞ indeterminate forms is not true. For this purpose, consider functions
h1, g1 : (0,∞) → R defined by

h1(x) :=
1 + f1(x)

x
and g1(x) :=

1

x
.

Then g1(x) → ∞ as x → 0+, g′(x) = −1/x2 �= 0 for all x ∈ (0,∞), and

lim
x→0+

h1(x)

g1(x)
== lim

x→0+
[1 + f1(x)] = 1 + 0 = 0,

but

lim
x→0+

h′
1(x)

g′1(x)
= lim

x→0+

[−1 − cos(1/x)]/x2

−1/x2
= lim

x→0+
[1 + cos(1/x)]

does not exist because limx→0+ cos(1/x) does not exist. ✸

Example 7.19. Consider the function f2 : R → R defined by

f2(x) =

{
x2 sin(1/x) if x �= 0,
0 if x = 0.

Properties of the functions f and f1 developed earlier yield the following.

1. f2 is an odd function.
2. For any a ∈ R, f2 is not bounded above on (a,∞). This follows by noting

that sin(1/x)/(1/x) → 1 as x → ∞, so that

f2(x) = x
sin(1/x)

(1/x)
→ ∞ as x → ∞.

Being an odd function, f2 is not bounded below on (−∞, b) for any b ∈ R.
3. The oscillations of the function f2, inherited from the function f , are

doubly damped near 0, because |f2(x)| ≤ |x|2 for all x ∈ R. This behavior
of f2 is shown in Figure 7.14.

4. f2 is continuous on R, since f2(x) = xf1(x) for all x ∈ R and the function
f1 is continuous on R.

5. f2 is infinitely differentiable at every nonzero x ∈ R. In particular, for any
x ∈ R \ {0}, we have

f ′
2(x) = 2x sin

1

x
− cos

1

x
and f ′′

2 (x) = 2 sin
1

x
− 2

x
cos

1

x
− 1

x2
sin

1

x
.

It is clear that f ′
2 is bounded on x ∈ R \ {0}, but for any δ > 0, f ′′

2 is not
bounded on (0, δ) as well as on (−δ, 0).



7.3 Sine of the Reciprocal 259

�

� � �
�
���

�

�

�

��

�

�

�

Fig. 7.14. Illustration of doubly damped oscillations: Graph of f2 : R → R given
by f2(0) = 0 and f2(x) = x2 sin 1

x
for x �= 0

6. For any δ > 0, f2 is not monotonic on (0, δ) as well as on (−δ, 0). To see
this, let xk := 1/kπ for nonzero k ∈ Z; note that f ′

2(xk) = (−1)k+1 and
apply part (i) of Corollary 4.28.

7. For any δ > 0, f2 is neither convex nor concave on (0, δ) as well as on
(−δ, 0). To see this, let yk := 1/kπ for nonzero k ∈ Z; note that f ′′

2 (yk) =
(−1)k+12kπ and apply part (i) of Corollary 4.33.

8. f2 is differentiable at 0. In fact,

f ′
2(0) = lim

x→0

f2(x) − f2(0)

x − 0
= lim

x→0
x sin

1

x
= 0.

But f ′
2 is not continuous at 0, because limx→0 f ′

2(x) does not exist. This
follows because limx→0 cos(1/x) does not exist.

9. Although f ′
2(0) = 0, neither does f2 have a local extremum at 0 nor is 0

a point of inflection for f because of the oscillatory nature of f2 and f ′
2

around 0.

The function f2 can be used to conclude that the converse of L’Hôpital’s
rule for 0

0 indeterminate forms is not true. For this purpose, let g2(x) := sinx
for x ∈ R. Then limx→0 f2(x) = 0 = limx→0 g2(x) and

lim
x→0

f2(x)

g2(x)
=
(

lim
x→0

x

sinx

)(
lim
x→0

x sin
1

x

)
= (1)(0) = 0,

but

lim
x→0

f ′
2(x)

g′2(x)
= lim

x→0

2x sin(1/x) − cos(1/x)

cosx

does not exist, because limx→0 cos(1/x) does not exist, but on the other hand,
limx→0 2x sin(1/x) = 0 and limx→0 cosx = 1. ✸

For further examples, see Exercises 45, 48, and 60.
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7.4 Polar Coordinates

Having defined the trigonometric functions and the number π, we are in a
position to describe an alternative and useful way of representing points in the
plane R2 by their polar coordinates. Roughly speaking, the polar coordinates
of a point P = (x, y) ∈ R2 are the numbers r and θ satisfying the equations

x = r cos θ and y = r sin θ.

Geometrically speaking, the number r represents the distance from P to the
origin O = (0, 0), whereas θ can be interpreted as the ‘angle’ from the positive
x-axis to the line segment OP . However, there is a certain ambiguity if we
define r and θ simply by the above equations. Indeed, if (r, θ) satisfy these
equations, then so do (r, θ + 2π), (r, θ− 2π), (−r, θ + π), etc.; the special case
P = O is even worse because we can take r = 0 and θ to be any real number.
To avoid such ambiguities and to enable us to give a precise definition of polar
coordinates, we first prove the following proposition. In the sequel, we shall
also give a formal definition of the notion of angle, and clarify the geometric
interpretation of polar coordinates.

Proposition 7.20. If x, y ∈ R are such that (x, y) �= (0, 0), then r and θ
defined by

r :=
√

x2 + y2 and θ :=

⎧
⎪⎪⎨

⎪⎪⎩

cos−1
(x

r

)
if y ≥ 0,

− cos−1
(x

r

)
if y < 0,

satisfy the following properties:

r, θ ∈ R, r > 0, θ ∈ (−π, π], x = r cos θ, and y = r sin θ.

Conversely, if r, θ ∈ R are such that r > 0 and θ ∈ (−π, π], then x := r cos θ

and y := r sin θ are real numbers such that (x, y) �= (0, 0), r =
√

x2 + y2 and
θ equals cos−1(x/r) or − cos−1(x/r) according as y ≥ 0 or y < 0.

Proof. Let x, y ∈ R with (x, y) �= (0, 0) be given. Define r and θ by the
formulas displayed above. Then (x, y) �= (0, 0) implies that r > 0. Also, since
|x/r| ≤ 1 and since cos−1 is a map from [−1, 1] to [0, π], we see that θ is well
defined and θ ∈ [−π, π]. Further, if y < 0, then |x/r| < 1, and so cos−1(x/r) �=
π. Thus θ ∈ (−π, π]. Moreover, since cos(−θ) = cos θ, it follows that cos θ =
x/r, that is, x = r cos θ. Consequently, y2 = r2(1 − cos2 θ), and hence y =
±r sin θ. But from the definition of θ, it is clear that y ≥ 0 if and only if
0 ≤ θ ≤ π. So we must have y = r sin θ. This proves that r and θ satisfy the
desired properties.

Conversely, let r, θ ∈ R be given such that r > 0 and θ ∈ (−π, π]. Define
x := r cos θ and y := r sin θ. Since r > 0 and cos2 θ + sin2 θ = 1, it is clear
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that r =
√

x2 + y2, and, in particular, (x, y) �= (0, 0). Also, since θ ∈ (−π, π]
and x/r = cos θ, it follows that if θ ∈ [0, π], then θ = cos−1(x/r), whereas if
θ ∈ (−π, 0), then −θ ∈ (0, π) and cos(−θ) = cos θ = x/r, and consequently,
−θ = cos−1(x/r). Moreover, y = r sin θ ≥ 0 if and only if θ ∈ [0, π], and thus
we see that x and y satisfy the desired properties. ⊓⊔

In view of the above proposition, we define the polar coordinates of a
point P = (x, y) in R2, different from the origin, to be the pair (r, θ) de-
fined by the formulas displayed above. Equivalently, r and θ are real numbers
determined by the conditions r > 0, θ ∈ (−π, π], x = r cos θ, and y = r sin θ.

For example, the polar coordinates of the points (1, 0), (3, 4), (0, 1), (−1, 0),
(0,−1), and (3,−4) are (1, 0), (5, cos−1(3/5)), (1, π/2), (1, π), (1,−π/2), and
(5,− cos−1(3/5)), respectively. The polar coordinates of the origin (0, 0) are
not defined.

For a point P = (x, y) ∈ R2, we sometimes call the pair (x, y) the Carte-
sian coordinates or the rectangular coordinates of P .

Remarks 7.21. (i) In the definition of polar coordinates, we have required
that θ should lie in the interval (−π, π]. This is actually a matter of convention.
Alternative conditions are possible and can sometimes be found in books
on calculus. For example, a commonly used alternative is to require that θ
should lie in the interval [0, 2π). In this case, we have to change − cos−1(x/r)
to 2π − cos−1(x/r) in the formula for θ in Proposition 7.20. Yet another
alternative is to let r take positive as well as negative values but restrict
θ to the interval [0, π). In this case, we have to set r equal to

√
x2 + y2

or −
√

x2 + y2, according as y ≥ 0 or y < 0, and set θ equal to cos−1(x/r)
(regardless of the sign of y) in Proposition 7.20. In any case, the key equations
remain x = r cos θ and y = r sin θ. In fact, some books disregard the questions
of uniqueness and define the polar coordinates of the point (x, y) to be any
pair (r, θ) of real numbers satisfying x = r cos θ and y = r sin θ. We shall,
however, prefer that a change of coordinates be determined unambiguously
and adhere to the definition above.

(ii) It is more common to describe the ‘inverse formula’ for θ ∈ (−π, π] sat-
isfying x = r cos θ and y = r sin θ in terms of the arctangent function, namely,
θ = tan−1(y/x). However, this is correct only when x > 0. For a comprehen-
sive ‘inverse formula’, one has to consider four other cases separately. Indeed,
θ = tan−1(y/x) + π if x < 0 and y ≥ 0; θ = tan−1(y/x) − π if x < 0 and
y < 0; θ = π/2 if x = 0 and y > 0; finally, θ = −π/2 if x = 0 and y < 0. To
avoid this, we have used cos−1 in Proposition 7.20, and as a result, it suffices
to consider only two cases.

(iii) In classical geometry, the polar coordinates are described as follows.
In the plane choose a point O, called the pole, and a ray emanating from O,
called the polar axis. Now, the polar coordinates of a point P are (r, θ), where
r is the distance of P from the pole O, and θ is (any) angle from the polar
axis to the line joining O and P . In our approach, the plane comes equipped
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with a (Cartesian) coordinate system, and we have fixed the pole O to be the
origin and the polar axis to be the positive x-axis. ✸

We have seen earlier that an equation in x and y determines a curve in
the plane. Similarly, an equation in r and θ determines a curve in the plane,
namely, the curve consisting of points in the plane whose polar coordinates
satisfy this equation. In case the equation is satisfied when r = 0, we regard
the origin as a point on the curve. Frequently, the equations we come across are
of the form r = p(θ), where p is a real-valued function defined on some subset
of (−π, π]. If no domain for p is specified, then this may be assumed to be
(−π, π]. For ease of reference, we may use the terms Cartesian equation and
polar equation to mean an equation (of a curve in the plane) in Cartesian
coordinates and in polar coordinates, respectively.

x

y

x

y

Fig. 7.15. Spiral of Archimedes r = θ, and the cardioid r = 2(1 + cos θ)

Often, a curve can be described by a Cartesian equation as well as by a
polar equation. Sometimes, the latter can be simpler. For example, a circle
of radius 2 centered at the origin can be described by the Cartesian equation
x2 + y2 = 4, whereas its polar equation is simply r = 2. On the other hand,
to see how the curve given by the polar equation r = 2 sin θ might look like,
it may be easier to first convert it to a Cartesian equation. To do so, note
that the polar equation is equivalent to r2 = 2r sin θ, and hence the Cartesian
equation is given by x2 + y2 = 2y, that is, x2 + (y − 1)2 = 1. Thus, the curve
with the polar equation r = 2 sin θ is a circle of radius 1 centered at the point
(0, 1) on the y-axis.

We describe below a few classical examples of curves that admit a nice
description in polar coordinates.

Examples 7.22. 1. [Spiral] The graph of an equation of the type r = aθ
looks like a curve that winds around the origin, and is known as a spiral
(of Archimedes). The graph of r = θ is shown in Figure 7.15.

2. [Cardioid] A polar equation of the type r = a(1 + cos θ) gives rise to a
heart-shaped curve, known as a cardioid. This curve can also be described
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as the locus of a point on the circumference of a circle rolling round the
circumference of another circle of equal radius. A sketch of r = 2(1+cos θ)
is shown in Figure 7.15.
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y

Fig. 7.16. Limaçon r = 1 + 2 cos θ, and the lemniscate r2 = 2 cos 2θ

3. [Limaçon] A polar equation of the form r = b + a cos θ, which is more
general than that of a cardioid, traces a curve known as a limaçon1 (of
Pascal). It looks similar to a cardioid except that instead of a cusp, it has
an inner loop (provided b < a). A picture of the limaçon r = 1 + 2 cos θ is
shown in Figure 7.16.

4. [Lemniscate] A polar equation of the form r2 = 2a2 cos 2θ gives rise to
a curve shaped like a figure 8 or a bow tied in a ribbon, which is called a
lemniscate2 (of Bernoulli). A graph of a lemniscate with a = 1 is shown
in Figure 7.16, and it may be observed that it displays a great deal of
symmetry.

5. [Rose] Polar equations of the type r = a cosnθ or r = a sinnθ give rise
to floral-shaped curves, known as rhodonea curves, or simply roses.
Typically, if n is an odd integer, then it has n petals, whereas if n is an
even integer, then it has 2n petals. Graphs of roses with a = 1 and with
n = 4, 5 are shown in Figure 7.17. The configurations for which n is not
an integer are also interesting, albeit more complicated. For example, if n
is irrational, then there are infinitely many petals. Varying the values of
a, we can obtain different petal lengths. ✸

1 The name limaçon comes from the Latin word limax, which means a snail.
2 The name lemniscate comes from the Latin word lemniscus, meaning a ribbon.
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Fig. 7.17. Roses r = cos nθ for n = 4 (with 2n petals) and n = 5 (with n petals)

Notion of an Angle

In this subsection, we define the basic notion of an angle in various contexts,
and also relate it to polar coordinates discussed above. The formal definition
will use the inverse trigonometric functions that are defined in Section 7.2.

To begin with, we consider line segments OP1 and OP2 emanating from
a common point O = (x0, y0). If P1 = (x1, y1) and P2 = (x2, y2) are different
from O, then we define the angle between OP1 and OP2 to be the real number

cos−1

(
(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)(√

(x1 − x0)2 + (y1 − y0)2
)(√

(x2 − x0)2 + (y2 − y0)2
)
)

.

This angle is denoted by ∠(OP1, OP2) or by ∠ P1OP2. Note that by the
Cauchy–Schwarz inequality (Proposition 1.12),

∣∣∣∣∣∣
(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)(√

(x1 − x0)2 + (y1 − y0)2
)(√

(x2 − x0)2 + (y2 − y0)2
)

∣∣∣∣∣∣
≤ 1.

Thus, ∠(OP1, OP2) is a well defined real number and it lies between 0
and π. We shall say that the angle between OP1 and OP2 is: (i) acute
if 0 ≤ ∠(OP1, OP2) < π/2, (ii) obtuse if π/2 < ∠(OP1, OP2) ≤ π, and
(iii) a right angle if ∠(OP1, OP2) = π/2. Note that the angle between
OP1 and OP2 is acute, obtuse, or a right angle according as the number
(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0) is positive, negative, or zero, respec-
tively.

Remark 7.23. In classical geometry, the notion of angle is regarded as self-
evident and synonymous with the configuration formed by two line segments
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emanating from a point. One assigns the degree measure to angles in such a
way that the degree measure of the angle between the line segments OP1 and
OP2 is 180◦ [read 180 degrees] if O, P1, and P2 are collinear and O lies between
P1 and P2. With this approach, it is far from obvious that every ‘angle’ is
capable of a precise measurement (by real numbers). Such an assumption
is also implicit when one ‘defines’ the trigonometric functions by drawing
right-angled triangles and looking at ratios of sides. We have bypassed these
difficulties by opting to define the trigonometric functions and the notion
of angle by analytic means. In our set up, the degree measure is also easy to
define. One simply identifies 180◦ with π, so that 1◦ becomes equivalent to the
real number π/180. Thus, the degree measure of the angle between the line
segments OP1 and OP2, denoted ∠ P1OP2, is (180α/π)◦ if α = ∠(OP1, OP2).
To make a distinction, one sometimes says that α is the radian3 measure
of ∠ P1OP2. For example, π/2, π/3, π/4, and π/6 correspond, in the degree
measure, to 90◦, 60◦, 45◦, and 30◦, respectively. ✸

To relate the notion of angle with polar coordinates, let us consider the
special case in which O is the origin (0, 0), P1 is the point A := (1, 0) on the
x-axis, and P2 is an arbitrary point P = (x, y) other than the origin. Let (r, θ)

be the polar coordinates of P . We have seen that r =
√

x2 + y2 represents
the distance from P to the origin O. On the other hand, the angle between
OA and OP is given by

∠(OA, OP ) = cos−1

(
x · 1 + y · 0(√

x2 + y2
) (√

12 + 02
)

)
= cos−1

(x

r

)
.

It follows that θ can be interpreted, in analogy with ‘signed area’ defined in
Remark 6.19, as the ‘signed angle’ from OA to OP , namely,

θ =

{
∠(OA, OP ) if P is in the upper half-plane or the x-axis (y ≥ 0),
−∠(OA, OP ) if P is in the lower half-plane (y < 0).

The notion of ‘signed angle’ is illustrated in Figure 7.18. It may be noted
that the sign depends on the ‘orientation’, that is, it is positive if we move
from A to P in the counterclockwise direction (when P is above the x-axis) or
negative if we move from A to P in the clockwise direction (when P is below
the x-axis).

Now, we shall consider a variant of the notion of angle, which enables
us to talk about the angle between two lines rather than two line segments
emanating from a common point. Intuitively, it is clear that two intersecting
lines give rise to two distinct angles, which are complementary in the sense

3 The word radian, derived from radius, has the following dictionary meaning: an
angle subtended at the center of a circle by an arc whose length is equal to the
radius. We can reconcile our current usage of the word with this meaning when
the notion of length of an arc is formally defined in Chapter 8.
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Fig. 7.18. Illustration of the ‘signed angle’ θ from OA to OP

that their sum is π. As a convention, we shall give preference to the acute
angle among these two angles. Formally, we proceed as follows.

Let L1 and L2 be any lines in the plane R2. If L1 ‖ L2, that is, if L1

and L2 are parallel (in particular, if L1 = L2), then we define the (acute)
angle between L1 and L2, denoted by ∡(L1, L2), to be 0. If L1 ∦ L2, that
is, if L1 and L2 are not parallel, then they intersect in a unique point, say
O = (x0, y0). Now, pick up any point P1 = (x1, y1) on L1 such that P1 �= O
and any point P2 = (x2, y2) on L2 such that P2 �= O. Define

∡(L1, L2) := cos−1

(
|(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)|(√

(x1 − x0)2 + (y1 − y0)2
)(√

(x2 − x0)2 + (y2 − y0)2
)
)

.

From the Cauchy–Schwarz inequality (and the conditions when equality
holds), it follows that the fraction in the above expression is < 1, and in
view of the absolute value in the numerator of this fraction, we see that
0 < ∡(L1, L2) ≤ π/2. In general, that is, regardless of whether or not L1 ‖ L2,
we have ∡(L1, L2) ∈ [0, π/2]; also, since cos(π − α) = − cosα for all α ∈ R,
we have

∡(L1, L2) =

{
∠(OP1, OP2) if ∠(OP1, OP2) is acute,
π − ∠(OP1, OP2) if ∠(OP1, OP2) is obtuse.

However, it remains to be seen that when L1 ∦ L2, then the above definition
of ∡(L1, L2) does not depend on the choice of the points P1, P2, other than
O, on L1, L2, respectively. To this end, let us first note that Li is either the
vertical line x = x0, or else, it has a well-defined slope, say mi, for i = 1, 2.
Now, if neither L1 nor L2 is vertical, then xi �= x0 and mi = (yi−y0)/(xi−x0)
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for i = 1, 2. So, in this case, dividing the numerator and the denominator of
the fraction in the definition of ∡(L1, L2) by |(x1 − x0)(x2 − x0)|, we obtain

∡(L1, L2) = cos−1

(
|1 + m1m2|(√

1 + m2
1

)(√
1 + m2

2

)
)

.

In case m1 is not defined, that is, if x1 = x0, then y1 �= y0 (since P1 �= O)
and x2 �= x0 (since L1 ∦ L2), and hence |y1 − y0| �= 0 and m2 is defined; thus,
dividing the numerator and the denominator of the fraction in the definition
of ∡(L1, L2) by |x2 − x0|, we obtain

∡(L1, L2) = cos−1

⎛
⎝ |m2|(√

1 + m2
2

)

⎞
⎠ .

Similarly, if m2 is not defined, that is, if x2 = x0, then y2 �= y0 and x1 �= x0,
and hence |y2 − y0| �= 0 and m1 is defined; thus, in this case

∡(L1, L2) = cos−1

(
|m1|(√
1 + m2

1

)
)

.

This proves that our definition of ∡(L1, L2) is independent of the choice of
P1, P2, different from O, on L1, L2, respectively. In the process, we also ob-
tained alternative expressions for ∡(L1, L2). These show in particular that

∡(L1, L2) = π/2 ⇐⇒ (x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0) = 0

⇐⇒ (i) m1 and m2 are both defined and m1m2 = −1, or

(ii) m1 is not defined and m2 = 0, or vice versa.

If any of these equivalent conditions hold, then we shall say that L1 and L2

are perpendicular lines and write L1 ⊥ L2. As usual, we may write L1 �⊥ L2

to indicate that the lines L1 and L2 are not perpendicular.
In a special case, we can obtain another expression for ∡(L1, L2) as de-

scribed below.

Proposition 7.24. Suppose L1 and L2 are nonvertical lines in the plane with
slopes m1 and m2, respectively. Assume that L1 �⊥ L2 (so that m1m2 �= −1).
Then

∡(L1, L2) = tan−1

∣∣∣∣
m1 − m2

1 + m1m2

∣∣∣∣ .

Proof. If L1 ‖ L2, then ∡(L1, L2) = 0 and m1 = m2. So, the desired equality
is clearly true in this case. Now assume that L1 ∦ L2. Then L1 and L2 intersect
in a unique point, say O = (x0, y0), and we may choose points Pi = (xi, yi)
on Li such that Pi �= O, for i = 1, 2. Let α = ∡(L1, L2). Then
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cosα =
|(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)|(√

(x1 − x0)2 + (y1 − y0)2
)(√

(x2 − x0)2 + (y2 − y0)2
) .

Now, an easy computation shows that

sin2 α = 1 − cos2 α =
[(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)]

2

[(x1 − x0)2 + (y1 − y0)2] [(x2 − x0)2 + (y2 − y0)2]
.

Since α ∈ (0, π/2], it follows that sinα > 0, and thus

sin α =
|(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)|(√

(x1 − x0)2 + (y1 − y0)2
)(√

(x2 − x0)2 + (y2 − y0)2
) .

Since L1 �⊥ L2, we see that α �= π/2, and so cosα �= 0. Thus,

tanα =
sin α

cosα
=

|(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)|
|(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)|

.

In other words,

α = ∡(L1, L2) = tan−1

∣∣∣∣
(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)

(x1 − x0)(x2 − x0) + (y1 − y0)(y2 − y0)

∣∣∣∣ .

Since both L1 and L2 are nonvertical, we can divide the numerator and the
denominator in the last fraction by (x1 − x0)(x2 − x0) to obtain the desired
equality. ⊓⊔

The notion of angle between lines can be extended to curves as follows.
Suppose C1 and C2 are curves in the plane that intersect at a point P . Assume
that the tangent, say Li, to Ci at P is defined for each i = 1, 2. Then the angle
at P between the curves C1 and C2, denoted by ∡(C1, C2; P ), is defined to
be ∡(L1, L2). In case ∡(C1, C2; P ) = π/2, the curves C1 and C2 are said to
intersect orthogonally at the point P .

Examples 7.25. (i) Consider the curves C1 and C2 defined by the equations
y = x2 and y = 2−x3. These intersect at the point P = (1, 1). Considering
the derivatives at x = 1, we see that the slopes of tangents to C1 and
C2 at P are given by m1 = 2 and m2 = −3, respectively. Hence using
Proposition 7.24, we obtain

∡(C1, C2; P ) = tan−1

∣∣∣∣
2 − (−3)

1 + 2(−3)

∣∣∣∣ = tan−1 | − 1| = tan−1 1 =
π

4
.

Thus the angle between the two curves at P is π/4.
(ii) Consider the curves C1 and C2 defined by the equations y = ex and

y2−2y+1−x = 0, respectively. These intersect at the point P = (0, 1). The
tangent L1 to C1 at P is given by the line y − 1 = x, whereas the tangent
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L2 to C2 at P is given by the vertical line x = 0. Note that to determine
the latter, it is more convenient to look at the derivatives with respect
to y than with respect to x. Thus, the slope m1 of L1 equals 1, whereas
the slope m2 of L2 is not defined. Hence the formula in Proposition 7.24
cannot be used. But we can directly use the definition of ∡(L1, L2) or

the formula cos−1
(
|m1|/

√
1 + m2

1

)
applicable when m2 is not defined, to

conclude that ∡(C1, C2; P ) = cos−1
(
1/

√
2
)

= π/4. ✸

7.5 Transcendence

The functions discussed in this chapter, namely, logarithmic, exponential, and
trigonometric functions, are often called elementary transcendental func-
tions. As we have seen in Chapter 1, the term transcendental function has
a definite meaning attached to it. It is therefore natural that we should justify
this terminology and show that the logarithmic, exponential, and trigonomet-
ric functions are indeed transcendental. To do so is the aim of this section.

Let us begin by recalling that given a subset D of R, a function f : D → R
is said to be a transcendental function if it is not an algebraic function,
that is, if there is no polynomial

P (x, y) = pn(x)yn + pn−1(x)yn−1 + · · · + p1(x)y + p0(x),

where n ∈ N and p0(x), p1(x), . . . , pn(x) are polynomials in x with real coef-
ficients, such that pn(x) is a nonzero polynomial, and

P (c, f(c)) = 0 for all c ∈ D.

In this case, we refer to P (x, y) as a polynomial satisfied by y = f(x) and
the positive integer n as the y-degree of P (x, y).

Our first goal is to show that the logarithmic function is transcendental.
We shall achieve this in two steps. First, we prove a simpler result that the
logarithmic function is not a rational function. Next, we will use this to prove
that the logarithmic function is not an algebraic function.

Lemma 7.26. The logarithmic function ln : (0,∞) → R is not a rational
function. More precisely, there do not exist polynomials p(x), q(x) and an
open interval I ⊆ (0,∞) such that

q(x) �= 0 for all x ∈ I and lnx =
p(x)

q(x)
for all x ∈ I.

Proof. Suppose to the contrary that there are polynomials p(x), q(x) and an
open interval I ⊆ (0,∞) such that q(x) �= 0 for all x ∈ I and lnx = p(x)/q(x)
for all x ∈ I. Canceling common factors, if any, we may assume that the
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polynomials p(x) and q(x) are not divisible by any nonconstant polynomial in
x. Since q(x) �= 0 for all x ∈ I, taking derivatives on both sides of the equation

lnx =
p(x)

q(x)
,

we obtain for all x ∈ I,

1

x
=

p′(x)q(x) − p(x)q′(x)

q(x)2
, that is, q(x)2 = x[p′(x)q(x) − p(x)q′(x)].

Both sides of the last equation are polynomials, and the equation is satisfied
at infinitely many points; hence it is an identity of polynomials. Consequently,
the polynomial x divides the polynomial q(x). Now let us write q(x) = xkq1(x),
where k ∈ N and q1(x) is a polynomial in x that is not divisible by x, that is,
q1(0) �= 0. Then, q′(x) = kxk−1q1(x) + xkq′1(x), and therefore,

x2kq1(x)2 = xk+1p′(x)q1(x) − kxkp(x)q1(x) − xk+1p(x)q′1(x).

Dividing throughout by xk and rearranging terms, we obtain the identity

kp(x)q1(x) = x[p′(x)q1(x) − p(x)q′1(x) − xk−1q1(x)2].

This implies that the polynomial x divides the polynomial p(x), which is
a contradiction since p(x) and q(x) were assumed to have no nonconstant
common factor. This completes the proof. ⊓⊔

Proposition 7.27. The logarithmic function ln : (0,∞) → R is a transcen-
dental function.

Proof. Assume the contrary, that is, suppose ln is an algebraic function. Let

P (x, y) = pn(x)yn + pn−1(x)yn−1 + · · · + p1(x)y + p0(x)

be a polynomial of y-degree n satisfied by y = lnx such that n ∈ N is the least
among the y-degrees of all polynomials satisfied by y = lnx. Let us write

qj(x) :=
pj(x)

pn(x)
for j = 0, 1, . . . , n − 1 and Q(x, y) := yn +

n−1∑

j=0

qj(x)yj .

Further, let D := {c ∈ (0,∞) : pn(c) �= 0}. It is clear that D contains all except
finitely many points of (0,∞), each qj(x) is defined on D, and Q(c, ln c) = 0
for all c ∈ D. Also, note that every point of D is its interior point. Moreover,
each qj(x) is differentiable on D and its derivative q′j(x) is a rational function
defined on D. Thus, using the Chain Rule (Proposition 4.9), we see that the
derivative of Q(x, ln x) is equal to
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n(lnx)n−1

(
1

x

)
+

n−1∑

j=0

[
q′j(x)(ln x)j + jqj(x)(ln x)j−1

(
1

x

)]

=
(
q′n−1(x) +

n

x

)
(lnx)n−1 +

n−2∑

j=0

(
q′j(x) +

j + 1

x
qj+1(x)

)
(ln x)j .

Since q′j(x) = [p′j(x)pn(x) − pj(x)p′n(x)]/pn(x)2, taking common denomina-

tors, we see that the derivative of Q(x, lnx) is equal to P̃ (x, ln x)/xpn(x)2,

where P̃ (x, y) is a polynomial in y whose coefficients are polynomials in x.

Since Q(c, ln c) = 0 for all c ∈ D, we have P̃ (c, ln c) = 0 for all c ∈ D. More-

over, since P̃ (x, ln x) is defined at every x ∈ (0,∞) and gives a continuous

function from (0,∞) to R, which vanishes on D, it follows that P̃ (c, ln c) = 0

for all c ∈ (0,∞). Also, the leading coefficient of P̃ (x, y), that is, the coefficient

of yn−1 in P̃ (x, y), is a nonzero polynomial (in x). For if this leading coefficient
were zero, then q′n−1(t) = −n/t for all t ∈ D. Now, since D misses only finitely
many points of (0,∞), in view of Proposition 6.12 and the FTC, we may inte-
grate both sides from t = 1 to t = x and obtain qn−1(x) − qn−1(1) = −n lnx
for all x ∈ D, and consequently, lnx is a rational function (on D), which is

impossible by Lemma 7.26. Thus P̃ (x, y) would be a polynomial satisfied by
y = lnx and its y-degree is n−1. This contradicts the minimality of n. Hence
ln : (0,∞) → R is a transcendental function. ⊓⊔

Corollary 7.28. The exponential function exp : R → R is a transcendental
function.

Proof. Assume the contrary, that is, suppose exp is an algebraic function. Let

P (x, y) = pn(x)yn + pn−1(x)yn−1 + · · · + p1(x)y + p0(x)

be a polynomial satisfied by y = exp x, where n ∈ N and pn(x) is a nonzero
polynomial. Let us write P (x, y) as a polynomial in x whose coefficients are
polynomials in y:

P (x, y) = p̃m(y)xm + p̃m−1(y)xm−1 + · · · + p̃1(y)x + p̃0(y),

where m is a nonnegative integer so chosen that p̃m(y) is a nonzero polynomial.
Note that m is, in fact, positive because otherwise P (x, y) = p̃0(y) would be
a nonzero polynomial in one variable with infinitely many roots, namely, y =
exp c for every c ∈ R. Now, let P̃ (x, y) := P (y, x). Then P̃ (x, y) is a polynomial
in two variables with positive y-degree. Moreover, since P (c, exp c) = 0 for all
c ∈ R, and also since exp : R → (0,∞) is bijective with its inverse given by
ln : (0,∞) → R, it follows that P (ln d, d) = 0 for all d ∈ (0,∞). In other

words, P̃ (d, ln d) = 0 for all d ∈ (0,∞). Thus, ln : (0,∞) → R would be an
algebraic function, which contradicts Proposition 7.27. ⊓⊔
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Now let us turn to trigonometric functions. As we shall see below, it is
easier to prove that these are transcendental. The key property used in the
proof is that trigonometric functions have infinitely many zeros.

Proposition 7.29. The trigonometric functions sin : R → R, cos : R → R,
and tan : R \ {(2m + 1)π/2 : m ∈ Z} → R are transcendental functions.

Proof. Assume the contrary, that is, suppose any one of them, say, sin : R →
R, is an algebraic function. Then there is a polynomial

P (x, y) = pn(x)yn + pn−1(x)yn−1 + · · · + p1(x)y + p0(x)

that is satisfied by y = sin x, and we may assume that n ∈ N is the least
possible y-degree of such a polynomial. Now, we claim that p0(x) = P (x, 0) is
necessarily a nonzero polynomial in x. To see this, suppose p0(x) is the zero
polynomial. Then we must have n > 1. Indeed, were n = 1, then p1(x) �= 0,
and since p0(x) = 0, we have P (x, y) = p1(x)y, and hence p1(c) sin c = 0 for
all c ∈ R. Consequently, p1(c) = 0 for all c ∈ R for which sin c �= 0, that is,
for all c ∈ R \ {mπ : m ∈ Z}. Hence p1(x) is the zero polynomial, which is a
contradiction. Thus, n > 1 and so if we let

P1(x, y) = pn(x)yn−1 + pn−1(x)yn−2 + · · · + p2(x)y + p1(x),

then the polynomial P1(x, y) has positive y-degree. Also, P (x, y) = yP1(x, y),
and hence (sin c)P1(c, sin c) = 0 for all c ∈ R. Consequently, P1(c, sin c) = 0
for all for all c ∈ R \ {mπ : m ∈ Z}. But the function from R to R defined
by P1(x, sin x) is continuous. So, it follows that P1(c, sin c) = 0 for all c ∈ R.
Thus, y = sin x satisfies the polynomial P1(x, y) of y-degree n− 1 ∈ N, which
contradicts the minimality of n. Thus, p0(x) is a nonzero polynomial in x,
and consequently it has only finitely many roots. But p0(mπ) = P (mπ, 0) =
P (mπ, sin mπ) = 0 for all m ∈ Z, and so we obtain a contradiction. This
proves that sin : R → R is transcendental.

The proof in the case of cosine and tangent functions is similar, since each
of them has infinitely many zeros (namely, (2m + 1)π/2 for m ∈ Z and mπ
for m ∈ Z, respectively). ⊓⊔

Remark 7.30. Having justified the term transcendental in ‘elementary tran-
scendental function’, one may wonder whether the term elementary should
also be justified in the same way. To this effect, we remark that no intrinsic
definition of the term elementary function appears to be known. In fact, an
elementary function is usually ‘defined’ as a function built up from alge-
braic, exponential, logarithmic, and trigonometric functions and their inverses
by a finite combination of the operations of addition, multiplication, division,
and root extraction (which are called the elementary operations), and the
operation of repeated compositions. ✸



7.5 Transcendence 273

Notes and Comments

The idea of integration, which can be traced back to the work of Archimedes
around 225 BC, is one of the oldest and the most fundamental in calculus. The
quest for evaluating integrals of known functions is a fruitful way of inventing
new functions. When a known function is Riemann integrable (for example,
if it is continuous), we can abstractly define its antiderivative. If this cannot
be determined in terms of known functions, we obtain, nevertheless, a nice
new function waiting to be understood better! As explained in Sections 7.1
and 7.2, 1/x and 1/(1 + x2) are the simplest of rational functions whose
integrals pose such a problem. This leads to the introduction of the logarithmic
function ln and the arctangent function arctan. With these at our disposal, we
can integrate every rational function! This follows from the method of partial
fractions, using which any rational function can be decomposed as a sum of
simpler rational functions of the form A/(ax+b)m or (Bx+C)/(ax2+bx+c)m,
and these can be integrated in terms of rational functions and the functions
ln and arctan.

Inverses of logarithmic and arctangent functions lead to even nicer func-
tions, namely, the exponential function, and the tangent function. The other
classical trigonometric functions can be easily defined using the tangent func-
tion.

The approach outlined above gives not only a precise definition of the loga-
rithmic, exponential and the trigonometric functions, but also a genuine mo-
tivation for introducing the same. In most texts on calculus, the trigonomet-
ric functions are ‘defined’ by drawing triangles and mentioning that angles
are ‘measured’ in radians. The main problem with this approach is succinctly
described by Hardy [31, §163], who writes: “The whole difficulty lies in the
question, what is the x which occurs in cosx and sin x.” Hardy also describes
different methods to develop an analytic theory (cf. [31, §224]) and the ap-
proach we have chosen is one of them.

The logarithmic and exponential functions also help us to give a ‘natural’
definition of the important number e. Likewise, the trigonometric functions
help us give a precise definition of the important number π. The numbers e
and π, and to a lesser extent, Euler’s constant γ (defined in Exercise 2 below),
have fascinated mathematicians and amateurs alike for centuries. For more
on these, see the books of Maor [47], Arndt and Haenel [6], and Havil [34],
which are devoted to e, π, and γ, respectively.

Failure to be able to integrate a function has often led to interesting de-
velopments in mathematics. For example, a rich and fascinating theory of the
so-called elliptic integrals and elliptic functions arises in this way. We will
comment more on this in the next chapter, where the notion of arc length will
be defined. As another example, we cite the theory of differential equations.
Indeed, seeking an antiderivative of a function f may be viewed as the problem
of finding a solution y = F (x) of the equation y′ = f . A differential equation
is, more generally, an equation such as y′ = f with y′ replaced by a combina-
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tion of y, y′, y′′, . . . , y(n). Attempts to ‘solve’ differential equations have led to
newer classes of functions. To wit, functions known as the Legendre function,
Bessel function, and Gauss hypergeometric function arise in this way. These
functions enrich the realm of functions beyond algebraic and elementary tran-
scendental functions, and they are sometimes called special functions or higher
transcendental functions. For an introduction to these topics, see the books of
Simmons [55] and Forsyth [26].

Exercises

Part A

1. For every x ∈ R with x > 1, show that

[x]∑

k=1

1

k
− [x]

x
≤ lnx ≤

[x]−1∑

k=2

1

k
+

[x]

x
,

where [x] denotes the integral part of [x]. In particular, show that

13

22
≤ ln 2.2 ≤ 11

10
and 1 ≤ ln 3.6 ≤ 17

10
.

2. Consider the sequence (cn) defined by

cn := 1 +
1

2
+ · · · + 1

n
− lnn for n ∈ N.

Show that (cn) is convergent. (Hint: (cn) is monotonically decreasing and
cn ≥ 0 for all n ∈ N.)
[Note: The limit of the sequence (cn) is known as Euler’s constant. It is
usually denoted by γ. Approximately, γ = 0.5772156649 . . ., but it is not
known whether γ is rational or irrational.]

3. Let a > 0 and r ∈ Q. Show that ln axr = ln a + r lnx for all x ∈ (0,∞),
assuming only that (ln)′x = 1/x for all x ∈ (0,∞).

4. Show that for all x > 0,

x − x2

2
< ln(1 + x) < x − x2

2
+

x3

3
.

5. Let α ∈ R and f : (0,∞) → R be a differentiable function such that
f ′(x) = α/x for all x ∈ (0,∞) and f(1) = 0. Show that f(x) = α lnx for
all x ∈ (0,∞). (Compare Exercise 4 of Chapter 4.)

6. Let f : (0,∞) → R be continuous and satisfy
∫ xy

1

f(t)dt = y

∫ x

1

f(t)dt + x

∫ y

1

f(t)dt for all x, y ∈ (0,∞).

Show that f(x) = f(1) (1+lnx) for all x ∈ (0,∞). (Hint: Consider F (x) :=(∫ x

1
f(t)dt

)
/x for x ∈ (0,∞) and use Exercise 5.)
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7. Show that 2.5 < e < 3. (Hint: Divide [1, 2.5] and [1, 3] into subintervals of
length 1

4 .)
8. Show that

(i)

∫ b

a

lnx dx = b(ln b − 1) − a(ln a − 1) for all a, b ∈ (0,∞),

(ii)

∫ b

a

expx dx = exp b − exp a for all a, b ∈ R.

9. Let α ∈ R and f : R → R be a differentiable function such that f ′ = αf
and f(0) = 1. Show that f(x) = eαx for all x ∈ R. (Compare Exercise 5
of Chapter 4.)

10. The hyperbolic sine and hyperbolic cosine functions from R to R are
defined by

sinh x :=
ex − e−x

2
and coshx :=

ex + e−x

2
for x ∈ R.

Show that for any t ∈ R, the point (cosh t, sinh t) is on the hyperbola
x2 − y2 = 1. Also, show that
(i) sinh 0 = 0, cosh 0 = 1 and cosh2 − sinh2 = 1 for all x ∈ R.
(ii) (sinh)

′

x = coshx and (cosh)
′

x = sinhx for all x ∈ R.
(iii) sinh(x + y) = sinhx cosh y + coshx sinh y and

cosh(x + y) = cosh x cosh y + sinhx sinh y for all x, y ∈ R.
Sketch the graphs of the functions sinh and cosh.

11. Let a, b ∈ (0,∞).
(i) Consider the functions f, g : (0,∞) → R defined by f(x) := loga x

and g(x) := logb x. Show that f and g have the same rate as x → ∞.
(ii) Consider the functions f, g : R → R defined by f(x) := ax and

g(x) := bx. Show that the growth rate of f is less than that of g as
x → ∞ if and only if a < b.

12. For b ∈ R, consider the function gb : (0,∞) → (0,∞) defined by gb(x) =
xb. Show that gb1 ◦ gb2 = gb1b2 = gb2 ◦ gb1 for all b1, b2 ∈ R.

13. Let f : (0,∞) → R satisfy f(xy) = f(x)f(y) for all x, y ∈ (0,∞). If f
is continuous at 1, show that either f(x) = 0 for all x ∈ (0,∞), or there
is r ∈ R such that f(x) = xr for all x ∈ (0,∞). (Hint: If f(1) �= 0, then
f(x) > 0 for all x ∈ (0,∞), and so we can consider g = ln ◦f ◦exp : R → R
and use Exercise 4 of Chapter 3.) (Compare Exercise 19 (ii) of Chapter 1
and Exercise 6 of Chapter 3.)

14. Let r ∈ R be positive and consider the function f : (0,∞) → R defined by
f(x) = xr. Show that the growth rate of lnx is less than that of f , while
the growth rate of expx is more than that of f as x → ∞.

15. Show that
x

1 + x2
< arctanx < x for all x ∈ (0, 1]

and

1 − 1

2x
< arctanx < 2 − 1

x
for all x ∈ (1,∞).
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16. Prove that

lim
x→∞

∫ x

1

1

1 + t2
dt =

∫ 1

0

1

1 + t2
dt =

π

4
,

that is, limx→∞ arctanx = arctan 1 = π/4. Deduce that 2.88 < π < 3.39.
(Hint: Substitute t = 1/s and use Proposition 6.20. Divide [0, 1] into
subintervals of length 1

4 .)
17. Let D and E be the unions of open intervals defined as follows.

D =
⋃

k∈Z

(
(4k − 1)π

2
,

(4k + 1)π

2

)
and E =

⋃

k∈Z

(
(4k − 3)π

2
,

(4k − 1)π

2

)
.

Show that

sin x =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

tan x√
1 + tan2 x

if x ∈ D,

− tan x√
1 + tan2 x

if x ∈ E,

cosx =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1√
1 + tan2 x

if x ∈ D,

− 1√
1 + tan2 x

if x ∈ E.

18. Show from first principles that the function cos is differentiable at π/2
and its derivative at π/2 is −1.

19. Show that 0 < x cosx < sin x for all x ∈ (0, π/2) and sinx < x cos x < 0
for all x ∈ (−π/2, 0). Hence or otherwise prove that x < tanx for all
x ∈ (0, π/2) and tanx < x for all x ∈ (−π/2, 0).

20. Show that for x ∈ (0, π/2),

2x

π
< sin x < min{1, x} and 1 − 2x

π
< cosx < min

{
1,

π

2
− x

}
,

whereas for x ∈ (−π/2, 0),

max{−1, x} < sin x <
2x

π
and 1 +

2x

π
< cosx < min

{
1,

π

2
+ x

}
.

21. Prove that | sin x − sin y| ≤ |x − y| and | cosx − cos y| ≤ |x − y| for all
x, y ∈ R.

22. Show that

∫ b

a

sin x dx = cos a−cos b and

∫ b

a

cosx dx = sin b−sina for all a, b ∈ R.

23. Let β ∈ R. Suppose f, g : R → R are differentiable functions such that

f ′ = βg, g′ = −βf, f(0) = 0, and g(0) = 1.

Show that f(x) = sinβx and g(x) = cosβx for all x ∈ R. (Hint: Consider
h : R → R given by h(x) := (f(x) − sinβx)2 + (g(x) − cosβx)2. Find h′.)
(Compare Exercise 7 of Chapter 4.)
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24. Let α, β ∈ R. Suppose f, g : R → R are differentiable functions such that

f ′ = αf + βg, g′ = αg − βf, f(0) = 0, and g(0) = 1.

Show that f(x) = eαx sinβx and g(x) = eαx cosβx for all x ∈ R. (Hint:
Consider h : R → R given by h(x) := (f(x) − eαx sinβx)2 + (g(x) −
eαx cosβx)2. Find h′.) (Compare Exercise 6 of Chapter 4.)

25. Let α, β ∈ R. Suppose f, g : R → R are differentiable functions such that

f ′ = αf + βg, g′ = αg + βf, f(0) = 0, and g(0) = 1.

Show that f(x) = eαx sinh βx and g(x) = eαx cosh βx for all x ∈ R.
26. Show that limx→0(sin x)/|x| does not exist.
27. Prove the following for all x ∈ R.

sin(π − x) = sinx, sin((π/2) − x) = cosx, sin((π/2) + x) = cosx,
cos(π − x) = − cosx, cos((π/2)− x) = sinx, cos((π/2) + x) = − sinx.

28. Prove the following for all x1, x2 ∈ R:
(i) sinx1 + sin x2 = 2 sin((x1 + x2)/2) cos((x1 − x2)/2),
(ii) sinx1 − sin x2 = 2 cos((x1 + x2)/2) sin((x1 − x2)/2),
(iii) cosx1 + cosx2 = 2 cos((x1 + x2)/2) cos((x1 − x2)/2),
(iv) cosx1 − cosx2 = 2 sin((x1 + x2)/2) sin((x2 − x1)/2).

29. Prove the following for all x ∈ R:
(i) sin 2x = 2 sinx cosx,
(ii) cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x,
(iii) sin 3x = 3 sinx − 4 sin3 x,
(iv) cos 3x = 4 cos3 x − 3 cosx.
Deduce that

sin
π

4
=

1√
2

= cos
π

4
, sin

π

3
=

√
3

2
= cos

π

6
, cos

π

3
=

1

2
= sin

π

6
.

30. Prove the following for all x1, x2 ∈ R:
(i) sinx1 = sin x2 ⇐⇒ x2 = mπ + (−1)mx1, where m ∈ Z.
(ii) cosx1 = cosx2 ⇐⇒ x2 = 2mπ ± x1, where m ∈ Z.
(iii) sinx1 = sin x2 and cosx1 = cosx2 ⇐⇒ x2 = 2mπ + x1, where m ∈ Z.

(Hint: Exercise 28 and solutions of the equations sinx = 0, cosx = 0.)
31. If x ∈ R with x �= (2k + 1)π/2 for any k ∈ Z, then show that

1 + tan2 x = sec2 x, (tan)′x = sec2 x, and (sec)′x = secx tan x.

32. If x ∈ R with x �= kπ for any k ∈ Z, then show that

1 + cot2 x = csc2 x, (cot)′x = − csc2 x, and (csc)′x = − cscx cot x.

33. If x1, x2 ∈ R are such that none of x1, x2, and x1 + x2 equals (2k + 1)π/2
for any k ∈ Z, then show that

tan(x1 + x2) =
tanx1 + tanx2

1 − tan(x1 + x2)
.
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34. Prove the following for all y1, y2 ∈ R:

(i) tan−1 y1 + tan−1 y2 = tan−1

(
y1 + y2

1 − y1y2

)
if y1y2 < 1,

(ii) tan−1 |y1| + tan−1 |y2| =
π

2
if y1y2 = 1,

(iii) tan−1 |y1| + tan−1 |y2| = tan−1

( |y1| + |y2|
1 − y1y2

)
if y1y2 > 1.

35. Prove the following:
(i) sin

(
sin−1 y

)
= y for all y ∈ [−1, 1] and

sin−1(sin x) =

{
x if x ∈ [−π/2, π/2],
π − x if x ∈ (π/2, 3π/2].

(ii) cos
(
cos−1 y

)
= y for all y ∈ [−1, 1] and cos−1(cos x) = |x| for all

x ∈ [−π, π].
36. If y ∈ (−1, 1), then show that

sin−1 y =

∫ y

0

1√
1 − t2

dt and cos−1 y =
π

2
−
∫ y

0

1√
1 − t2

dt.

Deduce that

lim
y→1−

∫ y

0

1√
1 − t2

dt =
π

2
.

37. If y ∈ (1,∞), then show that

sec−1 y = lim
a→1+

∫ y

a

1

t
√

t2 − 1
dt and csc−1 y =

π

2
− lim

a→1+

∫ y

a

1

t
√

t2 − 1
dt.

38. Prove the following:

(i) cot−1 y =
π

2
− tan−1 y for all y ∈ R,

(ii) csc−1 y = sin−1 1

y
for all y ∈ R with |y| ≥ 1,

(iii) sec−1 y = cos−1 1

y
for all y ∈ R with |y| ≥ 1.

(Hint: tan−1 |y| + tan−1 |1/y| = π/2 for all y ∈ R with y �= 0.)
39. For all y ∈ [−1, 1], show that

sin−1 y+sin−1(−y) = 0, cos−1 y+cos−1(−y) = π, sin−1 y+cos−1(y) =
π

2

and for all y ∈ R with |y| ≥ 1, show that

csc−1 y + sec−1 y =
π

2
.

40. Prove the following:

(i) (cot−1)′y = − 1

1 + y2
for all y ∈ R,
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(ii) (csc−1)′y = − 1

|y|
√

y2 − 1
for all y ∈ R with |y| > 1,

(iii) (sec−1)′y =
1

|y|
√

y2 − 1
for all y ∈ R with |y| > 1.

41. Let r0 ∈ R, and consider the function f0 : R → R defined by

f0(x) =

{
sin(1/x) if x �= 0,
r0 if x = 0.

(i) Show that f0 is not continuous at 0. Conclude that the function x �→
sin(1/x) for x ∈ R \ {0} cannot be extended to R as a continuous
function.

(ii) (ii) If I is an interval and I ⊂ R \ {0}, then show that f0 has the IVP
on I. If I an interval such that 0 ∈ I, then show that f0 has the IVP
on I if and only if |r0| ≤ 1.

42. Consider the function h : R → R defined by

h(x) :=

{
|x| + |x sin(1/x)| if x �= 0,
0 if x = 0.

Show that h has a strict absolute minimum at 0, but for any δ > 0, h is
neither decreasing on (−δ, 0) nor increasing on (0, δ).

43. Consider the function g : R \ {0} → R defined by g(x) := cos(1/x). Prove
the following:
(i) g is an even function.
(ii) limx→0 g(x) does not exist, but limx→0+ [g(x)− g(−x)] exists. Also, g

cannot be extended to R as a continuous function.
(iii) For any δ > 0, g is not uniformly continuous on (0, δ) as well as on

(−δ, 0), but it is uniformly continuous on (∞,−δ] ∪ [δ,∞).
(iv) For any δ > 0, g is not monotonic, not convex, and not concave on

(0, δ) as well as on (−δ, 0).
44. Let r0 ∈ R and consider the function g0 : R \ {0} → R defined by

g0(x) :=

{
cos(1/x) if x �= 0,
r0 if x = 0.

Show that g0 is not continuous at 0. Define G0 : R → R by G0(x) :=∫ x

0
cos(1/t)dt. Show that G0 is differentiable at 0 and G′

0(0) = 0, that is,

lim
x→0

1

x

∫ x

0

cos
1

t
dt = 0.

45. Consider the functions g1, g2 : R → R defined by

g1(x) :=

{
x cos(1/x) if x �= 0,
0 if x = 0,

and g2(x) :=

{
x2 cos(1/x) if x �= 0,
0 if x = 0.

Establish properties of g1 and g2 similar to those of the functions f1 and
f2 given in Example 7.18 and Example 7.19, respectively.
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46. Consider the function f : R \ {0} → R defined by f(x) = (sin(1/x))/x.
Show that the amplitude of the oscillation of the function f increases
without any bound as x tends to 0.

47. Consider the function f : R → R defined by

f(x) :=

{
x2 sin(1/x2) if x �= 0,
0 if x = 0.

Show that f is differentiable on R, but for any δ > 0, f ′ is not bounded
on [−δ, δ]. Thus f ′ has an antiderivative on the interval [−1, 1], but it is
not Riemann integrable on [−1, 1].

48. Let n ∈ N and consider the function fn : R → R defined by

fn(x) :=

{
xn sin(1/x) if x �= 0,
0 if x = 0.

Prove the following: (i) If n is odd and k := (n − 1)/2, then f
(k)
n exists

and is continuous on R, but f
(k+1)
n does not exist at 0. (ii) If n is even and

k := n/2, then f
(k)
n exists on R, but it is not continuous at 0. (Compare

Exercise 12 of Chapter 4.)
49. Find the polar coordinates of the points in R2 whose Cartesian coordinates

are as follows:
(i) (1, 1), (ii) (0, 3), (iii) (2, 2

√
3), (iv) (2

√
3, 2).

50. If x, y ∈ R are not both zero and (r, θ) are the polar coordinates of (x, y),
then determine the polar coordinates of (i) (y, x), and (ii) (tx, ty), where
t is any positive real number.

51. Let r be a positive real number and θ ∈ (−π, π] and α ∈ R be such that
θ + α ∈ (−π, π]. If P and Pα denote the points with polar coordinates
(r, θ) and (r, θ + α), respectively, then find the Cartesian coordinates of
Pα in terms of the Cartesian coordinates of P .
[Note: The transformation P �→ Pα corresponds to a rotation of the plane
by the angle α.]

52. Find the angle(s) between the curves x2 + y2 = 16 and y2 = 6x at their
point(s) of intersection.

53. Determine whether the following functions are algebraic or transcendental:
(i) f(x) = πx11 + π2x5 + 9 for x ∈ R,

(ii) f(x) =
ex2 + π

πx2 + e
for x ∈ R,

(iii) f(x) = ln10 x for x > 0,
(iv) f(x) = xπ for x > 0.

54. Is it possible that

lnx =

(
3
√

ex2 + (π − 2e)x + e − π +

√
πx2 + (

√
2 − 2π)x + π −

√
2

)1/17

for all x > 0? Justify your answer.
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Part B

55. Let p, q ∈ (1,∞) be such that (1/p) + (1/q) = 1.
(i) If f : [0,∞) → R is defined by f(x) := (1/q) + (1/p)x − x1/p, then
show that f(x) ≥ f(1) for all x ∈ [0,∞).
(ii) Show that ab ≤ (ap/p) + (bq/q) for all a, b ∈ [0,∞). (Hint: If b �= 0,
let x := ap/bq in (i).)
(iii) (Hölder Inequality for Sums) Given any a1, . . . , an and b1, . . . , bn

in R, prove that

n∑

i=1

|aibi| ≤
(

n∑

i=1

|ai|p
)1/p ( n∑

i=1

|bi|q
)1/q

.

Deduce the Cauchy–Schwarz inequality as a special case.
(iv) (Hölder Inequality for Integrals) Given any continuous functions
f, g : [a, b] → R, prove that

∫ b

a

|f(x)g(x)|dx ≤
(∫ b

a

|f(x)|pdx

)1/p (∫ b

a

|g(x)|qdx

)1/q

.

(v) (Minkowski Inequality for Sums) Given any a1, . . . , an and
b1, . . . , bn in R, prove that

(
n∑

i=1

|ai + bi|p
)1/p

≤
(

n∑

i=1

|ai|p
)1/p

+

(
n∑

i=1

|bi|p
)1/p

.

(Hint: The pth power of the expression on the left can be written as∑n
i=1 |ai| (|ai + bi|)p−1

+
∑n

i=1 |bi| (|ai + bi|)p−1
; now use (iii).)

(vi) (Minkowski Inequality for Integrals) Given any continuous func-
tions f, g : [a, b] → R, prove that

(∫ b

a

|f(x) + g(x)|pdx

)1/p

≤
(∫ b

a

|f(x)|pdx

)1/p

+

(∫ b

a

|g(x)|pdx

)1/p

.

56. Let n ∈ N. By applying L’Hôpital’s rule n times, prove the following:

(i) lim
x→0

exp x −
n∑

k=0

xk/k!

xn+1
=

1

(n + 1)!
,

(ii) lim
x→1

lnx −
n∑

k=1

(−1)k(x − 1)k/k

(x − 1)n+1
=

(−1)n

(n + 1)
,

(iii) lim
x→0

sin x −
⌈(n−2)/2⌉∑

k=0

(−1)kx2k+1/(2k + 1)!

xn+1
=

⎧
⎪⎪⎨
⎪⎪⎩

(−1)n/2

(n + 1)!
if n is even,

0 if n is odd,
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(iv) lim
x→0

cosx −
⌊n/2⌋∑
k=0

(−1)kx2k/(2k)!

xn+1
=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)(n+1)/2

(n + 1)!
if n is odd,

0 if n is even.
57. Let p, q ∈ N. For n ∈ N, consider the function fn : [0, p/q] → R defined

by fn(x) := xn(p − qx)n/n!. Prove the following results:

(i) fn(0) = 0 = fn(p/q). Also, f
(k)
n (0) = −f

(k)
n (p/q) ∈ Z for each k ∈ N;

in fact, f
(k)
n (0) = 0 = f

(k)
n (p/q) if k ≤ n or k > 2n.

(ii) max{fn(x) : x ∈ [0, p/q]} = fn(p/2q), and fn(p/2q) → 0 as n → ∞.
(iii) Let, if possible, π = p/q, and consider an :=

∫ π

0
fn(x) sin x dx. Then

an ∈ Z for each n ∈ N (by repeated use of Integration by Parts),
whereas 0 < an < 1 for all large n ∈ N.

(iv) π is irrational.

58. (i) Show that for any n ∈ N,

∫ π/2

0

sinn x dx =
n − 1

n

∫ π/2

0

sinn−2 x dx.

(ii) Show that for any k ∈ N,

∫ π/2

0

sin2k x dx =
(2k − 1)(2k − 3) · · · 3 · 1

(2k)(2k − 2) · · · 4 · 2 · π

2
=

(2k)!

[2kk!]2
· π

2

and

∫ π/2

0

sin2k+1 x dx =
2k(2k − 2) · · · 4 · 2

(2k + 1)(2k − 1) · · · 3 · 1 =
[2kk!]2

(2k + 1)!
.

(iii) For k ∈ N, let

µk :=

∫ π/2

0
sin2k x dx

∫ π/2

0 sin2k+1 x dx
.

Show that 1 ≤ µk ≤ (2k+1)/2k for each k ∈ N and consequently that
µk → 1 as k → ∞. Deduce that

√
π = lim

k→∞

(k!)222k

(2k)!
√

k
.

Thus, π ∼ (k!)424k/[(2k)!]2 k. (Hint: sin2k+1 x ≤ sin2k x ≤ sin2k−1 x
for all x ∈ [0, π/2].)
[Note: This result is known as the Wallis formula.]

59. (i) Show that for any n ∈ N,

1

n + 1
2

≤
∫ n+1

n

dx

x
≤ 1

2

(
1

n
+

1

n + 1

)
.

(ii) Let (an) be the sequence defined by an := n!en/nn√n for n ∈ N.
Show that
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ln

(
an

an+1

)
=

(
n +

1

2

)
ln

(
1 +

1

n

)
− 1,

and hence

1 ≤ an

an+1
≤ exp

(
1

4

[
1

n
− 1

n + 1

])
for all n ∈ N.

Deduce that (an) is a monotonically decreasing sequence of positive
real numbers and it is convergent. Let α := limn→∞ an.

(iii) Use the inequalities in (ii) to show that

1 ≤ an

an+k
≤ exp

(
1

4

[
1

n
− 1

n + k

])
for all n, k ∈ N.

Taking the limit as k → ∞, deduce that α > 0 and furthermore,
1 ≤ (an/α) ≤ exp(1/4n) for all n ∈ N.

(iv) Show that the Wallis formula given in Exercise 58 can be written as√
2π = lim

n→∞
a2

n/a2n. Deduce that α =
√

2π.

(v) Use (iii) and (iv) to show that for all n ∈ N,

(
√

2π)nn+ 1
2 e−n ≤ n! ≤ (

√
2π)nn+ 1

2 e−n+(1/4n)

and conclude that

lim
n→∞

n!

(
√

2πn)nne−n
= 1.

Thus, n! ∼ (
√

2πn)nne−n.
[Note: This result is known as Stirling’s Formula.]

60. Let r, s ∈ R and consider the function F : [0, 1] → R defined by

F (x) :=

{
xr sin(1/xs) if x �= 0,
0 if x = 0.

Prove the following:
(i) F is continuous ⇐⇒ r > 0.
(ii) F is differentiable ⇐⇒ r > 1.
(iii) F ′ is bounded ⇐⇒ r ≥ 1 + s.
(iv) F ′ is continuous ⇐⇒ r > 1 + s.
(v) F is twice differentiable ⇐⇒ r > 2 + s.
(vi) F ′′ is bounded ⇐⇒ r ≥ 2 + 2s.
(vii) F ′′ is continuous ⇐⇒ r > 2 + 2s.

61. Prove that the secant function, the cosecant function, and the cotangent
function are transcendental.
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Revision Exercises

1. Consider the functions f, g : R → R defined by f(x) := x sin x and
g(x) := x + sin x. State whether f and g are bounded.

2. Consider the sequence whose nth term is given below. Examine whether
it is convergent. In case it is convergent, find its limit.

(i)
n!

10n
, (ii)

(
n

n + 1

)n

, (iii)
lnn

n1/n
.

3. Show that

lim
m→∞

lim
n→∞

|(cosm!πx)n| =

{
1 if x ∈ Q,
0 if x �∈ Q.

4. Suppose (an) is a sequence of positive real numbers such that an → a.
Show that (a1 · · · an)1/n → a. Here a ∈ R or a = ∞. Give an example to
show that the converse does not hold. (Hint: Exercise 21 of Chapter 2.)

5. Consider the function f : (−π/2, π/2) → R defined by f(x) = tanx. Show
that f is not uniformly continuous on [0, π/2), but for any δ > 0, f is
uniformly continuous on [−(π/2) + δ, (π/2) − δ].

6. For x ∈ R, let f(x) := x(sin x + 2) and g(x) := x(sin x + 1). Show that
f(x) → ∞, but g(x) �→ ∞ as x → ∞.

7. Find f ′(x) if (i) f(x) := xx for x > 0, (ii) f(x) := (xx)x for x > 0,
(iii) f(x) := x(xx) for x > 0, (iv) f(x) := (lnx)x/xln x for x > 1.

8. Let a > 0. Show that −xa lnx < 1/ae for all x ∈ (0, 1), x �= e−1/a.
9. Let r, s, t ∈ R and x ∈ (0,∞). If r > 1, then show that (1 + x)r > 1 + xr .

Deduce that if 0 < s < t, then (1 + xs)t > (1 + xt)s.
10. Let f : [0, π/2] → R be a continuous function.

(i) If f satisfies f ′(x) = 1/(1 + cosx) for all x ∈ (0, π/2) and if f(0) = 3,
then find an estimate for f(π/2).
(ii) If f satisfies f ′(x) = 1/(1+x sinx) for all x ∈ (0, π/2) and if f(0) = 1,
then find an estimate for f(π/2).

11. Prove that (π/15) < tan(π/4) − tan(π/5) < (π/10). Hence conclude that

10 − π

10
< tan

π

5
<

15 − π

15
.

12. Consider the function f : R → R defined by f(x) := x+sinx. Show that f
is strictly increasing on R although f ′ vanishes at infinitely many points.
Find intervals of convexity/concavity, and points of inflection for f .

13. Consider the function g : R → R defined by g(x) := x2−2 cosx. Show that
g is strictly convex on R although g′′ vanishes at infinitely many points.
Find intervals of increase/decrease and local extrema of g. Does g have
an absolute minimum?

14. Locate intervals of increase/decrease, intervals of convexity/concavity, lo-
cal maxima/minima, and the points of inflection forf : (0,∞) → R defined
by f(x) := (lnx)/x. Sketch the curve y = f(x).
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15. Locate intervals of increase/decrease of the following functions:

(i) f(x) := x1/x, x ∈ (0,∞), (ii) f(x) :=

(
1 +

1

x

)x

, x ∈ (0,∞).

16. Determine which of the two numbers eπ and πe is greater. (Hint: Find the
absolute minimum of the function defined by f(x) := x1/x for x ∈ (0,∞)
and put x = π; alternatively, find the absolute minimum of the function
f : R → R defined by f(x) := ex − 1 − x and put x := (π/e) − 1.)

17. Consider the functions f, g : R \ {0} → R defined by f(x) := sin(1/x)
and g(x) := cos(1/x). Locate intervals of increase/decrease, intervals of
convexity/concavity, local maxima/minima, and the points of inflection
for f and g.

18. Evaluate the following limits:

(i) lim
x→0+

x ln x, (ii) lim
x→0

lnx

x
, (iii) lim

x→∞
(x − lnx), (iv) lim

x→∞
ln(lnx)

lnx
,

(v) lim
x→∞

x5

ex
, (vi) lim

x→∞
2x − 1

2x + 3
, (vii) lim

x→0

3sin x − 1

x
.

19. Evaluate the following limits:

(i) lim
x→0

x − sin−1 x

sin3 x
, (ii) lim

x→π/2
(secx − tan x), (iii) lim

x→0

x − tanx

x − sinx
,

(iv) lim
x→0

x cot x − 1

x2
, (v) lim

x→π/2

tan 3x

tanx
, (vi) lim

x→1
(1 − x) tan(πx/2),

(vii) lim
x→0

sin−1 x cot x, (viii) lim
x→0

cosx − 1 + (x2/2)

x4
, (ix) lim

x→0

tan x

secx
,

(x) lim
x→0

(
1

x
− 1

sin x

)
, (xi) lim

x→0

sin 2x

2x2 + x
, (xii) lim

x→0

sinx − x

x
,

(xiii) lim
x→0

sin x − x

x2
, (xiv) lim

x→0

sinx − x

x3
.

20. Discuss whether limx→c f(x)/g(x) and limx→c f ′(x)/g′(x) exist if
(i) c := 0, f(x) := x2 sin(1/x), g(x) := sinx for x ∈ R, x �= 0,
(ii) c := 0, f(x) := x sin(1/x), g(x) := sinx for x ∈ R, x �= 0,
(iii) c := ∞, f(x) := x(2 + sin x), g(x) := x2 + 1 for x ∈ R,
(iv) c := ∞, f(x) := x(2 + sin x), g(x) := x + 1 for x ∈ R.

21. Let a > 0 and f : [a,∞) → R be a differentiable function. Assume that
f(x)+ f ′(x) → ℓ as x → ∞, where ℓ ∈ R or ℓ = ∞ or ℓ = −∞. Show that
f(x) → ℓ as x → ∞, In the case ℓ ∈ R, show that f ′(x) → 0 as x → ∞.
(Hint: Use Proposition 4.40 for the functions g, h : [a,∞) → R defined by
g(x) := f(x)ex and h(x) := ex.)

22. Evaluate the following limits:
(i) lim

x→0+
(sin x)tan x, (ii) lim

x→∞
(x2)1/

√
x, (iii) lim

x→(π/2)−
(sin x)tan x.

23. For x ∈ R, let f(x) := 2x + sin 2x and g(x) := f(x)/(2 + sin x). Do

lim
x→∞

f(x)

g(x)
and lim

x→∞
f ′(x)

g′(x)

exist? Explain in view of L’Hôpital’s Rules.
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24. For x ∈ (0,∞), let f(x) := lnx and g(x) := x. Show that

lim
x→0+

f(x)

g(x)
= −∞ and lim

x→0+

f ′(x)

g′(x)
= ∞.

Explain in view of L’Hôpital’s Rules.
25. Arrange the following functions in descending order of their growth rates

as x → ∞:

2x, ex, xx, (lnx)x, ex/2, x1/2, log2 x, ln(lnx), (ln x)2, xe, x2, lnx, (2x)x, x2x.

26. Let n ∈ N and a1, . . . , an be positive real numbers. Prove that

lim
x→0

(
ax
1 + · · · + ax

n

n

)1/x

= (a1 · · · an)1/n.

(Hint: Apply the logarithm and use L’Hôpital’s Rule.)
27. Let n ∈ N and a1, . . . , an be positive real numbers. For any p ∈ R such

that p �= 0, define

Mp =

(
ap
1 + · · · + ap

n

n

)1/p

.

In view of Exercise 26 above, define M0 = (a1 · · · an)1/n. Prove that if
p, q ∈ R are such that p < q, then Mp ≤ Mq, and the equality holds if and
only if a1 = · · · = an. (Hint: Use part (ii) of Proposition 7.9 and Jensen’s
inequality stated in Exercise 34 (ii) of Chapter 1.)
[Note: As mentioned in Exercise 57 of Chapter 1, the above inequality
is called the power mean inequality and it includes the A.M.-G.M.
inequality and the G.M.-H.M. inequality as special cases. This inequality
is also valid for p = −∞ and q = ∞ if we set M−∞ := min{a1, . . . , an}
and M∞ := max{a1, . . . , an}.]

28. Let D ⊆ R and c be an interior point of D. Let f : D → R be a function
that is differentiable at c. If f ′′(c) exists, then show that there is a function
f2 : D → R such that f2 is continuous at c and

f(x) = f(c) + (x − c)f ′(c) + (x − c)2f2(x) for all x ∈ D,

and then f2(c) = f ′′(c)/2. Give an example to show that the converse is
not true. (Hint: Use L’Hôpital’s Rule and the function fn : R → R with
n = 3 given in Exercise 48 of Chapter 7.) (Compare Proposition 4.2.)

29. Consider the function f : R → R defined by f(x) := e−1/x2

if x �= 0 and
f(0) = 0. Show that for each n ∈ N, the nth Taylor polynomial around
0 for f is the zero polynomial. (Hint: By mathematical induction, prove
that for every n ∈ N, f (n)(x) = f(x)pn(x)/xkn for every x ∈ R \ {0},
where pn is a polynomial and kn ∈ N, and then use L’Hôpital’s Rule.)

30. Find the absolute maximum of the function f : R → R defined by f(x) :=
(sin x − cosx)2.
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31. Prove the following estimates for the errors e1(x) := lnx − P1(x) and
e2(x) := lnx − P2(x), x ∈ (0, 2), in the linear and the quadratic approxi-
mations of the function ln around 1:

|e1(x)| ≤ (x − 1)2

2
, |e2(x)| ≤ (x − 1)3

3
if 1 < x < 2,

and

|e1(x)| ≤ 1

2

(
1

x
− 1

)2

, |e2(x)| ≤ 1

3

(
1

x
− 1

)3

if 0 < x < 1.

32. Prove the following estimates for the errors e1(x) := exp x − P1(x) and
e2(x) := exp x − P2(x), x ∈ (−1, 1), in the linear and the quadratic ap-
proximations of the function exp around 0:

|e1(x)| ≤ e x2

2
and |e2(x)| ≤ e x3

6
if 0 < x < 1,

and

|e1(x)| ≤ x2

2
and |e2(x)| ≤ −x3

6
if − 1 < x < 0.

33. Show that each of the following functions maps the given interval I into
itself and has a unique fixed point in that interval. Also, show that if x0

belongs to this interval, then the Picard sequence with initial point x0

converges to the unique fixed point of the function.
(i) g(x) :=

√
sin x, I = [π/4, π/2], (ii) g(x) := 1 + (sinx)/2, I = [0, 2].

34. (i) Show that 0 is the only fixed point of the function sin : R → R.
(ii) Show that the function cos : R → R has a unique fixed point c∗.
Assuming π > 3, show that the function cos maps the interval [π/8, 1]
into itself. Deduce that 0.375 < c∗ < 0.925.
[Note: When a calculator is in the radian mode, if we key in any number
and press the ‘sin’ key repeatedly, then eventually we reach 0, and if
we press the ‘cos’ key repeatedly, then eventually we reach 0.7390851. A
similar phenomenon occurs when a calculator is in the degree mode.]

35. For each of the following functions, show that the equation f(x) = 0 has
a unique solution in the given interval I. Use Newton’s method with the
given initial point x0 to find an approximate value of this root.
(i) f(x) := x − cosx, I = [cos 1, 1], x0 = 1,
(ii) f(x) := x − 1 − (sin x)/2, I = [0, 2], x0 = 1.5. (Compare these
iterates with those of the Picard method obtained in Exercise 33 (ii).)

36. For all h ∈ R and n = 1, 2, . . . , show that

2 sin
h

2
[sin h + sin 2h + · · · + sinnh] = cos

h

2
− cos

(
n +

1

2

)
h.

Hence find
∫ π/2

0
sin x dx without using the FTC.
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37. Let n ∈ N and a0, a1, . . . , an, b1, . . . , bn be real numbers and consider the
function f : R → R defined by

f(x) := a0 +
n∑

k=1

ak cos kx + bk sin kx.

Show that

a0 =
1

2π

∫ 2π

0

f(x) dx

and for k = 1, . . . , n,

ak =
1

π

∫ 2π

0

f(x) cos kx dx, bk =
1

π

∫ 2π

0

f(x) sin kx dx.

38. Let f : [0, π] → R be defined by

f(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

[sin(2n + 1)x/2]

sin(x/2)
if x �= 0,

2n + 1 if x = 0.

Show that
∫ π

0
f(x)dx = π. (Hint: The integrand equals 1+2

∑n
k=1 cos kx.)

39. Let f : [a, b] → R be differentiable and assume that f ′ is Riemann inte-
grable on [a, b]. If f(x) > 0 for all x ∈ [a, b], then show that

∫ b

a

f ′(x)

f(x)
dx = ln f(b) − ln f(a).

(Hint: Apply part (i) of the FTC to ln f .)
40. Prove the following:

(i)

∫ b

a

1

x − α
dx = ln

b − α

a − α
, provided a, b > α,

(ii)

∫ b

a

2x + α

x2 + αx + β
dx = ln

b2 + αb + β

a2 + αa + β
, provided α2 < 4β.

41. Prove the following:

(i)

∫ b

0

tan x dx = ln sec b, provided b ∈ (−(π/2), (π/2)),

(ii)

∫ b

0

secx dx = ln(sec b + tan b), provided b ∈ (−(π/2), (π/2)),

(iii)

∫ π/2

b

cotx dx = ln csc b, provided b ∈ (0, π),

(iv)

∫ π/2

b

cscx dx = ln(csc b + cot b), provided b ∈ (0, π).

In particular, show that∫ π/4

0

tan x dx = ln
√

2,

∫ π/4

0

sec x dx = ln(1 +
√

2),
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∫ π/2

π/4

cot x dx = ln
√

2,

∫ π/2

π/4

csc x dx = ln(1 +
√

2).

42. Let α, β ∈ R be such that −π < α < β ≤ π and P (x, y), Q(x, y) be
polynomials such that Q(sin θ, cos θ) �= 0 for any θ ∈ [α, β]. Show that

∫ β

α

P (sin θ, cos θ)

Q(sin θ, cos θ)
dθ =

∫ tan(β/2)

tan(α/2)

P
(
2t/(1 + t2), (1 − t2)(1 + t2)

)

Q (2t/(1 + t2), (1 − t2)(1 + t2))

2

1 + t2
dt.

43. Evaluate the following integrals:

(i)

∫ π/2

0

1

2 + cos θ
dθ, (ii)

∫ 2π/3

π/2

cot θ

1 + cos θ
dθ, (iii)

∫ β

α

sec θ dθ.

(Hint: Integrate by substituting t = tan(θ/2).)
[Note: The substitution t = tan(θ/2) converts the integral of any rational
function in trigonometric functions (in the parameter θ) to an integral
of a rational function (in the variable t). The latter can, in general, be
evaluated using the method of partial fractions. Therefore, the integral of
any rational function in trigonometric functions can be evaluated.]

44. Let f : R → R be continuous and λ ∈ R, λ �= 0. For x ∈ R, let

g(x) :=
1

λ

∫ x

0

f(t) sin λ(x − t)dt.

Show that g′′(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = 0 = g′(0).
45. Find the linear and quadratic approximations of f : [0,∞) → R defined

by

f(x) := 1 +

∫ x

1

10

1 +
√

t
dt

for x around 1.
46. Prove the following.

(i) For x ∈ R,

∫ x

0

1√
1 + t2

dt = ln
(
x +

√
1 + x2

)
,

(ii) For x ∈ R,

∫ x

0

√
1 + t2 dt =

1

2

(
x
√

1 + x2 + ln
(
x +

√
1 + x2

))
,

(iii) For x ∈ [−1, 1],

∫ x

0

√
1 − t2 dt =

1

2

(
x
√

1 − x2 + sin−1 x
)
.

47. Find (i)

∫ 9

4

1

x −√
x

dx, (ii)

∫ 3

1

1√
x(x + 1)

dx, (iii)

∫ 1/
√

2

1

1

x
√

4x2 − 1
dx.

48. Evaluate the following limits:

(i) lim
n→∞

1

n

n∑

i=1

cos
iπ

n
, (ii) lim

n→∞

n∑

i=1

n

i2 + n2
, (iii) lim

n→∞
sin

1

n

n∑

i=1

n2

i2 + n2
.



8

Applications and Approximations of

Riemann Integrals

In this chapter we shall consider some geometric applications of Riemann
integrals. They deal with defining and finding the areas of certain planar
regions, volumes of certain solid bodies including solid bodies generated by
revolving planar regions about a line, lengths of ‘piecewise smooth’ curves,
and areas of surfaces generated by revolving such planar curves about a line.
Subsequently, we show how to find the ‘centroids’ of the geometric objects
considered earlier. The coordinates of a centroid are in some sense the averages
of the coordinate functions. In the last section of this chapter, we give a
number of methods for evaluating Riemann integrals approximately. We also
establish error estimates for these approximations. This procedure would be
useful, in particular, if we needed to find approximations of arc lengths, areas,
and volumes of various geometric objects whenever exact evaluation of the
Riemann integrals involved therein is either difficult or impossible.

8.1 Area of a Region Between Curves

In this section we shall show how ‘areas’ of certain planar regions that lie
between two curves can be found using Riemann integrals. It may be remarked
that the general concept of the area of a planar region is usually defined
using double integrals, which are studied in a course in multivariate calculus.
The definitions of areas of special planar regions given in this section can be
reconciled with the general definition.

Recall that in Section 6.1, we began our discussion of a Riemann integral
by assuming that the area of a rectangle [x1, x2]× [y1, y2] is (x2−x1)(y2−y1).
Let [a, b] be an interval in R and f : [a, b] → R be a bounded nonnegative
function. The concept of a Riemann integral was motivated by an attempt to
give a meaning to the ‘area’ of the region lying under the graph of f . We have
defined the area of the region R := {(x, y) ∈ R2 : a ≤ x ≤ b and 0 ≤ y ≤ f(x)}
to be
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Area (R) :=

∫ b

a

f(x)dx.

This naturally leads us to the following definition. Let f1, f2 : [a, b] → R be
integrable functions such that f1 ≤ f2. Then the area of the region between
the curves given by y = f1(x), y = f2(x) and between the (vertical) lines
given by x = a, x = b, that is, of the region

R := {(x, y) ∈ R2 : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)},

is defined to be

Area (R) :=

∫ b

a

[f2(x) − f1(x)]dx.

a b

y = f2(x)

y = f1(x)

x

y

� � �����

�

� � �����

�

� �

Fig. 8.1. Region between the curves y = f1(x), y = f2(x) and the lines x = a, x = b
when the curves do not cross each other, and when they cross each other

If a planar region R can be divided into a finite number of nonoverlapping
subregions of the types considered above, then the area of R is defined to
be the sum of the areas of these subregions. For example, if curves given by
y = f1(x), y = f2(x), where f1, f2 : [a, b] → R are continuous functions, cross
each other at a finite number of points, then the area of the region bounded
by these curves and the lines given by x = a, x = b turns out to be equal to

∫ b

a

|f2(x) − f1(x)|dx.

Similarly, if g1, g2 : [c, d] → R are integrable functions such that g1 ≤ g2,
then the area of the region between the curves given by x = g1(y), x = g2(y)
and between the (horizontal) lines given by y = c, y = d, that is, of the region

R := {(x, y) ∈ R2 : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)},
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d

x = g1(y) x = g2(y)

c

x

y

�

�

x

y

x = g1(y)x = g2(y)

c

d

Fig. 8.2. Region between the curves x = g1(y), x = g2(y) and the lines y = c,
y = d, when the curves do not cross each other, and when they cross each other

is defined to be

Area (R) :=

∫ d

c

[g2(y) − g1(y)]dy.

Also, if curves given by x = g1(y), x = g2(y), where g1, g2 : [c, d] → R are
continuous functions, cross each other at a finite number of points, then the
area of the region bounded by these curves and the lines given by y = c, y = d
turns out to be equal to

∫ d

c

|g2(y) − g1(y)|dy.

Examples 8.1. (i) Let 0 < a < b and consider the triangular region enclosed
by the lines given by y = hx/a, y = h(x−b)/(a−b), and the x-axis. These
lines form a triangle with base b and height h. We show that the area of
this region is equal to bh/2. The perpendicular from the vertex (a, h) to
the x-axis divides the triangular region into two triangular subregions
having bases a and b − a, and both having height h. The area of the
given triangular region is then equal to the sum of the areas of these
subregions. [See Figure 8.3.] The first subregion is the region between the
curves y = hx/a, y = 0 and between the lines given by x = 0, x = a.
Hence its area is equal to

∫ a

0

(hx

a
− 0

)
dx =

h

a
· a2

2
=

ha

2
.

Likewise, the area of the second subregion is equal to h(b − a)/2. Hence
the required area is (ha/2) + (h(b − a)/2) = hb/2.

(ii) The region enclosed by the loop of the curve given by y2 = x(1 − x)2 is
the region between the curves given by y =

√
x(1 − x), y = −√

x(1 − x)
and between the lines given by x = 0, x = 1. Hence its area is equal to
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� � �

�

� � �

�

�

�

Fig. 8.3. Triangular region in Example 8.1 (i) with its two triangular subregions

∫ 1

0

[√
x(1 − x) −

(
−√

x(1 − x)
)]

dx = 2

∫ 1

0

[x1/2 − x3/2]dx =
8

15
.

(iii) The area of the region bounded by the curves x = y3, x = y5 and the
lines given by y = −1, y = 1 is equal to

∫ 1

−1

|y5 − y3|dy =

∫ 0

−1

(y5 − y3)dy +

∫ 1

0

(y3 − y5)dy =
1

6
.

(iv) To determine the area of the region bounded by the parabolas x = −2y2

and x = 1 − 3y2, we first find their points of intersection. Now −2y2 =
1 − 3y2 implies y = ±1 and 1 − 3y2 ≥ −2y2 for all y ∈ [−1, 1]. Hence

∫ 1

−1

[(1 − 3y2) − (−2y2)]dy =

∫ 1

−1

[1 − y2]dy =
4

3

is the required area. ✸

We shall now calculate the area enclosed by an ellipse. As a special case,
this will give us the area enclosed by a circle and lead us to an important
classical formula for π.

Proposition 8.2. Let a, b be positive real numbers.

(i) The area of the region enclosed by an ellipse given by (x2/a2)+(y2/b2) = 1
is equal to πab.

(ii) The area of a circular disk enclosed by a circle given by x2 + y2 = a2 is
equal to πa2. In other words, if D denotes this disk, then

π =
Area of D

(Radius of D)2
.

(iii) For ϕ ∈ [0, π], the area of the sector of a disk of radius a which subtends
an angle ϕ at the center, that is, the area of the planar region given by
{(x, y) ∈ R2 : x2 + y2 ≤ a2 and 0 ≤ θ(x, y) ≤ ϕ} is equal to a2ϕ/2.
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Proof. (i) The area enclosed by the given ellipse is four times the area between
the curves given by y = b

√
a2 − x2/a, y = 0 and between the lines given by

x = 0, x = a. Hence it is equal to

4
b

a

∫ a

0

√
a2 − x2 dx =

4b

a
· a2

∫ π/2

0

cos2 θ dθ = 4ab

∫ π/2

0

1 + cos 2θ

2
dθ = πab.

(ii) Letting b = a in (i) above, we see that the area of a disk of radius a is
equal to πa2. The desired formula for π is then immediate.

�

�

�

�

�

�
�
�
�
��

�� ���� � �����

� �
�
�� � ��

�

�

Fig. 8.4. Sector marked by the points (0, 0), (a, 0), and (a cos ϕ, a sin ϕ)

(iii) If ϕ = 0, then the sector reduces to a line segment, and its area is
clearly equal to 0. Now let ϕ ∈ (0, π/2]. The sector marked by the points (0, 0),
(a, 0), and (a cosϕ, a sin ϕ) is the region between the curves x = (cotϕ)y,

x =
√

a2 − y2 and between the lines given by y = 0, y = a sinϕ. Hence its
area is equal to

∫ a sin ϕ

0

[√
a2 − y2 − (cot ϕ)y

]
dy =

(
a2

∫ ϕ

0

cos2 t dt

)
−cotϕ

a2 sin2 ϕ

2
=

a2ϕ

2
.

By symmetry, the formula holds for ϕ ∈ (π/2, π] as well. This can be seen
as follows. Let ψ := π − ϕ. Then ψ ∈ [0, π/2), and by what we have already
proved, the area of the desired sector is equal to

πa2

2
− a2ψ

2
=

πa2

2
− a2(π − ϕ)

2
=

a2ϕ

2
,

as before. ⊓⊔

The formulas given in the above proposition are of fundamental impor-
tance. In part (iii) of Proposition 7.13, we have defined π as two times the
supremum of the set {arctanx : x ∈ (0,∞)}. Now the same real number turns
out to be the area of a circular disk divided by the square of the radius of
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the disk. This formula for π makes it plain that the ratio of the area of a
(circular) disk to the square of its radius is independent of the radius. We
have thus proved a fact that is usually taken for granted when π is introduced
in high-school geometry.

Curves Given by Polar Equations

The formula for the area of a sector of a disk given in part (iii) of Proposition
8.2 enables us to define areas of planar regions between curves given by certain
polar equations.

Let us consider a curve given by a polar equation of the form r = p(θ). Let
α, β ∈ R be such that either −π < α < β < π or α = −π, β = π. Consider a
nonnegative integrable function p : [α, β] → R and assume that p(π) = p(−π)
if α = −π, β = π. Let

R := {(r cos θ, r sin θ) ∈ R2 : α ≤ θ ≤ β and 0 ≤ r ≤ p(θ)}
denote the region bounded by the curve given by r = p(θ) and the rays
given by θ = α, θ = β. Let (r(x, y), θ(x, y)) denote the polar coordinates of
(x, y) ∈ R2 \ {(0, 0)}. By Proposition 7.20, it follows that

R\{(0, 0)} =
{
(x, y) ∈ R2 \ {(0, 0)} : α ≤ θ(x, y) ≤ β and r(x, y) ≤ p(θ(x, y))

}
.

If {θ0, θ1, . . . , θn} is a partition of [α, β], then the planar region R gets divided
into n subregions

{(0, 0)}∪
{
(x, y) ∈ R2 \ {(0, 0)} : θi−1 ≤ θ(x, y) ≤ θi and r(x, y) ≤ p(θ(x, y))

}
,

where i = 1, . . . , n. [See Figure 8.5.] For each i, let us choose γi ∈ [θi−1, θi]
and replace the ith subregion by the sector

{(0, 0)} ∪
{
(x, y) ∈ R2 : θi−1 ≤ θ(x, y) ≤ θi and r(x, y) ≤ p(γi)

}

of the disk of radius p(γi) with center at (0, 0). By part (iii) of Proposition
8.2, the area of this sector is equal to

p(γi)
2(θi − θi−1)/2, i = 1, . . . , n.

With this in view, the area of the region R is defined to be

Area (R) :=
1

2

∫ β

α

p(θ)2dθ.

Further, if p1, p2 : [α, β] → R are integrable functions such that 0 ≤ p1 ≤ p2

and pi(π) = pi(−π), i = 1, 2, in case α = −π, β = π, then the area of the
region R between the curves given by r = p1(θ), r = p2(θ) and between the
rays given by θ = α, θ = β is defined to be

Area (R) :=
1

2

∫ β

α

[
p2(θ)

2 − p1(θ)
2
]
dθ.
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Fig. 8.5. Region bounded by the polar equation r = p(θ) and rays θ = α, θ = β,
and its ‘ith subregion’

Examples 8.3. (i) Let a, α, β ∈ R be such that a > 0 and −π < α < β ≤ π.
Consider p1, p2 : [α, β] → R given by p1(θ) := 0 and p2(θ) := a. Then the
area of the sector

{(x, y) ∈ R2 : α ≤ θ(x, y) ≤ β, 0 ≤ r(x, y) ≤ a}
of the disk of radius a is equal to

1

2

∫ β

α

p(θ)2dθ =
1

2

∫ β

α

a2dθ =
a2(β − α)

2
,

as it should be in view of part (iii) of Proposition 8.2.
(ii) Let a ∈ R with a > 0. The area of the region enclosed by the cardioid

r = a(1 + cos θ) is equal to

1

2

∫ π

−π

[a(1 + cos θ)]2dθ =
a2

2

∫ π

−π

(
1 + 2 cos θ +

1 + cos 2θ

2

)
dθ =

3a2π

2
.

(iii) The area of the region between the circle given by r = 2 and the spiral
given by r = θ that lies between the rays given by θ = 0, θ = π/2 is equal
to

1

2

∫ π/2

0

[22 − θ2]dθ = π − π3

48
.

Note that θ ≤ 2 for all θ ∈ [0, π/2]. ✸

Area between curves given by polar equations of the form θ = α(r) is
treated in Exercises 16 and 17.

We conclude this section by mentioning again that the definitions of areas
of various kinds of regions discussed here can be unified with the help of double
integrals. This would also show that the area of a region calculated using two
different definitions given in this section must turn out to be the same!
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8.2 Volume of a Solid

In this section we shall show how volumes of certain solid bodies can be found
using Riemann integrals. It may be remarked that the general concept of
the volume of a solid body is usually introduced in a course in multivariate
calculus with the help of triple integrals. The definitions of volumes of special
solid bodies given in this section can be reconciled with the general definitions.

Let us consider volumes of solid bodies that can be thought to be made
up of cross-sections taken in one of the following ways:

1. Cross-sections by planes perpendicular to a fixed line,
2. Cross-section by right circular cylinders having a fixed axis.

Slicing by Planes Perpendicular to a Fixed Line

Let D be a bounded subset of R3 := {(x, y, z) : x, y, z ∈ R} lying between
two parallel planes and let L denote a line perpendicular to these planes. A
cross-section of D by a plane is called a slice of D. Let us assume that we are
able to determine the ‘area’ of a slice of D by any plane perpendicular to L.

For the sake of concreteness, let the line L be the x-axis and assume that
D lies between the planes given by x = a and x = b, where a, b ∈ R with
a < b. Further, for s ∈ [a, b], let A(s) denote the area of the slice {(x, y, z) ∈
D : x = s} obtained by intersecting D with the plane given by x = s. If
{x0, x1, . . . , xn} is a partition of [a, b], then the solid D gets divided into n
subsolids

�

�

�

�

�

�

�

�

Fig. 8.6. Slicing a solid by planes perpendicular to a fixed line
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{(x, y, z) ∈ D : xi−1 ≤ x ≤ xi}, i = 1, . . . , n.

Let us choose si ∈ [xi−1, xi] and replace the ith subsolid by a rectangular slab
having volume equal to A(si)(xi − xi−1) for i = 1, . . . , n. Then it is natural
to consider

n∑

i=1

A(si)(xi − xi−1)

as an approximation of the desired volume of D. We therefore define the
volume of D to be

Vol (D) :=

∫ b

a

A(x)dx,

provided the ‘area function’ A : [a, b] → R is integrable.

Similarly, if there are c, d ∈ R with c < d such that D ⊆ {(x, y, z) ∈ R3 :
c ≤ y ≤ d}, and for t ∈ [c, d], A(t) denotes the area of the slice {(x, y, z) ∈
D : y = t} obtained by intersecting D with the plane given by y = t, then we
define the volume of D to be

Vol (D) :=

∫ d

c

A(y)dy,

provided the ‘area function’ A : [c, d] → R is integrable.
Likewise, if there are p, q ∈ R with p < q such that D ⊆ {(x, y, z) ∈

R3 : p ≤ z ≤ q}, and for u ∈ [p, q], A(u) denotes the area of the slice
{(x, y, z) ∈ D : z = u} obtained by intersecting D with the plane given by
z = u, then we define the volume of D to be

Vol (D) :=

∫ q

p

A(z)dz,

provided the ‘area function’ A : [p, q] → R is integrable.

Examples 8.4. (i) Let a, b, c, d, p, q ∈ R and

D := {(x, y, z) ∈ R3 : a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q}

be a cuboid. Then for each fixed s ∈ [a, b], the area of the slice {(x, y, z) ∈
D : x = s} of D is A(s) := (d − c)(q − p) and hence the volume of D is
equal to ∫ b

a

A(x)dx = (d − c)(q − p)(b − a).

Alternatively, for each fixed t ∈ [c, d], we may consider the area A(t) :=
(b − a)(q − p) of the slice {(x, y, z) ∈ D : y = t} of D, or for each fixed
u ∈ [p, q], we may consider the area A(u) := (b − a)(d − c) of the slice
{(x, y, z) ∈ D : z = u} of D for finding the volume of D. At any rate, this
simple example shows that our definition of the volume of a solid as the
integral of an ‘area function’ is consistent with our assumption regarding
the volume of a cuboid.
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Fig. 8.7. Solid enclosed by two cylinders and a slice resulting in a square region

(ii) Let a ∈ R with a > 0. Let us find the volume of the solid D enclosed by
the cylinders x2 + y2 = a2 and x2 + z2 = a2. [See Figure 8.7.] The solid
D lies between the planes x = −a and x = a, and for a fixed s ∈ [−a, a],
the slice {(x, y, z) ∈ D : x = s} is given by

{
(s, y, z) ∈ R3 : |y| ≤

√
a2 − s2 and |z| ≤

√
a2 − s2

}
.

This slice is a square region of side 2
√

a2 − s2, and its area is equal to

A(s) := (2
√

a2 − s2)2 = 4(a2 − s2).

Hence
∫ a

−a

A(x)dx = 4

∫ a

−a

(a2 −x2)dx = 8

∫ a

0

(a2 −x2)dx = 8
(
a3− a3

3

)
=

16a3

3

is the required volume. ✸

We shall now calculate the volume enclosed by an ellipsoid, and as a special
case, the volume enclosed by a sphere. It will lead us to another important
classical formula for π.

Proposition 8.5. (i) The volume of a solid enclosed by an ellipsoid given by
(x2/a2) + (y2/b2) + (z2/c2) = 1, where a, b, c > 0, is equal to 4πabc/3.

(ii) The volume of a spherical ball enclosed by the sphere given by x2 +
y2 + z2 = a2 is equal to 4πa3/3. In other words, if B denotes a spherical ball,
then

π =
3

4

Volume of B

(Radius of B)3
.

(iii) Let a > 0. For ϕ ∈ [0, π], the volume of the (solid) spherical cone
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{
(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ a2 and 0 ≤ cos−1

(
x/
√

x2 + y2 + z2
)
≤ ϕ

}

is equal to 2πa3(1 − cosϕ)/3.

Proof. (i) The given ellipsoid lies between the planes given by x = −a and
x = a. Also, for s ∈ (−a, a), the area A(s) of its slice

{
(s, y, z) ∈ R3 :

y2

b2
+

z2

c2
≤ 1 − s2

a2

}

by the plane given by x = s is the area enclosed by the ellipse

y2

b2[1 − (s2/a2)]
+

z2

c2[1 − (s2/a2)]
= 1,

and hence by part (i) of Proposition 8.2, we have

A(s) = π
(
b
√

1 − (s2/a2)
)(

c
√

1 − (s2/a2)
)

= πbc
(
1 − s2

a2

)
.

Thus the volume enclosed by the ellipsoid is equal to
∫ a

−a

A(x)dx = πbc

∫ a

−a

(
1 − x2

a2

)
dx = πbc

(
2a − 2a3

3a2

)
=

4

3
πabc.

(ii) Letting b = a and c = a in (i) above, we see that the volume of the
spherical ball of radius a is equal to 4πa3/3. The desired formula for π is then
immediate.

(iii) If ϕ = 0, then the (solid) spherical cone reduces to the line segment
{(x, 0, 0) ∈ R3 : 0 ≤ x ≤ a}, and its volume is clearly equal to 0. Also, if
ϕ = π/2, then the (solid) spherical cone is the half spherical ball {(x, y, z) ∈
R3 : x2 + y2 + z2 ≤ a2 and x ≥ 0} and by (ii) above, its volume is equal
to 2πa3/3. Now let ϕ ∈ (0, π/2). For s ∈ [0, a cosϕ], the slice of the (solid)
spherical cone by the plane given by x = s is a disk of radius s tanϕ and so
its area A(s) is equal to πs2 tan2 ϕ, whereas for t ∈ (a cosϕ, a], the slice of the
(solid) spherical cone by the plane given by x = t is a disk of radius

√
a2 − t2

and so its area A(t) is equal to π(t2 − a2). [See Figure 8.8.] Hence the volume
of the (solid) spherical cone is equal to

∫ a cos ϕ

0

πx2 tan2 ϕdx +

∫ a

a cos ϕ

π(a2 − x2)dx

= π tan2 ϕ
a3 cos3 ϕ

3
+ π

(
a3 − a3

3
− a3 cosϕ +

a3 cos3 ϕ

3

)

=
πa3

3

(
sin2 ϕ cosϕ + 2 − 3 cosϕ + cos3 ϕ

)
=

2πa3

3
(1 − cosϕ).

By symmetry, the formula holds for ϕ ∈ (π/2, π] as well. This can be seen
as follows. Let ψ := π − ϕ. Then ψ ∈ [0, π/2), and by what we have already
proved, the volume of the desired spherical cone is equal to
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4πa3

3
− 2πa3

3
(1 − cosψ) =

2πa3

3
+

2πa3

3
cos(π − ϕ) =

2πa3

3
(1 − cosϕ),

as before. ⊓⊔
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(a cos ϕ, a sinϕ)

√
a2 − t2

Fig. 8.8. A solid spherical cone inside a sphere and its slices by planes x = s, x = t

The formula for π given in part (ii) of the above proposition makes it
plain that the ratio of the volume of a spherical ball to the cube of its radius
is independent of the radius.

Slivering by Coaxial Right Circular Cylinders

Suppose that a bounded solid D lies between two cylinders having a given
line L as their common axis. A cross-section of D by a cylinder is called a
sliver of D. Let us assume that we are able to determine the ‘surface area’ of
a sliver of D by any cylinder having L as its axis.

For the sake of concreteness, let the given line L be the z-axis, let p, q ∈ R
with 0 ≤ p < q, and assume that D lies between the cylinders given by
x2 + y2 = p2 and x2 + y2 = q2, and for r ∈ [p, q], let A(r) denote the surface
area of the sliver

{(x, y, z) ∈ D : x2 + y2 = r2}
of D obtained by intersecting it with the cylinder given by x2 + y2 = r2. If
{r0, r1, . . . , rn} is a partition of [p, q], then the solid D gets divided into n
subsolids

{
(x, y, z) ∈ D : ri−1 ≤

√
x2 + y2 ≤ ri

}
, i = 1, . . . , n.

Let us choose si ∈ [ri−1, ri] and replace the ith subsolid by a cylindrical solid
having volume equal to A(si)(ri − ri−1) for i = 1, . . . , n. Then it is natural to
consider
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x2 + y2 = q2

x2 + y2 = r2

x2 + y2 = p2

D

z

yx

Fig. 8.9. Slivering a solid lying between the cylinders x2 +y2 = p2 and x2 +y2 = q2

by right coaxial cylinders x2 + y2 = r2 for r ∈ [p, q]

n∑

i=1

A(si)(ri − ri−1)

as an approximation of the desired volume of D. We therefore define the
volume of D to be

Vol (D) :=

∫ q

p

A(r)dr,

provided the ‘surface area function’ A : [p, q] → R is integrable.

We now address the question of finding the surface area A(r) of the sliver

{(x, y, z) ∈ D : x2 + y2 = r2}
of D for a fixed r ∈ [p, q]. Let

Er := {(θ, z) ∈ [−π, π] × R : (r cos θ, r sin θ, z) ∈ D}.
denote the parameter domain for the sliver. Then the surface area A(r)
of this sliver is defined to be r times the area B(r) of the planar region Er .
Thus the volume of D is equal to

Vol (D) =

∫ q

p

rB(r)dr,

where B(r) is the planar area of the parameter domain Er given above for
each r ∈ [p, q].

Similar considerations hold if the given line L is the y-axis and there are
a, b ∈ R with 0 ≤ a < b such that D lies between the cylinders given by
z2 + x2 = a2 and z2 + x2 = b2, or if the given line L is the x-axis and there
are c, d ∈ R with 0 ≤ c < d such that D lies between the cylinders given by
y2 + z2 = c2 and y2 + z2 = d2.
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Examples 8.6. (i) Let p, q, h ∈ R with 0 < p < q and h > 0, and consider
the cylindrical shell

D := {(x, y, z) ∈ R3 : p ≤
√

x2 + y2 ≤ q and 0 ≤ z ≤ h}.

For a fixed r ∈ [p, q], the sliver

{(x, y, z) ∈ R3 : x2 + y2 = r2 and 0 ≤ z ≤ h}

of D, obtained by intersecting D with the cylinder given by x2 + y2 = r2,
has the parameter domain

Er := {(θ, z) ∈ R2 : −π ≤ θ ≤ π and 0 ≤ z ≤ h}.

Since the area B(r) of the rectangular region Er is equal to

[π − (−π)] · [h − 0] = 2πh

for each r ∈ [p, q], we see that the volume of D is equal to

∫ q

p

rB(r)dr =

∫ q

p

r(2πh)dr = πh(q2 − p2).
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Fig. 8.10. Projections on the xy-plane of slivers of a cube by right coaxial cylinders

(ii) Let a ∈ R with a > 0, and consider the cube

D := {(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ a}

of side a. It lies inside the cylinder x2 + y2 = (a
√

2)2 = 2a2. For a fixed
0 ≤ r ≤ a

√
2, consider the sliver
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{
(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ a and x2 + y2 = r2

}

of D obtained by intersecting it with the cylinder given by x2 + y2 = r2.
The projections of these slivers on the xy-plane are depicted in Figure
8.10. It is clear that if 0 ≤ r ≤ a, then the sliver is given by

{
(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, x2 + y2 = r2 and 0 ≤ z ≤ a

}
,

and its parameter domain

Er := {(θ, z) ∈ R2 : θ ∈ [0, π/2] and 0 ≤ z ≤ a}

has area B(r) = (π/2)a = aπ/2. On the other hand, if a < r ≤ a
√

2, then
the sliver is given by

{
(r cos θ, r sin θ, z) ∈ R3 : cos−1 a

r
≤ θ ≤ sin−1 a

r
and 0 ≤ z ≤ a

}
,

and its parameter domain

Er =
{

(θ, z) ∈ R2 : cos−1 a

r
≤ θ ≤ sin−1 a

r
and 0 ≤ z ≤ a

}

has area B(r) =
[
sin−1(a/r) − cos−1(a/r)

]
a. Thus the volume of D is

equal to

∫ a
√

2

0

rB(r)dr =

∫ a

0

r
aπ

2
dr +

∫ a
√

2

a

r
(
sin−1 a

r
− cos−1 a

r

)
a dr.

Substituting r = a csc θ, and then integrating by parts, we obtain

∫ a
√

2

a

r sin−1 a

r
dr = a2

∫ π/2

π/4

θ csc2 θ cot θdθ

= −a2

2

(
θ cot2 θ

∣∣∣
π/2

π/4
−
∫ π/2

π/4

cot2 θdθ

)
=

a2

2
,

while substituting r = a sec θ, and then integrating by parts, we obtain

∫ a
√

2

a

r cos−1 a

r
dr = a2

∫ π/4

0

θ sec2 θ tan θdθ

=
a2

2

(
θ tan2 θ

∣∣∣
π/4

0
−
∫ π/4

0

tan2 θdθ

)
=

a2

2

(π

2
− 1

)
.

Hence we can conclude that the volume of D is equal to

a
π

2
· a2

2
+ a · a2

2
− a · a2

2

(π

2
− 1

)
= a3,

as expected. ✸



306 8 Applications and Approximations of Riemann Integrals

Solids of Revolution

A subset of R3 that can be generated by revolving a planar region about
an axis is known as a solid of revolution. For example, the spherical ball
{(x, y, z) : x2 + y2 + z2 ≤ a2} of radius a can be generated by revolving
the semidisk {(x, y) ∈ R2 : x2 + y2 ≤ a2 and y ≥ 0} about the x-axis, or by
revolving the semidisk {(x, y) ∈ R2 : x2+y2 ≤ a2 and x ≥ 0} about the y-axis.
Likewise, the cylindrical solid {(x, y, z) ∈ R3 : y2 + z2 ≤ a2 and 0 ≤ x ≤ h}
can be generated by revolving the rectangle [0, h] × [0, a] about the x-axis.

If the planar region being revolved is bounded and the axis of revolution
is one of the coordinate axes, then the volume of the corresponding solid of
revolution can be found using one of the definitions of volume given earlier
in this section. It may be remarked that the case in which a general plane
domain is revolved about an arbitrary line in its plane can be treated in a
course on multivariate calculus with the help of triple integrals.

First let us consider slices of a solid of revolution by planes perpendicular
to the axis of revolution. In general, each such slice is a circular ‘washer’. If
the region touches the axis of revolution at the point of slicing, then the slice
is simply a disk. [See Figure 8.11.] For this reason, this method of finding the
volume of a solid of revolution is known as the Washer Method or the Disk
Method.
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Fig. 8.11. Illustration of the Washer Method or the Disk Method

For the sake of concreteness, let f1, f2 : [a, b] → R be integrable functions
such that 0 ≤ f1 ≤ f2, and suppose that the region between the curves given
by y = f1(x), y = f2(x) and between the lines given by x = a, x = b is revolved
about the x-axis. Let D denote the corresponding solid of revolution. Then
for s ∈ [a, b], the area A(s) of the annular slice of D by the plane given by
x = s is equal to

πf2(s)
2 − πf1(s)

2 = π
[
f2(s)

2 − f1(s)
2
]
.
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Hence the volume of D is equal to

Vol (D) = π

∫ b

a

[
f2(x)2 − f1(x)2

]
dx.

Similarly, if g1, g2 : [c, d] → R are integrable functions such that 0 ≤ g1 ≤
g2, and the region between the curves given by x = g1(y), x = g2(y) and
between the lines given by y = c, y = d is revolved about the y-axis, then the
volume of the solid D of revolution is equal to

Vol (D) = π

∫ d

c

[
g2(y)2 − g1(y)2

]
dy.

Next, let us consider slivers of a solid of revolution by right circular cylin-
ders whose axis is the same as the axis of revolution. In general, each such
sliver is a cylindrical shell. For this reason, this method of finding the volume
of a solid of revolution is known as the shell method. Note that if the radius
of a cylindrical shell is r and its height is h, then the corresponding parameter
domain is [−π, π]× [0, h]. The latter has area 2πh, and hence the surface area
of the sliver is r · 2πh = 2πrh.

y = f2(x)

y = f1(x)

a b

y

x

z

Fig. 8.12. Illustration of the Shell Method

For the sake of concreteness, let f1, f2 : [a, b] → R be integrable functions
such that f1 ≤ f2 and assume that a ≥ 0. Suppose the region between the
curves given by y = f1(x), y = f2(x) and between the lines given by x = a,
x = b is revolved about the y-axis to generate a solid D. Consider s ∈ [a, b]
and the sliver {(x, y, z) ∈ D : z2 + x2 = s2} of D by the cylinder given by
z2 + x2 = s2. Its parameter domain is Es := [−π, π]× [f1(s), f2(s)]. Since the
area of Es is equal to B(s) := 2π[f2(s) − f1(s)], we see that the area of the
sliver is equal to

sB(s) := 2πs[f2(s) − f1(s)].
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Hence the volume of D is equal to

Vol (D) = 2π

∫ b

a

x[f2(x) − f1(x)]dx.

Similarly, if g1, g2 : [c, d] → R are integrable functions such that g1 ≤ g2

with c ≥ 0, and if the region between the curves given by x = g1(y), x = g2(y)
and between the lines given by y = c, y = d is revolved about the x-axis, then
the volume of the solid D of revolution is equal to

Vol (D) = 2π

∫ d

c

y[g2(y) − g1(y)]dy.

�

�

�

�

�

�

�

�

Fig. 8.13. Rectangular and triangular regions in Example 8.7 (i) and (ii)

Examples 8.7. (i) Let a and h be positive real numbers. A right circular
cylindrical solid D of radius a and height h is obtained by revolving the
rectangular region bounded by the lines given by f2(x) = a, f1(x) = 0,
x = 0, and x = h about the x-axis. [See Figure 8.13.] By the disk method,
the volume of D is equal to

Vol (D) = π

∫ h

0

a2dx = πa2h,

whereas by the shell method, we also have

Vol (D) = 2π

∫ a

0

yh dy = πa2h.

(ii) Let a and h be positive real numbers. A right circular conical solid D
of radius a and height h is obtained by revolving the triangular region
bounded by the lines given by x = 0, y = 0, and (x/a) + (y/h) = 1 about
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the y-axis. [See Figure 8.13.] By the disk method, the volume of D is equal
to

Vol (D) = π

∫ h

0

a2
(
1 − y

h

)2

dy = πa2

∫ 1

0

hu2du =
1

3
πa2h,

whereas by the shell method, we also have

Vol (D) = 2π

∫ a

0

xh
(
1 − x

a

)
dx = 2πh

(a2

2
− 1

a

a3

3

)
=

1

3
πa2h.
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Fig. 8.14. The disk in Example 8.7 (iii) being revolved about the y-axis

(iii) Let a, b ∈ R with 0 < b < a. If the disk
{
(x, y) ∈ R2 : (x − a)2 + y2 ≤ b2

}

is revolved about the y-axis, we obtain a solid torus D. [See Figure 8.14.]
By the Washer Method, the volume of D is equal to

Vol (D) = π

∫ b

−b

[(
a +

√
b2 − y2

)2

−
(
a −

√
b2 − y2

)2
]

dy

= π

∫ b

−b

4a
√

b2 − y2dy = 8πab2

∫ 1

0

√
1 − u2du

= 8πab2 sin−1 1

2
= 2π2ab2.

(See Revision Exercise 46 (iii) given at the end of Chapter 7.)
(iv) Let R denote the region in the first quadrant between the parabolas given

by y = x2 and y = 2 − x2. [See Figure 8.15.] Consider the solid D1

generated by revolving the region R about the x-axis. By the washer
method, the volume of D1 is equal to
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Vol (D1) = π

∫ 1

0

[
(2 − x2)2 − (x2)2

]
dx = π

∫ 1

0

(
4 − 4x2

)
= 4π

(
1−1

3

)
=

8π

3
,

whereas by the shell method, we also have

Vol (D1) = 2π

∫ 1

0

y
√

y dy + 2π

∫ 2

1

y
√

2 − y dy

= 2π
2

5
+ 2π

∫ 1

0

(2 − u)
√

udu = 2π
(2

5
+

4

3
− 2

5

)
=

8π

3
.

Consider next the solid D2 generated by revolving the region R about the
y-axis. By the disk method, the volume of D2 is equal to

Vol (D2) = π

∫ 1

0

(
√

y)
2
dy + π

∫ 2

1

(√
2 − y

)2

dy = π
(1

2
+

1

2

)
= π,

whereas by the shell method, we also have

Vol (D2) = 2π

∫ 1

0

x
[
(2 − x2) − x2

]
dx = 4π

∫ 1

0

(
x − x3

)
dx = 4π

(1

2
−1

4

)
= π.
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y = x2

y = 2 − x2

y1

y2

0

2

1

√
y

1

√
2 − y2

Fig. 8.15. Region in the first quadrant bounded by the parabolas y = x2, y = 2−x2

It may be observed that, depending on the shape of a region relative to
the axis of revolution, we may decide whether the washer method or the
shell method turns out to be easier than the other. In any case, since both
methods must give the same answer, one of them can be used as a check
on the calculations for the other. ✸

We conclude this section by mentioning again that the definitions of vol-
umes of various kinds of solids discussed here can all be unified in a course in
multivariate calculus with the help of triple integrals. This would show that
the volume of a solid calculated by using two different definitions given in this
section must turn out to be the same!
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8.3 Arc Length of a Curve

In this section, we shall discuss how to measure the distance covered while go-
ing along a curve, that is, how to calculate the ‘length’ of a curve. We shall base
our discussion only on the assumption that the (Euclidean) distance between
two points (x1, y1) and (x2, y2) in R2 is equal to

√
(x2 − x1)2 + (y2 − y1)2,

which is in accordance with the Pythagorean Theorem of elementary geom-
etry. Since our treatment here is in the form of an application of Riemann
integration, we shall consider only those curves whose ‘length’ can be de-
termined using Riemann integrals. The more general notion of a ‘rectifiable
curve’ is treated in Exercise 70.

Let us first consider a special situation. Suppose x◦, y◦, a1, a2 are real num-
bers, and a curve is given by (φ1(t), φ2(t)), t ∈ [α, β], where

φ1(t) := x◦ + a1t and φ2(t) := y◦ + a2t for t ∈ [α, β].

The image of this curve is the line segment from the point (x◦+a1α, y◦+a2α)
to the point (x◦ + a1β, y◦ + a2β) and its length is equal to

√[
(x◦ + a1β) − (x◦ + a1α)

]2
+
[
(y◦ + a2β) − (y◦ + a2α)

]2
=
√

a2
1 + a2

2 (β−α).

Note that a1 = φ′
1(t) and a2 = φ′

2(t) for all t ∈ [α, β]. This observation is
crucial in developing the notion of the length of a curve, because any ‘nice’
curve can be approximated locally by a line segment. To explain this, let t0
be an interior point of an interval [α, β] and consider a curve C given by
(x(t), y(t)), t ∈ [α, β], where the functions x and y are differentiable at t0. Let

φ1(t) := x(t0)+x′(t0)(t−t0) and φ2(t) := y(t0)+y′(t0)(t−t0) for t ∈ [α, β].

Then by Proposition 5.11, we see that

x(t) − φ1(t) → 0 and y(t) − φ2(t) → 0 as t → t0.

Thus the line segment given by (φ1(t), φ2(t)), t ∈ [α, β] approximates the
curve C around t0. It is therefore reasonable to expect that if [α, β] is a
small interval about the point t0, then the ‘length’ of the curve C should be
approximately equal to the length of this line segment, which is equal to

√
φ′

1(t0)
2 + φ′

2(t0)
2 (β − α) =

√
x′(t0)2 + y′(t0)2 (β − α).

We observe that this line segment is tangent to the curve C at (x(t0), y(t0)).
Keeping the above motivation in mind, we proceed as follows. A paramet-

rically defined curve C in R2 given by (x(t), y(t)), t ∈ [α, β], is said to be
smooth if the functions x and y are differentiable and their derivatives are
continuous on [α, β]. In this case, the arc length of C is defined to be
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Fig. 8.16. Finding the arc length by considering the tangents to a curve

ℓ(C) :=

∫ β

α

√
x′(t)2 + y′(t)2 dt.

Note that the arc length of C is well defined because by parts (i), (iii), and
(v) of Proposition 3.3, the function

√
(x′)2 + (y′)2 is continuous, and hence

by part (ii) of Proposition 6.9, it is integrable.

We emphasize that the arc length of a curve C is defined in terms of its
given specific parametrization. The curve C should not be confused with its
image {(x(t), y(t)) ∈ R2 : t ∈ [α, β]}. For example, the curve C1 given by
(cos t, sin t), t ∈ [−π, π], and the curve C2 given by (cos 2t, sin 2t), t ∈ [−π, π],
have the same domain [−π, π] and the same image {(x, y) ∈ R2 : x2 +y2 = 1},
but they are obviously different curves, since C1 winds around the origin (0, 0)
once, while C2 winds around the origin (0, 0) twice! We now show that the
arc length of a curve does not change under certain ‘reparametrizations’.

Proposition 8.8. Let C be a smooth curve given by (x(t), y(t)), t ∈ [α, β].
Suppose φ : [γ, δ] → R is a differentiable function such that φ′ is integrable,

φ([γ, δ]) = [α, β], and φ′(u) �= 0 for every u ∈ [γ, δ]. Let C̃ denote the para-
metrically defined curve given by (x̃(u), ỹ(u)), u ∈ [γ, δ], where the functions

x̃, ỹ : [γ, δ] → R are given by x̃ := x ◦ φ, ỹ := y ◦ φ. Then C̃ is a smooth curve
and

ℓ(C̃) = ℓ(C).

Proof. Consider the function t �−→
√

x′(t)2 + y′(t)2 from [α, β] to R. Since
x′ and y′ are continuous on [α, β], it follows from parts (i), (iii), and (v) of
Proposition 3.3 that this function is continuous (and hence integrable) on
[α, β]. Now part (ii) of Proposition 6.26 shows that

ℓ(C) =

∫ β

α

√
x′(t)2 + y′(t)2dt

=

∫ δ

γ

√
x′(φ(u))2 + y′(φ(u))2 |φ′(u)|du

=

∫ δ

γ

√
x̃′(u)2 + ỹ′(u)2 du,
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since x̃′(u) = x′(φ(u))φ′(u) and ỹ′(u) = y′(φ(u))φ′(u) for all u ∈ [γ, δ] by the

Chain Rule (Proposition 4.9). Thus ℓ(C̃) = ℓ(C). ⊓⊔
Let us consider some important special cases of parametrically defined

curves, namely curves defined by a Cartesian equation of the form y = f(x)
or of the form x = g(y), and curves defined by a polar equation of the form
r = p(θ) or of the form θ = α(r).

1. Let a, b ∈ R with a < b, f : [a, b] → R, and a smooth curve C be given
by y = f(x), x ∈ [a, b]. Then the arc length of C is equal to

ℓ(C) =

∫ b

a

√
1 + f ′(x)2 dx.

This follows by considering the Cartesian coordinate x as a parameter with
[a, b] as the parameter interval. Thus in this case x′ = 1 and y′(x) = f ′(x) for
x ∈ [a, b].

Similarly, if c, d ∈ R with c < d, g : [c, d] → R and a smooth curve C is
given by x = g(y), y ∈ [c, d], then the arc length of C is equal to

ℓ(C) =

∫ d

c

√
1 + g′(y)2 dy.

2. Let α, β ∈ R, p : [α, β] → [0,∞) and a smooth curve C be given by
r = p(θ), θ ∈ [α, β]. Then the arc length of C is equal to

ℓ(C) =

∫ β

α

√
p(θ)2 + p′(θ)2 dθ.

This follows by considering the polar coordinate θ as a parameter with [α, β]
as the parameter interval, so that C is given by the parametric equations

x(θ) = p(θ) cos θ and y(θ) = p(θ) sin θ,

which show that for all θ ∈ [α, β],

x′(θ)2 + y′(θ)2 = [p′(θ) cos θ − p(θ) sin θ]2 + [p′(θ) sin θ + p(θ) cos θ]2

= p(θ)2 + p′(θ)2.

Arc length of a curve given by a polar equations of the form θ = α(r) is
treated in Exercises 30 and 31.

Proposition 8.9. (i) For ϕ ∈ [0, π], the length of the arc of a circle given by
x := a cos t, y := a sin t, 0 ≤ t ≤ ϕ (which subtends an angle ϕ at the center),
is equal to aϕ.

(ii) The perimeter of the circle given by x2 + y2 = a2 is equal to 2πa. In
other words, if C denotes a circle, then

π =
1

2

Perimeter of C

Radius of C
.
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Proof. (i) The circular arc is given by the polar equation r = p(θ), where
p(θ) := a for all θ ∈ [0, ϕ]. Hence the length of the arc is equal to

∫ ϕ

0

√
a2 + 02 dθ = aϕ.

(ii) The perimeter of a circle is twice the arc length of its semicircle. Letting
ϕ = π in (i) above, we see that the perimeter of the circle is equal to 2πa.
The desired formula for π is then immediate. ⊓⊔

The formula for π given in part (ii) of the above proposition makes it
plain that the ratio of the perimeter of a circle to its diameter is independent
of the radius. This fact is usually taken for granted when π is introduced in
high-school geometry.

Part (i) of the above proposition says that the length of an arc of a semi-
circle is equal to the radius of the circle times the angle between 0 and π
(in radian measure) that the arc subtends at the center. This explains the
dictionary meaning of the word ‘radian’, namely an angle subtended at the
center by an arc whose length is equal to the radius. Thus if the radius of
a circle is 1, then the length of an arc of its semicircle is equal to the angle
the arc subtends at the center. This also explains the use of the name ‘arc-
tangent’ of the function whose inverse is the function tan : (−π/2, π/2) → R.
Indeed, for x ∈ (0,∞), we have y = arctanx if y is the length of an arc of the
unit circle subtending an angle at the center whose tangent is x. For example,
π/3 = arctan

√
3 means that an arc of length π/3 of the unit circle subtends

an angle θ at the center such that tan θ =
√

3.
Before considering some illustrative examples, we remark that the notion of

the length of a smooth curve can be extended to slightly more general curves as
follows. A parametrically defined curve C in R2 given by (x(t), y(t)), t ∈ [α, β],
is said to be piecewise smooth if the functions x and y are continuous on
[α, β] and if there is a finite number of points γ0 < γ1 < · · · < γn in [α, β],
where γ0 = α and γn = β, such that for each i = 1, . . . , n, the curve given by
(x(t), y(t)), t ∈ [γi−1, γi], is smooth. If the curve C is piecewise smooth, then
the length of C is defined to be

ℓ(C) :=

n∑

i=1

∫ γi

γi−1

√
x′(t)2 + y′(t)2 dt.

In view of Propositions 6.7 and 6.12, we may write

ℓ(C) :=

∫ β

α

√
x′(t)2 + y′(t)2 dt if C is piecewise smooth.

For example, if x(t) := t and y(t) := |t| for t ∈ [−1, 1], then the curve given
by (x(t), y(t)), t ∈ [−1, 1], is piecewise smooth.

For a parametrically defined curve C in R3 given by (x(t), y(t), z(t)), t ∈
[α, β], we may define the concepts of ‘smoothness’ and ‘piecewise smoothness’
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analogously, and if C is a piecewise smooth curve, the arc length of C is
defined to be

ℓ(C) :=

∫ β

α

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

Examples 8.10. (i) Let m, c ∈ R and consider the line segment given by
y = mx + c, x ∈ [0, 1], from the point (0, c) to the point (1, m + c). Its
length is equal to ∫ 1

0

√
1 + m2 dx =

√
1 + m2,

which is equal to the distance between the points (0, c) and (1, m + c).
(ii) Let a ∈ R and consider the parabolic curve given by y = ax2, x ∈ [0, 1].

Its arc length is equal to

∫ 1

0

√
1 + (2ax)2 dx =

1

2a

∫ 2a

0

√
1 + u2du

=
1

2

√
1 + 4a2 +

1

4a
ln
(
2a +

√
1 + 4a2

)
.

(See Revision Exercise 46 (ii) given at the end of Chapter 7.)
(iii) Consider the curve given by y = (2x6 + 1)/8x2, x ∈ [1, 2]. Its arc length

is equal to

∫ 2

1

√
1 +

(
x3 − 1

4x3

)2

dx =

∫ 2

1

(
x3 +

1

4x3

)
dx =

123

32
.

(iv) Let a ∈ R with a > 0, and consider the upper half of the cardioid given
by r = a(1 + cos θ), θ ∈ [0, π]. Its arc length is equal to

∫ π

0

√
a2(1 + cos θ)2 + a2(− sin θ)2 dθ =

∫ π

0

√
2a2(1 + cos θ) dθ

= 2a

∫ π

0

cos(θ/2)dθ = 4a.

(v) Consider a helix in R3 given by the parametric equations

x(t) = a cos t, y(t) = a sin t, and z(t) = bt + c, t ∈ R,

where a, b, c ∈ R with a > 0 and b �= 0. It lies on the cylinder given by
x2 + y2 = a2. [See Figure 8.17.] For α, β ∈ R with α < β, let C denote a
part of the helix given by (x(t), y(t), z(t)), t ∈ [α, β]. Then

ℓ(C) =

∫ β

α

√
(−a sin t)2 + (a cos t)2 + b2 dt = (β − α)

√
a2 + b2.

Consider points P1 := (x1, y1, z1) and P2 := (x2, y2, z2) on the cylinder
given by x2 + y2 = a2. Then x2

1 + y2
1 = a2 = x2

2 + y2
2 . Let us first assume
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�

�

P2

P1

x y

z

x = a cos t
y = a sin t
z = bt

�

Fig. 8.17. A helix lying on the cylinder x2 + y2 = a2

that (x1, y1) �= (x2, y2), that is, P1 does not lie vertically above or below
P2, and also that z1 �= z2, that is, P1 and P2 do not lie in a plane parallel to
the xy-plane. If (a, θ1) and (a, θ2) denote the polar coordinates of (x1, y1)
and (x2, y2) respectively, then θ1 �= θ2 since (x1, y1) �= (x2, y2), and the
helix given by the equations

x(t) = a cos t, y(t) = a sin t, z(t) =
z2 − z1

θ2 − θ1
(t − θ1) + z1, t ∈ R,

lies on the cylinder and passes through the points P1 and P2. We may
assume that θ1 < θ2 without loss of generality. Letting α = θ1 and β = θ2,
it follows from what we have seen above that the arc length of the part of
this helix from P1 to P2 is equal to

(θ2 − θ1)

√
a2 +

(z2 − z1)2

(θ2 − θ1)2
=
√

a2(θ2 − θ1)2 + (z2 − z1)2.

If we slit the cylinder vertically along a straight line parallel to the z-axis
and open it up, then the points on the cylinder may be represented by S :=
{(s, z) ∈ R2 : −aπ < s ≤ aπ}. In fact, a point P = (x, y, z) on the cylinder
corresponds to the point Q := (aθ, z) in S, where (a, θ) are the polar
coordinates of (x, y). Let points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) on
the cylinder correspond to points Q1 := (aθ1, z1) and Q2 := (aθ2, z2) in
S respectively. Then the part of the above-mentioned helix from P1 to P2

corresponds to the line segment from Q1 to Q2 in S. We note that the
(Euclidean) distance between Q1 and Q2 is the same as the arc length of
the part of this helix from P1 to P2. This is expressed by saying that if
points P1 and P2 on a cylinder are neither one above the other nor at the
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same height, then the geodesic, that is, the shortest path, on the cylinder
from P1 to P2 is a helix.
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Fig. 8.18. Helix as a geodesic on the cylinder and the corresponding line segment
when the cylinder is slit vertically and opened up

It is clear that if P1 = (x1, y1, z1) and P2 = (x2, y2, z2) lie one above the
other, that is, if (x1, y1) = (x2, y2), then the geodesic on the cylinder from
P1 to P2 is the line segment given by x(t) = x1, y(t) = y1, z(t) = (z2 −
z1)t+z1, t ∈ [0, 1]. Also, it can be argued that if P1 and P2 are at the same
height, that is, if z1 = z2, then the geodesic on the cylinder from P1 to P2 is
the circular arc given by x(t) = a cos t, y(t) = a sin t, z(t) = z1, t ∈ [θ1, θ2].
Likewise, if P1 and P2 are points on a sphere, then the geodesic on the
sphere from P1 to P2 is an arc of the great circle passing through them.
(A great circle is the intersection of the sphere with a plane passing
through the center of the sphere.) To see this, one may rotate the sphere,
if necessary, and assume that the great circle passing through P1 and P2

is in fact the equator of the sphere. ✸

Remark 8.11. Let us recall how we found the area of a circular disk of radius
a in Section 8.1. We first found the area enclosed by the ellipse given by the
equation (x2/a2) + (y2/b2) = 1, and then considered the special case b = a,
which corresponds to a circle of radius a. Let us try to adopt a similar proce-
dure and find the arc length of an ellipse. Consider an ellipse C parametrically
given by x(t) = a cos t, y(t) = b sin t, t ∈ [−π, π]. Then we have

ℓ(C) =

∫ π

−π

√
(−a sin t)2 + (b cos t)2 dt = 2

∫ π

0

√
a2 sin2 t + b2 cos2 t dt.

If b = a, then we easily get ℓ(C) = 2aπ, which gives the perimeter of a circle
of radius a. On the other hand, if b �= a, then the above integral cannot be
evaluated in terms of known functions.

A similar situation occurs if we attempt to calculate the arc length of a
lemniscate C given by the Cartesian equation (x2 + y2)2 = x2 − y2, or by
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the polar equation r2 = cos 2θ. Considering its parametric equations x(t) :=(
cos t

√
1 + cos2 t

)
/
√

2, y(t) := (cos t sin t)/
√

2, t ∈ [−π, π], we obtain

ℓ(C) = 2

∫ π

0

1√
1 + cos2 t

dt := 2̟, say.

A special case of a formula of Gauss says that π/̟ is equal to the arithmetic-
geometric mean of

√
2 and 1. (See Exercise 12 of Chapter 2 for the definition.

A simple proof of Gauss’s formula is given in [50].) In the study of lemniscates,
the number ̟ plays a role very similar to the role played by the number π
in the study of circles. Notice, for example, that just as the length of a circle
given by x2 + y2 = 1 is 2π, the length of the lemniscate C is 2̟. ✸

8.4 Area of a Surface of Revolution

A surface of revolution is generated when a curve is revolved about a line.
In this section, we shall define the area of such a surface and calculate it in
several special cases. It may be remarked that the concept of the area of a
general surface is usually developed in a course on multivariate calculus with
the help of double integrals. It can be shown that the surfaces of revolution
form a special case of the general development.

Let C be a parametrically defined curve in R2 given by (x(t), y(t)), t ∈
[α, β], and let L be a line in R2 given by the equation ax + by + c = 0, where
a, b, c ∈ R and not both a and b are equal to zero. Let us begin by considering
the curve C to be a line segment P1P2 with endpoints P1 := (x1, y1) and
P2 := (x2, y2). Thus C is parametrically given by x(t) := (x2 − x1)t + x1,
y(t) := (y2 − y1)t + y1, t ∈ [0, 1]. Let us assume that the line segment P1P2

does not cross the line L. Further, let d1 and d2 denote the distances of P1

and P2 from L, and let λ denote the length of the line segment P1P2. We show
that the ‘area’ of the surface generated by revolving P1P2 about L is equal to

π(d1 + d2)λ.

To this end, first note that if P1P2 ⊥ L, then λ = |d1 − d2| and the surface of
revolution is a circular washer with radii d1 and d2. [See the picture on the
left in Figure 8.19.] Thus its area is equal to

|πd2
1 − πd2

2| = π(d1 + d2)|d1 − d2| = π(d1 + d2)λ.

Next, if P1P2 ‖ L, then d1 = d2 = d say, and the surface of revolution is
a right circular cylinder with radius d and length λ. [See the picture on the
right in Figure 8.19.] If we slit open this cylinder along a straight line parallel
to its axis, we obtain a rectangle of sides 2πd and λ. Hence its area is equal
to
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Fig. 8.19. Revolving the line segment P1P2 about L when P1P2 ⊥ L and when
P1P2 ‖ L

2πdλ = π(d1 + d2)λ.

Assume now that P1P2 �⊥ L and P1P2 ∦ L. Then the surface of revolution is
a frustum (that is, a piece) of a right circular cone with base radii d1 and d2,
and slant height λ. In order to find the area of this frustum, let us first find
the area of a right circular cone with base radius a and slant height ℓ.

If we slit open the cone along a straight line from its vertex to a point
in its base, we obtain a sector of a circle of radius ℓ such that the length of
its arc is equal to 2πa. [See the picture on the left in Figure 8.20.] Note that
2πa = ℓ θ, where θ = 2πa/ℓ. By part (iii) of Proposition 8.2, the area of this
sector is equal to

1

�

�
�� � ���

�

�

L
P1

P2

ℓ2

ℓ1
d1

d2

Fig. 8.20. Sector of a circle and the frustum of a right circular cone

To find the surface area of the frustum of the right circular cone with base
radii d1 and d2, and slant height λ, we may assume without loss of generality
that d1 < d2. Then this frustum is obtained by removing from a cone of radius
d2 and slant height ℓ2 a smaller cone of radius d1 and slant height ℓ1, where
ℓ1, ℓ2 ∈ R satisfy ℓ2 > ℓ1 > 0 and ℓ2 − ℓ1 = λ. [See the picture on the right

2
ℓ2θ = πℓa,

which is therefore the surface area of a right circular cone with base radius a
and slant height ℓ.
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in Figure 8.20.] Using similarity of triangles, we have d1ℓ2 = d2ℓ1. Hence the
area of the surface of the frustum is equal to

πd2ℓ2−πd1ℓ1 = π(d2ℓ2−d2ℓ1+d1ℓ2−d1ℓ1) = π(d1+d2)(ℓ2−ℓ1) = π(d1+d2)λ,

as desired.
Consider now the general case in which C is a parametrically defined curve

given by (x(t), y(t)), t ∈ [α, β], and let {t0, t1, . . . , tn} be a partition of [α, β].
Let us replace the piece (x(t), y(t)), t ∈ [ti−1, ti], of the curve C by the line
segment Pi−1Pi for i = 0, 1, . . . , n, where Pi := (x(ti), y(ti)). [See Figure 8.21.]
Then the sum of the areas of the frustums of the cones generated by these
line segments is equal to

�

�

�
�

�

�

��

�
�

L

Pn

Pi
Pi−1

P2

P1

Fig. 8.21. A surface of revolution approximated by frustums of right circular cones

n∑

i=1

π(di−1 + di)λi,

where di is the distance of Pi from the line L for i = 0, 1, . . . , n and λi is the
length of the line segment Pi−1Pi for i = 1, . . . , n. This sum can be considered
as an approximation of the conceived area of the surface obtained by revolving
the curve C about the line L. Now for each i, we have

di =
|ax(ti) + by(ti) + c|√

a2 + b2
and λi =

√
[x(ti) − x(ti−1)]2 + [y(ti) − y(ti−1)]2.

If the functions x and y are continuous on [ti−1, ti] and differentiable on
(ti−1, ti), then by the MVT, there are si, ui ∈ (ti−1, ti) such that

λi =
√

x′(si)2 + y′(ui)2 (ti − ti−1), i = 1, . . . , n,

and hence the sums
∑n

i=1 di−1λi and
∑n

i=1 diλi may be considered as approx-
imations of the integral

∫ β

α

|ax(t) + by(t) + c|√
a2 + b2

√
x′(t)2 + y′(t)2 dt.
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These considerations lead to the following definition of the area of a surface
of revolution.

Let C be a piecewise smooth curve given by (x(t), y(t)), t ∈ [α, β]. Consider
a line L given by ax + by + c = 0, where not both a and b are equal to zero.
Assume that the line L does not cross the curve C. For t ∈ [α, β], let ρ(t)
denote the distance of the point (x(t), y(t)) on C from the line L, that is,

ρ(t) =
|ax(t) + by(t) + c|√

a2 + b2
.

Then the area of the surface S of revolution obtained by revolving the curve
C about the line L is defined to be

Area (S) := 2π

∫ β

α

ρ(t)
√

x′(t)2 + y′(t)2 dt.

We note that since the line L does not cross the curve C, we have either
ax(t)+ by(t)+ c ≥ 0 for all t ∈ [α, β], or ax(t)+ by(t)+ c ≤ 0 for all t ∈ [α, β].
We consider some important special cases.

1. If a piecewise smooth curve C given by y = f(x), x ∈ [a, b], where
f(x) ≥ 0 for all x ∈ [a, b] or f(x) ≤ 0 for all x ∈ [a, b], is revolved about the
x-axis, then the area of the surface S of revolution so generated is equal to

Area (S) = 2π

∫ b

a

|f(x)|
√

1 + f ′(x)2 dx.

Similarly, if a piecewise smooth curve C given by x = g(y), y ∈ [c, d], where
g(y) ≥ 0 for all y ∈ [c, d] or g(y) ≤ 0 for all y ∈ [c, d], is revolved about the
y-axis, then the area of the surface S of revolution so generated is equal to

Area (S) = 2π

∫ d

c

|g(y)|
√

1 + g′(y)2 dy.

2. Let a piecewise smooth curve C be given by r = p(θ), θ ∈ [α, β], where
p(θ) ≥ 0 for all θ ∈ [α, β]. If L denotes a line through the origin containing a
ray given by θ = γ, and not crossing the curve C, then the area of the surface
S obtained by revolving the curve C about the line L is equal to

Area (S) = 2π

∫ β

α

p(θ)| sin(θ − γ)|
√

p(θ)2 + p′(θ)2 dθ .

This follows by considering the polar coordinate θ as a parameter and noting,
as in Section 8.3, that x′(θ)2 + y′(θ)2 = p(θ)2 + p′(θ)2, θ ∈ [α, β], and also
that the distance of the point (p(θ) cos θ, p(θ) sin θ) from the line L is equal
to p(θ)| sin(θ − γ)| for all θ ∈ [α, β]. [See Figure 8.22.]

Area of a surface generated by revolving a curve given by a polar equations
of the form θ = α(r) is treated in Exercises 40 and 41.
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θ γ

(p(θ) cos(θ), p(θ) sin(θ))

p(θ)| sin(θ − γ)|

Fig. 8.22. Revolving a polar curve C about the line making an angle γ with the
positive x-axis

Proposition 8.12. (i) Let ϕ ∈ [0, π] and C denote the arc of a circle given by
x := a cos t, y := a sin t, 0 ≤ t ≤ ϕ (which subtends an angle ϕ at the center).
Then the surface area of the spherical cap generated by revolving C about the
x-axis is equal to 2πa2(1 − cosϕ).

(ii) The surface area of a sphere given by x2 + y2 + z2 = a2 is equal to
4πa2. In other words, if S denotes this sphere, then

π =
1

4

Surface Area of S

(Radius of S)2
.

Proof. (i) The arc C is given by the polar equation r = p(θ), where p(θ) := a
for θ ∈ [0, ϕ]. If it is revolved about the x-axis, then the area of the spherical
cap so generated is equal to

2π

∫ ϕ

0

a| sin θ|
√

a2 + 02 dθ = 2πa2

∫ ϕ

0

sin θ dθ = 2πa2(1 − cosϕ).

(ii) A sphere of radius a is obtained by revolving a semicircle of radius a
about the line containing its diameter. Letting ϕ = π in the formula obtained
in (i) above, we see that the surface area of a sphere of radius a is equal to
2πa2(1 − (−1)) = 4πa2. ⊓⊔

The formula for π given in part (ii) of the above proposition makes it
plain that the ratio of the surface area of a sphere to the square of its radius
is independent of the radius.

Remark 8.13. Let S be a surface lying on a sphere of radius a. Then S is said
to subtend a solid angle Θ at the center of the sphere, where Θ is equal to the
‘surface area’ of S divided by a2. For example, let ϕ ∈ [0, π] and consider the
arc of the circle of radius a given by x := a cos t, y := a sin t, 0 ≤ t ≤ ϕ, which
subtends an angle ϕ at the center of the circle. Then by part (i) of the above
proposition, the spherical cap generated by revolving this arc about the x-axis
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subtends a solid angle Θϕ = 2π(1− cosϕ) at the center of the sphere. By part
(iii) of Proposition 8.5, the volume of the corresponding (solid) spherical cone
is equal to 2πa3(1 − cosϕ)/3 = a3Θϕ/3.

In particular, letting ϕ = π/2 and ϕ = π in part (i) of the above proposi-
tion, we see that a hemisphere subtends a solid angle 2π at the center and the
entire sphere subtends a solid angle 4π at the center. (Note that the volume
of the solid enclosed by the entire sphere of radius a, that is, of the the ball of
radius a, is equal to (a3 × 4π)/3, in conformity with part (ii) of Proposition
8.5.) The standard unit of a solid angle is known as steradian. The largest
solid angle, therefore, is of 4π steradians, that is, of approximately 12.566
steradians. ✸

Examples 8.14. (i) Consider the line segment given by (x/a) + (y/h) = 1,
x ∈ [0, a], where a, h > 0. The surface area of the cone S of radius a and
height h generated by revolving this line segment about the y-axis is equal
to

Area (S) = 2π

∫ h

0

a
(
1 − y

h

)√
1 +

(a

h

)2

dy = 2πa

√
a2 + h2

h

(
h − h

2

)

= πa
√

a2 + h2,

as expected.
(ii) Consider the spheroid S generated by revolving the ellipse (x2/a2) +

(y2/b2) = 1, where a, b > 0, a �= b, about the x-axis. It is given by the
Cartesian equation (x2/a2)+(y2/b2)+(z2/b2) = 1. To find its surface area,
it suffices to consider the curve C given by y = (b/a)

√
a2 − x2, x ∈ [−a, a].

We obtain

Area (S) = 2π

∫ a

−a

b

a

√
a2 − x2

√
1 +

b2x2

a2(a2 − x2)
dx

=
2πb

a

∫ a

−a

√
a2 +

(b2 − a2)x2

a2
dx.

First consider the case a < b. If c :=
√

b2 − a2/a, then we have c > 0 and

Area (S) =
2πb

a
· 2a

∫ a

0

√
1 +

(cx

a

)2

dx =
4πab

c

∫ c

0

√
1 + t2 dt

=
2πab

c

[
c
√

1 + c2 + ln
(
c +

√
1 + c2

)]
.

(See Revision Exercise 46 (ii) given at the end of Chapter 7.) Next, con-
sider the case a > b. If c :=

√
a2 − b2/a, then we have 0 < c < 1 and

Area (S) =
2πb

a
· 2a

∫ a

0

√
1 −

(cx

a

)2

dx =
4πab

c

∫ c

0

√
1 − t2 dt

=
2πab

c

(
c
√

1 − c2 + sin−1 c
)

.
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(See Revision Exercise 46 (iii) given at the end of Chapter 7.) In both
cases, if b → a, then L’Hôpital’s Rule for 0

0 indeterminate forms (Proposi-
tion 4.37) shows that the surface area tends to 4πa2, which is the surface
area of a sphere of radius a, as seen in part (ii) of Proposition 8.12.
We remark that the surface of the ellipsoid given by (x2/a2) + (y2/b2) +
(z2/c2) = 1, where a, b, c are distinct positive numbers, is not a surface of
revolution. In fact, the calculation of the surface area of such an ellipsoid
involves the so-called elliptic integrals.

(iii) Consider the torus S obtained by revolving the circle given by (x− a)2 +
y2 = b2, where 0 < b < a, about the y-axis. To find its area, we use the
parametric equations x(t) := a + b cos t, y(t) := b sin t, t ∈ [−π, π]. Hence

Area (S) = 2π

∫ π

−π

(a + b cos t)
√

(−b sin t)2 + (b cos t)2 dt

= 2πb

∫ π

−π

(a + b cos t)dt = 4π2ab

is the required area. ✸

8.5 Centroids

Before introducing the concept of a centroid of a geometrical object, let us
consider the notion of the average of a function. For this purpose, we recall
that given n ∈ N and a function f : {1, . . . , n} → R, the average of the values
of f at the points 1, . . . , n, that is, the average of f , is given by

Av(f) :=
f(1) + · · · + f(n)

n
.

In general, there can be repetition among the values f(1), . . . , f(n) of f . If
y1, . . . , yk are the distinct values of f , and if for each j = 1, . . . , k, the function
f assumes the value yj at a total number of nj points, that is, the set {i ∈
N : 1 ≤ i ≤ n and f(i) = yj} has nj elements, then n1 + · · · + nk = n and we
can also write

Av(f) =
n1y1 + · · · + nkyk

n1 + · · · + nk
.

Simple examples show that Av(f) need not be any of the values of f .
Next, consider a function f : N → R. How can we define the average of f?

One possibility is

Av(f) := lim
n→∞

f(1) + · · · + f(n)

n
,

if the limit exists. Part (i) of Exercise 21 of Chapter 2 shows that if the se-
quence (f(n)) is convergent, then this limit exists and is equal to limn→∞ f(n),
but Av(f) may exist even if the sequence (f(n)) is divergent.
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Let us now consider a closed interval [a, b] in R and a function f : [a, b] →
R. How should we define the average of f? Suppose P = {x0, x1, . . . , xn} is a
partition of [a, b] and we choose si ∈ (xi−1, xi) for i = 1, . . . , n. If f were to
assume the value f(si) at every point of the subinterval (xi−1, xi), then we
may define

Av(f) :=
f(s1)(x1 − x0) + · · · + f(sn)(xn − xn−1)

(x1 − x0) + · · · + (xn − xn−1)
=

1

b − a

n∑

i=1

f(si)(xi−xi−1)

in analogy with the discrete case considered earlier.
Now assume that f is integrable on [a, b]. In view of the result of Darboux

about Riemann sums (Proposition 6.31), we define the average of f by

Av(f) :=
1

b − a

∫ b

a

f(x)dx.

As in the case of a function defined on {1, . . . , n}, the average of f need not
be any of the values of f . For example, consider f : [−1, 1] → R defined by
f(x) := 1 if x ≥ 0 and f(x) := −1 if x < 0. Then

Av(f) =
1

1 − (−1)

∫ 1

−1

f(x)dx =
1

2

(∫ 0

−1

f(x)dx +

∫ 1

0

f(x)dx

)

=
1

2
(−1 + 1) = 0,

but f does not assume the value 0 at any point. If, however, f is continuous,
then Av(f) is always one of the values of f . (See Exercise 72 of this chapter
as well as Exercise 50 of Chapter 6.)

‘Weighted’ averages arise when we wish to give either more or less impor-
tance to some of the values of a function. Given n ∈ N and f : {1, . . . , n} → R,
let w(1), . . . , w(n) be nonnegative numbers such that w(1) + · · · + w(n) �= 0.
If we decide to assign weights w(1), . . . , w(n) to the values f(1), . . . , f(n) re-
spectively, then the weighted average of f with respect to these weights is
given by

Av(f ; w) :=
w(1)f(1) + · · · + w(n)f(n)

w(1) + · · · + w(n)
.

With this mind, we make the following definitions. An integrable function
w : [a, b] → R is called a weight function if w is nonnegative and W :=∫ b

a w(x)dx �= 0. Let f : [a, b] → R be an integrable function and w : [a, b] → R
be a weight function. Then the weighted average of f with respect to w is
defined by

Av(f ; w) :=
1

W

∫ b

a

f(x)w(x)dx.

Note that the product fw of the functions f and w is integrable by part
(iii) of Proposition 6.15. Observe that if w(x) = 1 for all x ∈ [a, b], then
Av(f ; w) = Av(f).
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Roughly speaking, the centroid of a set is a point whose coordinates
are the averages (or the weighted averages) of the corresponding coordinate
functions defined on the set. Thus the x-coordinate (or the first coordinate) of
the centroid of a subset D of R3 is the average value of the function f : D → R
given by f(x, y, z) = x. Similar comments hold for the other coordinates. The
difficulty in defining a centroid at this stage lies in the fact that so far we
have only defined the average of a function defined on an interval [a, b]. To
be able to deal with centroids of more general sets, we would have to extend
the notion of an average to functions defined on them. This is usually done
in a course on multivariate calculus. At present, we shall see how centroids of
a limited variety of sets can still be defined using Riemann integrals. These
definitions turn out to be special cases of the general treatment given in a
course on multivariate calculus.

Curves and Surfaces

To begin with, let us consider a line segment P1P2 in R2 with endpoints
P1 := (x1, y1) and P2 := (x2, y2). Let x, y : [0, 1] → R be the functions defined
by

x(t) := (x2 − x1)t + x1 and y(t) := (y2 − y1)t + y1.

As t runs over the parameter interval [0, 1], we obtain all the points (x(t), y(t))
on the line segment P1P2. The centroid of P1P2 is defined to be the point
(x, y) given by

x =
1

1 − 0

∫ 1

0

x(t)dt =
x1 + x2

2
and y =

1

1 − 0

∫ 1

0

x(t)dt =
y1 + y2

2
.

Thus the centroid of P1P2 is its midpoint.
More generally, consider a piecewise smooth curve C given by (x(t), y(t)),

t ∈ [α, β]. While defining the centroid of C, we shall use weighted averages
with the weight function w : [α, β] → R given by w(t) :=

√
x′(t)2 + y′(t)2.

This is reasonable since the length of the curve C is given by

ℓ(C) =

∫ β

α

√
x′(t)2 + y′(t)2 dt.

If ℓ(C) �= 0, the centroid (x, y) of C is defined by

x =
1

ℓ(C)

∫ β

α

x(t)
√

x′(t)2 + y′(t)2 dt

and

y =
1

ℓ(C)

∫ β

α

y(t)
√

x′(t)2 + y′(t)2 dt.

Note that x = Av(x; w) and y = Av(y; w).
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Let us now consider a surface S generated by revolving the above-
mentioned curve C about a line L given by ax+by+c = 0 that does not cross
C. As in the previous section, let ρ(t) := |ax(t) + by(t) + c|/

√
a2 + b2 denote

the distance of the point (x(t), y(t)), t ∈ [α, β], on the curve C from this line.
Assume that

Area (S) := 2π

∫ β

α

ρ(t)
√

x′(t)2 + y′(t)2 dt

is not equal to zero. If the line L is the x-axis, then we define the centroid
(x, y, z) of S by y := 0, z := 0 (because of symmetry), and

x :=
2π

Area (S)

∫ β

α

x(t)|y(t)|
√

x′(t)2 + y′(t)2 dt.

On the other hand, if the line L is the y-axis, then we define the centroid
(x, y, z) of S by x := 0, z := 0 (because of symmetry), and

y :=
2π

Area (S)

∫ β

α

y(t)|x(t)|
√

x′(t)2 + y′(t)2 dt.

Note that x = Av(x; w), y = Av(y; w), and z = Av(z; w), where the weight
function w : [α, β] → R is given by w(t) := ρ(t)

√
x′(t)2 + y′(t)2.

We remark that the centroid of a surface of revolution about an arbitrary
line L, and more generally the centroid of a surface in R3, can be defined with
the help of double integrals. This is usually done in a course on multivariate
calculus and it can be shown that the above formulas are particular cases of
the general definition.

Examples 8.15. (i) Let a ∈ R with a > 0. Consider a semicircle C of radius
a given by x(t) := a cos t, y(t) := a sin t, t ∈ [0, π]. Then

ℓ(C) =

∫ π

0

√
(−a sin t)2 + (a cos t)2 dt = aπ.

Hence

x =
1

aπ

∫ π

0

a cos t · a dt = 0 and y =
1

aπ

∫ π

0

a sin t · a dt =
2a

π
.

We note that the centroid (0, 2a/π) of the semicircle C does not lie on C.
Also, we could have directly obtained the x-coordinate x of the centroid
to be equal to 0 by the symmetry of the semicircle about the y-axis.

(ii) Consider a cycloid C given by x(t) := t − sin t and y(t) := 1 − cos t,
t ∈ [0, 2π]. Then

ℓ(C) =

∫ 2π

0

√
(1 − cos t)2 + (sin t)2 dt =

∫ 2π

0

√
2 − 2 cos t dt

=

∫ 2π

0

2 sin
t

2
dt = 8.
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Hence

x =
1

8

∫ 2π

0

(t−sin t)·2 sin
t

2
dt = π and y =

1

8

∫ 2π

0

(1−cos t)·2 sin
t

2
dt =

4

3
.

Thus the centroid of C is at
(
π, 4

3

)
.

(iii) Let a ∈ R with a > 0. Consider the surface S generated by revolving an
arc of the circle given by x(t) := a cos t, y(t) := a sin t, t ∈ [0, π/2], about
the line y = −a. Since the distance of (x(t), y(t)) from this line is equal
to a + a sin t for t ∈ [0, π], the area of S is equal to

2π

∫ π/2

0

a(1 + sin t)
√

(−a sin t)2 + (a cos t)2 dt = a2π(π + 2).

It can be seen that y = −a and z = 0 by symmetry, whereas

x =
1

a2π(π + 2)
· 2π

∫ π/2

0

(a cos t)a(1 + sin t)a dt =
3πa3

a2π(π + 2)
=

3a

π + 2
.

Thus the centroid of S is at (3a/(π + 2), −a, 0).
(iv) Let a and h be positive real numbers. The surface S of a right circular cone

of base radius a and height h is generated by revolving the line segment
given by (x/a) + (y/h) = 1, x ∈ [0, a], about the y-axis. As we have seen
in Example 8.14 (i), A(S) = πa

√
a2 + h2. Then x = 0 = z and

y =
2π

πa
√

a2 + h2

∫ h

0

ya
(
1 − y

h

)√
1 +

a2

h2
dy =

h

3
,

as one may expect. ✸

Planar Regions and Solid Bodies

Let us first consider the centroids of certain planar regions that we dealt with
in Section 8.1. Let f1, f2 : [a, b] → R be integrable functions such that f1 ≤ f2,
and consider the region

R := {(x, y) ∈ R2 : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)}.

Recall that the area of R is defined to be

Area (R) :=

∫ b

a

[f2(x) − f1(x)]dx.

Let us assume that Area (R) �= 0. In view of our comments in the introduction
of this section, we define the x-coordinate of the centroid of R by

x :=
1

Area (R)

∫ b

a

x[f2(x) − f1(x)]dx.
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In order to define the y-coordinate of the centroid of R, we observe that for
x ∈ [a, b], the vertical slice of the region R at x has length f2(x) − f1(x) and
its centroid is its midpoint (x, [f1(x)+f2(x)]/2). Since [f2(x)−f1(x)] · [f1(x)+
f2(x)]/2 = [f2(x)2 − f1(x)2]/2 for all x ∈ [a, b], it is reasonable to define the
y-coordinate of the centroid of R by

y :=
1

2Area (R)

∫ b

a

[f2(x)2 − f1(x)2]dx.

Note that x = Av(f ; w) and y = Av(g; w), where the functions f, g, w :
[a, b] → R are given by f(x) := x, g(x) := [f1(x) + f2(x)]/2, w(x) := [f2(x) −
f1(x)].

Similarly, if g1, g2 : [c, d] → R are integrable functions such that g1 ≤ g2,
then the centroid (x, y) of the region

R := {(x, y) ∈ R2 : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)}

is defined by

x =
1

2Area (R)

∫ d

c

[g2(y)2 − g1(y)2]dy

and

y =
1

Area (R)

∫ d

c

y[g2(y) − g1(y)]dy,

provided the area

Area (R) :=

∫ c

d

[g2(y) − g1(y)]dy

of R is not zero.

Finally, we shall consider the centroids of certain solid bodies that we dealt
with in Section 8.2. First suppose that a bounded solid D lies between the
planes given by x = a and x = b, where a, b ∈ R with a < b, and for x ∈ [a, b],
let A(x) denote the area of the slice of D at x by a plane perpendicular to the
x-axis. Assume that

Vol (D) :=

∫ b

a

A(x)dx

is not equal to zero. For each x ∈ [a, b], the x-coordinate of the centroid of
the slice of D at x is x itself. In view of this, we define the x-coordinate of
the centroid of D by

x :=
1

Vol (D)

∫ b

a

xA(x)dx.

Further, if for each x ∈ [a, b], the y-coordinate and the z-coordinate of the
centroid of the slice of D at x are given by ỹ(x) and z̃(x), then we define the
y-coordinate and the z-coordinate of the centroid of D by
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y :=
1

Vol (D)

∫ b

a

ỹ(x)A(x)dx and z :=
1

Vol (D)

∫ b

a

z̃(x)A(x)dx.

Note that x = Av(f ; A), y = Av(g; A) and z = Av(h; A), where the functions
f, g, h : [a, b] → R are given by f(x) := x, g(x) := ỹ(x), h(x) := z̃(x).

In particular, let the solid D be generated by revolving the region

{(x, y) ∈ R2 : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)}

about the x-axis, where f1, f2 : [a, b] → R are integrable functions such that
0 ≤ f1 ≤ f2. Recall that by the Washer Method, A(x) = π[f2(x)2 − f1(x)2]
for all x ∈ [a, b] and

Vol (D) = π

∫ a

b

[f2(x)2 − f1(x)2]dx.

Then we have

x =
π

Vol (D)

∫ b

a

x[f2(x)2 − f1(x)2]dx,

whereas y = 0 = z, since ỹ(x) = 0 = z̃(x) for all x ∈ [a, b] by symmetry.

Similar considerations hold for a solid whose volume is given by

∫ d

c

A(y)dy or

∫ q

p

A(z)dz,

as described in Section 8.2.

Next, suppose that a bounded solid D lies between the cylinders given by
x2 + y2 = p2 and x2 + y2 = q2, where p, q ∈ R with 0 ≤ p < q. For r ∈ [p, q],
consider the sliver {(x, y, z) ∈ D : x2 + y2 = r2} of D by the cylinder given
by x2 + y2 = r2; let Er := {(θ, z) ∈ [−π, π] × R : (r cos θ, r sin θ, z) ∈ D}
denote the parameter domain for this sliver and let B(r) denote the area of
the planar region Er. Assume that

Vol (D) :=

∫ q

p

rB(r)dr

is not equal to zero. For each r ∈ [p, q], if B(r) �= 0 and (x̃(r), ỹ(r), z̃(r))
denotes the centroid of the sliver of D at r for r ∈ [p, q], then the centroid
(x, y, z) of the solid D is defined by

x :=

∫ q

p

x̃(r)rB(r)dr

Vol (D)
, y :=

∫ q

p

ỹ(r)rB(r)dr

Vol (D)
, and z :=

∫ q

p

z̃(r)rB(r)dr

Vol (D)
.

Note that x = Av(f ; A), y = Av(g; A), and z = Av(h; A), where the functions
A, f, g, h : [p, q] → R are given by A(r) := rB(r), f(r) := x̃(r), g(r) :=
ỹ(r), h(r) := z̃(r).
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Similar considerations hold for a solid whose volume is given by

∫ b

a

xB(x)dx or

∫ d

c

yB(y)dy,

as described in Section 8.2.

In particular, let the solid D be generated by revolving the region

R := {(x, y) ∈ R2 : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)}

about the y-axis, where 0 ≤ a < b and f1, f2 : [a, b] → R are integrable
functions such that f1 ≤ f2. Recall that by the Shell Method, the volume of
D is given by

Vol (D) = 2π

∫ b

a

x[f2(x) − f1(x)]dx.

As observed before, for each x ∈ [a, b], the centroid of the vertical cut of the
region R at x ∈ [a, b] is at (x, [f1(x) + f2(x)]/2), and hence the y-coordinate
of the centroid of the sliver of D at x is given by [f1(x) + f2(x)]/2. Thus we
have

y :=
2π

Vol (D)

∫ b

a

[f1(x) + f2(x)]

2
x[f2(x) − f1(x)]dx

=
π

Vol (D)

∫ b

a

x[f2(x)2 − f1(x)2]dx,

whereas x = 0 = z by symmetry.

Examples 8.16. (i) Let b and h be positive real numbers. Consider the pla-
nar region enclosed by the right-angled triangle whose vertices are at (0, 0),
(b, 0), and (0, h). The area of this triangular region is equal to bh/2. Hence
the coordinates of its centroid are given by

x =
2

bh

∫ b

0

x
[h

b
(b − x) − 0

]
dx =

2

b2

∫ b

0

(bx − x2)dx =
2

b2

(
b3

2
− b3

3

)
=

b

3

and

y =
1

2
· 2

bh

∫ b

0

[(h

b
(b − x)

)2

− 02
]
dx =

h

b3

∫ b

0

(b − x)2dx =
h

b3
· b3

3
=

h

3
.

(ii) Let b and h be positive real numbers. Consider the planar region enclosed
by the rectangle whose vertices are at (0, 0), (b, 0), (0, h) and (b, h). The
area of this rectangular region is equal to bh. Hence the coordinates of its
centroid are given by

x =
1

bh

∫ b

0

xh dx =
b

2
and y =

1

2
· 1

bh

∫ b

0

(h2 − 02)dx =
h

2
.

Thus the centroid of the rectangular region is at (b/2, h/2).
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(iii) Let a ∈ R with a > 0. Consider the semicircular region

{(x, y) ∈ R2 : y ≥ 0 and x2 + y2 ≤ a2}.

Its area is equal to πa2/2 as we have seen in part (iii) of Proposition 8.2.
Then x = 0 by symmetry and

y =
2

πa2
· 1

2

∫ a

−a

[(√
a2 − x2

)2

− 02

]
dx =

4a

3π
.

Thus the centroid of the semicircular region is at (0, 4a/3π).
(iv) Consider the region bounded by the curves given by x = 2y − y2 and

x = 0. Since 2y − y2 = x = 0 implies that y = 0 or y = 2, and since
2y − y2 ≥ 0 for all y ∈ [0, 2], the region is given by

{(x, y) ∈ R2 : 0 ≤ y ≤ 2 and 0 ≤ x ≤ 2y − y2}.

The area of this region is equal to
∫ 2

0 (2y − y2)dy = 4/3. The curve given
by x = 2y − y2 is in fact the parabola given by (y − 1)2 = 1 − x. Thus
y = 1 by symmetry and

x =
1

2(4/3)

∫ 2

0

[
(2y − y2)2 − 02

]
dy =

1

2(4/3)

16

15
=

2

5
.

Thus the centroid of the region is at (2
5 , 1).

(v) Let b and h be positive real numbers. A right circular conical solid of
base radius a and height h is generated by revolving the triangular region
bounded by the lines given by x = 0, y = 0, and (x/a) + (y/h) = 1 about
the y-axis. The volume of this solid cone is equal to πa2h/3 as we have
seen in Example 8.7 (ii). Hence

y =
π

πa2h/3

∫ h

0

ya2
(
1 − y

h

)2

dy =
π

(πa2h/3)

a2h2

12
=

h

4

and x = 0 = z by symmetry. Thus the centroid of the conical solid is at
(0, h/4, 0).

(vi) Let R denote the planar region in the first quadrant between the parabolas
given by y = x2 and y = 2 − x2. Consider the solid D1 obtained by
revolving the region R about the x-axis. Its volume is equal to 8π/3 as we
have seen in Example 8.7 (iv). Hence

x =
π

8π/3

∫ 1

0

x
[(

2 − x2
)2 −

(
x2
)2]

dx =
π

(8π/3)
· 1 =

3

8

and y = 0 = z by symmetry. Thus the centroid of the solid E1 is at(
3
8 , 0, 0

)
. Next, consider the solid D2 obtained by revolving the region R

about the y-axis. Its volume is equal to π as we have seen in Example 8.7
(iv). Hence
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y =
2π

π

∫ 1

0

x
[x2 + (2 − x2)

2

]
(2 − x2 − x2)dx =

2π

π

1

2
= 1

and x = 0 = z by symmetry. Thus the centroid of the solid D2 is at
(0, 1, 0). We could also have obtained this by symmetry. ✸

Theorems of Pappus

The following result relates the centroid of a curve with the area of the surface
of revolution generated by it.

Proposition 8.17 (Theorem of Pappus for Surfaces of Revolution).
Let C be a piecewise smooth curve in R2 and L be a line in R2 that does not
cross C. If C is revolved about L, then the area of the surface so generated
is equal to the product of the arc length of C and the distance traveled by the
centroid of C. Symbolically, we have

Area of Surface of Revolution = Arc length × Distance Traveled by Centroid.

Proof. Let the curve C be given by (x(t), y(t)), t ∈ [α, β], and the line L be
given by ax + by + c = 0, where a2 + b2 �= 0. Recall that the arc length of C
is equal to

ℓ(C) :=

∫ β

α

√
x′(t)2 + y′(t)2 dt.

Also, the area of the surface S generated by revolving C about L is equal to

A(S) := 2π

∫ β

α

ρ(t)
√

x′(t)2 + y′(t)2 dt,

where ρ(t) is the distance of the point (x(t), y(t)), t ∈ [α, β], from the line L.
On the other hand, the centroid (x, y) of C is given by

x :=

∫ β

α

x(t)
√

x′(t)2 + y′(t)2 dt

ℓ(C)
and y :=

∫ β

α

y(t)
√

x′(t)2 + y′(t)2 dt

ℓ(C)
.

Further, the distance d traveled by (x, y) about the line L is equal to 2π times
its distance from the line L, which is equal to

2π
|ax + by + c|√

a2 + b2
=

2π

ℓ(C)
√

a2 + b2

∣∣∣∣∣

∫ β

α

[ax(t) + by(t) + c]
√

x′(t)2 + y′(t)2 dt

∣∣∣∣∣

=
2π

ℓ(C)

∫ β

α

ρ(t)
√

x′(t)2 + y′(t)2 dt,

because ax(t) + by(t) + c ≥ 0 for all t ∈ [α, β] or ax(t) + by(t) + c ≤ 0 for all
t ∈ [α, β]. Thus

Area (S) = ℓ(C) × d.

This proves the theorem. ⊓⊔
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The next result relates the centroid of a planar region lying between two
curves with the volume of the solid obtained by revolving the region about
the x-axis or the y-axis.

Proposition 8.18 (Theorem of Pappus for Solids of Revolution). Let
R be a planar region given by

{(x, y) ∈ R2 : a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)},

where f1, f2 : [a, b] → R are integrable functions such that f1 ≤ f2. If either
f1(x) ≥ 0 and the region R is revolved about the x-axis, or a ≥ 0 and the region
R is revolved about the y-axis, then the volume of the solid so generated is equal
to the product of the area of R and the distance traveled by the centroid of R.
Symbolically, we have

Volume of Solid of Revolution = Area × Distance Traveled by Centroid.

Proof. We note that the area of the region R is equal to

Area (R) :=

∫ b

a

[f2(x) − f1(x)]dx.

Let (x, y) denote the centroid of R.
First assume that f1(x) ≥ 0 for all x ∈ [a, b] and the region R is revolved

about the x-axis. Then by the Washer Method, the volume of the solid D so
generated is equal to

Vol (D) := π

∫ b

a

[f2(x)2 − f1(x)2]dx.

On the other hand, we have

y =
1

Area (R)

∫ b

a

[f1(x) + f2(x)]

2
[f2(x) − f1(x)]dx

=
1

2Area (R)

∫ b

a

[f2(x)2 − f1(x)2]dx.

Further, the distance d traveled by (x, y) about the x-axis is equal to 2π times
its distance from the x-axis, that is,

d = 2πy.

Thus we have
Vol (D) = Area (R) × d.

This proves the desired result in the case that the planar region R is revolved
about the x-axis.
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Next, assume that a ≥ 0 and the region R is revolved about the y-axis.
Then by the Shell Method, the volume of the solid so generated is equal to

Vol (D) := 2π

∫ b

a

x[f2(x) − f1(x)]dx.

On the other hand, we have

x =
1

Area (R)

∫ b

a

x[f2(x) − f1(x)]dx.

Further, the distance d traveled by (x, y) about the y-axis is equal to 2π times
its distance from the x-axis, that is,

d = 2πx.

Thus, again, we have
Vol (D) = Area (R) × d.

This proves the desired result in the case that the planar region R is revolved
about the y-axis. ⊓⊔

If we know any two of the three quantities (i) length of a planar curve,
(ii) the distance of its centroid from a line in its plane, and (iii) the area of
the surface obtained by revolving the curve about the line, then the result of
Pappus allows us to find the remaining quantity easily. In case the curve is
symmetric in some way, we can in fact determine its centroid. This also holds
for the area of a planar region, the distance of its centroid from a line in its
plane, and the volume of the solid obtained by revolving the region about the
line. The following examples illustrate these comments.

Examples 8.19. We verify the conclusions of the Theorems of Pappus in
several special cases. We present them in a tabular form for easy verification
of the results of Pappus.

(i) Let ℓ(C) denote the length of a piecewise smooth curve C. If (x, y) denotes
the centroid of C, then its distance from the y-axis is equal to x. Let S
denote the surface obtained by revolving C about the y-axis. Then by
Proposition 8.17, we have Area (S) = ℓ(C) × 2πx.

Curve C Surface S ℓ(C) x Area (S)

1. Line segment Cone
√

a2 + h2
a

2
πa

√
a2 + h2

(x/a) + (y/h) = 1, x ≥ 0, y ≥ 0

2. Line segment x = a, 0 ≤ y ≤ h Cylinder h a 2πah

3. Semicircle x2 + y2 = a2, x ≥ 0 Sphere πa
2a

π
4πa2

4. Circle (x − a)2 + y2 = b2, 0 < b < a Torus 2πb a 4π2ab
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(ii) Let R be a planar region. If (x, y) denotes the centroid of R, then its
distance from the y-axis is equal to x. Let D denote the surface ob-
tained by revolving R about the y-axis. Then by Proposition 8.18, we
have Vol (D) = Area (R) × 2πx.

Region R Solid D Area (R) x Vol (D)

1. Triangle enclosed by the lines Cone
ah

2

a

3

πa2h

3
x = 0, y = 0, (x/a) + (y/h) = 1

2. Rectangle enclosed by the lines Cylinder ah
a

2
πa2h

x = 0, y = 0, x = a, y = h

3. Semidisk x2 + y2 ≤ a2, x ≥ 0 Ball
πa2

2

4a

3π

4πa3

3

4. Disk (x − a)2 + y2 = b2, 0 < b < a Torus πb2 a 2π2ab2

In various examples given in this chapter, we have independently calcu-
lated all the quantities mentioned in the above tables. ✸

8.6 Quadrature Rules

In Chapter 6, we have given various criteria for deciding the integrability of
a bounded function f : [a, b] → R. The actual evaluation of the Riemann
integral, however, can pose serious difficulties. If f is integrable and has an
antiderivative F, then the Fundamental Theorem of Calculus tells us that∫ b

a f(x)dx = F (b) − F (a). But an integrable function f need not have an an-

tiderivative, and even if it has one, it may not be useful in evaluating
∫ b

a
f(x)dx

in terms of known functions. For example, if f(x) := 1/x for x ∈ [1, 2], then
the function f has an antiderivative, namely, F (x) :=

∫ x

1 (1/t)dt, x ∈ [1, 2].

But it is hardly useful in evaluating
∫ 2

1
f(x)dx. A similar comment holds for

the function given by f(x) := 1/(1 + x2) for x ∈ [0, 1]. Sometimes integration
by parts and integration by substitution are helpful in evaluating Riemann
integrals, but the scope of such techniques is very limited. In fact, it is not
possible to evaluate Riemann integrals of many of the functions that occur in
practice. As we have mentioned in Section 6.4, the Riemann sums can then
be employed to find approximate values of a Riemann integral. In the present
section, we shall describe a number of efficient procedures for evaluating a
Riemann integral approximately. These are known as quadrature rules. A
quadrature rule for [a, b] associates to an integrable function f : [a, b] → R a
real number
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Q(f) :=
n∑

i=1

wif(si),

where n ∈ N, wi ∈ R, and si ∈ [a, b] for i = 1, . . . , n. The real numbers
w1, . . . , wn are known as the weights and the points s1, . . . , sn are known as
the nodes of the quadrature rule Q. For example, if P = {x0, x1, . . . , xn} is
a partition of [a, b] and si ∈ [xi−1, xi] for i = 1, . . . , n, then the Riemann sum

S(P, f) :=

n∑

i=1

f(si)(xi − xi−1)

is an example of a quadrature rule whose nodes are s1, . . . , sn and whose
weights are x1−x0, . . . , xn−xn−1. We shall now construct some simple quadra-
ture rules by replacing the function f by a polynomial function of degree 0,
1, or 2, and by considering the ‘signed area’ under the curve given by the
polynomial function.

1. Let us fix s ∈ [a, b], and replace the function f by the polynomial
function p0 of degree 0 that is equal to the value f(s) of f at s. The ‘signed
area’ under the curve given by y = p0(x), whose graph is a horizontal line
segment, is equal to the ‘area’ of the rectangle with base [a, b] and ‘height’
f(s). This gives the Rectangular Rule, which associates to f the number

R(f) := (b − a)f(s).

In particular, if s is the midpoint (a + b)/2 of [a, b], then we obtain the Mid-
point Rule, which associates to f the number

M(f) := (b − a)f
(a + b

2

)
.

2. Let us replace the function f by a polynomial function p1 of degree 1
whose values at a and b are equal to f(a) and f(b). The ‘signed area’ under the
curve given by y = p1(x), whose graph is an inclined line segment, is equal to
the ‘area’ of the trapezoid with base [a, b] and the ‘lengths’ of the two parallel
sides equal to f(a) and f(b) respectively. This gives the Trapezoidal Rule,
which associates to f the number

T (f) :=
(b − a)

2
[f(a) + f(b)].

(See part (i) of Proposition 6.28.)

3. Let us replace the function f by a polynomial function p2 of degree 2
whose values at a, (a + b)/2, and b are equal to f(a), f((a + b)/2), and f(b)
respectively. The ‘signed area’ under the curve given by y = p2(x), whose
graph is, in general, a parabola, gives Simpson’s Rule, which associates to
f the number
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S(f) :=
(b − a)

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
.

(See part (ii) of Proposition 6.28.)
The simple quadrature rules given above can be expected to yield only

rough approximations of a Riemann integral of a function on [a, b]. To obtain
more precise approximations, we may partition the interval [a, b] into smaller
intervals and apply the above quadrature rules to the function f restricted to
each subinterval and then sum up the ‘signed areas’ so obtained. It is often
convenient and also efficient to consider partitions of [a, b] into equal parts.

For n ∈ N, let Pn := {x0,n, x1,n, . . . , xn,n} denote the partition of [a, b] into
n equal parts. For the sake of simplicity of notation, we denote xi,n by xi for
i = 0, 1, . . . , n. Let

hn :=
b − a

n
and yi = f(xi) for i = 0, 1, . . . , n.

Note that xi − xi−1 = hn for i = 1, . . . , n.
1. For i = 1, . . . , n, let si be a point in the ith subinterval [xi−1, xi] of Pn

and let us replace the curve given by y = f(x) on the ith subinterval [xi−1, xi]
by a horizontal line segment passing through the point (si, f(si)). Since the
‘signed area’ of the rectangle with base xi−xi−1 and ‘height’ f(si) is hnf(si),
we obtain the Compound Rectangular Rule, which associates to f the
number

Rn(f) := hn

n∑

i=1

f(si).

Since Rn(f) is a Riemann sum for f corresponding to Pn and µ(Pn) = hn → 0

as n → ∞, it follows that Rn(f) →
∫ b

a f(x)dx as n → ∞. (See Remark 6.32.)

�

�

�

�

�

�

� �� �� ��

a = x0 x1 x2 x3 x4 x5 x6 = b
x

y

y = f(x)

Fig. 8.23. Illustration of the Compound Midpoint Rule
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In particular, if si is the midpoint xi := (xi−1 + xi)/2 of the ith subinter-
val, we obtain the Compound Midpoint Rule, which associates to f the
number

Mn(f) := hn

n∑

i=1

f(xi).

[See Figure 8.23.]

2. For i = 1, . . . , n, let us replace the curve given by y = f(x) on the
ith subinterval [xi−1, xi] by a line segment joining the points (xi−1, yi−1) and
(xi, yi). Since the ‘signed area’ of the trapezoid with base xi−xi−1 and parallel
sides of ‘lengths’ yi−1 and yi is equal to

hn

2
(yi−1 + yi) =

hn

2
[f(xi−1) + f(xi)],

we obtain the Compound Trapezoidal Rule which associates to f , the
number

Tn(f) :=
hn

2

n∑

i=1

(yi−1 + yi) =
hn

2
(y0 + 2y1 + · · · + 2yn−1 + yn)

=
hn

2

[
f(x0) + 2

n−1∑

i=1

f(xi) + f(xn)
]
.

[See Figure 8.24.] We observe that

Tn(f) =
1

2

[
Rℓ

n(f) + Rr
n(f)

]
,

where

Rℓ
n(f) :=

n∑

i=1

f(xi−1)(xi − xi−1) and Rr
n(f) :=

n∑

i=1

f(xi)(xi − xi−1).

Since Rℓ
n(f) →

∫ b

a f(x)dx and Rr
n(f) →

∫ b

a f(x)dx as n → ∞, we have

Tn(f) → 1

2

(∫ b

a

f(x)dx +

∫ b

a

f(x)dx

)
=

∫ b

a

f(x)dx.

3. Assume that n is even. For i = 1, 3, . . . , n − 1, let us replace the curve
given by y = f(x) on the subinterval [xi−1, xi+1] by a parabola passing
through the points (xi−1, yi−1), (xi, yi), and (xi+1, yi+1). Since the ‘signed
area’ under this quadratic curve is equal to

2hn

6
(yi−1 + 4yi + yi+1) =

hn

3
[f(xi−1) + 4f(xi) + f(xi+1)],

we obtain Compound Simpson’s Rule, which associates to f the number
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a = x0 x1 x2 x3 x4 x5 x6 = b
x

y

y = f(x)

Fig. 8.24. Illustration of the Compound Trapezoidal Rule

Sn(f) :=
hn

3

n−1∑

i=1, i odd

(yi−1 + 4yi + yi+1)

=
hn

3
[y0 + 4(y1 + y3 + · · · + yn−1) + 2(y2 + y4 + · · · + yn−2) + yn]

=
hn

3

[
f(x0) + 4

n/2∑

i=1

f(x2i−1) + 2

(n/2)−1∑

i=1

f(x2i) + f(xn)

]
.

[See Figure 8.25.] We note that if k := n/2, then hk = 2hn and

�

�
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� � �� �� �� �� �� �� �� � �
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Fig. 8.25. Illustration of Compound Simpson’s Rule
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Sn(f) =
hk

6

k∑

j=1

[f(x2j−2) + 4f(x2j−1) + f(x2j)] .

Observe that each of the three sums hk

∑k
j=1 f(x2j−2), hk

∑k
j=1 f(x2j−1),

and hk

∑k
j=1 f(x2j) is a Riemann sum for f corresponding to the partition

Qk := {x0, x2, . . . , x2k−2, x2k}. Hence, as n → ∞, we have

Sn(f) → 1

6

(∫ b

a

f(x)dx + 4

∫ b

a

f(x)dx +

∫ b

a

f(x)dx

)
=

∫ b

a

f(x)dx.

If the function f : [a, b] → R is sufficiently smooth, it is possible to obtain
error estimates for the approximations Rn(f), Mn(f), Tn(f), and Sn(f) of∫ b

a
f(x)dx. We shall show that such an error is O(1/n) for Rn(f) in general,

while it is O(1/n2) for Mn(f) and Tn(f), and O(1/n4) for Sn(f).

We first consider the Compound Rectangular Rule and the Compound
Midpoint Rule. In the following result, we shall estimate the difference between
the ‘signed area’ under the curve given by y = f(x), a ≤ x ≤ b, and the
‘signed area’ obtained by replacing the function f by a constant function
on the entire interval [a, b]. The key idea is to use Taylor’s Theorem for the

functions F, G : [a, b] → R given by F (x) =
∫ x

a f(t)dt and G(x) =
∫ b

x f(t)dt.

Lemma 8.20. Consider a function f : [a, b] → R.

(i) Let f be continuous on [a, b] and f ′ exist on (a, b). Given any c ∈ [a, b],
there are ξ, η ∈ (a, b) such that

∫ b

a

f(x)dx = (b − a)f(c) +
1

2

[
(b − c)2f ′(ξ) − (a − c)2f ′(η)

]
.

(ii) Let f ′ exist and be continuous on [a, b], and f ′′ exist on (a, b). Then there
is ζ ∈ (a, b) such that

∫ b

a

f(x)dx = (b − a)f
(a + b

2

)
+

(b − a)3

24
f ′′(ζ).

Proof. (i) Consider the functions F, G : [a, b] → R defined by

F (x) =

∫ x

a

f(t)dt and G(x) =

∫ b

x

f(t)dt.

Then by domain additivity (Proposition 6.7),

F (x) + G(x) =

∫ b

a

f(t)dt and hence F ′(x) = −G′(x) for all x ∈ [a, b].
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Thus by part (ii) of the FTC (Proposition 6.21), we have

F ′(x) = f(x) = −G′(x) for all x ∈ [a, b].

Further, F ′′ and G′′ exist on (a, b) and

F ′′(x) = f ′(x) = −G′′(x) for all x ∈ (a, b).

Let c ∈ [a, b] be given. By Taylor’s Theorem (Proposition 4.23) for the function
F on the interval [c, b] and n = 1, there is ξ ∈ (a, b) such that

F (b) = F (c) + (b − c)F ′(c) +
(b − c)2

2
F ′′(ξ),

that is, ∫ b

a

f(t)dt =

∫ c

a

f(t)dt + (b − c)f(c) +
(b − c)2

2
f ′(ξ).

Also, by the version of Taylor’s Theorem for right (hand) endpoint (Remark
4.24), there is η ∈ (a, c) such that

G(a) = G(c) + (a − c)G′(c) +
(a − c)2

2
G′′(η),

that is, ∫ b

a

f(t)dt =

∫ b

c

f(t)dt + (c − a)f(c) − (c − a)2

2
f ′(η).

Adding the two equations for
∫ b

a f(t)dt given above, we obtain by domain
additivity,

2

∫ b

a

f(t)dt =

∫ b

a

f(t)dt + (b − a)f(c) +
(b − c)2

2
f ′(ξ) − (c − a)2

2
f ′(η),

that is,

∫ b

a

f(t)dt = (b − a)f(c) +
1

2

[
(b − c)2f ′(ξ) − (c − a)2f ′(η)

]
,

as desired.

(ii) Let F , G, and c be as in part (i) above. Since f ′′ exists on (a, b), we
have

F ′′′(x) = f ′′(x) = −G′′′(x) for all x ∈ (a, b).

By Taylor’s Theorem for n = 2, there are ξ ∈ (c, b) and η ∈ (a, c) such that

F (b) = F (c) + (b − c)F ′(c) +
(b − c)2

2
F ′′(c) +

(b − c)3

6
F ′′′(ξ),

G(a) = G(c) + (a − c)G′(c) +
(a − c)2

2
G′′(c) +

(a − c)3

6
G′′′(η),
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that is,

∫ b

a

f(t)dt =

∫ c

a

f(t)dt + (b − c)f(c) +
(b − c)2

2
f ′(c) +

(b − c)3

6
f ′′(ξ),

∫ b

a

f(t)dt =

∫ b

c

f(t)dt + (c − a)f(c) − (c − a)2

2
f ′(c) +

(c − a)3

6
f ′′(η).

Adding the above two equations and letting c = (a + b)/2, we obtain

2

∫ b

a

f(t)dt =

∫ b

a

f(t)dt + (b − a)f
(a + b

2

)
+

(b − a)3

48
[f ′′(ξ) + f ′′(η)].

By the Intermediate Value Property of f ′′ (Proposition 4.14), we see that
there is ζ between ξ and η such that [f ′′(ξ) + f ′′(η)]/2 = f ′′(ζ). Hence we
have ∫ b

a

f(t)dt = (b − a)f
(a + b

2

)
+

(b − a)3

24
f ′′(ζ),

as desired. ⊓⊔

The above proof shows how the factor (b − a)3 (in place of the factor
(b − a)2) arises in the remainder term when c is the midpoint (a + b)/2 of
the interval [a, b] and the given function f is twice differentiable. This is not
possible for any other point c in [a, b].

To obtain error estimates for Rn(f) and Mn(f), we apply the results of
the above lemma with the interval [a, b] replaced by the subintervals arising
out of the partition Pn := {x0, x1, . . . , xn} of [a, b] into n equal parts, and then
sum up.

Proposition 8.21. Consider a function f : [a, b] → R and n ∈ N.

(i) If f is continuous on [a, b], f ′ exists on (a, b), and there is α ∈ R such
that |f ′(x)| ≤ α for all x ∈ (a, b), then

∣∣∣∣∣

∫ b

a

f(x)dx − Rn(f)

∣∣∣∣∣ ≤
(b − a)2α

2n
.

(ii) If f ′ exists and is continuous on [a, b], f ′′ exists on (a, b), and there is
β ∈ R such that |f ′′(x)| ≤ β for all x ∈ (a, b), then

∣∣∣∣∣

∫ b

a

f(x)dx − Mn(f)

∣∣∣∣∣ ≤
(b − a)3β

24n2
.

Proof. Let Pn := {x0, x1, . . . , xn} denote the partition of [a, b] into n equal
parts, so that xi − xi−1 = (b − a)/n for i = 1, . . . , n.

(i) Let si ∈ [xi−1, xi] for i = 1, . . . , n and
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Rn(f) =
n∑

i=1

f(si)(xi − xi−1).

By the domain additivity (Proposition 6.7), we have

∫ b

a

f(x)dx − Rn(f) =
n∑

i=1

[ ∫ xi

xi−1

f(x)dx − (xi − xi−1)f(si)
]
.

By Lemma 8.20 applied to the function f on the interval [xi−1, xi] and with
c = si, we see that the ith summand on the right (hand) side of the above
equation is equal to

1

2

[
(xi − si)

2f ′(ξi) − (xi−1 − si)
2f ′(ηi)

]

for some ξi, ηi ∈ (xi−1, xi). Since

(xi − si)
2 + (xi−1 − si)

2 ≤ [(xi − si) + (si − xi−1)]
2 = (xi − xi−1)

2 =
(b − a)2

n2

and since |f ′(ξi)|, |f ′(ηi)| ≤ α for i = 1, . . . , n, we obtain

∣∣∣∣∣

∫ b

a

f(x)dx − Rn(f)

∣∣∣∣∣ ≤
1

2

(b − a)2α

n2
· n =

(b − a)2α

2n
,

as desired.

(ii) Again by domain additivity we have

∫ b

a

f(x)dx − Mn(f) =

n∑

i=1

[ ∫ xi

xi−1

f(x)dx − (xi − xi−1)f
(xi−1 + xi

2

)]
.

By part (ii) of Lemma 8.20 applied to the function f on the interval
[xi−1, xi] for i = 1, . . . , n, we see that the ith summand on the right (hand)
side of the above equation is equal to

(xi − xi−1)
3

24
f ′′(ζi)

for some ζi in (xi−1, xi). Since xi − xi−1 = (b − a)/n and |f ′′(ζi)| ≤ β for
i = 1, . . . , n, we obtain

∣∣∣∣∣

∫ b

a

f(x)dx − Mn(f)

∣∣∣∣∣ ≤
(b − a)3β

24n3
· n =

(b − a)3β

24n2
,

as desired. ⊓⊔
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We proceed to derive error estimates for the Compound Trapezoidal Rule
and Compound Simpson’s Rule. As before we shall estimate the difference
between the ‘signed area’ under the curve given by y = f(x), a ≤ x ≤ b,
and the ‘signed area’ obtained by replacing the function f by a polynomial
function of degree at most one (for the Trapezoidal Rule) as well as by a
polynomial function of degree at most two (for Simpson’s Rule) on the entire
interval [a, b]. Then we apply the results with the interval [a, b] replaced by
the subintervals arising out of the partition Pn := {x0, x1, . . . , xn} of [a, b]
into n equal parts, and sum up.

Lemma 8.22. Consider a function f : [a, b] → R.

(i) Let f ′ exist and be continuous on [a, b], and f ′′ exist on (a, b). Then there
is ξ ∈ (a, b) such that

∫ b

a

f(x)dx =
(b − a)

2
[f(a) + f(b)] − (b − a)3

12
f ′′(ξ).

(ii) Let f ′, f ′′, f ′′′ exist and be continuous on [a, b], and f (4) exist on (a, b).
Then there is η ∈ (a, b) such that

∫ b

a

f(x)dx =
(b − a)

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
− (b − a)5

2880
f (4)(η).

Proof. (i) Consider the function F : [a, b] → defined by

F (x) =

∫ x

a

f(t)dt − x − a

2
[f(a) + f(x)] for x ∈ [a, b].

Then F (a) = 0 and

F (b) =

∫ b

a

f(t)dt − b − a

2
[f(a) + f(b)].

In order to express F (b) as −(b− a)3f ′′(ξ)/12 for some ξ ∈ (a, b), we consider
the function G : [a, b] → R defined by

G(x) = F (x) − (x − a)3

(b − a)3
F (b).

Then G(a) = 0 = G(b), and by part (ii) of the FTC (Proposition 6.21), we
have

G′(x) = f(x) − 1

2
[f(a) + f(x)] − x − a

2
f ′(x) − 3(x − a)2

(b − a)3
F (b)

=
f(x) − f(a)

2
− x − a

2
f ′(x) − 3(x − a)2

(b − a)3
F (b) for x ∈ [a, b].
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Hence G′(a) = 0 and also

G′′(x) =
f ′(x)

2
− f ′(x)

2
− x − a

2
f ′′(x) − 6(x − a)

(b − a)3
F (b)

= −x − a

2

[
f ′′(x) +

12

(b − a)3
F (b)

]
for x ∈ (a, b).

By Taylor’s Theorem (Proposition 4.23) for G and n = 1, there is ξ ∈ (a, b)
such that

G(b) = G(a) + G′(a)(b − a) + G′′(ξ)
(b − a)2

2
,

that is, G′′(ξ) = 0. Since ξ �= a, it follows that

F (b) = − (b − a)3

12
f ′′(ξ),

as desired.

(ii) Consider the function F : [a, b] → R defined by

F (x) =

∫ (b+x)/2

a+(b−x)/2

f(t)dt − x − a

6

[
f
(
a +

b − x

2

)
+ 4f

(a + b

2

)
+ f

(b + x

2

)]
.

Then F (a) = 0 and

F (b) =

∫ b

a

f(t)dt − b − a

6

[
f(a) + 4f

(a + b

2

)
+ f(b)

]
.

In order to express F (b) as −(b−a)5f (4)(η)/2880 for some η ∈ (a, b), consider
the function G : [a, b] → R defined by

G(x) = F (x) − (x − a)5

(b − a)5
F (b).

Then G(a) = 0 = G(b), and by part (ii) of the FTC as well as the Chain Rule
(Proposition 4.9), we see that for all x ∈ (a, b),

G′(x) =
1

2
f
(b + x

2

)
+

1

2
f
(
a +

b − x

2

)

−1

6

[
f
(
a +

b − x

2

)
+ 4f

(a + b

2

)
+ f

(b + x

2

)]

−x − a

6

[
−1

2
f ′
(
a +

b − x

2

)
+

1

2
f ′
(b + x

2

)]
− 5(x − a)4

(b − a)5
F (b).

Hence G′(a) = 0. It can be easily verified that G′′(a) = 0 and for x ∈ (a, b),

G′′′(x) = −x − a

48

[
f ′′′

(b + x

2

)
− f ′′′

(
a +

b − x

2

)]
− 60(x − a)2

(b − a)5
F (b).
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By Taylor’s Theorem for G and n = 2, there is ξ ∈ (a, b) such that

G(b) = G(a) + G′(a)(b − a) + G′′(a)
(b − a)2

2
+ G′′′(ξ)

(b − a)3

6
,

that is, G′′′(ξ) = 0. Since ξ �= a, it follows that

f ′′′
(b + ξ

2

)
− f ′′′

(
a +

b − ξ

2

)
= −2880(ξ − a)

(b − a)5
F (b).

Now by the MVT (Proposition 4.18) for the function f ′′′ on the interval
[a + (b − ξ)/2, (b + ξ)/2], there is η ∈ (a + (b − ξ)/2, (b + ξ)/2) ⊆ (a, b) such
that

f ′′′
(b + ξ

2

)
− f ′′′

(
a +

b − ξ

2

)
=
(b + ξ

2
− a − b − ξ

2

)
f (4)(η) = (ξ − a)f (4)(η).

Again, since ξ �= a, it follows that

F (b) = − (b − a)5

2880
f (4)(η),

as desired. ⊓⊔

Proposition 8.23. Consider a function f : [a, b] → R and n ∈ N.

(i) If f ′ exists and is continuous on [a, b], f ′′ exists on (a, b), and there is
β ∈ R such that |f ′′(x)| ≤ β for all x ∈ (a, b), then

∣∣∣∣∣

∫ b

a

f(x)dx − Tn(f)

∣∣∣∣∣ ≤
(b − a)3β

12n2
.

(ii) If f ′, f ′′, f ′′′ exist and are continuous on [a, b], f (4) exists on (a, b), and
there is γ ∈ R such that |f (4)(x)| ≤ γ for all x ∈ (a, b), and if n ∈ N is
even, then ∣∣∣∣∣

∫ b

a

f(x)dx − Sn(f)

∣∣∣∣∣ ≤
(b − a)4γ

180n4
.

Proof. Let Pn := {x0, x1, . . . , xn} denote the partition of [a, b] into n equal
parts, so that xi − xi−1 = (b − a)/n for i = 1, . . . , n.

(i) By the domain additivity, we have

∫ b

a

f(x)dx − Tn(f) =
n∑

i=1

[ ∫ xi

xi−1

f(x)dx − (xi − xi−1)

2
[f(xi−1) + f(xi)]

]
.

By part (i) of Lemma 8.22 applied to the function f on the interval [xi−1, xi]
for i = 1, . . . , n, we see that the ith summand on the right side of the above
equation is equal to
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− (xi − xi−1)
3

12
f ′′(ξi)

for some ξi in (xi−1, xi). Since xi − xi−1 = (b − a)/n and |f ′′(ξi)| ≤ β for
i = 1, . . . , n, we obtain

∣∣∣∣∣

∫ b

a

f(x)dx − Tn(f)

∣∣∣∣∣ ≤
(b − a)3β

12n3
· n =

(b − a)3β

12n2
,

as desired.

(ii) Consider the partition Qn := {x0, x2, . . . , xn−2, xn} of [a, b]. Then

∫ b

a

f(x)dx − Sn(f)

is equal to the sum of the terms

∫ xi+1

xi−1

f(x)dx − (xi+1 − xi−1)

6

[
f(xi−1) + 4f

(xi−1 + xi+1

2

)
+ f(xi+1)

]

for i = 1, 3, . . . , n−1. By part (ii) of Lemma 8.22 applied to the function f on
the interval [xi−1, xi+1] for i = 1, 3, . . . , n − 1, we see that the ith term given
above is equal to

− (xi+1 − xi−1)
5

2880
f (4)(ηi)

for some ηi ∈ (xi−1, xi+1). Since xi+1 − xi−1 = 2(b − a)/n and |f (4)(ηi)| ≤ γ
for i = 1, 3, . . . , n − 1, we obtain

∣∣∣∣∣

∫ b

a

f(x)dx − Sn(f)

∣∣∣∣∣ ≤
25(b − a)5γ

2880n5
· n

2
=

(b − a)5γ

180n4
,

as desired. ⊓⊔

If we wish to approximate
∫ b

a f(x)dx by Rn(f), Mn(f), Tn(f), or Sn(f)
with an error less than or equal to a given small positive number (like 10−3,
10−4, etc.), then Propositions 8.21 and 8.23 can be used to find how large n
must be taken, provided we know an upper bound for |f ′|, |f ′′|, or |f (4)| as
the case may be.

The important point to be noted here is that the approximations Rn(f),
Mn(f), Tn(f), and Sn(f) are available for use if we know the values of the
function f only at certain n equally spaced points in [a, b].

Example 8.24. Consider the function f : [1, 2] → R defined by f(x) := 1/x.

We know from Chapter 7 that
∫ 2

1 f(x)dx = ln 2, and to estimate this value, we
may apply the quadrature rules discussed earlier in this section. For n ∈ N, let
Pn := {x0, x1, . . . , xn} denote the partition of the interval [1, 2] into n equal
parts. Then
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xi = 1 +
i

n
, i = 0, . . . , n,

and so hn = 1/n. If we use right (hand) endpoints of the subintervals for
calculating Rn(f), then

Rn(f) =
1

n

n∑

i=1

1

xi
=

1

n

n∑

i=1

1

1 + (i/n)
=

n∑

i=1

1

n + i
,

Mn(f) =
1

n

n∑

i=1

1

(xi−1 + xi)/2
=

1

n

n∑

i=1

2

2 + [(2i − 1)/n]
= 2

n∑

i=1

1

2(n + i) − 1
,

Tn(f) =
1

2n

[
1

1
+ 2

(
1

1 + (1/n)
+

1

1 + (2/n)
+ · · · + 1

2 − (1/n)

)
+

1

2

]

=
3

4n
+

1

n + 1
+

1

n + 2
+ · · · + 1

2n− 1
,

and if n is even, then

Sn(f) =
1

3n

[
1

1
+ 4

(
1

1 + (1/n)
+

1

1 + (3/n)
+ · · · + 1

2 − (1/n)

)

+ 2

(
1

1 + (2/n)
+

1

1 + (4/n)
+ · · · + 1

2 − (2/n)

)
+

1

2

]

=
1

2n
+

4

3

(
1

n + 1
+

1

n + 3
+ · · · + 1

2n − 1

)

+
2

3

(
1

n + 2
+

1

n + 4
+ · · · + 1

2n − 2

)
.

For all x ∈ (1, 2), we have

|f ′(x)| =

∣∣∣∣
−1

x2

∣∣∣∣ ≤ 1, |f ′′(x)| =

∣∣∣∣
2

x3

∣∣∣∣ ≤ 2 and
∣∣∣f (4)(x)

∣∣∣ =

∣∣∣∣
24

x4

∣∣∣∣ ≤ 24.

Hence Proposition 8.21 shows that for each n ∈ N,

∣∣∣∣
∫ 2

1

1

x
dx − Rn(f)

∣∣∣∣≤
1

2n
and

∣∣∣∣
∫ 2

1

1

x
dx − Mn(f)

∣∣∣∣≤
1

12n2
,

while Proposition 8.23 shows that for each n ∈ N,

∣∣∣∣
∫ 2

1

1

x
dx − Tn(f)

∣∣∣∣≤
1

6n2
and if n is even, then

∣∣∣∣
∫ 2

1

1

x
dx − Sn(f)

∣∣∣∣ ≤
2

15n4
.

To approximate the Riemann integral
∫ 2

1
(1/x)dx with an error less than 10−3,

we must choose

(i) n ≥ 501 if we use Rn(f), so as to have
1

2n
< 10−3,

(ii) n ≥ 10 if we use Mn(f), so as to have
1

12n2
< 10−3,
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(iii) n ≥ 13 if we use Tn(f), so as to have
1

6n2
< 10−3, and

(iv) n ≥ 4 if we use Sn(f), so as to have
2

15n4
< 10−3. ✸

Notes and Comments

We have given in this chapter a systematic development of the notion of an
area of a region between two curves given by Cartesian equations of the form
y = f(x) or x = g(y), or by polar equations of the form r = p(θ) or θ = α(r).
Two methods of finding the volume of a solid body are described in this chapter:
(i) by considering the slices of the solid body by planes perpendicular to a given
line and (ii) by considering the slivers of the solid body by cylinders having
a common axis. For solids obtained by revolving planar regions about a line,
these two methods specialize to the Washer Method and the Shell method.

We have motivated the definition of the length of a smooth curve by consid-
ering the tangent line approximations of such a curve. The following alterna-
tive motivation is often given. If a curve C is given by (x(t), y(t)), t ∈ [α, β],
consider a partition {t0, t1, . . . , tn} of the interval [α, β]. The sum

n∑

i=1

√
[x(ti) − x(ti−1)]2 + [y(ti) − y(ti−1)]2

of the lengths of the line segments joining the points (x(ti−1), y(ti−1)) and
(x(ti), y(ti)) for i = 1, . . . , n can be considered as an approximation of the
‘length’ of the curve C. If the functions x and y are continuous on [α, β] and
are differentiable on (α, β), then by the MVT this sum can be written as

n∑

i=1

√
x′(si)2 + y′(ui)2 (ti − ti−1),

where si, ui ∈ (ti−1, ti) for i = 1, . . . , n. We are then naturally led to the
definition of the length of C given in the text. We have opted for a motivation
based on tangent lines because this consideration extends analogously to a
motivation for the definition of the ‘area of a smooth surface’ given in a course
on multivariate calculus. On the contrary, the analogue of the limit of the sums
of the lengths of chords, namely, the limit of the areas of inscribed polyhedra
formed of triangles, may not exist even for a simple-looking surface such as
a cylinder. See, for example, Appendix A.4 of Chapter 4 in Volume II of the
book by Courant and John [19].

We have extended the notion of length to a piecewise smooth curve using
domain additivity. In fact, the length of any ‘rectifiable’ curve can be defined.
However, we have relegated this to an exercise since the present chapter deals
with applications of integration, and rectifiability is defined without any refer-
ence to integration.
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The basic idea behind the definition of the area of a surface generated by
revolving a curve about a line is to approximate the curve by a piecewise linear
curve and to consider the areas of the frustums of cones generated by revolving
the line segments that approximate the curve.

For ϕ ∈ [0, π], the sector {(x, y) ∈ R2 : x2 + y2 ≤ a2 and 0 ≤ θ(x, y) ≤ ϕ}
of a disk of radius a subtends an angle ϕ at the center. We have shown that
the area of this sector is a2ϕ/2, and if this sector is revolved about the x-axis,
then it generates a (solid) spherical cone whose volume is 2a3(1 − cosϕ)/3,
while the surface area of the spherical cap so generated is 2πa2(1 − cosϕ).
Letting ϕ = π, we may obtain the area of a disk of radius a, the volume of a
ball of radius a, and the surface area of a sphere of radius a.

We have calculated the area enclosed by an ellipse and the volume enclosed
by an ellipsoid. However, it is not possible to calculate the arc length of an
ellipse or the surface area of an ellipsoid in terms of algebraic functions and
elementary transcendental functions. The same holds for the arc length of
a lemniscate. To find these, one is led to the so-called ‘elliptic integrals’ or
‘lemniscate integrals’. Inverting functions defined by elliptic integrals gives rise
to a new class of functions known as ‘elliptic functions’, just as inverting the
function arctan defined by

arctanx =

∫ x

0

1

1 + t2
dt for x ∈ R

led us to the tangent function in Section 7.2. The study of elliptic functions,
initiated by Abel, Jacobi, and Gauss, is a rich and fascinating topic, which
connects many branches of mathematics. For a relatively accessible introduc-
tion, see the book of Silverman and Tate [54].

The results given in this chapter show that the real number π introduced
in Section 7.2 is equal to each of the following:

Area(D)

Radius(D)2
,

3

4

Volume(B)

Radius(B)3
,

1

2

Perimeter(C)

Radius(C)
,

1

4

Surface Area(S)

Radius(S)2
,

where D, B, C, and S denote a disk, a ball, a circle, and a sphere respectively.
These formulas are often used in high-school geometry without any proofs.

The results of Pappus regarding the centroids of surfaces of revolution and
of solids of revolution are truly remarkable, especially since they were conceived
as early as the fourth century A.D. They reduce the calculations of areas of
surfaces of revolution and volumes of solids of revolution to the calculations
of arc lengths and planar areas respectively.

As we have remarked in this chapter, one needs the notions of multiple
integrals to introduce the general concepts of area and volume. This is usually
done in a course on multivariate calculus and one can show that the definitions
of area and volume given in this chapter are indeed special cases of the general
treatment. Then one would be sure, for example, that the volume of a solid
body calculated by the Washer Method and by the Shell Method must come out
to be the same!
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In the section on quadrature rules, our proofs of error estimates do not use
divided differences; they are based only on the Fundamental Theorem of Calcu-
lus and Taylor’s Theorem. These proofs are inspired by the treatment on pages
328–330 of Hardy’s book [31]. Admittedly, these proof are quite involved. But
they display the power of Taylor’s Theorem. If f is an infinitely differentiable
function and the ‘Taylor series’ of f converges, then these error estimates can
be obtained more easily, as indicated in Exercise 61 of Chapter 9.

Exercises

Part A

1. Find the average of the function f : [1, 2] → R defined by f(x) := 1/x.
2. Given a circle of radius a and a diameter AB of the circle, chords are

drawn perpendicular to AB intercepting equal segments at each point of
AB. Find the average length of these chords.

3. Given a circle of radius a and a diameter AB of the circle, for each n ∈ N,
n chords are drawn perpendicular to AB so as to intercept equal arcs
along the circumference of the circle. Find the limit of the average length
of these n chords as n → ∞.

4. Let f : [a, b] → R be differentiable such that f ′ is integrable on [a, b]. Show
that the average of f ′ is equal to the average rate of change of f on [a, b],
namely [f(b) − f(a)]/(b − a).

5. Let a, b be positive real numbers. If f(x) := (b/a)
√

a2 − x2 and w(x) := x
for 0 ≤ x ≤ a, find the average of
(i) f2 with respect to w, (ii) f with respect to w2.

6. If f, g : [a, b] → R are integrable functions, then show that Av(f + g) =
Av(f) + Av(g), but Av(fg) may not be equal to Av(f)Av(g).

7. Let f : [0, 1] → R be defined by f(x) := x. Find Av(f, w) and Av(w, f) if
w : [0, 1] → R is defined by
(i) w(x) := x, (ii) w(x) := x2, (iii) w(x) := 1− x, (iv) w(x) := x(1− x).

8. Find the area of the region bounded by the given curves in each of the
following cases:
(i) y = 0, y = 2x + 3, x = 0 and x = 1, (ii) y = 4 − x2 and y = 0,

(iii)
√

x +
√

y = 1, x = 0 and y = 0, (iv) y = x4 − 2x2 and y = 2x2,
(v) y = 3x5 − x3, x = −1 and x = 1, (vi) x = y3 and x = y2,

(vii) y = 2 − (x − 2)2 and y = x, (viii) x = 3y − y2 and x + y = 3.
9. Find the area of the region bounded on the right by the line given by

x + y = 2, on the left by the parabola given by y = x2, and below by the
x-axis.

10. Let a ∈ R. Define f(x) := x − x2 and g(x) := ax for x ∈ R. Determine a
so that the region above the graph of g and below the graph of f has area
equal to 9

2 .
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11. Show that the area of the elliptical region given by ax2 + 2bxy + cy2 ≤ 1,
where a, b, c ∈ R, c > 0, and ac − b2 > 0, is equal to π/

√
ac − b2.

12. Let α, β ∈ R. Show that the areas A0, A1, A2, . . . of the regions bounded
by the x-axis and the half-waves of the curve y = eαx sin βx, x ≥ 0, form
a geometric progression with the common ratio eαπ/β .

13. Let a ∈ R with a > 0. Find the area enclosed by the lemniscate given by
the polar equation r2 = 2a2 cos 2θ.

14. Let a ∈ R with a > 0. Find the area of the region inside the circle given
by r = 6a cos θ and outside the cardioid given by r = 2a(1 + cos θ).

15. Let a ∈ R with a > 0. Find the area of the region enclosed by the loop of
the folium of Descartes given by x3 + y3 = 3axy.

16. Let p, q ∈ R satisfy 0 ≤ p < q and let α1, α2 : [p, q] → R be integrable
functions such that −π ≤ α1 ≤ α2 ≤ π. Let R := {(r cos θ, r sin θ) ∈ R2 :
p ≤ r ≤ q and α1(r) ≤ θ ≤ α2(r)} denote the region between the curves
given by θ = α1(r), θ = α2(r) and between the circles given by r = p,
r = q. Define

Area (R) :=

∫ q

p

r[α2(r) − α1(r)]dr.

Give a motivation for the above definition along the lines of the motivation
given in the text for the definition of the area of the region between curves
given by polar equations of the form r = p(θ).

17. (i) Let p, q ∈ R be such that 0 ≤ p < q and ϕ ∈ [0, π]. Using the
formula given in Exercise 16, show that the area of the circular strip
{(r cos θ, r sin θ) ∈ R2 : p ≤ r ≤ q and 0 ≤ θ ≤ ϕ} is (q2 − p2)ϕ/2.

(ii) Let α : [1, 2] → R be given by α(r) := 4π(r − 1)(2 − r), and let
R := {(r cos θ, r sin θ) ∈ R2 : 1 ≤ r ≤ 2 and 0 ≤ θ ≤ α(r)} Show that
the area of R is equal to π.

(iii) Let R := {(r cos θ, r sin θ) ∈ R2 : 1 ≤ r ≤ 2 and r ≤ θ ≤ r
√

r}. Find
Area (R).

18. Let a ∈ R with a > 0. The base of a certain solid body is the disk given
by x2 +y2 ≤ a2. Each of its slices by a plane perpendicular to the x-axis is
an isosceles right-angled triangular region with one of the two equal sides
in the base of the solid body. Find the volume of the solid body.

19. A solid body lies between the planes given by y = −2 and y = 2. Each of
its slices by a plane perpendicular to the y-axis is a disk with a diameter
extending between the curves given by x = y2 and x = 8 − y2. Find the
volume of the solid body.

20. A twisted solid is generated as follows. A fixed line L in 3-space and a
square of side s in a plane perpendicular to L are given. One vertex of the
square is on L. As this vertex moves a distance h along L, the square turns
through a full revolution with L as the axis. Find the volume of the solid
generated by this motion. What would the volume be if the square had
turned through two full revolutions in moving the same distance along the
line L?
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21. Let a, b ∈ R with 0 ≤ a < b. Suppose that a planar region R lies between
the lines given by x = a and x = b, and for each s ∈ [a, b], the line given
by x = s intersects R in a finite number of line segments whose total
length is ℓ(s). If the function ℓ : [a, b] → R is integrable, then show that
the volume of the solid body obtained by revolving the region R about
the y-axis is equal to

2π

∫ b

a

x ℓ(x)dx.

22. Find the volume of the solid of revolution obtained by revolving the region
bounded by the curves given by y = 3 − x2 and y = −1 about the line
given by y = −1 by both the Washer Method and the Shell Method.

23. The disk given by x2 + (y − b)2 ≤ a2, where 0 < a < b, is revolved about
the x-axis to generate a solid torus. Find the volume of this solid torus by
both the Washer Method and the Shell Method.

24. A round hole of radius
√

3 cm. is bored through the center of a solid ball
of radius 2 cm. Find the volume cut out.

25. Find the volume of the solid generated by revolving the region in the first
quadrant bounded by the curves given by y = x3 and y = 4x about the
x-axis by both the Washer Method and the Shell Method.

26. Let f : [0,∞) → [0,∞) be a continuous function. If for each a > 0,
the volume of the solid obtained by revolving the region under the curve
y = f(x), 0 ≤ x ≤ a, about the x-axis is equal to a2 + a, determine f .

27. Find the volume of the solid generated by revolving the region bounded
by the curves given by y =

√
x, y = 2, and x = 0 about the x-axis by both

the Washer Method and the Shell Method. If the region is revolved about
the line given by x = 4, what is the volume of the solid so generated?

28. If the region bounded by the curves given by y = tanx, y = 0, and x = π/3
is revolved about the x-axis, find the volume of the solid so generated.

29. Find the arc length of each of the curves mentioned below.
(i) the cuspidal cubic given by y2 = x3 between the points (0, 0) and

(4, 8),
(ii) the cycloid given by x = t − sin t, y = 1 − cos t, −π ≤ t ≤ π,
(iii) the curve given by (y + 1)2 = 4x3, 0 ≤ x ≤ 1,

(iv) the curve given by y =

∫ x

0

√
cos 2t dt, 0 ≤ x ≤ π/4.

30. Let p, q ∈ R with 0 ≤ p < q and α : [p, q] → R. Suppose a piecewise
smooth curve C is given by θ = α(r), r ∈ [p, q]. Show that the arc length
of C is equal to

ℓ(C) =

∫ q

p

√
1 + r2α′(r)2 dr.

(Hint: If x(r) := r cosα(r) and y(r) := r sin α(r) for r ∈ [p, q], then
x′(r)2 + y′(r)2 = 1 + r2α′(r)2.)

31. Show that the arc length of the spiral given by θ = r, r ∈ [0, π], is equal
to
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1

2
π
√

1 + π2 +
1

2
ln
(
π +

√
1 + π2

)
.

(Hint: Revision Exercise 46 (ii) given at the end of Chapter 7.)
32. For each of the following curves, find the arc length as well as the area of

the surface generated by revolving the curve about the x-axis.
(i) the asteroid given by x = a cos3 θ, y = a sin3 θ, −π ≤ θ ≤ π,
(ii) the loop of the curve given by 9x2 = y(3 − y)2, 0 ≤ y ≤ 3.

33. For each of the following curves, find the arc length as well as the area
of the surface generated by revolving the curve about the line given by
y = −1.

(i) y =
x3

3
+

1

4x
, 1 ≤ x ≤ 3, (ii) x =

3

5
y5/3 − 3

4
y1/3, 1 ≤ y ≤ 8.

34. Find the arc length of the curve given by

y =
2

3
x3/2 − 1

2
x1/2, 1 ≤ x ≤ 4,

and find the area of the surface generated by revolving the curve about
the y-axis.

35. Show that the surface area of the torus obtained by revolving the circle
given by x2 + (y − b)2 = a2, where 0 < a < b, about the x-axis is equal to
4π2ab. (Compare Example 8.14 (iii).)

36. For each of the following curves, find the area of the surface generated by
revolving the curve about the y-axis.
(i) y = (x2 + 1)/2, 0 ≤ x ≤ 1,
(ii) x = t + 1, y = (t2/2) + t, 0 ≤ t ≤ 1.

37. Let a ∈ R with a > 0. An arc of the catenary given by y = a cosh(x/a)
whose endpoints have abscissas 0 and a is revolved about the x-axis. Show
that the surface area A and the volume V of the solid thus generated are
related by the formula A = 2V/a.

38. How accurately should we measure the radius of a ball in order to calculate
its surface area within 3 percent of its exact value?

39. Given a right circular cone of base radius a and height h, find the radius
and the height of the right circular cylinder having the largest lateral
surface area that can be inscribed in the cone.

40. Let p, q ∈ R with 0 ≤ p < q and α : [p, q] → R. Suppose a piecewise smooth
curve given by θ = α(r), r ∈ [p, q], is revolved about a line through the
origin containing a ray given by θ = γ, and not crossing the curve. If S
denotes the surface so generated, then show that

Area (S) = 2π

∫ q

p

r| sin(α(r) − γ)|
√

1 + r2α′(r)2 dr.

(Hint: Compare Exercise 30 and note that for r ∈ [p, q], the distance of the
point (r cosα(r), r sin α(r)) from the line L is equal to r| sin(α(r) − γ)|.)
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41. Let ℓ, φ ∈ R with ℓ > 0. Consider the line segment given by θ = α(r),
where α(r) := ϕ for r ∈ [0, ℓ]. If this line segment is revolved about the
x-axis, show that the area of the cone S so generated is equal to πℓ2| sin ϕ|.
[Note: Since the right circular cone S has slant height ℓ and base radius
ℓ| sinϕ|, the result matches with the earlier calculation of the surface area
of a right circular cone done by splitting it open.]

42. If a piecewise smooth curve C is given by y = f(x), x ∈ [a, b], and ℓ(C) =∫ b

a

√
1 + f ′(x)2 dx �= 0, then show that the centroid (x, y) of C is given by

x =
1

ℓ(C)

∫ b

a

x
√

1 + f ′(x)2 dx and y =
1

ℓ(C)

∫ b

a

f(x)
√

1 + f ′(x)2 dx.

43. If a piecewise smooth curve C is given by r = p(θ), θ ∈ [α, β], and ℓ(C) =∫ β

α

√
p(θ)2 + p′(θ)2 dθ �= 0, then show that the centroid (x, y) of C is given

by

x =
1

ℓ(C)

∫ β

α

p(θ) cos θ
√

p(θ)2 + p′(θ)2 dθ

and

y =
1

ℓ(C)

∫ β

α

p(θ) sin θ
√

p(θ)2 + p′(θ)2 dθ.

44. Let a > 0 and ϕ ∈ [0, π]. Find the centroid of the arc of the circle given
by the polar equation r = a, 0 ≤ θ ≤ ϕ.

45. By choosing a suitable coordinate system, find the centroids of (i) a hemi-
sphere of radius a and (ii) a cylinder of radius a and height h.

46. Let a ∈ R with a > 0. Find the centroid of the region bounded by the
curves given by y = −a, x = a, x = −a, and y =

√
a2 − x2.

47. Find the centroid of the region enclosed by the curves given by y2 = 8x
and y = x2.

48. Find the centroid of the region in the first quadrant bounded by the curves
given by 4y = x2, x = 0, and y = 4.

49. Find the centroid of the region in the first quadrant bounded by the curves
given by 4x2 + 9y2 = 36 and x2 + y2 = 9.

50. Let a ∈ R with a > 0. Show that the centroid of the ball {(x, y, z) ∈ R3 :
x2 + y2 + z2 ≤ a2} is (0, 0, 0).

51. Let a ∈ R with a > 0. Find the centroid of the hemispherical solid body
generated by revolving the region under the curve given by y =

√
a2 − x2,

0 ≤ x ≤ a.
52. Find the centroid of the region bounded by the curves given by x = y2−y

and x = y. If this region is revolved about the x-axis, find the centroid of
the solid body so generated.

53. The region bounded by the curves given by y = 0, x = 3, and y = x2 is
revolved about the x-axis. Find the centroid of the solid body so generated.

54. Let a > 0. Use a result of Pappus to find the centroid of the region bounded
by the curves given by y =

√
a2 − x2, y = 0, and x = 0. (Hint: Revolve
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the given region about the x-axis or the y-axis to generate a hemispherical
solid.)

55. Let a > 0. Use a result of Pappus to find the centroid of the semicircular
region bounded by the curves given by y =

√
a2 − x2 and y = 0. If this

region is revolved about the line given y = −a, find the volume of the
solid so generated.

56. Let a > 0. Use a result of Pappus to find the centroid of the semicircular
arc y =

√
a2 − x2. If this arc is revolved about the line given by y = a,

find the surface area so generated.
57. Let a and b be positive real numbers such that a < b. Find the y-coordinate

of the centroid of the region bounded by curves given by y =
√

a2 − x2,
y =

√
b2 − x2, and y = 0.

58. Use a result of Pappus to find (i) the volume of a cylinder with height h
and radius a (ii) the volume of a cone with height h and base radius a.

59. Use a result of Pappus to show that the lateral surface area of a cone of
base radius a and slant height ℓ is πℓa.

60. Let f : [a, b] → R be a function, n ∈ N, and Pn := {x0, x1, . . . , xn} be any
partition of [a, b]. Define

R(Pn, f) :=
n∑

i=1

f(xi−1)(xi − xi−1),

M(Pn, f) :=
n∑

i=1

f
(xi−1 + xi

2

)
(xi − xi−1),

T (Pn, f) :=
1

2

n∑

i=1

[f(xi−1) + f(xi)](xi − xi−1),

and

S(Pn, f) :=
1

6

n∑

i=1

[
f(xi−1) + 4f

(xi−1 + xi

2

)
+ f(xi)

]
(xi − xi−1).

If f is a polynomial function of degree at most 1, then show that

R(Pn, f) = M(Pn, f) = T (Pn, f) =

∫ b

a

f(x)dx,

and if f is a polynomial function of degree at most 2, then show that

S(Pn, f) =

∫ b

a

f(x)dx.

61. If f : [a, b] → R is a polynomial function of degree at most 3, then show
that for every n ∈ N,

Sn(f) =

∫ b

a

f(x)dx.

(Compare part (ii) of Proposition 8.23.)
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62. If f : [a, b] → R is a convex function, then show that for every n ∈ N, the
error ∫ b

a

f(x)dx − Tn(f)

in using Tn(f) as an approximation of
∫ b

a f(x)dx is nonpositive, and if f
is a concave function, then it is nonnegative.

63. Let f : [a, b] → R be any function. Let n ∈ N be even and Pn :=
{x0, x1, . . . , xn} be the partition of [a, b] into n equal parts. If k := n/2
and Qk := {x0, x2, . . . , x2k−2, x2k}, show that

Sn(f) =
1

3
[Tk(f) + 2Mk(f)] ,

where Sn(f) is defined with respect to Pn and Tk(f), Mk(f) are defined
with respect to Qk. Deduce that if f is integrable, then

Sn(f) →
∫ b

a

f(x)dx as n → ∞.

64. If f is continuous on [a, b], f ′ exists on (a, b), and there is α ∈ R such that
|f ′(x)| ≤ α for all x ∈ (a, b), then show that

∣∣∣∣∣

∫ b

a

f(x)dx − Mn(f)

∣∣∣∣∣ ≤
(b − a)2α

4n
.

(Compare parts (i) and (ii) of Proposition 8.21.)
65. Consider the function f : [0, 1] → R defined by f(x) := 1/(1 + x2). Find

Rn(f), Mn(f), and Tn(f) for n ∈ N, and Sn(f) for even n ∈ N. Prove
that

∣∣∣∣
∫ 1

0

f(x)dx − Rn(f)

∣∣∣∣ ≤
1

n
,

∣∣∣∣
∫ 1

0

f(x)dx − Mn(f)

∣∣∣∣ ≤
1

6n2
,

while
∣∣∣∣
∫ 1

0

f(x)dx − Tn(f)

∣∣∣∣ ≤
1

3n2
and

∣∣∣∣
∫ 1

0

f(x)dx − Sn(f)

∣∣∣∣ ≤
2

15n4
(n even).

Find how large n must be taken if we wish to approximate
∫ 1

0 f(x)dx with
an error less than 10−4 using Rn(f), Mn(f), Tn(f), or Sn(f).

66. Let f : [0, 1] → R be defined by f(x) := (1 − x2)3/2. Find Rn(f), Mn(f),
Tn(f), and Sn(f) for n = 4 and n = 6. Also, find the corresponding error
estimates.

67. Consider the error function erf : R → R defined by

erf (x) =
2√
π

∫ x

0

e−t2dt.

Use Compound Simpson’s Rule with n = 4 to find an approximation α to
erf (1) in terms of π and e. Show that |erf (1) − α| ≤ 19/5760.
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68. Consider the function f : [0, 1] → R defined by f(x) = xe−x2

. Find
Tn(f) and Sn(f) with n = 2 and n = 4. Obtain the corresponding error
estimates, and compare them with the actual errors

∫ 1

0

f(x)dx − Tn(f) and

∫ 1

0

f(x)dx − Sn(f).

Part B

69. Let h > 0. For each x ∈ [0, h], the area of the slice at x of a solid body
by a plane perpendicular to the x-axis is given by A(x) := ax2 + bx + c.
If B1 := A(0) = c, M := A(h/2) = (ah2 + 2bh + 4c)/4, and B2 := A(h) =
ah2 + bh + c, then show that the volume of the solid body is equal to
(B1 + 4M + B2) /6.
[Note: This formula is known as the Prismoidal Formula.]

70. Let a curve C in R2 be given by (x(t), y(t)), t ∈ [α, β]. For a partition
{t0, t1, . . . , tn} of [α, β], let

ℓ(C, P ) :=

n∑

i=1

√
[x(ti) − x(ti−1)]2 + [y(ti) − y(ti−1)]2.

If the set {ℓ(C, P ) : P is a partition of [α, β]} is bounded above, then the
curve C is said to be rectifiable, and the length of C is defined to be

ℓ(C) := sup{ℓ(C, P ) : P is a partition of [α, β]}.

[Analogous definitions hold for a curve in R3.]
(i) If γ ∈ (α, β), and the curves C1 and C2 are given by (x(t), y(t)),

t ∈ [α, γ] and by (x(t), y(t)), t ∈ [γ, β] respectively, then show that C
is rectifiable if and only if C1 and C2 are rectifiable.

(ii) Suppose that the functions x and y are differentiable on [α, β], and
one of the derivatives x′ and y′ is continuous on [α, β], while the other
is integrable on [α, β]. Show that the curve C is rectifiable and

ℓ(C) =

∫ β

α

√
x′(t)2 + y′(t)2 dt.

(Hint: Propositions 4.18, 6.31, and 3.17 and Exercise 43 of Chapter
6.) (Compare Exercise 48 of Chapter 6.)

(iii) Show that the conclusion in (ii) above holds if the functions x and
y are continuous on [α, β] and if there are a finite number of points
γ0 < γ1 < · · · < γn in [α, β], where γ0 = α and γn = β, such that the
assumptions made in (ii) above about the functions x and y hold on
each of the subintervals [γi−1, γi] for i = 1, . . . , n.
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[Note: The result in (iii) above shows that the definition of the length
of a piecewise smooth curve given in Section 8.3 is consistent with the
definition of the length of a rectifiable curve given above.]

71. Let f : [0, 1] → R be defined by f(0) = 0 and f(x) = x2 sin(π/x2) for
x ∈ (0, 1]. Given any n ∈ N, consider the partition

Pn :=

{
0, n−1/2,

(
n − 1

2

)−1/2

, (n − 1)
−1/2

, . . . , (3/2)
−1/2

, 1

}

of [0, 1] and write Pn := {x0, x1, . . . , x2n−2}. Show that

2n−2∑

i=1

√
[xi − xi−1]2 + [f(xi) − f(xi−1)]2 ≥

(
1

3
+

1

5
+ · · · + 1

2n − 1

)
.

Deduce that the curve y = f(x), 0 ≤ x ≤ 1, is not rectifiable even though
the function f is differentiable. (Hint: Exercise 10 of Chapter 2.)

72. Let f : [a, b] → R be a bounded function that is continuous on (a, b),
and w : [a, b] → R be a weight function that is continuous and positive on
(a, b). Show that there is c ∈ (a, b) such that Av(f ; w) = f(c). (Hint: Apply
Cauchy’s Mean Value Theorem (Proposition 4.36) to the functions F, G :
[a, b] → R defined by F (x) :=

∫ x

a f(t)w(t)dt and G(x) :=
∫ x

a w(t)dt.)
73. Let f : [a, b] → R be a bounded function that is continuous on (a, b).

If the range of f is contained in (α, β) and φ : [α, β] → R is a convex
function that is continuous at α and β, then show that Av(f) ∈ (α, β),
the function φ ◦ f : [a, b] → R is integrable, and φ(Av(f)) ≤ Av(φ ◦ f).
(Hint: Considering partitions of [a, b] into equal parts, use Exercise 72
of this chapter, Exercise 42 of Chapter 6, Exercise 47 of Chapter 3, and
Proposition 6.31.)
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Infinite Series and Improper Integrals

If a1, . . . , an are any real numbers, then we can add them together and form
their sum a1 + · · · + an. In this chapter, we shall investigate whether we can
‘add’ infinitely many real numbers. In other words, if (ak) is a sequence of
real numbers, then we ask whether we can give a meaning to a symbol such
as ‘a1 + a2 + · · ·’ or ‘

∑∞
k=1 ak’. This leads us to consider what is known as an

infinite series, or simply a series, of real numbers. The study of infinite series
is taken up in the first three sections of this chapter, and this may be viewed
as a sequel to the theory of sequences developed in Chapter 2. In Section 9.1
below, we define the notion of convergence of a series and thus give a precise
meaning to the idea of forming the sum of infinitely many real numbers. A
number of useful tests for the convergence of series are given in Section 9.2.
In Section 9.3, we study a special kind of series, known as power series. We
also discuss here the Taylor series, which is a natural analogue of the notion
studied in Chapter 4 of the Taylor polynomial of a function.

In the last three sections of this chapter, we develop the theory of improper
integrals, which are a continuous analogue of infinite series and which extend
the theory of integration developed in Chapter 6. The notion of convergence
of improper integrals and some basic properties are discussed in Section 9.4.
A number of useful tests for the convergence of improper integrals are given
in Section 9.5. In Section 9.6, we discuss some ‘integrals’ that are related to
improper integrals of the kind studied in the previous sections. We also discuss
here the beta function and the gamma function, which are quite important
and useful in analysis.

9.1 Convergence of Series

An infinite series, or, for short, a series of real numbers is an ordered pair(
(ak), (An)

)
of sequences of real numbers such that

An = a1 + · · · + an for all n ∈ N.
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Equivalently, it is an ordered pair
(
(ak), (An)

)
of sequences such that

ak = Ak − Ak−1 for all k ∈ N, where A0 := 0, by convention.

The first sequence (ak) is called the sequence of terms and the second se-
quence (An) is called the sequence of partial sums of the (infinite) series(
(ak), (An)

)
. For simplicity and brevity, we shall use an informal but sug-

gestive notation
∑∞

k=1 ak for the infinite series
(
(ak), (An)

)
. In this notation,

prominence is given to the first sequence (ak), but the second sequence (An)
is just as important. At any rate, the two sequences (ak) and (An) determine
each other uniquely.

In some cases, it is convenient to consider the sequence (ak) of terms in-
dexed as a0, a1, a2, . . ., or more generally, as am, am+1, . . . for some m ∈ Z. In
such cases, the sequence (An) of partial sums will be indexed as A0, A1, A2, . . .
or more generally, as Am, Am+1, . . . for some m ∈ Z. Accordingly, the conven-
tion A0 := 0 is replaced by A−1 := 0 or more generally, Am−1 := 0. In general,
the indexing of (ak) will be clear from the context, and we may simply use
the notation

∑
k ak in place of the more elaborate

∑∞
k=1 ak, or

∑∞
k=0 ak, or∑∞

k=m ak.
We say that a series

∑∞
k=1 ak is convergent if

lim
n→∞

An = lim
n→∞

n∑

k=1

ak

exists, that is, if the sequence (An) of its partial sums is convergent. If (An)
converges to A, then by part (i) of Proposition 2.2, the real number A is
unique, and it is called the sum of the series

∑∞
k=1 ak. If a series

∑∞
k=1 ak

is convergent, we may denote its sum by the same symbol
∑∞

k=1 ak used to
denote the series. Thus, when we write

∞∑

k=1

ak = A,

we mean that A is a real number, the series
∑∞

k=1 ak is convergent, and its
sum is equal to A. In this case we may also say that

∑∞
k=1 ak converges

to A. An infinite series that is not convergent is said to be divergent. In
particular, we say that the series diverges to ∞ or to −∞ according as its
sequence of partial sums tends to ∞ or to −∞. It is useful to keep in mind
that the convergence of a series is not affected by changing a finite number of
its terms, although its sum may change by doing so. (See Exercise 2.)

In Chapter 2 we have considered many sequences that are in fact sequences
of partial sums of some important series. We list them here for convenience.

Examples 9.1. (i) (Geometric Series) Let a ∈ R. Define a0 := 0 and
ak := ak for k ∈ N. If a �= 1, then for n = 0, 1, 2, . . ., we have
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An := a0 + a1 + · · · + an = 1 + a + · · · + an =
1 − an+1

1 − a
.

Suppose |a| < 1. We have seen in Example 2.7 (i) that An → 1/(1 − a).
Thus

∑∞
k=0 ak is convergent and its sum is equal to 1/(1 − a), that is,

1 +

∞∑

k=1

ak =
1

1 − a
for a ∈ R with |a| < 1.

This is perhaps the most important example of a convergent series. Its
special feature is that we are able to give a simple closed-form formula for
each of its partial sums as well as its sum. On the other hand, if |a| ≥ 1,
then

∑∞
k=0 ak is divergent and this can be seen as follows. If a ≥ 1, then

An ≥ n + 1 for n = 0, 1, 2, . . ., and so An → ∞. Thus, in this case∑∞
k=0 ak diverges to ∞. Next, if a = −1, then A2n = 1 and A2n+1 = 0 for

all n = 0, 1, 2, . . ., and so
∑∞

k=0 ak is divergent. Finally, if a < −1, then
A2n → ∞, whereas A2n+1 → −∞, and hence

∑∞
k=0 ak is divergent.

(ii) (Exponential Series) For k = 0, 1, 2, . . ., define ak := 1/k!. Then for
n = 0, 1, 2, . . ., we have

An := a0 + a1 + · · · + an = 1 +
1

1!
+ · · · + 1

n!
.

We have seen in Example 2.10 (i) that (An) is convergent. Moreover,
Example 2.10 (ii) and Corollary 7.6 show that An → e. Thus

∑∞
k=0 ak is

convergent and its sum is equal to e. More generally, given any x ∈ R, if
we define a0 := 0 and ak := xk/k! for k ∈ N, then we shall see in Example
9.31 that

∑∞
k=0 ak is convergent and its sum is equal to ex, that is

1 +

∞∑

k=1

xk

k!
= ex for x ∈ R.

(iii) (Harmonic Series and its variants) As seen in Example 2.10 (iii),

∞∑

k=1

1

k
diverges to ∞, but

∞∑

k=1

(−1)k−1 1

k
converges.

The divergent series
∑∞

k=1(1/k) is called the harmonic series. Replacing
k by its powers, we obtain important and useful variants of this series. Let
p be a rational number. Example 2.10 (v) shows that

∞∑

k=1

1

kp
diverges to ∞ if p ≤ 1, but converges if p > 1.

Further, we shall see in Examples 9.7 (i) and 9.23 (i) that

∞∑

k=1

(−1)k−1 1

kp
diverges if p ≤ 0, but converges if p > 0. ✸
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Since the convergence of a series is defined in terms of the convergence of
a particular sequence, namely the sequence of its partial sums, many results
about the convergence of series follow from the corresponding results given in
Chapter 2 for the convergence of sequences. We mention them below without
giving detailed proofs.

1. The sequence of partial sums of a convergent series is bounded. (Compare
part (ii) of Proposition 2.2.)

2. Let
∑

k ak = A and
∑

k bk = B. Then

∑

k

(ak + bk) = A + B and
∑

k

(rak) = rA for any r ∈ R.

Further, if ak ≤ bk for all k, then A ≤ B. (Compare parts (i) and (ii) of
Proposition 2.3 and part (i) of Proposition 2.4.) For products, see Exer-
cises 1 and 51.

3. (Sandwich Theorem) If (ak), (bk), and (ck) are sequences of real num-
bers such that ak ≤ ck ≤ bk for each k, and further,

∑
k ak = A and∑

k bk = A, then
∑

k ck = A. (Compare Proposition 2.5.)
4. (Cauchy Criterion) A series

∑
k ak is convergent if and only if for every

ǫ > 0, there is n0 ∈ N such that

∣∣∣
m∑

k=n+1

ak

∣∣∣ < ǫ for all m ≥ n ≥ n0.

This follows from Proposition 2.19 by noting that the sequence (An) of
partial sums satisfies Am − An =

∑m
k=n+1 ak for all m ≥ n.

Remark 9.2. As a simple application of the geometric series and the second
property above, we can strengthen Exercise 29 of Chapter 2. Indeed, if the
decimal expansion of y ∈ [0, 1) is finite or recurring and b1, b2, . . . denote the
digits of y, then there are i, j ∈ N with i < j such that

y =

i−1∑

k=0

bk

10k
+

(
bi

10i
+

bi+1

10i+1
+ · · · + bj−1

10j−1

)
A,

where

A =

∞∑

k=0

1

10(j−i)k
=

10(j−i)

10(j−i) − 1
.

Consequently, y is a rational number. Thus, we can conclude that y ∈ [0, 1)
is a rational number if and only if its decimal expansion is finite or recurring.
A similar result holds for any real number. ✸
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Telescoping Series and Series with Nonnegative Terms

If (bk) is a sequence of real numbers, the series
∑∞

k=1(bk −bk+1) is known as a
telescoping series. We have the following result regarding its convergence.

Proposition 9.3. A telescoping series
∑∞

k=1(bk − bk+1) is convergent if and
only if the sequence (bk) is convergent, and in this case

∞∑

k=1

(bk − bk+1) = b1 − lim
k→∞

bk.

Proof. For every n ∈ N, we have

n∑

k=1

(bk − bk+1) = b1 − bn+1.

This yields the desired result. ⊓⊔
It may be noted that every series

∑∞
k=1 ak can be written as a telescoping

series. In fact, if An is the nth partial sum of the series
∑∞

k=1 ak, then letting
b1 := 0 and bk := −Ak−1 for k ≥ 2, we obtain ak = bk − bk+1 for all k ∈ N.
But then determining whether the sequence (bk) is convergent is the same as
determining the convergence of the given series

∑∞
k=1 ak. In some special cases,

however, it is possible write ak = bk − bk+1 for all k ∈ N without considering
the partial sums An. In these cases, we can determine the convergence of the
series and find its sum using Proposition 9.3. For example, consider the series∑∞

k=1 1/k(k + 1). We have

ak =
1

k(k + 1)
=

1

k
− 1

k + 1
= bk − bk+1 for all k ∈ N,

where bk := 1/k for k ∈ N. Since bk → 0, we see that
∑∞

k=1 1/k(k + 1) is
convergent and

∞∑

k=1

1

k(k + 1)
=

∞∑

k=1

(bk − bk+1) = b1 − lim
k→∞

bk = 1 − 0 = 1.

Our next result is a characterization of the convergence of a series with non-
negative terms. An interesting application of this result, known as Cauchy’s
Condensation Test, is given in Exercise 7.

Proposition 9.4. Let (ak) be a sequence such that ak ≥ 0 for all k ∈ N. Then∑∞
k=1 ak is convergent if and only if the sequence (An) of its partial sums is

bounded above, and in this case

∞∑

k=1

ak = sup{An : n ∈ N}.

If (An) is not bounded above, then
∑∞

k=1 ak diverges to ∞.
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Proof. Since ak ≥ 0 for all k ∈ N, we see that An+1 = An + an+1 ≥ An

for all n ∈ N, that is, the sequence (An) of the partial sums of
∑∞

k=1 ak

is monotonically increasing. By part (ii) of Proposition 2.2 and part (i) of
Proposition 2.8, we see that the sequence (An) is convergent if and only if it
is bounded above, and in this case

∞∑

k=1

ak = lim
n→∞

An = sup{An : n ∈ N}.

Also, as we have seen in Remark 2.12, if (An) is not bounded above, then
An → ∞, that is,

∑∞
k=1 ak diverges to ∞. ⊓⊔

As an easy application of Proposition 9.4, we can extend the result in
Example 9.1 (iii) from rational powers to real powers (See Exercise 5.) A
result similar to Proposition 9.4 holds if ak ≤ 0 for all k ∈ N. (See Exercise 6.)
More generally, if ak has the same sign for all large k, that is, if there is
k0 ∈ N such that ak has the same sign for all k ≥ k0, then

∑
k ak is convergent

if and only if (An) is bounded. However, if there is no k0 ∈ N such that ak

is of the same sign for all k ≥ k0, then the series
∑

k ak may diverge even
though its sequence of partial sums is bounded. This is illustrated by the
series

∑∞
k=1(−1)k−1, for which the sequence (An) of partial sums is given by

A2n−1 := 1 and A2n := 0 for all n ∈ N.
If each term ak of a series

∑
k ak is either equal to 0 or has the same sign,

then clearly, the series
∑

k ak is convergent if and only if the series
∑

k |ak|
is convergent. This may not hold if the terms ak are of mixed signs. Thus
we are led to the following concept. A series

∑
k ak is said to be absolutely

convergent if the series
∑

k |ak| is convergent. We now give an important
result about absolutely convergent series of real numbers.

Proposition 9.5. An absolutely convergent series is convergent.

Proof. Let
∑

k ak be an absolutely convergent series. For each k, define

a+
k :=

|ak| + ak

2
and a−

k :=
|ak| − ak

2
.

Let (An), (A+
n ), (A−

n ), and (Bn) denote the sequences of partial sums of
the series

∑
k ak,

∑
k a+

k ,
∑

k a−
k , and

∑
k |ak|, respectively. Since

∑
k |ak| is

convergent, the sequence (Bn) is bounded. Also, since

0 ≤ A+
n ≤ Bn and 0 ≤ A−

n ≤ Bn for all n,

we see that the sequences (A+
n ) and (A−

n ) are bounded. Further, since a+
k ≥ 0

and a−
k ≥ 0 for all k, it follows from Proposition 9.4 that the series

∑
k a+

k

and
∑

k a−
k are convergent. But ak = a+

k −a−
k for all k. Hence we can conclude

that the series
∑

k ak is convergent. ⊓⊔
The converse of the above result does not hold, as can be seen by con-

sidering the series
∑∞

k=1(−1)k−1/k, which is convergent but not absolutely
convergent. A convergent series that is not absolutely convergent is said to be
conditionally convergent.
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9.2 Convergence Tests for Series

In this section we shall consider several practical tests that enable us to test
the convergence or the divergence of a wide variety of series. We begin with
a simple result on which most of the tests for the divergence of a series are
based.

Proposition 9.6 (kth Term Test). If
∑

k ak is convergent, then ak → 0 as
k → ∞. In other words, if ak �→ 0, then

∑
k ak is divergent.

Proof. Let
∑

k ak be a convergent series. If (An) is its sequence of partial sums
and A is its sum, then we have ak = Ak − Ak−1 → A − A = 0. ⊓⊔

Examples 9.7. (i) If p ∈ R with p ≤ 0, then |(−1)k−1k−p| ≥ 1 for all k ∈ N.
Hence by the kth Term Test (Proposition 9.6),

∞∑

k=1

(−1)k−1 1

kp
is divergent if p ≤ 0.

(ii) The converse of the kth Term Test (Proposition 9.6) does not hold, as can
be seen by considering the harmonic series

∑∞
k=1 1/k. ✸

Remark 9.8. A variant of the kth Term Test (Proposition 9.6), known as
Abel’s kth Term Test, is given in Exercise 8. This variant can also be
useful in establishing the divergence of a series. ✸

Tests for Absolute Convergence

We shall now give a variety of tests to determine the absolute convergence
(and hence, the convergence) of a series.

Proposition 9.9 (Comparison Test). Let ak, bk ∈ R be such that |ak| ≤ bk

for all k ∈ N. If
∑

k bk is convergent, then
∑

k ak is absolutely convergent and

∣∣∣
∑

k

ak

∣∣∣ ≤
∑

k

bk.

Proof. Let (An), (Bn), and (Cn) denote the sequences of partial sums of the
series

∑
k ak,

∑
k bk, and

∑
k |ak| respectively. Suppose

∑
k bk is convergent.

Then (Bn) is a bounded sequence. Since |ak| ≤ bk for all k, we see that 0 ≤
Cn ≤ Bn, and hence (Cn) is also a bounded sequence. Further, since |ak| ≥ 0
for all k, it follows from Proposition 9.4 that

∑
k |ak| is convergent, that

is,
∑

k ak is absolutely convergent. By Proposition 9.5,
∑

k ak is convergent.
Further, since −bk ≤ ak ≤ bk for all k, we have −Bn ≤ An ≤ Bn for all
n. Taking the limit as n → ∞, we get −∑

k bk ≤ ∑
k ak ≤ ∑

k bk, that is,∣∣∑
k ak

∣∣ ≤ ∑
k bk. ⊓⊔
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It follows from the above result that if ak = O(bk) and bk ≥ 0 for all k,
then the convergence of

∑
k bk implies the absolute convergence of

∑
k ak. The

above result can also be stated as follows. If |ak| ≤ bk for all k and
∑

k |ak|
diverges to ∞, then

∑
k bk also diverges to ∞.

As seen below, the geometric series and the series
∑∞

k=1 1/kp, where p ∈ R,
are often useful in employing the comparison tests.

Examples 9.10. (i) For k = 0, 1, 2, . . ., let ak := (2k + k)/(3k + k). If we let
bk := (2/3)k, then

∑∞
k=0 bk is convergent and

|ak| =
2k + k

3k + k
≤ 2k + 2k

3k
= 2

(
2

3

)k

= 2bk for all k ≥ 0.

Hence by the Comparison Test,
∑∞

k=0 ak is convergent.
(ii) Let ak := 1/(1+k2+k4)1/3 for k ∈ N. If we let bk := 1/k4/3, then

∑∞
k=0 bk

is convergent and

|ak| =
1

(1 + k2 + k4)1/3
≤ 1

k4/3
= bk for all k ∈ N.

Hence by the Comparison Test,
∑∞

k=0 ak is convergent. ✸

Given a series
∑

k ak, it may be difficult to look for a convergent series∑
k bk such that |ak| ≤ bk for each k. It is often easier to find a convergent

series
∑

k bk of nonzero terms such that the ratio ak/bk approaches a limit as
k → ∞. In these cases, the following result is useful.

Proposition 9.11. Let (ak) and (bk) be sequences such that bk �= 0 for all
large k. Assume that ak/bk → ℓ as k → ∞, where ℓ ∈ R or ℓ = ∞ or ℓ = −∞.

(i) If bk > 0 for all large k,
∑

k bk is convergent, and ℓ ∈ R, then
∑

k ak is
absolutely convergent.

(ii) If ak > 0 for all large k,
∑

k ak is convergent, and ℓ �= 0, then
∑

k bk is
absolutely convergent.

Proof. (i) Suppose bk > 0 for all large k, and ℓ ∈ R. Since ak/bk → ℓ as
k → ∞, there is k0 ∈ N such that

−1 <
ak

bk
− ℓ < 1, that is, (ℓ − 1)bk < ak < (ℓ + 1)bk for all k ≥ k0.

If α := max{|ℓ + 1|, |ℓ− 1|}, then |ak| < αbk for all k ≥ k0. So by Proposition
9.9, the convergence of

∑
k bk implies the absolute convergence of

∑
k ak.

(ii) Suppose ak > 0 for all large k and ℓ �= 0. If ℓ ∈ R, then we have
limk→∞(bk/ak) = 1/ℓ, and if ℓ = ∞ or ℓ = −∞, then limk→∞(bk/ak) = 0. So
the desired result follows from (i) above by interchanging ak and bk. ⊓⊔

In practice, the following simpler version of the above proposition turns
out to be particularly useful.
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Corollary 9.12 (Limit Comparison Test). Let (ak) and (bk) be sequences
such that ak > 0 and bk > 0 for all large k. Assume that

lim
k→∞

ak

bk
= ℓ, where ℓ ∈ R with ℓ �= 0.

Then ∑

k

ak is convergent ⇐⇒
∑

k

bk is convergent.

Proof. The implication ‘=⇒’ follows from part (ii) of Proposition 9.11, while
‘⇐=’ follows from part (i) of Proposition 9.11. ⊓⊔

A version of the Comparison Test known as the Ratio Comparison Test
is given in Exercise 10.

Examples 9.13. (i) Let ak := (2k + k)/(3k − k) for k ∈ N. If we let bk :=
(2/3)k, then ak > 0 and bk > 0 for all k ∈ N. Moreover,

ak

bk
=

1 + (k/2k)

1 − (k/3k)
→ 1 as k → ∞.

Since
∑∞

k=0 bk is convergent, by the Limit Comparison Test, we see that∑∞
k=0 ak is convergent.

(ii) Let ak := sin(1/k) for all k ∈ N. If we let bk := 1/k, then ak > 0 and
bk > 0 for all k ∈ N. Moreover,

ak

bk
=

sin(1/k)

(1/k)
→ 1 as k → ∞.

Since
∑∞

k=1 bk is divergent, by the Limit Comparison Test, we see that∑∞
k=1 ak is divergent. ✸

Sometimes, it is better to apply the stronger version of the Limit Com-
parison Test given in Proposition 9.11.

Examples 9.14. (i) Let p ∈ R and ak := (ln k)/kp for k ∈ N. First assume
that p > 1 and let q := (p + 1)/2. Then 1 < q < p. If we let bk := 1/kq for
k ∈ N, then bk > 0 for all k ∈ N and by L’Hôpital’s Rule,

ak

bk
=

(ln k)/kp

1/kq
=

ln k

kp−q
→ 0 as k → ∞.

Since
∑∞

k=1 bk is convergent, by part (i) of Proposition 9.11, we see that∑∞
k=1 ak is convergent. On the other hand, if p ≤ 1 and we let bk := 1/kp

for k ∈ N, then bk > 0 for all k ∈ N and

ak

bk
=

(ln k)/kp

1/kp
= ln k → ∞ as k → ∞.
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Since ak > 0 for k ≥ 2 and
∑∞

k=1 bk is divergent, by part (ii) of Proposition
9.11, we see that

∑∞
k=1 ak is divergent. Thus we can conclude that

∞∑

k=1

ln k

kp
converges if p > 1 and diverges if p ≤ 1.

(ii) Let p > 0 and ak := 1/(ln k)p for k ∈ N with k ≥ 2. If we let bk := 1/k
for k = 2, 3, . . ., then bk > 0 for k ≥ 2 and by L’Hôpital’s Rule,

ak

bk
=

1/(lnk)p

1/k
=

k

(ln k)p
→ ∞ as k → ∞.

Since ak > 0 for k ≥ 2 and
∑∞

k=2 bk is divergent, by part (ii) of Proposition
9.11, we see that

∑∞
k=2 ak is divergent. ✸

The following result, known as Cauchy’s Root Test, or simply the Root
Test, is one of the most basic tests to determine the convergence of a series.

Proposition 9.15 (Root Test). Let (ak) be a sequence of real numbers.

(i) If there is α ∈ R with α < 1 such that |ak|1/k ≤ α for all large k, then∑∞
k=1 ak is absolutely convergent.

(ii) If |ak|1/k ≥ 1 for infinitely many k ∈ N, then
∑∞

k=1 ak is divergent.

In particular, if

|ak|1/k → ℓ as k → ∞, where ℓ ∈ R or ℓ = ∞,

then

∞∑

k=1

ak is absolutely convergent when ℓ < 1, and it is divergent when ℓ > 1.

Proof. (i) Suppose α < 1 and k0 ∈ N is such that |ak|1/k ≤ α for all k ≥ k0.
If we let bk := αk for k ∈ N, then |ak| ≤ bk for all k ≥ k0. Moreover, since∑∞

k=1 bk is convergent, the Comparison Test (Proposition 9.9) shows that∑∞
k=1 ak is absolutely convergent.

(ii) If |ak|1/k ≥ 1 for infinitely many k ∈ N, then |ak| ≥ 1 for infinitely
many k ∈ N and therefore ak →/ 0 as k → ∞. Hence the kth Term Test
(Proposition 9.6) shows that

∑∞
k=1 ak is divergent.

Now assume that |ak|1/k → ℓ as k → ∞. Suppose ℓ ∈ R with ℓ < 1. If
α := (1+ℓ)/2, then ℓ < α < 1 and there is k0 ∈ N such that |ak|1/k < α for all
k ≥ k0. Hence by (i) above,

∑∞
k=1 ak is absolutely convergent. Next, suppose

ℓ = ∞ or ℓ ∈ R with ℓ > 1. Then there is k1 ∈ N such that |ak|1/k > 1 for all
k ≥ k1. Hence by (ii) above,

∑∞
k=1 ak is divergent. ⊓⊔

The following consequence of the Root Test, known as D’Alembert’s
Ratio Test, or simply the Ratio Test, is one of the most widely employed
tests to determine the convergence of a series.
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Proposition 9.16 (Ratio Test). Let (ak) be a sequence of real numbers.

(i) If there is α ∈ R with α < 1 such that |ak+1| ≤ α|ak| for all large k, then∑∞
k=1 ak is absolutely convergent.

(ii) If |ak+1| ≥ |ak| > 0 for all large k, then
∑∞

k=1 ak is divergent.

In particular, if ak �= 0 for all large k and

|ak+1|
|ak|

→ ℓ as k → ∞, where ℓ ∈ R or ℓ = ∞,

then

∞∑

k=1

ak is absolutely convergent if ℓ < 1, and it is divergent if ℓ > 1.

Proof. (i) Suppose α < 1 and k0 ∈ N is such that |ak+1| ≤ α|ak| for all k ≥ k0.
Clearly, α ≥ 0. If α = 0, there is nothing to prove. If α > 0, then

|ak| ≤ α|ak−1| ≤ α2|ak−2| ≤ · · · ≤ αk−k0 |ak0
| = (|ak0

|α−k0)αk for all k ≥ k0.

Also, since 0 < α < 1, the series
∑∞

k=1 αk is convergent, and thus, the Com-
parison Test (Proposition 9.9) shows that

∑∞
k=1 ak is absolutely convergent.

(ii) Let k1 ∈ N be such that |ak+1| ≥ |ak| > 0 for all k ≥ k1. Since
|ak| ≥ |ak−1| ≥ · · · ≥ |ak1

| > 0 for all k ≥ k1, it follows that ak �→ 0 as
k → ∞. Hence by the kth Term Test (Proposition 9.6),

∑∞
k=1 ak is divergent.

Next, assume that ak �= 0 for all large k and |ak+1|/|ak| → ℓ as k → ∞.
Suppose ℓ ∈ R with ℓ < 1. If α := (1+ℓ)/2, then ℓ < α < 1 and there is k0 ∈ N
such that (|ak+1|/|ak|) < α, that is, |ak+1| < α|ak| for all k ≥ k0. Hence by (i)
above,

∑∞
k=1 ak is absolutely convergent. On the other hand, suppose ℓ ∈ R

with ℓ > 1 or ℓ = ∞. Then there is k1 ∈ N such that |ak+1|/|ak| > 1, that is,
|ak+1| > |ak| for all k ≥ k1. Hence by (ii) above,

∑∞
k=1 ak is divergent. ⊓⊔

Remarks 9.17. (i) Both the Root Test and the Ratio Test deduce absolute
convergence of a series by comparing it with the geometric series. The Ratio
Test is often simpler to use than the Root Test because it is easier to calcu-
late ratios than roots. But the Root Test has a wider applicability than the
Ratio Test in the following sense. Whenever the Ratio Test gives (absolute)
convergence of a series, so does the Root Test (Exercise 55), and moreover,
the Root Test can yield (absolute) convergence of a series for which the Ratio
Test is inconclusive (Example 9.18 (iv)).

(ii) Both the Root Test and the Ratio Test deduce divergence of a series by
appealing to the kth Term Test (Proposition 9.6). It may be observed that for
deducing the divergence of a series

∑∞
k=1 ak, the Root Test requires |ak| ≥ 1

for infinitely many k ∈ N, while the Ratio Test requires |ak+1| ≥ |ak| for all
k ≥ k1, where k1 ∈ N and ak1

�= 0. The series
∑

k ak may not diverge if we
only have |ak+1| ≥ |ak| for infinitely many k ∈ N. For example, consider
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a1 := 1, a2k :=
1

(k + 1)2
and a2k+1 :=

1

k2
for all k ∈ N.

Then |a2k+1| ≥ |a2k| for all k ∈ N, but
∑∞

k=1 ak is convergent because it has
positive terms and for k ∈ N,

a3 + a5 + · · · + a2k+1 =
k∑

j=1

1

j2
and a1 + a2 + a4 + · · · + a2k =

k+1∑

j=1

1

j2
.

Hence the sequence of partial sums of the series
∑∞

k=1 ak is bounded.

(iii) If ak �= 0 for all large k and |ak+1/ak| → 1 as k → ∞, then the Ratio
Test is inconclusive in deducing the convergence or divergence of

∑
k ak. In

this case, we have |ak|1/k → 1 as well (Exercise 56). Hence the Root Test is
also inconclusive. In this event,

∑∞
k=1 ak may be divergent or convergent, as

the examples
∑∞

k=1(1/k) and
∑∞

k=1(1/k2) show.
Using the Ratio Comparison Test (Exercise 10) in conjunction with the

series
∑∞

k=1 1/kp, where p > 0, one can obtain a result known as Raabe’s
Test, which is useful when |ak+1|/|ak| → 1. See Exercises 13, 14, 15.

Another test for the convergence for a series of nonnegative terms, known
as the Integral Test and based on ‘improper integrals’, will be given in Propo-
sition 9.39. Examples 9.40 (i) and (ii) illustrate the use of this test. ✸

Examples 9.18. (i) Let ak := k2/2k for k ∈ N. Then for each k ∈ N, we
have

|ak+1|
|ak|

=
(k + 1)2

2k+1

2k

k2
=

1

2

(
1 +

1

k

)2

.

Hence |ak+1|/|ak| → 1/2 as k → ∞. So by the Ratio Test,
∑∞

k=1 ak is
(absolutely) convergent. Alternatively, we may the Root Test. We have
|ak|1/k = (k1/k)2/2 for all k ∈ N. Since

(
4

3

)k

=

(
1 +

1

3

)k

≥ k

3
+

k(k − 1)

2 · 32
= k

(
1

3
+

k − 1

18

)
≥ k for all k ≥ 13,

we see that k1/k ≤ 4
3 and hence |ak|1/k ≤ 8

9 for all k ≥ 13. Hence
∑∞

k=1 ak

is (absolutely) convergent. (In fact, Exercise 7 of Chapter 2 shows that
|ak|1/k → 1

2 as k → ∞.)
(ii) Let ak := k!/2k for k ∈ N. Then for each k ∈ N, we have

|ak+1|
|ak|

=
(k + 1)!

2k+1

2k

k!
=

k + 1

2
.

Hence |ak+1|/|ak| → ∞ as k → ∞. So by the Ratio Test,
∑∞

k=1 ak is di-
vergent. Alternatively, we may the Root Test. We have |ak|1/k = (k!)1/k/2
for all k ∈ N. Since k! ≥ 2k for all k ≥ 4, we see that |ak|1/k ≥ 1 for all
k ≥ 4. Hence

∑∞
k=1 ak is divergent. (In fact, Exercise 11 of Chapter 2

shows that |ak|1/k → ∞ as k → ∞.)
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(iii) Let ak := k!/kk for k ∈ N. Then for each k ∈ N, we have

|ak+1|
|ak|

=
(k + 1)!

(k + 1)k+1

kk

k!
=

k + 1

k + 1

(
k

k + 1

)k

=
1

(1 + 1/k)k
.

Hence |ak+1|/|ak| → 1/e by Corollary 7.6. So by the Ratio Test,
∑∞

k=1 ak

is (absolutely) convergent.
(iv) For k ∈ N, let a2k−1 := 1/4k and a2k := 1/9k. Since

|a2k|
|a2k−1|

=

(
4

9

)k

≤ 4

9
and

|a2k+1|
|a2k|

=
1

4

(
9

4

)k

≥ 1 for all k ≥ 1,

the Ratio Test is inconclusive. On the other hand,

|a2k−1|1/(2k−1) =
1

2

(
1

2

)1/(2k−1)

and |a2k|1/2k =
1

3
for all k ≥ 1,

and hence |ak|1/k ≤ 1
2 for all k ≥ 1. Consequently, by the Root Test,∑∞

k=1 ak is (absolutely) convergent. ✸

Tests for Conditional Convergence

The tests considered so far give either the absolute convergence or the diver-
gence of a series. We now consider some tests which give conditional conver-
gence. They are based on the following simple result, which may be compared
with Exercise 14 of Chapter 1.

Proposition 9.19 (Partial Summation Formula). If ak, bk ∈ R for k ∈ N
and Bn :=

∑n
k=1 bk for n ∈ N, then

n∑

k=1

akbk =

n−1∑

k=1

(ak − ak+1)Bk + anBn for all n ≥ 2.

Proof. Given any n ∈ N with n ≥ 2, we have

n∑

k=1

akbk = a1B1 + a2(B2 − B1) + · · · + an(Bn − Bn−1)

= (a1 − a2)B1 + (a2 − a3)B2 + · · · + (an−1 − an)Bn−1 + anBn.

This yields the desired formula. ⊓⊔

Proposition 9.20 (Dirichlet’s Test). Let (ak) and (bk) be sequences such
that (ak) is monotonic, ak → 0 as k → ∞, and the sequence (Bn) defined by
Bn :=

∑n
k=1 bk for n ∈ N is bounded. Then the series

∑∞
k=1 akbk is conver-

gent.
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Proof. Since (Bn) is bounded, there is β ∈ R such that |Bn| ≤ β for all n ∈ N.
Also, since (ak) is monotonic, we have for all n ≥ 2,

n−1∑

k=1

|(ak − ak+1)Bk| ≤ β
n−1∑

k=1

|ak − ak+1| = β
∣∣∣

n−1∑

k=1

(ak − ak+1)
∣∣∣ = β|a1 − an|.

Now, the sequence (an) is convergent and hence bounded. Consequently, the
series

∑∞
k=1(ak −ak−1)Bk is absolutely convergent, and so it is convergent by

Proposition 9.5. Let C denote its sum. Using the Partial Summation Formula
and the fact that an → 0, we obtain

n∑

k=1

akbk =

n−1∑

k=1

(ak − ak+1)Bk + anBn → C + 0 = C as n → ∞.

Thus
∑∞

k=1 akbk is convergent. ⊓⊔

A similar result, known as Abel’s Test, is given in Exercise 19. Gener-
alizations, due to Dedekind, of the tests of Dirichlet and Abel are given in
Exercise 17.

Corollary 9.21 (Leibniz Test). Let (ak) be a monotonic sequence such that
ak → 0. Then

∑∞
k=1(−1)k−1ak is convergent.

Proof. Define bk := (−1)k−1 for k ∈ N and Bn :=
∑n

k=1 bk for n ∈ N. Then
Bn = 1 if n is odd and Bn = 0 if n is even. Thus the sequence (Bn) is bounded.
Hence Dirichlet’s Test shows that

∑∞
k=1(−1)k−1ak is convergent. ⊓⊔

Corollary 9.22 (Convergence Test for Trigonometric Series). Let (ak)
be a monotonic sequence such that ak → 0. Then

(i)
∑∞

k=1 ak sin kθ is convergent for each θ ∈ R.
(ii)

∑∞
k=1 ak cos kθ is convergent for each θ ∈ R with θ �= 2mπ for any m ∈ Z.

Proof. (i) Let θ ∈ R. Define bk := sin kθ for k ∈ N and Bn :=
∑n

k=1 bk for
n ∈ N. Now, 2 sinkθ sin(θ/2) = cos [kθ − (θ/2)] − cos [kθ + (θ/2)] for each
k ∈ N, and hence

2Bn sin
θ

2
=

n∑

k=1

[
cos

(2k − 1)θ

2
− cos

(2k + 1)θ

2

]
= cos

θ

2
− cos

(2n + 1)θ

2
.

If sin(θ/2) = 0, that is, if θ = 2mπ for some m ∈ Z, then bk = 0 for each
k ∈ N and so Bn = 0 for each n ∈ N. If sin(θ/2) �= 0, then for each n ∈ N,

|2Bn sin (θ/2)| ≤ 2 and hence |Bn| ≤
1

| sin(θ/2)| .

Thus the sequence (Bn) is bounded in all cases. Hence the desired result
follows from Dirichlet’s Test (Proposition 9.20).
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(ii) Let θ ∈ R with θ �= 2mπ for any m ∈ Z. Define bk := cos kθ for k ∈ N
and Bn :=

∑n
k=1 bk for n ∈ N. Now 2 cos kθ sin(θ/2) = sin [kθ + (θ/2)] −

sin [kθ − (θ/2)] for each k ∈ N, and hence

2Bn sin
θ

2
=

n∑

k=1

[
sin

(2k + 1)θ

2
− sin

(2k − 1)θ

2

]
= sin

(2n + 1)θ

2
− sin

θ

2
.

Since sin(θ/2) �= 0, the desired result follows as in (i) above. ⊓⊔
It may be observed that Corollary 9.21 is a special case of part (ii) of

Corollary 9.22 with θ = π.

Examples 9.23. (i) Let p > 0 and ak := 1/kp for k ∈ N. Then (ak) is
monotonic and ak → 0. Hence by the Leibniz Test, the series

∞∑

k=1

(−1)k−1

kp

is convergent. If p > 1, then it is absolutely convergent and if p ≤ 1, then
it is conditionally convergent (Example 9.1 (iii)).

(ii) Let p > 0 and ak := 1/(ln k)p for k ∈ N with k ≥ 2. Then (ak) is
monotonic and ak → 0. Hence by the Leibniz Test, the series

∞∑

k=2

(−1)k−1

(ln k)p

is convergent. In fact, it is conditionally convergent (Example 9.14(ii)).
(iii) Even if the signs of the terms of a sequence (ak) alternate and ak → 0, the

series
∑∞

k=1 ak may not converge, that is, the monotonicity assumption in
the Leibniz Test (Corollary 9.21) cannot be omitted. For example, consider
the series

1

2
− 1

3
+

1

22
− 1

4
+

1

23
− 1

5
+

1

24
− 1

6
+ · · · .

Since the sequence of partial sums of the series
∑∞

k=1 1/2k is bounded
and the sequence of partial sums of the series

∑∞
k=3 1/k is unbounded, it

follows that the sequence of partial sums of the series displayed above is
unbounded. Hence it is divergent, although the signs of its terms alternate
and the kth term tends to zero as k → ∞.

(iv) Let p > 0 and θ ∈ R. Then the series
∑∞

k=1(sin kθ)/kp is convergent.
This follows by letting ak := 1/kp for k ∈ N in the Convergence Test for
trigonometric series (part (i) of Corollary 9.22). Similarly, if θ �= 2mπ for
any m ∈ Z, then the series

∑∞
k=1(cos kθ)/kp is convergent. On the other

hand, if θ = 2mπ for some m ∈ Z, then the series

∞∑

k=1

cos k(2mπ)

kp
=

∞∑

k=1

1

kp

is divergent if p ≤ 1 and convergent if p > 1. ✸
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9.3 Power Series

For k = 0, 1, 2, . . ., let ck ∈ R. The series

∞∑

k=0

ckxk := c0 +

∞∑

k=1

ckxk, where x ∈ R,

is called a power series and the numbers c0, c1, c2, . . . are called its coeffi-
cients. It is clear that if x = 0, then for any choice of c0, c1, c2, . . ., the power
series

∑∞
k=0 ckxk is convergent and its sum is equal to c0. On the other hand, if

there is k0 ∈ N such that ck = 0 for all k > k0, then for every x ∈ R, the power
series

∑∞
k=0 ckxk is convergent and its sum is equal to c0 + c1x+ · · ·+ ck0

xk0 .
More generally, if a ∈ R, then the series

∑∞
k=0 ck(x − a)k, where x ∈ R, is

called a power series around a. The treatment of such a series can be re-
duced to a power series around 0 by letting x̃ := x − a. Here are some simple
but nontrivial examples of power series.

Examples 9.24. (i) Let c0 := 0 and ck := kk for k ∈ N. Given any x ∈ R
with x �= 0, we have |ckxk| > 1, for all k ∈ N satisfying k > 1/|x|. Hence
ckxk �→ 0 as k → ∞. So by the kth Term Test,

∑∞
k=0 ckxk is divergent

for every nonzero x ∈ R.
(ii) For k = 0, 1, 2, . . ., let ck := 1/k!. Given any x ∈ R, we have

|ck+1x
k+1|

|ckxk| =
|x|

k + 1
→ 0 as k → ∞.

So by the Ratio Test,
∑∞

k=0 ckxk is absolutely convergent for every x ∈ R.
(iii) For all k = 0, 1, 2, . . ., let ck := 1. Then

∑∞
k=0 ckxk is the geometric series

1 + x+ x2 + · · ·, and we have seen in Example 9.1 (i) that it is convergent
if |x| < 1 and its sum is 1/(1 − x), while it is divergent if |x| ≥ 1. ✸

The above examples are typical as far as the convergence of a power series∑∞
k=0 ckxk for various values of x is concerned. The general phenomenon is

described by the following basic result.

Lemma 9.25 (Abel’s Lemma). Let x0 and c0, c1, c2, . . . be real numbers. If
the set {ckxk

0 : k ∈ N} is bounded, then the power series
∑∞

k=0 ckxk is abso-
lutely convergent for every x ∈ R with |x| < |x0|. In particular, if

∑∞
k=0 ckxk

0

is convergent, then the power series
∑∞

k=0 ckxk is absolutely convergent for
every x ∈ R with |x| < |x0|.
Proof. If x0 = 0, then there is nothing to prove. Suppose x0 �= 0. Let α ∈ R
be such that |ckxk

0 | ≤ α for all k ∈ N. Given any x ∈ R with |x| < |x0|, let
β := |x|/|x0|. Then |ckxk| = |ckxk

0 |βk ≤ αβk for all k ∈ N. Since |β| < 1, the
geometric series

∑
k βk is convergent. So by the Comparison Test, it follows

that
∑∞

k=0 ckxk is absolutely convergent. In case
∑∞

k=0 ckxk
0 is convergent,

then by the kth Term Test, ckxk
0 → 0, and hence the sequence

(
ckxk

0

)
is

bounded, that is, the set {ckxk
0 : k ∈ N} is bounded. ⊓⊔
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Proposition 9.26. A power series
∑∞

k=0 ckxk is either absolutely convergent
for all x ∈ R, or there is a unique nonnegative real number r such that the
series is absolutely convergent for all x ∈ R with |x| < r and is divergent for
all x ∈ R with |x| > r.

Proof. Let E :=
{
|x| : x ∈ R and

∑∞
k=0 ckxk is convergent

}
. Then 0 ∈ E. If

E is not bounded above, then given x ∈ R, we may find x0 ∈ E such that
|x| < |x0|, and then

∑∞
k=0 ckxk is absolutely convergent by Lemma 9.25. Next,

suppose E is bounded above and let r := sup E. If x ∈ R and |x| < r, then by
the definition of a supremum, we may find x0 ∈ E such that |x| < |x0|, and
so by Lemma 9.25, we see that

∑∞
k=0 ckxk is absolutely convergent. If x ∈ R

and |x| > r, then by the definition of the set E, the power series
∑∞

k=0 ckxk

is divergent. This proves the existence of the nonnegative real number r with
the desired properties. The uniqueness of r is obvious. ⊓⊔

We say that the radius of convergence of a power series is ∞ if the
power series is absolutely convergent for all x ∈ R; otherwise, it is defined
to be the unique nonnegative real number r such that the power series is
absolutely convergent for all x ∈ R with |x| < r and divergent for all x ∈ R
with |x| > r. If r is the radius of convergence of a power series, then the
open interval {x ∈ R : |x| < r} is called the interval of convergence of that
power series; note that the interval of convergence is the empty set if r = 0
and is R if r = ∞. Given a power series

∑∞
k=0 ckxk, the set

S :=

{
x ∈ R :

∞∑

k=0

ckxk is convergent

}

may be distinct from the interval of convergence. In fact, S is always nonempty
and it can equal {0} or R or an interval of the form (−r, r), [−r, r], [−r, r),
(−r, r] for some r > 0. In following table we illustrate various possibilities for
the set S.

Power series Radius of convergence S

(i)
∑∞

k=1 kkxk 0 {0}

(ii)
∑∞

k=1 xk/k! ∞ (−∞,∞)

(iii)
∑∞

k=0 xk 1 (−1, 1)

(iv)
∑∞

k=0 xk/k2 1 [−1, 1]

(v)
∑∞

k=0 xk/k 1 [−1, 1)

(vi)
∑∞

k=0(−1)kxk/k 1 (−1, 1]

The entries in (i), (ii), and (iii) above follow from Examples 9.24 (i), (ii),
and (iii) respectively. For the power series in (iv) above, we note that
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|xk+1|
(k + 1)2

k2

|xk| =

(
k

k + 1

)2

|x| → |x| as k → ∞.

So by the Ratio Test, the series is absolutely convergent if |x| < 1 and it
is divergent if |x| > 1. Letting p = 2 in Example 9.1 (iii), we see that it
is convergent if x = 1. Further, its convergence for x = −1 follows from
Proposition 9.5. Similarly, the entries in (v) and (vi) above follow from the
Ratio Test and Example 9.1 (iii) with p = 1.

The following result characterizes the radius of convergence of a power
series

∑∞
k=0 ckxk in terms of the sequence (|ck|1/k).

Proposition 9.27. Let
∑∞

k=0 ckxk be a power series and r be its radius of
convergence.

(i) If (|ck|1/k) is unbounded, then r = 0.
(ii) If (|ck|1/k) is bounded, and we let

Mk := sup{|cj|1/j : j ∈ N and j ≥ k} for k ∈ N,

then the sequence (Mk) is convergent. Further, if ℓ := limk→∞ Mk, then

r = ∞ when ℓ = 0 and r =
1

ℓ
when ℓ �= 0.

Proof. (i) Suppose (|ck|1/k) is unbounded. Consider x ∈ R with x �= 0. There
are infinitely many k ∈ N such that |ck|1/k ≥ 1/|x|, that is, |ckxk| ≥ 1. Hence
by the kth Term Test,

∑∞
k=0 ckxk is divergent. This shows that r = 0.

(ii) Suppose (|ck|1/k) is bounded. For each k ∈ N, consider the set Dk :=
{|cj |1/j : j ∈ N and j ≥ k}. Then Dk is bounded, Dk+1 ⊆ Dk, and hence
Mk+1 ≤ Mk for all k ∈ N. Thus (Mk) is a monotonically decreasing sequence
that is bounded below by 0. By part (ii) of Proposition 2.8, limk→∞ Mk exists
and is equal to ℓ := inf{Mk : k ∈ N}.

Consider x ∈ R such that x �= 0 and ℓ < 1/|x|. Choose s ∈ R such that
ℓ < s < (1/|x|) and define α := s|x|. Since Mk → ℓ and ℓ < s, there is k0 ∈ N
such that Mk0

< s = α/|x|. By the definition of Mk0
, we have |ck|1/k < α/|x|,

that is, |ckxk| < αk for all k ≥ k0. Since 0 ≤ α < 1, by the Comparison Test,
we see that the series

∑∞
k=0 ckxk is absolutely convergent. Since this holds

for all nonzero x ∈ R with ℓ < 1/|x|, it follows that r = ∞ when ℓ = 0 and
r ≥ 1/ℓ when ℓ > 0.

Finally, suppose ℓ > 0 and consider x ∈ R such that |x| > 1/ℓ, that is,
1/|x| < ℓ. Since ℓ := inf{Mk : k ∈ N}, it follows that for every k ∈ N, we have
(1/|x|) < Mk and by the definition of Mk, there is jk ≥ k with

1

|x| < |cjk
|1/jk , that is, 1 < |cjk

xjk |.

So by the kth Term Test,
∑∞

k=0 ckxk is divergent. Since this holds for all x ∈ R
with |x| > 1/ℓ, we obtain r ≤ 1/ℓ. Thus r = 1/ℓ when ℓ �= 0. ⊓⊔
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We note that the real number ℓ defined in part (ii) of the above proposition
is in fact equal to lim supk→∞ |ck|1/k as defined in Exercise 36 of Chapter 2.
A result similar to Proposition 9.27 involving the ratios |ck+1|/|ck|, k ∈ N, in
place of the roots |ck|1/k, k ∈ N, is given in Exercise 59.

The following result is useful in calculating the radius of convergence of a
power series.

Proposition 9.28. Let
∑∞

k=0 ckxk be a power series and r be its radius of
convergence.

(i) If |ck|1/k → ℓ, then

r =

⎧
⎨
⎩

0 if ℓ = ∞,
∞ if ℓ = 0,
1/ℓ if 0 < ℓ < ∞.

(ii) If ck �= 0 for all large k and |ck+1|/|ck| → ℓ, then the conclusion of (i)
above holds.

Proof. (i) Suppose |ck|1/k → ℓ. The desired result can be deduced from Propo-
sition 9.27. However, we give an independent proof. Let x ∈ R and let us define
a0(x) := c0 and ak(x) := ckxk for k ∈ N. Then |ak(x)|1/k = |ck|1/k|x| → l|x|
as k → ∞. So by the Root Test, the series

∑∞
k=0 ak(x) is convergent if l|x| < 1,

and it is divergent if l|x| > 1. Hence the desired result follows from the very
definition of the radius of convergence of a power series.

(ii) Suppose ck �= 0 for all large k and |ck+1|/|ck| → ℓ. A proof similar to
the one above holds if we use the Ratio Test in place of the Root Test. ⊓⊔
Examples 9.29. (i) For k = 1, 2, . . ., let

c2k−1 =
1

4k
and c2k =

1

9k
.

Then |cj |1/j for j = 1, 2, . . . are given by

1

4
,

1

3
,

1

42/3
,

1

3
,

1

43/5
,

1

3
,

1

44/7
, . . .

and Mk := sup{|cj|1/j : j ∈ N and j ≥ k} = 1
2 for all k ∈ N. Hence the

radius of convergence of the power series
∑∞

k=0 ckxk is 2.

(ii) For k = 0, 1, 2, . . ., let ck := k3/3k. Since

|ck+1|
|ck|

=
(k + 1)3

3k+1

3k

k3
=

1

3

(
1 +

1

k

)3

→ 1

3
as k → ∞,

the radius of convergence of
∑∞

k=0 ckxk is 3.

(iii) For k = 0, 1, 2, . . ., let ck := 2k/k!. Since

|ck+1|
|ck|

=
2k+1

(k + 1)!

k!

2k
=

2

k + 1
→ 0 as n → ∞,

the radius of convergence of
∑∞

k=0 ckxk is ∞. ✸
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Taylor Series

If r is the radius of convergence of a power series
∑∞

k=0 ckxk and x0 ∈ R is
such that |x0| < r, then the series

∑∞
k=0 ckxk

0 is convergent, but it may not
be easy to find the sum of this series. Essentially the only power series whose
sum we have found so far is the geometric series:

∞∑

k=0

xk =
1

1 − x
for x ∈ (−1, 1).

If we consider the function f : (−1, 1) → R given by f(x) = 1/(1 − x), then
we observe that f(0) = 1, f is infinitely differentiable and f (k)(0) = k! for
each k ∈ N. Hence for each n ∈ N, the nth Taylor polynomial of f around 0 is
given by 1 + x + · · ·+ xn. This is also the nth partial sum of the power series∑∞

k=0 xk. These considerations lead us to a special kind of series.
Let a ∈ R, I be an interval containing a, and f : I → R be an infinitely

differentiable function. For n = 0, 1, . . ., let Pn(x) denote the nth Taylor poly-
nomial of f around a, that is,

Pn(x) :=

n∑

k=0

f (k)(a)

k!
(x − a)k.

The power series around the point a given by

∞∑

k=0

f (k)(a)

k!
(x − a)k

is called the Taylor series of f around a. Let Rn(x) := f(x) − Pn(x) for
x ∈ I. If Rn(x) → 0 as n → ∞ for some x ∈ I, then the nth partial sum
Pn(x) of the Taylor series of f around a converges to f(x), that is, f(x) is the
sum of this series. In the special case a = 0, the Taylor series of f around a is
sometimes called the Maclaurin series of f .

For all n = 0, 1, . . ., we have Pn(a) = f(a), that is, Rn(a) = 0. In partic-
ular, the Taylor series of f around a converges to f(a) at x = a. However,
at some other point x ∈ I, this series may be divergent, or even when it is
convergent, it may not converge to f(x). For example, consider f : R → R
defined by f(x) := |x|. Then the Taylor series of f around 1 is easily seen to
be 1 + (x− 1). But this is not equal to f(x) when x < 0. As an extreme case,
consider f : R → R defined by

f(x) :=

{
e−1/x2

if x �= 0,
0 if x = 0.

Using Revision Exercise 29 given at the end of Chapter 7, we see that f is
infinitely differentiable on R with f (k)(0) = 0 for all k = 0, 1, 2, . . . . Thus the
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Taylor series of f around 0 is identically zero and it does not converge to f(x)
at any x �= 0.

Taylor’s Theorem says that for x ∈ I and each n ∈ N,

Rn(x) =
f (n+1)(cx,n)

(n + 1)!
(x − a)n+1 for some cx,n between a and x.

As we have mentioned in Chapter 4, the above expression for Rn(x) is known
as the Lagrange form of remainder in Taylor formula. Other forms of remain-
der are given in Exercise 49 of Chapter 4 and Exercise 46 of Chapter 6. The
following simple result is useful in dealing with the sum of a Taylor series of
a function.

Proposition 9.30. Let a ∈ R, I be an interval containing a and f : I → R
be an infinitely differentiable function. If there is α > 0 such that

∣∣∣f (n)(x)
∣∣∣ ≤ αn for all n ∈ N and x ∈ I,

then the Taylor series of f converges to f(x) for each x ∈ I.

Proof. Using the Lagrange form of remainder in the Taylor formula, we obtain

|Rn(x)| ≤ |α(x − a)|n+1

(n + 1)!
for each x ∈ I.

Consequently, by Example 2.7 (ii) of Chapter 2, we see that for each x ∈ I,
Rn(x) → 0 as n → ∞. ⊓⊔

We shall use the above result tacitly in the examples below, in which we
determine the Taylor series of some classical functions.

Examples 9.31. (i) Let a := 0, I := R, and f : I → R be the sine function
given by f(x) := sinx. Then |f (n)(x)| ≤ 1 for all n ∈ N and x ∈ I. Using
the Taylor polynomials of f around 0 found in Section 7.2, we see that
the Taylor series of f is convergent for x ∈ I and

sin x = x − x3

3!
+

xs

5!
− · · · =

∞∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
for x ∈ R.

For the Taylor series of the cosine function, see Exercise 24.
(ii) Let a := 0, β > 0, I := (−β, β), and f : I → R be the exponential function

given by f(x) := ex. Then |f (n)(x)| = ex ≤ eβ for all n ∈ N and x ∈ I.
Using the Taylor polynomials for f found in Section 7.1, we see that the
Taylor series of f is convergent for x ∈ I and

ex = 1 + x +
x2

2!
+ · · · =

∞∑

k=0

xk

k!
for x ∈ (−β, β).
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Since β > 0 is arbitrary, we see that

ex =

∞∑

k=0

xk

k!
for all x ∈ R.

(iii) Let a := 0, I := (−1, 1), and f : I → R be given by f(x) := ln(1 + x).
Then f(0) = 0 and for each k ∈ N, we have

f (k)(x) = (−1)k−1 (k − 1)!

(1 + x)k
for x ∈ (−1, 1).

In particular, f (k)(0) = (−1)k−1(k − 1)! for each k ∈ N. Hence the Taylor
series of f around 0 is given by

∞∑

k=1

(−1)k−1 xk

k
, x ∈ R.

Since it is not easy to show that Rn(x) → 0 as n → ∞ for x ∈ (−1, 1) using
Lagrange’s Form of Remainder, we proceed as follows. By the definition
of the logarithmic function, we have

f(x) =

∫ 1+x

1

dt

t
=

∫ x

0

ds

1 + s
for x ∈ (−1, 1).

Now for each s ∈ R with s �= −1 and each n ∈ N, we note that

1

1 + s
=

1

1 − (−s)
= 1 − s + s2 + · · · + (−1)n−1sn−1 + (−1)n sn

1 + s
.

Given any x ∈ (−1, 1), we integrate both sides from 0 to x and obtain

f(x) =

n∑

k=1

(−1)k−1 xk

k
+ (−1)n

∫ x

0

sn

1 + s
ds.

If x = 0, this gives f(0) = 1. Suppose x ∈ (0, 1). Then
∣∣∣∣
∫ x

0

sn

1 + s
ds

∣∣∣∣ ≤
∫ x

0

snds =
xn+1

n + 1
,

which tends to 0 as n → ∞. Next, suppose x ∈ (−1, 0). Substituting
u = −s, we obtain
∣∣∣∣
∫ x

0

sn

1 + s
ds

∣∣∣∣ =

∣∣∣∣
∫ −x

0

(−1)n+1un

1 − u
du

∣∣∣∣ ≤
∫ −x

0

un

1 + x
du =

1

1 + x

(
(−x)n+1

n + 1

)
,

which tends to 0 as n → ∞. Hence we see that the Taylor series of f is
convergent for x ∈ (−1, 1) and

ln(1 + x) =
∞∑

k=0

(−1)k−1 xk

k
for x ∈ (−1, 1).
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(iv) Let a := 0, I = (−1, 1), r ∈ R, and f : I → R be given by f(x) := (1+x)r.
Then f(0) = 1 and f (k)(0) = r(r − 1) · · · (r − k + 1) for k ∈ N. If r is a
nonnegative integer, then f (k)(0) = 0 for all k > r + 1. Hence

f(x) = 1 +

r∑

k=1

(
r
k

)
xk for x ∈ I.

(Note that we obtain the same result by the Binomial Theorem.) Suppose
now that r is not a nonnegative integer. Then f (k)(0) �= 0 for each k ≥ 0.
Thus for each n ∈ N, the nth Taylor polynomial of f around 0 is given by

Pn(x) := 1 +

n∑

k=1

r(r − 1) · · · (r − k + 1)

k!
xk.

Using Cauchy’s Form of Remainder (Exercise 49 of Chapter 4), it can be
shown that f(x)−Pn(x) → 0 as n → ∞ for each x ∈ (−1, 1). (See Exercise
60.) Hence we see that the Taylor series of f is convergent for x ∈ I and

(1 + x)r = 1 +

∞∑

k=1

r(r − 1) · · · (r − k + 1)

k!
xk for x ∈ (−1, 1).

This series is known as the binomial series. In particular, if r = −1, we
have

1

1 + x
= 1 +

∞∑

k=1

(−1)(−2) · · · (−k)

k!
xk =

∞∑

k=0

(−1)kxk for x ∈ (−1, 1).

Replacing x by −x, we thus recover the geometric series

1

1 − x
=

∞∑

k=0

xk for x ∈ (−1, 1),

with which we started our discussion of Taylor series. ✸

Remark 9.32. Let I be an open interval in R and f : I → R be infinitely
differentiable at every point of I. If for every a ∈ I, there is r > 0 such that

f(x) =
∞∑

k=0

f (k)(a)

k!
(x − a)k for every x ∈ I with |x − a| < r,

then f is said to be a real analytic function. In other words, f is real
analytic on I if the Taylor series of f around each point of I converges to f(x)
for every x ∈ I. Clearly, polynomial functions are real analytic functions on
R. Also, as seen above, the exponential function as well as the sine function
are real analytic functions on R. It is easy to see that sums of real analytic
functions are real analytic. Also, it can be shown that products of real analytic
functions and reciprocals of nowhere-vanishing real analytic functions are real
analytic. On the other hand, there do exist infinitely differentiable functions
on R that are not real analytic. Indeed, as noted earlier, it suffices to consider
f : R → R defined by f(0) := 0 and f(x) := e−1/x2

for x �= 0. ✸



384 9 Infinite Series and Improper Integrals

9.4 Convergence of Improper Integrals

In Chapter 6, we considered the Riemann integral of a bounded function
defined on a closed and bounded interval. In this and the next two sections,
we shall extend the process of integration to functions defined on a semi-
infinite interval or a doubly infinite interval, and also to unbounded functions
defined on bounded or unbounded intervals.

We begin by considering bounded functions defined on a semi-infinite in-
terval of the form [a,∞), where a ∈ R. Our treatment will run parallel to that
of infinite series given in Sections 9.1 and 9.2. In analogy with an infinite series,
we shall first give a formal (and pedantic) definition of an improper integral
and then adopt suitable conventions in order to simplify our treatment.

Let a ∈ R. An improper integral on [a,∞) is an ordered pair (f, F ) of
real-valued functions f and F defined on [a,∞) such that f is integrable on
[a, x] for every x ≥ a and

F (x) =

∫ x

a

f(t)dt for all x ∈ [a,∞).

Note that in view of the Fundamental Theorem of Calculus (Proposition 6.21),
we have the following. If (f, F ) is an improper integral on [a,∞), then F
is continuous with F (a) = 0, and moreover, if f is continuous, then F is
differentiable with f = F ′. Conversely, if f, F : [a,∞) → R are such that f
is continuous and F is differentiable with F (a) = 0 and f = F ′, then (f, F )
is an improper integral on [a,∞). For simplicity and brevity, we shall use the
informal but suggestive notation

∫∞
a f(t)dt for the improper integral (f, F )

on [a,∞). In this notation, prominence is given to the first function f , but the
second function F is just as important. At any rate, F is uniquely determined
by f , and if f is continuous, then f is uniquely determined by F .

We say that an improper integral
∫∞

a
f(t)dt is convergent if the limit

lim
x→∞

F (x) = lim
x→∞

∫ x

a

f(t)dt

exists. It is clear that if this limit exists, then it is unique, and we may denote it
by the same symbol

∫∞
a f(t)dt used to denote the improper integral. Usually,

when we write ∫ ∞

a

f(t)dt = I,

we mean that I is a real number and the improper integral
∫∞

a
f(t)dt is

convergent with I as its limiting value. In this case we may also say that∫∞
a f(t)dt converges to I. An improper integral that is not convergent is

said to be divergent. In particular, if
∫ x

a f(t)dt → ∞ or
∫ x

a f(t)dt → −∞ as
x → ∞, then we say that the improper integral diverges to ∞ or to −∞, as
the case may be.
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It is useful to keep in mind that the convergence of an improper integral∫∞
a f(t)dt is not affected by changing the initial point a of the interval [a,∞),

although the limiting value limx→∞ F (x) may change by doing so. Indeed, if
a′ ≥ a, then

∫ ∞

a

f(t)dt is convergent ⇐⇒
∫ ∞

a′

f(t)dt is convergent,

and if this holds, then the limiting values are related by the equation

∫ ∞

a

f(t)dt =

∫ a′

a

f(t)dt +

∫ ∞

a′

f(t)dt.

Examples 9.33. (i) Let a > 0 and consider the improper integral
∫∞
1 atdt.

Given any x ∈ [1,∞), we have

∫ x

1

atdt =

{
(ax − a)/ lna if a �= 1,
x − 1 if a = 1.

Thus, in view of part (iii) of Proposition 7.7, it follows that if a < 1, then∫∞
1 atdt = −(a/ lna), while if a ≥ 1, then

∫∞
a f(t)dt diverges to ∞.

(ii) The improper integral
∫∞
0 te−t2dt converges to 1

2 , since

∫ x

0

te−t2dt =
1

2

∫ x2

0

e−sds =
1

2

(
1 − e−x2

)
→ 1

2
as x → ∞.

(iii) Let p ∈ R and consider the improper integral
∫∞
1

(1/tp)dt. Given any
x ∈ [1,∞), we have

∫ x

1

1

tp
dt =

{
(x1−p − 1)/(1 − p) if p �= 1,
lnx if p = 1.

It follows that if p > 1, then
∫∞
1

(1/tp)dt converges to 1/(p − 1), while if
p ≤ 1, then it diverges to ∞.

(iv) The improper integral
∫∞
0

(
1/(1 + t2)

)
dt converges to π/2, since

∫ x

0

dt

1 + t2
= arctanx → π

2
as x → ∞,

(v) The improper integral
∫∞
0

cos t dt is divergent, since
∫ x

0
cos t dt = sinx for

all x ∈ R and limx→∞ sin x does not exist. ✸

It may be observed that there is a remarkable analogy between the def-
inition of an infinite series

∑∞
k=1 ak and the definition of an infinite in-

tegral
∫∞

a
f(t)dt. The sequence of terms (ak) corresponds to the function

f : [a,∞) → R, and a partial sum An :=
∑n

k=1 ak, where n ∈ N, corresponds
to a ‘partial integral’ F (x) =

∫ x

a
f(t)dt, where x ∈ [a,∞). The convention that
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A0, being the empty sum, is 0 corresponds to the initial condition F (a) = 0.
Further, the difference quotient

ak = Ak − Ak−1 =
Ak − Ak−1

k − (k − 1)
, where k ∈ N,

corresponds to the derivative

f(t) = F ′(t) = lim
s→t

f(s) − f(t)

s − t
, where t ∈ [a,∞).

This analogy will become more and more apparent as we develop the theory of
improper integrals. At the same time, we will point out an instance in which
the analogy breaks down.

The following results follow from the corresponding results for limits of
functions of a real variable as the variable tends to infinity, just as similar
results in the case of infinite series followed from the corresponding results
for limits of sequences. In what follows, we have let a ∈ R and f, g, h denote
real-valued functions on [a,∞).

1. If
∫∞

a
f(t)dt is convergent, then the set

{∫ x

a
f(t)dt : x ∈ [a,∞)

}
of ‘partial

integrals’ is bounded. (To see this, let F (x) :=
∫ x

a f(t)dt for x ∈ [a,∞)

and note that since
∫∞

a f(t)dt is convergent, there is x0 ≥ a such that

|F (x)| ≤ 1+
∣∣∫∞

a f(t)dt
∣∣ for all x ≥ x0, and moreover, since F is continuous

on the closed and bounded interval [a, x0], it is bounded on [a, x0].)
2. Let

∫∞
a

f(t)dt = I and
∫∞

a
g(t)dt = J. Then

∫ ∞

a

(f(t) + g(t))dt = I + J and

∫ ∞

a

(rf)(t)dt = rI for any r ∈ R.

Further, if f(t) ≤ g(t) for all t ∈ [a,∞), then I ≤ J.
3. (Sandwich Theorem) If for each t ∈ [a,∞), we have f(t) ≤ h(t) ≤ g(t),

and
∫∞

a f(t)dt = I =
∫∞

a g(t)dt, then
∫∞

a h(t)dt = I.

4. (Cauchy Criterion) An improper integral
∫∞

a f(t)dt is convergent if and
only if for every ǫ > 0, there is x0 ∈ [a,∞) such that

∣∣∣∣
∫ y

x

f(t)dt

∣∣∣∣ < ǫ for all y ≥ x ≥ x0.

(To see this, let F denote the partial integral, so that F (y) − F (x) =∫ y

x f(t)dt for all y ≥ x ≥ x0, and use the analogue of Proposition 3.28 for
the case x → ∞.)

Integrals of Derivatives and of Nonnegative Functions

We now consider two results about improper integrals of functions of a special
kind. The following result is an analogue of the result about the convergence
of a telescoping series (Proposition 9.3).
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Proposition 9.34. Let g : [a,∞) → R be a differentiable function such that
its derivative g′ is integrable on [a, x] for every x ≥ a. Then

∫∞
a g′(t)dt is

convergent if and only if limx→∞ g(x) exists, and in this case,
∫ ∞

a

g′(t)dt = lim
x→∞

g(x) − g(a).

Proof. By part (i) of the FTC (Proposition 6.21), we have

∫ x

a

g′(t)dt = g(x) − g(a) for all x ∈ [a,∞).

This implies the desired result. ⊓⊔

It may be noted that if a function f : [a,∞) → R is continuous and if we
define g : [a,∞) → R by

g(x) :=

∫ x

a

f(t)dt,

that is, if g is the ‘partial integral’ of
∫∞

a
f(t)dt, then by part (i) of the

FTC, the improper integral
∫∞

a f(t)dt can be written as
∫∞

a g′(t)dt. But then
determining whether limx→∞ g(x) exists is the same as determining whether
the given improper integral

∫∞
a f(t)dt is convergent. In some special cases,

however, it is possible to find an antiderivative g of the function f without
considering any ‘partial integral’ of f . In these cases, we can determine the
convergence of the improper integral

∫∞
a f(t)dt using Proposition 9.34. In fact,

Examples 9.33 (i)–(v) illustrate this technique.
Our next result is regarding the convergence of an improper integral of a

nonnegative function. It is an analogue of the result about the convergence of
a series of nonnegative terms (Proposition 9.4).

Proposition 9.35. Let f : [a,∞) → R be a nonnegative function. Then∫∞
a

f(t)dt is convergent if and only if the function F : [a,∞) → R defined

by F (x) =
∫ x

a f(t)dt is bounded above, and in this case,

∫ ∞

a

f(t)dt = sup{F (x) : x ∈ [a,∞)}.

If the function F is not bounded above, then
∫∞

a
f(t)dt diverges to ∞.

Proof. Since f(t) ≥ 0 for all t ∈ [a,∞), using the domain additivity of Rie-
mann integrals (Proposition 6.7) we see that

F (x) =

∫ y

a

f(t)dt +

∫ x

y

f(t)dt ≥
∫ y

a

f(t)dt = F (y) for all x ≥ y ≥ a.

Hence the function F is monotonically increasing. By part (i) of Proposition
3.35 with b = ∞, we see that limx→∞ F (x) exists if and only if F is bounded
above, and in this case
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∫ ∞

a

f(t)dt = lim
x→∞

F (x) = sup{F (x) : x ∈ [a,∞)}.

Also, by part (i) of Proposition 3.35 with b = ∞, if F is not bounded above,
then F (x) → ∞ as x → ∞, that is,

∫∞
a

f(t)dt diverges to ∞. ⊓⊔

A result similar to the one above holds if f(t) ≤ 0 for all t ∈ [a,∞). (See
Exercise 27.) More generally, if f(t) has the same sign for all large t, that
is, if there is t0 ∈ [a,∞) such that f(t) has the same sign for all t ≥ t0,
then

∫∞
a

f(t)dt is convergent if and only if F is bounded. However, if there
is no t0 ∈ [a,∞) such that f(t) is of the same sign for all t ≥ t0, then the
improper integral

∫∞
a f(t)dt may diverge even though F is bounded. This

is illustrated by the improper integral
∫∞
1 f(t)dt, where f : [1,∞) → R is

defined by f(x) := (−1)[x]. Here, the partial integral F : [1,∞) → R is given
by F (x) = −1 + x − [x] if [x] is even and F (x) = −x + [x] if [x] is odd.
Clearly, F is bounded on [1,∞), but since F (2n − 1) = 0 and F (2n) = −1
for all n ∈ N, the limit of F (x) as x → ∞ does not exist, that is,

∫∞
1

f(t)dt is
divergent.

Example 9.36. Consider f : [0,∞) → R defined by f(t) := (1+sin t)/(1+t2).
Then f(t) ≥ 0 for all t ∈ [0,∞) and

F (x) =

∫ x

0

1 + sin t

1 + t2
dt ≤

∫ x

0

2

1 + t2
dt = 2 arctanx ≤ π for all x ∈ [0,∞).

Hence
∫∞
0

f(t)dt is convergent. On the other hand, consider g : [0,∞) → R
defined by g(t) := (2 + cos t)/t. We have g(t) ≥ 0 for all t ∈ [1,∞) and

G(x) =

∫ x

1

2 + cos t

t
dt ≥

∫ x

1

1

t
dt = lnx for all x ∈ [1,∞).

Since lnx → ∞ as x → ∞, it follows that
∫∞
1

g(t)dt diverges to ∞. ✸

An improper integral
∫∞

a f(t)dt is said to be absolutely convergent if

the improper integral
∫∞

a
|f(t)|dt is convergent. The following result is an

analogue of Proposition 9.5.

Proposition 9.37. An absolutely convergent improper integral is convergent.

Proof. Let a ∈ R and
∫∞

a f(t)dt be an absolutely convergent improper integral
on [a,∞). Consider the positive part f+ : [a,∞) → R and the negative part
f− : [a,∞) → R of f defined by

f+(t) :=
|f(t)| + f(t)

2
and f−(t) =

|f(t)| − f(t)

2
for t ∈ [a,∞).

For x ∈ [a,∞), let F (x), F+(x), F−(x), and G(x) denote the ‘partial integrals’
of the improper integrals

∫∞
a

f(t)dt,
∫∞

a
f+(t)dt,

∫∞
a

f−(t)dt, and
∫∞

a
|f(t)|dt

respectively. Since
∫∞

a
|f(t)|dt is convergent, the function G is bounded. Also,
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0 ≤ F+(x) ≤ G(x) and 0 ≤ F−(x) ≤ G(x) for all x ∈ [a,∞).

So by Proposition 9.35, both
∫∞

a f+(t)dt and
∫∞

a f−(t)dt are convergent. But

f(t) = f+(t) − f−(t) for all t ∈ [a,∞). Hence
∫∞

a
f(t)dt is convergent. ⊓⊔

Example 9.38 below shows that the converse of the above result does not
hold. A convergent improper integral that is not absolutely convergent is said
to be conditionally convergent. Another example of a conditionally con-
vergent improper integral (which is modeled on the conditionally convergent
infinite series

∑∞
k=1(−1)k−1/k) is given in Exercise 42.

Example 9.38. Consider the improper integral
∫∞
1 (cos t/t)dt. Integrating by

parts, we have
∫ x

1

cos t

t
dt =

sin x

x
− sin 1 +

∫ x

1

sin t

t2
dt for all x ≥ 1.

Further, (sinx)/x → 0 as x → ∞ and also
∫ x

1

∣∣∣∣
sin t

t2

∣∣∣∣ dt ≤
∫ x

1

1

t2
dt = 1 − 1

x
→ 1 as x → ∞.

Hence by Proposition 9.35, the improper integral
∫∞
1

|(sin t)/t2|dt is conver-

gent, that is, the improper integral
∫∞
1 (sin t)/t2dt is absolutely convergent,

and so by Proposition 9.37, it is convergent. Consequently,
∫ ∞

1

cos t

t
dt = − sin 1 +

∫ ∞

1

sin t

t2
dt.

On the other hand, for each n ∈ N with n ≥ 2, we have

∫ nπ

π

∣∣∣∣
cos t

t

∣∣∣∣ dt =
n∑

k=2

∫ kπ

(k−1)π

| cos t|
t

dt ≥
n∑

k=2

∫ kπ

(k−1)π

| cos t|
kπ

dt =
n∑

k=2

2

kπ
.

Since the series
∑∞

k=2 1/k diverges to ∞, it follows from Proposition 9.35 that
the improper integral ∫ ∞

1

∣∣∣∣
cos t

t

∣∣∣∣ dt

diverges to ∞. Thus
∫∞
1

(cos t/t)dt is conditionally convergent. ✸

Let us now discuss whether the convergence of an improper integral∫∞
1

f(t)dt is related to the convergence of the infinite series
∑∞

k=1 f(k). Con-
sider f : [1,∞) → R given by f(t) := 1 if t ∈ N and f(t) := 0 if t �∈ N. Then
it is easy to see that

∫∞
a

f(t)dt is convergent but
∑∞

k=1 f(k) is divergent. On

the other hand, if we let g := f − 1, then it is easily seen that
∫∞
1 g(t)dt is

divergent, but
∑∞

k=1 g(k) is convergent. Thus, in general, the convergence of∫∞
1 f(t)dt is independent of the convergence of

∑∞
k=1 f(k). In view of this,

the following result is noteworthy.
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Proposition 9.39 (Integral Test). Let f : [1,∞) → R be a nonnegative
monotonically decreasing function. Then the improper integral

∫∞
1 f(t)dt is

convergent if and only if the infinite series
∑∞

k=1 f(k) is convergent, and in
this case we have

∞∑

k=2

f(k) ≤
∫ ∞

1

f(t)dt ≤
∞∑

k=1

f(k),

or, equivalently,

∫ ∞

1

f(t)dt ≤
∞∑

k=1

f(k) ≤ f(1) +

∫ ∞

1

f(t)dt.

Also, the improper integral
∫∞
1

f(t)dt diverges to ∞ if and only if the infinite
series

∑∞
k=1 f(k) diverges to ∞.

Proof. First, note that since f is monotonic, by part (i) of Proposition 6.9,
f is integrable on [a, x] for every x ∈ [1,∞). Define F : [1,∞) → R by
F (x) :=

∫ x

1 f(t)dt. Since the function f is nonnegative, the function F is

monotonically increasing. Hence Proposition 9.35 implies that
∫∞
1

f(t)dt is
convergent if and only if the set {F (n) : n ∈ N} is bounded above, and in
this case ∫ ∞

1

f(t)dt = sup{F (n) : n ∈ N} = lim
n→∞

F (n).

Also, using Proposition 9.35 and the fact that f is monotonically increasing,
we see that

∫ ∞

1

f(t)dt diverges to ∞ ⇐⇒ F (n) → ∞ as n → ∞.

Define

ak :=

∫ k+1

k

f(t)dt for k ∈ N and An :=

n∑

k=1

ak for n ∈ N.

Then An = F (n + 1) for all n ∈ N. Further, since ak ≥ 0 for all k ∈ N,
it follows from Proposition 9.4 that the series

∑∞
k=1 ak is convergent if and

only if the sequence (F (n)) is bounded above, that is, the improper integral∫∞
1

f(t)dt is convergent. Also,
∫∞
1

f(t)dt diverges to ∞ if and only if
∑∞

k=1 ak

diverges to ∞.
Now since f is monotonically decreasing, we have

f(k + 1) ≤ ak ≤ f(k) for all k ∈ N.

The Comparison Test for series (Proposition 9.9) shows that
∑∞

k=1 ak is con-
vergent if and only if

∑∞
k=1 f(k) is convergent, and

∑∞
k=1 ak diverges to ∞ if

and only if
∑∞

k=1 f(k) diverges to ∞. Finally, since
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n+1∑

k=2

f(k) =

n∑

k=1

f(k + 1) ≤ An ≤
n∑

k=1

f(k) for all n ∈ N,

we see that ∞∑

k=2

f(k) ≤ lim
n→∞

An =

∫ ∞

1

f(t)dt ≤
∞∑

k=1

f(k)

whenever
∫∞
1 f(t)dt is convergent. ⊓⊔

The above result can be extremely useful in deducing the convergence or
the divergence of infinite series. Further, it can be used to obtain lower bounds
and upper bounds for the partial sums of a series. These yield, in case the
series converges, a lower bound and an upper bound for the sum of the series.
These remarks are illustrated by Examples 9.40 below.

If in the Integral Test, the hypothesis that f : [1,∞) → R is a nonnegative
monotonically decreasing function is not satisfied, but f is a differentiable
function such that f ′ is integrable on [1, x] for every x ≥ 1, then the conver-
gence of

∫∞
1

f(t)dt and
∑∞

k=1 f(k) can be related by what is known as Euler’s
Summation Formula. We refer the interested reader to pages 74–75 of [59].

Examples 9.40. (i) Let p > 0 and f(t) := 1/tp for t ∈ [1,∞). Then f is a
nonnegative monotonically decreasing function. We have seen in Example
9.1 (iv) that

∫∞
1 f(t)dt is convergent if p > 1 and it diverges to ∞ if p ≤ 1.

Hence by Proposition 9.39 we see that
∑∞

k=1(1/kp) is convergent if p > 1
and it diverges to ∞ if p ≤ 1. We thus obtain an alternative proof the
result given in Example 9.1 (iii). Further, if p > 1, we can estimate the
sum using Proposition 9.39 as follows:

1

p − 1
=

∫ ∞

1

1

tp
dt ≤

∞∑

k=1

1

kp
≤ 1 +

∫ ∞

1

1

tp
dt =

p

p − 1
.

(ii) Let p > 0 and consider the infinite series

∞∑

k=2

1

k(ln k)p
=

∞∑

k=1

1

(k + 1) (ln(k + 1))p .

If f : [1,∞) → R is defined by

f(t) :=
1

(t + 1) (ln(t + 1))
p for t ∈ [1,∞),

then f is a nonnegative function and since

f ′(t) = − (ln(t + 1))
p

+ p (ln(t + 1))
p−1

(t + 1)2 (ln(t + 1))
2p < 0 for all t ∈ [1,∞),

we see that f is monotonically decreasing. Now for x ∈ [1,∞), we have
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∫ x

1

f(t)dt =

∫ ln(x+1)

ln 2

1

sp
ds =

⎧
⎪⎪⎨

⎪⎪⎩

(ln(x + 1))1−p − (ln 2)1−p

1 − p
if p �= 1,

ln (ln(x + 1)) − ln(ln 2) if p = 1.

Letting x → ∞, we see that

∫ ∞

1

f(t)dt =
1

(p − 1)(ln 2)p−1
if p > 1 and

∫ ∞

1

f(t)dt is divergent if p ≤ 1.

This shows that the infinite series
∑∞

k=2 1/[k(lnk)p] is convergent if p > 1
and it diverges to ∞ if p ≤ 1. Further, if p > 1, we have

1

(p − 1)(ln 2)p−1
≤

∞∑

k=2

1

k(ln k)p
≤ 1

(ln 2)p−1

[
1

2 ln 2
+

1

p − 1

]
.

The upper and lower bounds on the sums of the series in (i) and (ii) above
are noteworthy. ✸

9.5 Convergence Tests for Improper Integrals

In this section we shall consider several tests that enable us to conclude the
convergence or divergence of improper integrals. We begin by pointing out
that even if an improper integral

∫∞
a

f(t)dt is convergent, f(t) may not tend
to 0 as t → ∞. In other words, the kth Term Test for series (Proposition 9.6)
does not have an analogue for improper integrals.

1 2 3 40

1

Fig. 9.1. Graph of the piecewise linear function in Example 9.41

Example 9.41. Let f : [1,∞) → R be the piecewise linear function whose
graph is as in Figure 9.1. Formally, f is defined as follows. Given any k ∈ N
with k ≥ 2, let



9.5 Convergence Tests for Improper Integrals 393

f(t) :=

⎧
⎪⎨
⎪⎩

k2t − k3 + 1 if k − 1

k2
≤ t ≤ k,

−k2t + k3 + 1 if k < t ≤ k +
1

k2

Moreover, let f(t) := 0 if 1 ≤ t < 2 − (1/2)2 and also

f(t) := 0 if k +
1

k2
< t < (k + 1) − 1

(k + 1)2
for any k ∈ N with k ≥ 2.

Note that the function f is continuous. Let F (x) :=
∫ x

1 f(t)dt for x ∈ [1,∞).
Since the area of a triangle having height 1 and base 2/k2 is equal to 1/k2,
we see that for each n ∈ N with n ≥ 2,

F (x) =

n∑

k=2

1

k2
if n +

1

n2
≤ x < (n + 1) − 1

(n + 1)2
.

Also, since the series
∑∞

k=2 1/k2 is convergent, it follows that the function F
is bounded. So by Proposition 9.35,

∫∞
1 f(t)dt is convergent. However, since

f(k) = 1 for each k ∈ N with k ≥ 2, we see that f(t) �→ 0 as t → ∞. ✸

By modifying the function in the above example, one can obtain a contin-
uous function g : [1,∞) → ∞ such that

∫∞
1 g(t)dt is convergent, but (g(k)) is

in fact an unbounded sequence. (See Exercise 26.) For more examples of this
type, see Exercise 28. On the other hand, suppose f : [a,∞) → R is differen-
tiable. If

∫∞
a f(t)dt and

∫∞
a f ′(t)dt are convergent, then it can be shown that

f(t) → 0 as t → ∞. (See Exercise 29.)

Tests for Absolute Convergence of Improper Integrals

We shall now consider, wherever possible, analogues of the tests for absolute
convergence of infinite series in the case of improper integrals.

Proposition 9.42 (Comparison Test for Improper Integrals). Suppose
a ∈ R and f, g : [a,∞) → R are such that both f and g are integrable on [a, x]
for every x ≥ a and |f | ≤ g. If

∫∞
a g(t)dt is convergent, then

∫∞
a f(t)dt is

absolutely convergent and
∣∣∣∣
∫ ∞

a

f(t)dt

∣∣∣∣ ≤
∫ ∞

a

g(t)dt.

Proof. For x ∈ [1,∞), let

F (x) :=

∫ x

a

f(t)dt, G(x) :=

∫ x

a

g(t)dt, and H(x) =

∫ x

a

|f(t)|dt.

Assume that
∫∞

a g(t)dt is convergent. Then the function G is bounded above.
Since |f | ≤ g, we see that H ≤ G, and hence the function H is bounded
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above. Also, since |f | ≥ 0, it follows from Proposition 9.35 that
∫∞

a
|f(t)|dt is

convergent, that is,
∫∞

a
f(t)dt is absolutely convergent. Further, since −f ≤

|f | ≤ g and f ≤ |f | ≤ g, we have −F (x) ≤ H(x) ≤ G(x) and F (x) ≤ H(x) ≤
G(x) for all x ≥ a. Letting x → ∞, we obtain

−
∫ ∞

a

f(t)dt ≤
∫ ∞

a

g(t)dt and

∫ ∞

a

f(t)dt ≤
∫ ∞

a

g(t)dt,

that is,
∣∣∫∞

a f(t)dt
∣∣ ≤

∫∞
a g(t)dt, as desired. ⊓⊔

Examples 9.43. The assertions in (i) and (ii) below follow from the Com-
parison Test for improper integrals (Proposition 9.42) in exactly the same
manner as the assertions in Examples 9.13 followed from Proposition 9.9.

(i)

∫ ∞

0

2t + t

3t + t
dt is convergent.

(ii)

∫ ∞

1

1

(1 + t2 + t4)1/3
dt is convergent. ✸

Proposition 9.44. Let a ∈ R and f, g : [a,∞) → R be such that both f and
g are integrable on [a, x] for every x ≥ a and g(t) �= 0 for all large t. Assume
that f(t)/g(t) → ℓ as t → ∞, where ℓ ∈ R or ℓ = ∞ or ℓ = −∞.

(i) If g(t) > 0 for all large t,
∫∞

a
g(t)dt is convergent, and ℓ ∈ R, then∫∞

a
f(t)dt is absolutely convergent.

(ii) If f(t) > 0 for all large t,
∫∞

a f(t)dt is convergent, and ℓ �= 0, then∫∞
a g(t)dt is absolutely convergent.

Proof. The desired results can be deduced from Proposition 9.42 in a similar
way as the results in Proposition 9.11 were deduced from Proposition 9.9. ⊓⊔

Corollary 9.45 (Limit Comparison Test for Improper Integrals). Let
a ∈ R and f, g : [a,∞) → R be such that both f and g are integrable on [a, x]
for every x ≥ a with f(t) > 0 and g(t) > 0 for all large t. Assume that

lim
t→∞

f(t)

g(t)
= ℓ, where ℓ ∈ R with ℓ �= 0.

Then ∫ ∞

a

f(t)dt is convergent ⇐⇒
∫ ∞

a

g(t)dt is convergent.

Proof. The implication ‘=⇒’ follows from part (ii) of Proposition 9.44, while
‘⇐=’ follows from part (i) of Proposition 9.44. ⊓⊔

Examples 9.46. The assertions in (i) and (ii) below follow from Corollary
9.45 in the same manner as the assertions in Example 9.13 followed from
Corollary 9.12.
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(i)

∫ ∞

0

2t + t

3t − t
dt is convergent.

(ii)

∫ ∞

1

sin
1

t
dt is divergent. ✸

Sometimes, it is better to apply the stronger version of the Limit Com-
parison Test for improper integrals given in Proposition 9.44.

Examples 9.47. The assertions in (i) and (ii) below follow from Proposition
9.44 in the same manner as the assertions in Example 9.14 followed from
Proposition 9.11. In (iii) below we give an additional example.

(i)

∫ ∞

1

ln t

tp
dt is convergent if p > 1 and it is divergent if p ≤ 1.

(ii)

∫ ∞

2

1

(ln t)p
dt is divergent if p > 0.

(iii) Let q ∈ R and f : [1,∞) → R be given by f(t) := e−ttq. Then
∫∞
1

f(t)dt
is convergent. To see this, choose k ∈ N such that k > q + 1, and define
g : [1,∞) → R by g(t) := tq−k. Then g(t) �= 0 for all t ∈ [1,∞) and

f(t)

g(t)
=

tk

et
→ 0 as t → ∞.

Since k − q > 1, we see that
∫∞
1

g(t)dt is convergent. Hence
∫∞
1

f(t)dt is
convergent by part (i) of Corollary 9.44. ✸

The following result is an analogue of (Cauchy’s) Root Test for infinite
series (Proposition 9.15).

Proposition 9.48 (Root Test for Improper Integrals). Let a ∈ R and
f : [a,∞) → R be a function that is integrable on [a, x] for every x ≥ a.

(i) If there is α ∈ R with α < 1 such that |f(t)|1/t ≤ α for all large t, then∫∞
a f(t)dt is absolutely convergent.

(ii) If there is δ ∈ R with δ > 0 such that f(t) ≥ δ for all large t, then∫∞
a f(t)dt diverges to ∞.

In particular, if

|f(t)|1/t → ℓ as t → ∞, where ℓ ∈ R or ℓ = ∞,

then
∫∞

a f(t)dt is absolutely convergent when ℓ < 1, and it diverges to ∞ when
f is nonnegative and ℓ > 1.

Proof. The first part follows by letting g(t) := αt for t ∈ [a,∞) and using
the Comparison Test (Proposition 9.42). For the second part, let δ > 0 and
t1 ∈ [a,∞) be such that f(t) ≥ δ for all t ≥ t1. Then

∫ x

a

f(t)dt ≥
∫ t1

a

f(t)dt + δ(x − t1) for all x ∈ [t1,∞).
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Hence
∫ x

a
f(t)dt → ∞ as x → ∞.

The last assertion can be proved using (i) and (ii) above and arguing as
in the proof of the Root Test for infinite series (Proposition 9.15). ⊓⊔

Examples 9.49. (i) Let f(t) := t2/2t for t ∈ [1,∞). Then |f(t)|1/t =
(t1/t)2/2 → 1/2 as t → ∞. Hence

∫∞
1 f(t)dt is (absolutely) convergent.

On the other hand, if g(t) := 2t/t2 for t ∈ [1,∞), then g is nonnegative
and |g(t)|1/t → 2 as t → ∞, and so

∫∞
1 g(t)dt diverges to ∞.

(ii) If f : [a,∞) → R and |f(t)|1/t → 1 as t → ∞, then
∫∞

a
f(t)dt may

be convergent or divergent. For example, if f(t) := 1/t and g(t) := 1/t2

for t ∈ [1,∞), then as we have seen in Remark 7.12, |f(t)|1/t → 1 and

|g(t)|1/t =
(
|f(t)|1/t

)2 → 1 as t → ∞. However,
∫∞

a
f(t)dt is divergent,

whereas
∫∞

a g(t)dt is convergent. ✸

Remark 9.50. The Ratio Test for infinite series does not have a meaningful
analogue for improper integrals. ✸

Tests for Conditional Convergence of Improper Integrals

We shall now consider some tests that give conditional convergence of an
improper integral. They are based on the following formula for Integration
by Parts (Proposition 6.25), which can be considered as an analogue of the
Partial Summation Formula (Proposition 9.19).

Let f, g : [a, b] → R be such that f is differentiable and g is continuous. If
f ′ is integrable and G(x) :=

∫ x

a
g(t)dt for x ∈ [a, b], then

∫ b

a

f(t)g(t)dt = f(b)G(b) −
∫ b

a

f ′(t)G(t)dt.

Proposition 9.51 (Dirichlet’s Test for Improper Integrals). Let a ∈ R
and f, g : [a,∞) → R be such that f is monotonic, f(x) → 0 as x → ∞, f is
differentiable, f ′ is integrable on [a, x] for every x ≥ a, g is continuous, and
the function G : [a,∞) → R defined by G(x) :=

∫ x

a
g(t)dt is bounded. Then

the improper integral
∫∞

a
f(t)g(t)dt is convergent.

Proof. Since G is bounded, there is β > 0 such that |G(x)| ≤ β for all x ≥ a.
Also, since f(x) → 0 as x → ∞, we obtain f(x)G(x) → 0 as x → ∞. Further,
since f is monotonic, for each x ≥ a we have

∫ x

a

|f ′(t)G(t)|dt ≤ β

∫ x

a

|f ′(t)|dt = β
∣∣∣
∫ x

a

f ′(t)dt
∣∣∣ = β|f(x) − f(a)|.

Now since f is monotonic and f(x) → 0 as x → ∞, we see that f is bounded.
Hence

∫∞
a

f ′(t)G(t)dt is absolutely convergent, and so it is convergent by
Proposition 9.37. Using the formula for Integration by Parts quoted above,
we obtain
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∫ x

a

f(t)g(t)dt = f(x)G(x)−
∫ x

a

f ′(t)G(t)dt → −
∫ ∞

a

f ′(t)G(t)dt as x → ∞.

Thus
∫∞

a f(t)g(t)dt is convergent. ⊓⊔
A similar result, known as Abel’s Test for Improper Integrals, is

given in Exercise 34. Dedekind’s generalizations of the tests of Dirichlet and
Abel are given in Exercise 36. While the Leibniz Test (Corollary 9.21) has no
straightforward analogue for improper integrals, Dirichlet’s Test for trigono-
metric series (Corollary 9.22) admits the following analogue for what could
be called Fourier sine integrals and Fourier cosine integrals.

Corollary 9.52 (Convergence Test for Fourier Integrals). Let a ∈ R
and f : [a,∞) → R be a monotonic and differentiable function such that
f(x) → 0 as x → ∞ and f ′ is integrable on [a, x] for every x ≥ a. Then

(i)
∫∞

a f(t) sin θt dt is convergent for each θ ∈ R.

(ii)
∫∞

a
f(t) cos θt dt is convergent for each θ ∈ R with θ �= 0.

Proof. (i) Let θ ∈ R. Define g : [a,∞) → R by g(t) := sin θt. Then g is a
continuous function. For x ∈ [a,∞), let G(x) :=

∫ x

a g(t)dt. If θ = 0, then
g = 0 and so G = 0. If θ �= 0, then by part (i) of the FTC (Proposition 6.21),
we have

|G(x)| =
| cos θa − cos θx|

|θ| ≤ 2

|θ| for all x ≥ a.

Thus, in any event, the function G is bounded. Hence the desired result follows
from Proposition 9.51.

(ii) Let θ ∈ R with θ �= 0. By part (i) of the FTC (Proposition 6.21), we
have ∣∣∣∣

∫ x

a

cos θt dt

∣∣∣∣ =
| sin θx − sin θa|

|θ| ≤ 2

|θ| for all x ≥ a.

Hence the desired result follows as in (i) above. ⊓⊔
Example 9.53. Let p ∈ (0, 1] and θ ∈ R. Then the improper integral

∫ ∞

1

sin θt

tp
dt

is convergent. This follows by applying Corollary 9.52 to f : [1,∞) → R
defined by f(t) := 1/tp. Similarly, if θ ∈ R and θ �= 0, then the improper
integral ∫ ∞

1

cos θt

tp
dt

is convergent. On the other hand, if θ = 0, then the improper integral
∫ ∞

1

cos 0

tp
dt =

∫ ∞

1

1

tp
dt

is divergent. ✸
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9.6 Related Integrals

In the previous two sections we have considered convergence of an improper
integral

∫∞
a

f(t)dt, where a ∈ R and f : [a,∞) → R is integrable on [a, x] for
all x ≥ a. We shall now show that this treatment can be used to discuss the
convergence of other types of ‘improper integrals’.

Suppose b ∈ R and f : (−∞, b] → R is integrable on [x, b] for every x ≤ b.
Define f̃ : [−b,∞) → R by f̃(u) := f(−u). Then for every x ≤ b, that is, for
every −x ≥ −b, we have

∫ b

x

f(t)dt =

∫ −x

−b

f̃(u)du.

We say that
∫ b

−∞ f(t)dt is convergent if the improper integral
∫∞
−b

f̃(u)du
is convergent, that is, if the limit

lim
y→∞

∫ y

−b

f̃(u)du = lim
x→−∞

∫ b

x

f(t)dt

exists. In this case, this limit will be denoted by
∫ b

−∞ f(t)dt itself. Otherwise,

we say that
∫ b

−∞ f(t)dt is divergent.
Next, let f : R → R be a function that is integrable on [a, b] for all a, b ∈ R

with a ≤ b. We say that
∫∞
−∞ f(t)dt is convergent if both

∫∞
0

f(t)dt and
∫ 0

−∞ f(t)dt are convergent, that is, if the limits

lim
x→∞

∫ x

0

f(t)dt and lim
x→−∞

∫ 0

x

f(t)dt

both exist. In this case, the sum of these two limits is denoted by
∫∞
−∞ f(t)dt

itself. If any one of these limits does not exist, we say that
∫∞
−∞ f(t)dt is

divergent.
If the limit

lim
x→∞

∫ x

−x

f(t)dt

exists, then this limit is called the Cauchy principal value of the integral
of f on R. If

∫∞
−∞ f(t)dt is convergent, then since

∫ x

−x

f(t)dt =

∫ 0

−x

f(t)dt +

∫ x

0

f(t)dt for all x ≥ 0,

the Cauchy principal value of the integral of f on R exists and is equal to∫∞
−∞ f(t)dt. But the Cauchy principal value of the integral of f on R may

exist even when
∫∞
−∞ f(t)dt is divergent. For example, consider f : R → R

defined by f(t) := sin t. For every x ≥ 0, we have
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∫ x

0

sin t dt = 1 − cosx = −
∫ 0

−x

sin t dt and so

∫ x

−x

sin t dt = 0.

Hence limx→∞
∫ x

−x
f(t)dt = 0, but neither of the two limits limx→∞

∫ x

0
f(t)dt

and limx→∞
∫ 0

−x
f(t)dt exists.

However, if f : R → R is a nonnegative function and the Cauchy principal
value of the integral of f on R exists, then

∫∞
−∞ f(t)dt is convergent. This can

be seen as follows. For x ≥ 0, let F1(x) :=
∫ x

0 f(t)dt, F2(x) :=
∫ 0

−x f(t)dt,

and ℓ := limx→∞
∫ x

−x f(t)dt. Then F1 and F2 are monotonically increasing
functions with F1(x) ≤ ℓ and F2(x) ≤ ℓ for all x ≥ 0. Hence by part (i) of
Proposition 3.35 with b = ∞, both limx→∞ F1(x) and limx→∞ F2(x) exist,
that is,

∫∞
−∞ f(t)dt is convergent.

Integrals of the type
∫∞

a
f(t)dt,

∫ b

−∞ f(t)dt, and
∫∞
−∞ f(t)dt are sometimes

known as improper integrals of the first kind, in contrast to those of the
second kind, which we now describe.

Improper Integrals of the Second Kind

Let a, b ∈ R with a < b. An improper integral of the second kind on
(a, b] is an ordered pair (f, F ) of functions f : (a, b] → R and F : (a, b] → R
such that f is unbounded on (a, b] but integrable on [x, b] for each x ∈ (a, b]
and

F (x) =

∫ b

x

f(t)dt for x ∈ (a, b].

For simplicity and brevity, we use the suggestive notation
∫ b

a+ f(t)dt for the

improper integral (f, F ) on (a, b]. We say that
∫ b

a+ f(t)dt is convergent if the
right (hand) limit

lim
x→a+

F (x) = lim
x→a+

∫ b

x

f(t)dt

exists. In this case, the right (hand) limit is denoted by the same symbol∫ b

a+ f(t)dt. If
∫ b

a+ f(t)dt is not convergent, then it is said to be divergent.
The study of improper integrals of the second kind can be reduced to the

theory discussed in Sections 9.4 and 9.5 as follows. Given an improper integral

of the second kind
∫ b

a+ f(t)dt, define c ∈ R and f̃ : [c,∞) → R by

c :=
1

b − a
and f̃(u) :=

1

u2
f

(
a +

1

u

)
for u ∈ [c,∞).

Then for every x ∈ (a, b], we have

∫ b

x

f(t)dt =

∫ v

c

f̃(u)du, where v :=
1

x − a
.



400 9 Infinite Series and Improper Integrals

Moreover, x → a+ if and only if v → ∞. Consequently,

∫ b

a+

f(t)dt is convergent ⇐⇒
∫ ∞

c

f̃(u)du is convergent,

and in this case
∫ b

a+ f(t)dt =
∫∞

c
f̃(u)du.

A variant of the above is an improper integral
∫ b−

a
f(t)dt of an unbounded

function f : [a, b) → R that is integrable on [a, y] for every y ∈ [a, b). The
convergence of such integrals is defined analogously. Moreover, if we define
c ∈ R and f̃ : [c,∞) → R by

c :=
1

b − a
and f̃(u) :=

1

u2
f

(
b − 1

u

)
for u ∈ [c,∞),

then for every y ∈ [a, b), we have

∫ y

a

f(t)dt =

∫ v

c

f̃(u)du, where v :=
1

b − y
.

Moreover, y → b− if and only if v → ∞. Consequently,

∫ b−

a

f(t)dt is convergent ⇐⇒
∫ ∞

c

f̃(u)du is convergent,

and in this case
∫ b−

a
f(t)dt =

∫∞
c

f̃(u)du.
Finally, consider an unbounded function f : (a, b) → R that is integrable

on [x, y] for all x, y ∈ (a, b) with x ≤ y. Let c := (a + b)/2. We say that
∫ b−

a+ f(t)dt is convergent if both
∫ c

a+ f(t)dt and
∫ b−

c f(t) are convergent, that
is, if

lim
x→a+

∫ c

x

f(t)dt and lim
x→b−

∫ x

c

f(t)dt

both exist. In this case, the sum of these two limits is denoted by
∫ b−

a+ f(t)dt

itself. If any one of these limits does not exist, we say that
∫ b−

a+ f(t)dt is
divergent.

If the right (hand) limit

lim
ǫ→0+

∫ b−ǫ

a+ǫ

f(t)dt

exists, then it is called the Cauchy principal value of the integral of f on

(a, b). If
∫ b−

a+ f(t) is convergent, then for any ǫ > 0 with a + ǫ ≤ c ≤ b − ǫ, we
have ∫ c

a+ǫ

f(t)dt +

∫ b−ǫ

c

f(t)dt =

∫ b−ǫ

a+ǫ

f(t)dt.
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Hence the Cauchy principal value of the integral of f on (a, b) is equal to
∫ b−

a+ f(t)dt. But the Cauchy principal value of f on (a, b) may exist even when∫ b−
a+ f(t)dt is divergent. For example, let f(t) := t/(t2 − 1) for t ∈ (−1, 1).

Then

f(t) =
1

2

[
1

1 + t
− 1

1 − t

]
for t ∈ (−1, 1).

For each ǫ ∈ R satisfying 0 < ǫ < 1, we have

∫ 1−ǫ

0

f(t)dt =
1

2
[ln(2 − ǫ) + ln ǫ] and

∫ 0

−1+ǫ

f(t)dt = −1

2
[ln ǫ + ln(2 − ǫ)].

Thus we see that limǫ→0+

∫ 1−ǫ

−1+ǫ
f(t)dt = 0, but neither of the two limits

limǫ→0+

∫ 1−ǫ

0 f(t)dt and limǫ→0+

∫ 0

−1+ǫ f(t)dt exists. However, it can be shown
that if f : (a, b) → R is a nonnegative function and the Cauchy principal value

of the integral of f on (a, b) exists, then
∫ b−

a+ f(t)dt is convergent. The proof is
similar to the proof given earlier for the Cauchy principal value of the integral
of a nonnegative function on R.

Definitions of absolute and conditional convergence as well as tests for

the convergence of
∫ b

−∞ f(t)dt,
∫ b

a+ f(t)dt, and
∫ b−

a
f(t)dt can be obtained

by reducing these to improper integrals considered in Section 9.4 and 9.5.
Alternatively, such tests can be developed independently along similar lines.
To illustrate these two procedures, let us consider the comparison test for∫ b

a+ f(t)dt.

Proposition 9.54 (Comparison Test for Improper Integrals of the
Second Kind). Let a, b ∈ R with a < b and f, g : (a, b] → R be such that

both f and g are integrable on [x, b] for every x ≥ a and |f | ≤ g. If
∫ b

a+ g(t) is

convergent, then
∫ b

a+ f(t)dt is convergent and
∣∣∣∣∣

∫ b

a+

f(t)dt

∣∣∣∣∣ ≤
∫ b

a+

g(t)dt.

Proof. Let c := 1/(b − a). Define f̃ : [c,∞) → R and g̃ : [c,∞) → R by

f̃(u) :=
1

u2
f

(
a +

1

u

)
and g̃(u) :=

1

u2
g

(
a +

1

u

)
.

Now, |f̃ | ≤ g̃. Also, for every y ≥ c, f̃ is integrable on [c, y]. Assume that∫ b

a+ g(t) is convergent, that is, the improper integral
∫∞

c g̃(u)du is convergent.

Then by Proposition 9.42, it follows that
∫∞

c
f̃(u)du is convergent, that is,∫ b

a+ f(t)dt is convergent. Further,
∣∣∣∣∣

∫ b

a+

f(t)dt

∣∣∣∣∣ =

∣∣∣∣
∫ ∞

c

f̃(u)du

∣∣∣∣ ≤
∫ ∞

c

g̃(u)du =

∫ b

a+

g(t)dt,
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as desired.
Alternatively, we can give a proof from first principles as follows. Consider

f+, f− : (a, b] → R defined by

f+(t) :=
|f(t)| + f(t)

2
and f−(t) :=

|f(t)| − f(t)

2
for t ∈ (a, b].

Define F+, F−, G : (a, b] → R by

F+(x) :=

∫ b

x

f+(t)dt, F−(x) :=

∫ b

x

f−(t)dt, and G(x) :=

∫ b

x

g(t)dt.

Since the functions f+, f−, and g are nonnegative, the functions F+, F−,

and G are monotonically decreasing. Assume that
∫ b

a+ g(t)dt is convergent,
that is, limx→a+ G(x) exists. Then the function G is bounded above. Since
f+ ≤ |f | ≤ g and f− ≤ |f | ≤ g, we see that the functions F+ and F− are
bounded above, and hence both the limits limx→a+ F+(x) and limx→a+ F−(x)
exist. (Compare Exercise 32 (ii) of Chapter 3.) Since f = f+ − f−, we have∫ b

x f(t)dt = F+(x) − F−(x) for all x ∈ (a, b]. Hence limx→a+

∫ b

x f(t)dt exists,

that is,
∫ b

a+ f(t)dt is convergent. Further, since

−
∫ b

x

f(t)dt ≤ G(x) and

∫ b

x

f(t)dt ≤ G(x) for all x ∈ (a, b],

upon letting x → a+, we obtain

−
∫ b

a+

f(t)dt ≤
∫ b

a+

g(t)dt and

∫ b

a+

f(t)dt ≤
∫ b

a+

g(t)dt,

that is,
∣∣∣
∫ b

a+ f(t)dt
∣∣∣ ≤

∫ b

a+ g(t)dt, as desired. ⊓⊔

From the above result we can deduce the following analogue of Proposition
9.44 for improper integrals of the second kind.

Proposition 9.55. Let a, b ∈ R with a < b and f, g : (a, b] → R be such that
both f and g are integrable on [x, b] for every x ≥ a. Assume that there is
a0 ∈ (a, b] such that g(t) �= 0 for all t ∈ (a, a0] and that f(t)/g(t) → ℓ as
t → a+, where ℓ ∈ R or ℓ = ∞ or ℓ = −∞.

(i) If g(t) > 0 for all t ∈ (a, a0],
∫ b

a+ g(t)dt is convergent, and ℓ ∈ R, then∫ b

a+ f(t)dt is absolutely convergent.

(ii) If f(t) > 0 for all t ∈ (a, a0],
∫ b

a+ f(t)dt is convergent, and ℓ ∈ R, then∫ b

a+ g(t)dt is absolutely convergent.

Proof. Both (i) and (ii) follow from Proposition 9.54 in a similar manner as
the proof of Proposition 9.44 using Proposition 9.42. ⊓⊔
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In turn, Proposition 9.55 can be used to deduce a Limit Comparison Test
for improper integrals of the second kind, analogous to Corollary 9.45. This
time, we leave the formulation of the statement and a proof to the reader.

Examples 9.56. (i) Let f : (−∞, 0] → R be given by f(t) := et. Since
∫ 0

x

f(t)dt = 1 − ex → 1 as x → −∞,

we see that
∫ 0

−∞ f(t)dt is convergent.

(ii) Let f : (−∞,∞) → R be given by f(t) := e−t2 . For x ≥ 1, we have

0 ≤
∫ x

0

f(t)dt =

∫ 1

0

e−t2dt +

∫ x

1

e−t2dt ≤
∫ 1

0

e−t2dt +

∫ x

1

e−tdt

=

∫ 1

0

e−t2dt + e−1 − e−x ≤
∫ 1

0

e−t2dt + e−1.

Hence
∫∞
0

f(t)dt is convergent. Also, if f̃ : [0,∞) → R is defined by

f̃(u) := f(−u), then the improper integral
∫ ∞

0

f̃(u)du =

∫ ∞

0

e−u2

du

is convergent, that is,
∫ 0

−∞ f(t)dt is convergent. Thus
∫∞
−∞ f(t)dt is con-

vergent.
(iii) Let p ∈ R, b ∈ (0,∞), and f(t) := 1/tp for t ∈ (0, b]. If c ∈ R and

f̃ : [c,∞) → R is defined by

c :=
1

b
and f̃(u) =

1

u2
f

(
1

u

)
,

then ∫ ∞

c

f̃(u)du =

∫ ∞

c

1

u2−p
du.

As we have seen in Example 9.33 (iii),
∫∞

c up−2du is convergent if and
only if 2 − p > 1, that is, p < 1. Hence

∫ b

0+

1

tp
dt is convergent if and only if p < 1.

If p < 0, then the function f is bounded on (0, b], and if we define f(0) := 0,
then f : [0, b] → R is in fact continuous, and therefore integrable, on [0, b].
Alternatively, for x ∈ (0, b], we have

∫ 1

x

1

tp
dt =

{
(1 − x1−p)/(1 − p) if p �= 1,
− lnx if p = 1.

This shows that
∫ 1

0+(1/tp)dt if convergent if and only if p < 1 and when
p < 1, it converges to 1/(1 − p).
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(iv) Let f(t) := ln t for t ∈ (0, 1]. For x ∈ (0, 1], we have

∫ 1

x

f(t)dt = (t ln t − t))

∣∣∣∣
1

x

= x − 1 − x lnx.

Since x lnx → 0 as x → 0+, we see that
∫ 1

0+ ln t dt is convergent and

is equal to −1. Alternatively, define g(t) := 1/
√

t for t ∈ (0, 1]. Then

by (iii) above,
∫ 1

0+ g(t)dt is convergent and by L’Hôpital’s Rule for ∞
∞

indeterminate forms (Proposition 4.40), we have

lim
t→0+

f(t)

g(t)
= lim

t→0+

ln t

1/
√

t
= lim

t→0+

1/t

−1/2t3/2
= lim

t→0+
−2

√
t = 0.

By part (i) of Proposition 9.55, we see that
∫ 1

0+ ln t dt is convergent. ✸

We can also consider a combination of improper integrals of the first kind
and the second kind, that is, integrals of unbounded functions on unbounded
intervals. The notion of convergence can be readily defined as follows using
the theory we have developed earlier. Let a ∈ R and f : (a,∞) → R be an
unbounded function that is integrable (and in particular bounded) on [x, y] for
all x, y ∈ R such that a < x < y. We say that

∫∞
a+ f(t)dt is convergent if both∫ a+1

a+ f(t)dt and
∫∞

a+1 f(t)dt are convergent. In this case, the sum
∫ a+1

a+ f(t)dt+∫∞
a+1 f(t)dt is denoted by the same symbol

∫∞
a+ f(t)dt. Similarly, if b ∈ R

and f : (−∞, b) → R is an unbounded function such that f is integrable

on [x, y] for all x, y ∈ R with x < y < b, then we say that
∫ −∞

b− f(t)dt is

convergent if both
∫ b−1

−∞ f(t)dt and
∫ b−

b−1 f(t)dt are convergent. In this case,

the sum
∫ b−1

−∞ f(t)dt +
∫ b−

b−1
f(t)dt is denoted by the same symbol

∫ b−

−∞ f(t)dt.
It is clear that the study of such integrals easily reduces to that of improper
integrals of the first kind and of the second kind.

Examples 9.57. (i) Let f(t) := 1/
√

t(t + 1) for t ∈ (0,∞). Define g(t) :=
1/

√
t for t ∈ (0, 1] and h(t) := 1/t

√
t for t ∈ [1,∞). Since

lim
t→0+

f(t)

g(t)
= lim

t→0+

1

t + 1
= 1

and
∫ 1

0+ g(t)dt is convergent, part (i) of Proposition 9.55 shows that∫ 1

0+ f(t)dt is convergent. Also, since

lim
t→∞

f(t)

h(t)
= lim

t→∞
t

t + 1
= 1

and
∫∞
1 h(t)dt is convergent, the Limit Comparison Test (Corollary 9.45)

shows that
∫∞
1 f(t)dt is convergent. It follows that

∫∞
0+ f(t)dt is conver-

gent.
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(ii) Let f1(t) := 1/t2 and f2(t) = 1/
√

t for t ∈ (0,∞). Since
∫ 1

0+ f1(t)dt and∫∞
1

f2(t)dt are divergent, it follows that both
∫∞
0+ f1(t)dt and

∫∞
0+ f2(t)dt

are divergent. ✸

The Beta and Gamma Functions

We shall now consider two general examples of improper integrals, which lead
to certain important functions in analysis.

To begin with, let p, q be any real numbers and f : (0, 1) → R be the
function defined by f(t) := tp−1(1 − t)q−1. Let us consider the improper
integrals ∫ 1/2

0+

f(t)dt and

∫ 1−

1/2

f(t)dt.

If p ≥ 1, then f is bounded on
(
0, 1

2

]
and if we define f(0) := 0, then it

is continuous and, therefore, integrable on
(
0, 1

2

]
. Suppose p < 1 and let

g(t) := 1/t1−p for t ∈
(
0, 1

2

]
. Then

lim
t→0+

f(t)

g(t)
= lim

t→0+
(1 − t)q−1 = 1.

By Example 9.56 (i),
∫ 1/2

0+ g(t)dt is convergent if and only if 1 − p < 1, that

is, p > 0. So by part (i) of Proposition 9.55, the improper integral
∫ 1/2

0+ f(t)dt
is convergent if and only if p > 0.

Next, suppose q ≥ 1. Then f is bounded on
[

1
2 , 1

)
and if we define

f(1) := 0, then f is continuous and therefore, integrable on
[
1
2 , 1

]
. On the

other hand, suppose q < 1. For x ∈
[

1
2 , 1

)
, if we let y := 1−x, then y ∈

(
0, 1

2

]

and we have ∫ x

1/2

f(t)dt =

∫ 1/2

y

uq−1(1 − u)p−1du.

Hence using the result in the previous paragraph, we see that the improper

integral
∫ 1−

1/2 f(t)dt is convergent if and only if q > 0.

Thus, if p ≥ 1 and q ≥ 1 and if we set f(0) := 0 and f(1) = 0, then f is
integrable on [0, 1], and in all other cases, the improper integral

∫ 1−

0+

f(t)dt

is convergent if and only if p > 0 and q > 0. With this in view, we obtain a
well-defined function β : (0,∞) × (0,∞) → R given by

β(p, q) :=

∫ 1−

0+

tp−1(1 − t)q−1dt for p > 0 and q > 0.
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This is known as the beta function.
We shall now proceed to define another important function, which is a

neat generalization of the factorial function in the sense that it extends the
real-valued function on N given by n �→ (n−1)! to the set (0,∞) of all positive
real numbers. To motivate its definition, let us consider the improper integral

In :=

∫ ∞

0

e−ttn−1dt, where n ∈ N.

First we show that In = (n − 1)! for all n ∈ N. For n = 1, we have

∫ x

0

e−tdt = 1 − e−x → 1 as x → ∞.

Thus I1 = 1. Now assuming that In = (n−1)! for n ≥ 1, we deduce In+1 = n!.
Let x ≥ 0. Integration by Parts gives us

∫ x

0

e−ttndt = −e−xxn + n

∫ x

0

e−ttn−1dt.

We have seen in Example 7.4 (ii) that e−xxn → 0 as x → ∞, and by our
assumption

lim
x→∞

∫ x

0

e−ttn−1dt = In = (n − 1)!.

Hence

lim
x→∞

∫ x

0

e−ttndt = 0 + n · (n − 1)! = n!,

that is, In+1 = n!, as desired.
Thus we see that I1 = 1 and In+1 = nIn for all n ∈ N. In an attempt to

generalize this relation, let us fix s ∈ R and consider f : (0,∞) → R given by
f(t) := e−tts−1. Let

J1 :=

∫ 1

0+

f(t)dt and J2 :=

∫ ∞

1

f(t)dt.

If s ≥ 1, then f is a bounded function on (0, 1] and if we define f(0) := 1,
then it is continuous, and therefore integrable, on [0, 1]. Now suppose s < 1.
Define g : (0, 1] → R by g(t) := 1/t1−s. Then

lim
t→0+

f(t)

g(t)
= lim

t→0+
e−t = 1.

By Example 9.56 (iii),
∫ 1

0+ g(t)dt is convergent if and only if 1 − s < 1, that
is, s > 0. Hence by Proposition 9.55, J1 is convergent if and only if s > 0.

To consider the convergence of J2, choose n ∈ N such that n > s and
define g : [1,∞) → R by g(t) := 1/t1−s+n. Then



9.6 Related Integrals 407

lim
t→∞

f(t)

g(t)
= lim

t→∞
e−ttn = 0.

Since 1−s+n > 1, Example 9.33 (iii) shows that
∫∞
1

g(t)dt is convergent. By
part (i) of Proposition 9.44, it follows that J2 is convergent for every s ∈ R.

Thus
∫∞
0+ f(t)dt is convergent if and only if s > 0. With this in view, we

obtain a well-defined function Γ : (0,∞) → R given by

Γ (s) :=

∫ ∞

0+

e−tts−1dt for s > 0.

This is known as the gamma function.

Proposition 9.58 (Properties of Gamma Function).

(i) Γ (s) > 0 for all s > 0 and Γ (s) → ∞ as s → 0+.
(ii) Γ (s + 1) = s Γ (s) for all s > 0.
(iii) Γ (n) = (n − 1)! for all n ∈ N.

Proof. (i) For s > 0, we have

Γ (s) ≥
∫ 1

0+

e−tts−1dt ≥ e−1

∫ 1

0+

ts−1dt =
e−1

s
.

This shows that Γ (s) > 0 for all s > 0 and Γ (s) → ∞ as s → 0+.

(ii) Fix any s > 0. For ǫ > 0 and x ≥ ǫ, we have

∫ x

ǫ

e−ttsdt = −e−tts
∣∣∣
x

ǫ
+ s

∫ x

ǫ

e−tts−1dt

= (e−ǫǫs − e−xxs) + s

∫ x

ǫ

e−tts−1dt.

Now, e−ǫ → 1 as ǫ → 0+, and by part (iii) of Proposition 7.9, ǫs → 0 as
ǫ → 0+. Thus e−ǫǫs → 0 as ǫ → 0+. Also, if we choose n ∈ N such that n > s,
then for all x ≥ 1, we have 0 ≤ e−xxs ≤ e−xxn. From Example 7.4 (ii) we
know that e−xxn → 0 as x → ∞. Thus e−xxs → 0 as x → ∞. Consequently,

∫ 1

0+

e−ttsdt = lim
ǫ→0+

∫ 1

ǫ

e−ttsdt =
(
0 − e−1

)
+ s

(
lim

ǫ→0+

∫ 1

ǫ

e−tts−1dt

)

and
∫ ∞

1

e−ttsdt = lim
x→∞

∫ x

1

e−ttsdt =
(
e−1 − 0

)
+ s

(
lim

x→∞

∫ x

1

e−tts−1dt

)
.

Combining these, we obtain Γ (s + 1) = s Γ (s), as desired.

(iii) We have already shown that Γ (n) = (n− 1)!. Alternatively, it follows
from (ii) above using induction on n and the identity Γ (1) =

∫∞
0 e−tdt = 1,

which has also been verified earlier. ⊓⊔
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Remark 9.59. While Γ (s) is easy to calculate when s is a positive integer,
determining the value at other positive real numbers s is not obvious. For ex-
ample, it can be shown that Γ (1

2 ) = 2
∫∞
0 e−u2

du. (See Exercise 49.) Further,

using double integrals it can be shown that
∫∞
0

e−u2

du =
√

π/2. Assuming
these facts, we can use part (ii) of Proposition 9.58 to deduce that

Γ

(
n +

1

2

)
=

1 · 3 · · · (2n − 3)(2n − 1)

2n

√
π for all n ∈ N.

Another crucial property of the gamma function is that it is a log-convex
function, that is, the function Γℓ : (0,∞) → R defined by Γℓ(s) := lnΓ (s) is
convex on (0,∞). A proof of this result is outlined in Exercise 64.

There is an interesting relationship between the beta function and the
gamma function, namely,

β(p, q) =
Γ (p)Γ (q)

Γ (p + q)
for all p > 0 and q > 0.

We refer the reader to (2.12) of [2] for a proof of this result. Using Γ (1/2) =√
π, the above identity implies that β

(
1
2 , 1

2

)
= π. In general, if p, q are positive

nonintegral rational numbers, then by a theorem of Schneider, β(p, q) is a
transcendental number. For a proof, we refer to Section 6.2 of [7]. ✸

Notes and Comments

Logically, the theory of infinite series is a particular case of the theory of
sequences. In fact, the two are equivalent. However, from a pedagogical and
historical point of view, it seems preferable to treat infinite series separately
and at a stage when tools from the theory of integration are at our disposal.
Also, it appears natural to treat improper integrals alongside infinite series.

We have followed Apostol [3] to define an infinite series as a pair of se-
quences, the first comprising of the terms of the series and the second formed
by the partial sums of the series. This might seem pedantic but it avoids ‘defin-
ing’ an infinite series as an expression or a symbol. Similar considerations
apply to improper integrals. However, we quickly adopt the usual conventions
for denoting infinite series and improper integrals.

The treatments of the infinite series in Sections 9.1 and 9.2, and of the im-
proper integrals in Sections 9.3 and 9.5, run parallel. Our development brings
home the fact that they are the discrete and the continuous representations of
the same thing. For example, the partial sum An :=

∑n
k=1 ak of an infinite

series
∑∞

k=1 ak is analogous to the ‘partial’ integral F (x) :=
∫ x

a
f(t)dt of the

improper integral
∫∞

a
f(t)dt. Further, just as A0 = 0 and an = An − An−1

for all n ≥ 1, we have F (a) = 0 and f(x) = F ′(x), whenever x ≥ a and f
is continuous at x. Tests of convergence for the two are based on the same
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principles. However, there are a few exceptions. The ‘kth Term Test’ and
the ‘Ratio Test’ for infinite series fail to have an analogue in the setting of
improper integrals.

While the convergence of an infinite series can usually be determined using
one of the several tests, finding the sum is often far more difficult. The only
cases in which we have actually found the sum of an infinite series are those
involving a geometric series, or in which a series can be written as a genuine
telescopic series or the ‘tail’ of a Taylor series can be shown to tend to zero. In
fact, essentially the only series whose partial sums have a ‘closed form expres-
sion’ is the geometric series. The situation for actually evaluating improper
integrals is similar. But if a function f : [a,∞) → R is integrable on [a, x] for
all x ≥ a and equals the derivative of a known function g, then the ‘partial
integral’ F of the improper integral

∫∞
a f(t)dt is given by F (x) = g(x) − g(a)

for x ≥ a. As a result, to evaluate the improper integral
∫∞

a
f(t)dt, one only

needs to find limx→∞ g(x) (Proposition 9.34). Needless to say, this procedure
can be carried through in only a limited number of cases.

The fact that an absolutely convergent infinite series of real numbers is con-
vergent is intimately related to the Completeness Property of the real numbers
via the Cauchy Criterion. In fact, the Cauchy Criterion for real numbers can
be proved using only the fact that an absolutely convergent infinite series of
real numbers is convergent (Exercise 54).

While we have given a number of tests for convergence of infinite series in
the text and also in the exercises, the list is not meant to be comprehensive. A
wealth of material, including a plethora of convergence tests, can be found in
old classics on infinite series such as the books of Bromwich [12] and Knopp
[42]. See also the more specialized books of Dienes [22] and Hardy [32].

Power series are an important class of infinite series whose terms depend
on a parameter. Their peculiar convergence behavior is brought out in Lemma
9.25. This result allows us to introduce the concept of the radius of conver-
gence of a power series without any reference to the terms of the series. Of
course, the calculation of the radius of convergence of a given power series
will be based on the Root Test or the Ratio Test, for which either the roots of
the absolute values of the terms of the series or the ratios of the successive
terms of the series are needed. Taylor series form a special class of power se-
ries. Their convergence can be proved by showing that the remainder after the
nth term tends to zero. This process does not use the Root Test or the Ratio
Test and, when successful, yields also the sum of the series. Many classical
functions admit a Taylor series, which can be effectively used to understand
and study these functions. Conversely, new functions can be introduced by
means of convergent power series, just as we introduced the logarithmic and
the arctangent function by means of integrals of rational functions. It may be
interesting to note that any power series is the Taylor series of some func-
tion. See the article of Meyerson [48] for a proof. Apart from power series
and Taylor series, another important class of infinite series whose terms de-
pend on a parameter is that of Fourier series. These are series of the form
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a0 +
∑∞

k=1 (ak cos kx + bk sin kx). The study of Fourier series is a rich and
fascinating topic in mathematics, and for more on this, we suggest the recent
book of Stein and Shakarchi [60].

In order to retain the parallelism between infinite series and improper in-
tegrals, we have restricted the definition of an improper integral to cover only
the ‘integrals’ of the type

∫∞
a

f(t)dt, where a ∈ R and f : [a,∞) → R is a
function that is integrable on [a, x] for each x ≥ a. In doing so, there is no
real loss of generality since the treatment of improper integrals of other kinds
can be reduced to improper integrals of the above type. As an application of
improper integrals of the second kind, we have defined the beta function and
the gamma function. We have restricted ourselves to discussing only the most
rudimentary properties of these functions. The article of Davis [21] gives a
very readable introduction to the gamma function. A lucid development of the
gamma function and the beta function can be found in the book of Artin [2].

Exercises

Part A

1. Give examples to show that if
∑

k ak and
∑

k bk are convergent series of
real numbers, then the series

∑
k akbk may not be convergent. Also show

that if
∑

k ak = A and
∑

k bk = B, then
∑

k akbk may be convergent, but
its sum may not be equal to AB.

2. Consider a series
∑

k ak and for each n = 0, 1, 2, . . ., let bn,k := an+k. Show
that the series

∑
k ak is convergent if and only if for some n = 0, 2, . . ., the

series
∑

k bn,k is convergent. In this case, prove that the series
∑

k bn,k is
convergent for every n = 0, 1, 2, . . ., and

∑
k bn,k =

∑
k ak −An, where An

is the nth partial sum of the series
∑

k ak.
3. Show that the series

∑∞
k=1 2/(k + 1)(2k + 1) is convergent and its sum is

less than or equal to 1. (Hint: Compare the given series with the series∑∞
k=1 1/k(k + 1).)

4. Let a ∈ R with a > 1. Show that the series
∑∞

k=1

(
1/ak!

)
is convergent.

5. Let p ∈ R. Use Example 9.1 (iii) together with Proposition 9.4 to show
that

∑∞
k=1(1/kp) is convergent if p > 1 and divergent if p ≤ 1.

6. Let ak ∈ R with ak ≤ 0 for all k ∈ N. Show that
∑∞

k=1 ak is convergent if
and only if the sequence (An) of its partial sums is bounded below, and
in this case

∑∞
k=1 ak = inf{An : n ∈ N}. If (An) is not bounded below,

then show that
∑∞

k=1 ak diverges to −∞.
7. (Cauchy’s Condensation Test) Let (ak) be a monotonically decreas-

ing sequence of nonnegative real numbers. Show that the series
∑∞

k=1 ak

is convergent if and only if the series
∑∞

k=0 2ka2k is convergent. (Hint:
Proposition 9.4.) Deduce the convergence and divergence of the series∑∞

k=1 1/kp and
∑∞

k=2 1/k(lnk)p, where p ∈ R. (Compare Example 9.40.)
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8. (Abel’s kth Term Test) Suppose (ak) is a monotonically decreasing
sequence of nonnegative real numbers. If the series

∑
k ak is convergent,

then show that kak → 0 as k → ∞. (Hint: Exercise 7.) Also, show that
the converse of this result does not hold.

9. A sequence (ak) is said to be of bounded variation if
∑∞

k=1 |ak − ak+1|
is convergent. Prove the following:
(i) A sequence of bounded variation is convergent.
(ii) Let (ak) and (bk) be of bounded variation and let r ∈ R. Then (ak+bk),

(rak), and (akbk) are of bounded variation. If ak �= 0 for all k ∈ N, is
(1/ak) of bounded variation?

(iii) Every bounded monotonically increasing sequence is of bounded vari-
ation. Further, if (bk) and (ck) are bounded monotonically increasing
sequences and we define ak := bk − ck for k ∈ N, then the sequence
(ak) is of bounded variation.

(iv) If (ak) is of bounded variation, then there are bounded monotonically
increasing sequences (bk) and (ck) such that ak = bk − ck for k ∈ N.
(Hint: Let a0 := 0 and vk := |a1| + |a1 − a2| + · · · + |ak−1 − ak| for
k ∈ N. Define bk := (vk + ak)/2 and ck := (vk − ak)/2 for k ∈ N.)

10. (Ratio Comparison Test) Let (ak) and (bk) be sequences and suppose
bk > 0 for all k. Prove the following:
(i) If |ak+1|bk ≤ |ak|bk+1 for all large k and

∑∞
k=1 bk is convergent, then∑∞

k=1 ak is absolutely convergent.
(ii) If |ak+1|bk ≥ |ak|bk+1 for all large k and

∑∞
k=1 bk is divergent, then∑∞

k=1 ak is not absolutely convergent.
11. Let a, b ∈ R be such that 0 < a < b. For k ∈ N, define

a2k−1 := ak−1bk−1 and a2k := akbk−1.

Consider the series
∑∞

k=1 ak = 1 + a + ab + a2b + a2b2 + a3b2 + · · ·.
(i) Use the Ratio Test to show that

∑∞
k=1 ak is convergent if b < 1, and

it is divergent if a ≥ 1.
(ii) Use the Root Test to show that

∑∞
k=1 ak is convergent if ab < 1, and

it is divergent if ab > 1.
12. For k ∈ N, let a2k−1 := 4k−1/9k−1 and a2k := 4k−1/9k. Show that

|a2k/a2k−1| = 1
9 and |a2k+1/a2k| = 4 for all k ∈ N and so the Ratio Test

for the convergence of
∑∞

k=1 ak is inconclusive. Prove that |ak|1/k → 2
3 as

k → ∞ and use the Root Test to conclude that
∑∞

k=1 ak is convergent.
13. (Raabe’s Test) Let (ak) be a sequence of real numbers. If there is p > 1

such that
|ak+1| ≤

(
1 − p

k

)
|ak| for all large k,

then show that
∑∞

k=1 ak is absolutely convergent. On the other hand, if

|ak+1| ≥
(

1 − 1

k

)
|ak| for all large k,
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then show that
∑∞

k=1 ak is divergent. (Hint: If p > 1 and x ∈ [0, 1], then
1 − px ≤ (1 − x)p. Use Exercise 10.)

14. (i) If a1 := 1 and ak+1 := (k − 1)ak/(k + 1) for k ≥ 2, then show that∑∞
k=1 ak is convergent.

(ii) If a1 := 1 and ak+1 := (2k − 1)ak/2k for k ∈ N, then show that∑∞
k=1 ak diverges to ∞.

(Hint: Exercise 13.)
15. (Hypergeometric Series) Let α, β, γ be positive real numbers. If a0 := 1

and

ak :=
α(α + 1) · · · (α + k − 1)β(β + 1) · · · (β + k − 1)

γ(γ + 1) · · · (γ + k − 1)k!
for k ∈ N,

then show that
∑∞

k=0 ak is convergent if and only if γ > α + β. (Hint:
Exercise 13.)

16. Suppose the partial sums of a series
∑∞

k=1 bk are bounded. If p > 0 and
x ∈ (0, 1), then show that the series

∞∑

k=1

bk

kp
,

∞∑

k=1

bk

(ln k)p
and

∞∑

k=1

bkxk

are convergent. (Hint: Proposition 9.20.)
17. (Abel’s Test) If (ak) is a bounded monotonic sequence and

∑∞
k=1 bk is

a convergent series, then show that the series
∑∞

k=1 akbk is convergent.
(Hint: Partial Summation Formula.)

18. Let
∑∞

k=1 bk be a convergent series. Show that the series

∞∑

k=1

k1/kbk and
∞∑

k=1

(
1 +

1

k

)k

bk

are also convergent. (Hint: Exercise 17 and Exercises 7, 8 of Chapter 2.)
19. (Dedekind’s Tests) Let (ak) and (bk) be sequences of real numbers.

(i) If the series
∑∞

k=1 |ak − ak+1| is convergent, ak → 0 as k → ∞, and
the sequence of partial sums of

∑∞
k=1 bk is bounded, then show that

the series
∑∞

k=1 akbk is convergent.
(ii) If the series

∑∞
k=1 |ak − ak+1| and

∑∞
k=1 bk are convergent, then show

that the series
∑∞

k=1 akbk is convergent.
(Hint: Partial Summation Formula. Alternatively, use Exercise 9 (iv),
Proposition 9.20, and Exercise 17.)

20. Let p ∈ R with p > 1. Show that

1

(p − 1)(ln 2)p−1
≤

∞∑

k=2

1

k(ln k)p
≤ p − 1 + 2 ln 2

2(p − 1)(ln 2)p
.

(Hint: Proposition 9.39 and Example 9.40 (ii).)
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21. Test the series
∑∞

k=1 ak for absolute/conditional convergence if for k ∈ N,
ak is given as follows. In (vii)–(x) below, q, r, p, and θ are real numbers.

(i) (−1)k k

3k − 2
, (ii)

k!

2k
, (iii) ke−k, (iv)

1√
1 + k3

,

(v) (−1)k−1 k

k2 + 1
, (vi) (−1)k−1 1

ln(ln k)
, (vii)

kq

1 + kq
,

(viii)
rk

1 + r2k
, (ix) (−1)k−1 sin

(
1

kp

)
, (x)

cos kθ√
k

.

22. Find the radius of convergence of the power series
∑∞

k=0 ckxk whose co-
efficients are defined by c2k−1 := 3−k and c2k := 2k5−k for k ∈ N.

23. Find the radius of convergence of the power series
∑∞

k=0 ckxk if for k ∈ N,
the coefficient ck is given as follows:

(i) k!, (ii) k2, (iii)
k

k2 + 1
, (iv) ke−k, (v) ck2

, where c ∈ R,

(vi)
kk

k!
, (vii)

2k

k2
, (viii)

(
k + m

k

)
, where m ∈ N.

24. Let f(x) := cosx for x ∈ R. Show that the Taylor series of f is convergent
for x ∈ R. Deduce that

cosx = 1 − x2

2!
+

x4

4!
− · · · =

∞∑

k=0

(−1)k x2k

(2k)!
for x ∈ R.

25. Let a ∈ R and I be an open interval containing a. Show that if∑∞
k=0 ak(x − a)k is the Taylor series of some f : I → R around a, then

there are infinitely many functions g : I → R that have the same Taylor
series around a.

26. Modify the function given in Example 9.41 to obtain a piecewise linear
continuous function g : [1,∞) → R such that g(1) = 0 and for k ≥ 2,

g(k) =
√

k and g

(
k − 1

k2
√

k

)
= 0 = g

(
k +

1

k2
√

k

)
.

Show that
∫∞
1

g(t)dt is convergent, but g is not bounded.
27. Let a ∈ R and f : [a,∞) → R be such that f(t) ≤ 0 for all t ≥ a and f is

integrable on [a, x] for each x ≥ a. Show that
∫∞

a
f(t) is convergent if and

only if its partial integral F : [a,∞) → R defined by F (x) :=
∫ x

a f(t)dt is

bounded below, and in this case
∫∞

a f(t) = inf{F (t) : t ∈ [a,∞)}. If F is

not bounded below, then show that
∫∞

a
f(t) diverges to −∞.

28. Let f, g : [2,∞) → R be defined by

f(t) :=

{
1 if k ≤ t < k + (1/k2) for some k ∈ N,
0 otherwise,

and

g(t) :=

{
k if k ≤ t < k + (1/k3) for some k ∈ N,
0 otherwise.
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Show that
∫∞
2

f(t)dt and
∫∞
2

g(t)dt are convergent, f(k) = 1 for each
k ∈ N with k ≥ 2, and g(k) → ∞ as k → ∞.

29. Let a ∈ R and f : [a,∞) → R be such that f is integrable on [a, x] for all
x ≥ a. Prove the following:
(i) If

∫∞
a f(t)dt is convergent and f(x) → ℓ as x → ∞, then ℓ = 0.

(ii) If f is differentiable and
∫∞

a f ′(t)dt is convergent, then there is ℓ ∈ R
such that f(x) → ℓ as x → ∞. (Hint: Use part (i) of Proposition 6.21.)

(iii) If f is differentiable and both
∫∞

a
f(t)dt and

∫∞
a

f ′(t)dt are conver-
gent, then f(x) → 0 as x → ∞.

30. Use Exercise 29 to conclude that the improper integral
∫∞
0

t sin t2 dt is
divergent.

31. Show that
∫∞
1 (cos t/tp)dt and

∫∞
1 (sin t/tp)dt are absolutely convergent if

p > 1 and that they are conditionally convergent if 0 < p ≤ 1.
32. Let f : [1,∞) → R be such that f is integrable on [1, x] for every x ≥ 1.

Prove the following using Proposition 9.42:
(i) If there are p > 1 and ℓ ∈ R such that tpf(t) → ℓ as t → ∞, then∫∞

1 f(t)dt is absolutely convergent.
(ii) Suppose f(t) > 0 for all t ∈ [1,∞). If there are p ≤ 1 and ℓ �= 0 such

that tpf(t) → ℓ as t → ∞, then
∫∞
1

f(t)dt is divergent.
33. Let g : [1,∞) → R be a continuous real-valued function such that the

function G : [a,∞) → R defined by G(x) :=
∫ x

a
g(t)dt is bounded. If

p ∈ R with p > 0 and x ∈ (0, 1), then show that the improper integrals

∫ ∞

1

g(t)

tp
dt,

∫ ∞

1

g(t)

(ln t)p
dt, and

∫ ∞

1

xtg(t)dt

are convergent. (Hint: Proposition 9.51.)
34. (Abel’s Test for Improper Integrals) Let a ∈ R and f, g : [a,∞) → R

be such that f is bounded, monotonic, and differentiable, f ′ is integrable
on [a, x] for every x ≥ a, g is continuous, and

∫∞
a

g(t)dt is convergent.

Show that
∫∞

a f(t)g(t)dt is convergent. (Hint: Use Integration by Parts.)
[Note: Compare with Proposition 9.51.]

35. Let
∫∞
1 g(t)dt be a convergent improper integral. Show that the improper

integrals
∫∞
1

t1/tg(t)dt and
∫∞
1

(
1 + 1

t

)t
g(t)dt are also convergent. (Hint:

Exercise 34, and Revision Exercise 15 given at the end of Chapter 7.)
36. (Dedekind’s Tests for Improper Integrals) Let a ∈ R and let f, g :

[a,∞) → R be any functions.
(i) If f is differentiable,

∫∞
a |f ′(t)|dt is convergent, f(x) → 0 as x → ∞,

g is continuous, and the function G : [a,∞) → R defined by G(x) :=∫ x

a
g(t)dt is bounded, then show that

∫∞
a

f(t)g(t)dt is convergent.

(ii) If f is differentiable,
∫∞

a
|f ′(t)|dt is convergent, g is continuous, and∫∞

a g(t)dt is convergent, then show that
∫∞

a f(t)g(t)dt is convergent.
(Hint: Use Integration by Parts.)

37. Show that the improper integrals
∫∞
1 sin t2 dt and

∫∞
1 cos t2 dt are conver-

gent. (Hint: Substitute s = t2 and use Corollary 9.52.)
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38. Let p ∈ R with p > 0. Show that the improper integrals

∫ ∞

2

sin t

(ln t)p
dt and

∫ ∞

2

cos t

(ln t)p
dt

are conditionally convergent. (Hint: Corollary 9.52 and Exercise 31.)
39. Let f : [0,∞) → R be such that

∫∞
0

f(t)dt is absolutely convergent. Show
that the improper integrals

L(f)(u) :=

∫ ∞

0

f(t)e−utdt, where u ∈ R and u ≥ 0,

Fs(f)(u) :=
2

π

∫ ∞

0

f(t) sin ut dt, where u ∈ R,

Fc(f)(u) :=
2

π

∫ ∞

0

f(t) cosut dt, where u ∈ R,

are absolutely convergent.
[Note: L(f), Fs(f), and Fc(f) are called the Laplace Transform, the
Fourier Sine Transform, and the Fourier Cosine Transform of f.]

40. Let f : R → R be defined by f(t) := (1 + t)/(1 + t2) for t ∈ R. Show that∫∞
−∞ f(t)dt is divergent, but the Cauchy principal value of the integral of

f on R exists and is equal to π.
41. Let a, b ∈ R be such that a < b and f : [a, b] → R be an integrable function.

If g denotes the restriction of f to (a, b), then show that
∫ b−

a+ g(t)dt exists

and is equal to
∫ b

a f(t)dt.
42. Let f : [1,∞) → R be defined as follows. If t ∈ [1,∞) and k ≤ t < k + 1

with k ∈ N, let f(t) := (−1)k−1/k. Show that
∫∞

a f(t)dt is conditionally

convergent. (Hint:
∑∞

k=1(−1)k−1/k is conditionally convergent.)

43. Show that the improper integral
∫∞
0

et2dt is divergent, but the improper

integral
∫∞
0 e−t2dt is convergent. (Hint: Comparison with

∫∞
0 etdt and∫∞

0
e−tdt)

44. Let p(t) and q(t) be polynomials of degrees m and n respectively. Suppose
q(t) �= 0 for all t ≥ a and let f : [a,∞) → R be defined by f(t) := p(t)/q(t).
Show that

∫∞
a

f(t)dt is absolutely convergent if n ≥ m + 2 and
∫∞

a
f(t)dt

is divergent if n < m + 2.
45. Let f : (a, b] → R be a nonnegative function that is integrable on [x, b] for

every x ∈ (a, b]. Prove the following:
(i) If there is p ∈ (0, 1) such that (t − a)pf(t) → ℓ for some ℓ ∈ R, then∫ b

a+ f(t)dt is convergent.
(ii) If there is p ≥ 1 such that (t − a)pf(t) → ℓ for some ℓ �= 0, then∫ b

a+ f(t)dt is divergent.
(Hint: Corollary 9.44 with g(t) := 1/(t − a)p for t ∈ (a, b].)

46. Show that
∫ 2

1+(
√

t/ ln t)dt is divergent. (Hint: Exercise 45.)
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47. Let p, q ∈ R with p > 0 and q > 0. Show that

β(p, q) = 2

∫ (π/2)−

0+

(sin u)2p−1(cosu)2q−1du,

and in particular, β
(

1
2 , 1

2

)
= π. (Hint: Substitute t := sin2 u.)

48. Let p, q > 0. Show that

β(p, q) =

∫ ∞

0+

up−1

(1 + u)p+q
du =

∫ 1

0+

vp−1 + vq−1

(1 + v)p+q
dv.

(Hint: Substitute t := u/(1 + u) and then v := 1/u.)

49. Show that Γ (s) = 2
∫∞
0 e−u2

u2s−1du for all s > 0 and in particular, that

Γ
(

1
2

)
= 2

∫∞
0

e−u2

du. (Hint: Substitute t := u2.)
50. Test the following for absolute/conditional convergence:

(i)

∫ ∞

1

1√
1 + t3

dt, (ii)

∫ ∞

1

tq

1 + tq
dt, where q ∈ R, (iii)

∫ ∞

2

1

ln t
dt,

(iv)

∫ 1

0+

sin
(1

t

)
dt, (v)

∫ 1

0+

e1/ttq dt, where q ∈ R, (vi)

∫ 1−

0+

1

t ln t
dt.

Part B

51. (Cauchy Product) Suppose one of the series
∑∞

k=0 ak and
∑∞

k=0 bk is
absolutely convergent and the other is convergent. Let A and B denote
their respective sums. For each k = 0, 1, . . ., let ck :=

∑k
j=0 ajbk−j . Show

that the series
∑∞

k=0 ck is convergent and its sum is equal to AB. Give an
example to show that the result may not hold if both the series

∑∞
k=0 ak

and
∑∞

k=0 bk are conditionally convergent.
52. (Grouping of Terms) Let m0 := 0 and m1 < m2 < · · · be natural

numbers. Given a series
∑∞

k=1 ak, define bk := amk−1+1 + · · · + amk
for

k ∈ N. If the series
∑∞

k=1 ak is convergent, then show that the series∑∞
k=1 bk is convergent and has the same sum. Give an example to show

that
∑∞

k=1 bk may be convergent although
∑∞

k=1 ak is divergent.
53. (Rearrangement of Terms) Let k �−→ j(k) be a bijection from N to N.

Given a series
∑∞

k=1 ak, consider the series
∑∞

k=1 bk, where bk := aj(k).
Then the series

∑∞
k=1 bk is called a rearrangement of the series

∑∞
k=1 ak.

Show that a series
∑∞

k=1 ak is absolutely convergent if and only if every
rearrangement of it is convergent. In this case, the sum of a rearrangement
is unchanged.

54. Use the triangle inequality and the Cauchy Criterion (Propositions 1.8
and 2.19) to conclude that if a series of real numbers is absolutely con-
vergent, then it is convergent. Conversely, assuming that every absolutely
convergent series of real numbers is convergent, deduce the Cauchy Cri-
terion. (Hint: Given a Cauchy sequence (An) of real numbers, inductively
construct a subsequence (Ank

) such that |Ank+1
− Ank

| ≤ 1/k2 for all
k ∈ N and consider ak := Ank+1

− Ank
.)
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55. For k ∈ N, let ak ∈ R with ak > 0. Show that

lim inf
k→∞

ak+1

ak
≤ lim inf

k→∞
a
1/k
k and lim sup

k→∞
a
1/k
k ≤ lim sup

k→∞

ak+1

ak
.

56. For k ∈ N, let ak ∈ R with ak �= 0. If |ak+1|/|ak| → ℓ as k → ∞, then
show that |ak|1/k → ℓ as k → ∞.

57. For k ∈ N, let ak ∈ R and define α := lim supk→∞ |ak|1/k. Show that if
α < 1, then

∑∞
k=1 ak is absolutely convergent and if α > 1, then

∑∞
k=1 ak

is divergent.
58. For k ∈ N, let ak ∈ R with ak �= 0. Define α := lim supk→∞ |ak+1|/|ak|

and β := lim infk→∞ |ak+1|/|ak|. Show that if α < 1, then
∑∞

k=1 ak is
absolutely convergent and if β > 1, then

∑∞
k=1 ak is divergent.

59. Let
∑∞

k=0 ckxk be a power series with ck �= 0 for all k ∈ N and let r denote
its radius of convergence Prove the following:
(i) Suppose |ck+1|/|ck| → ∞ as k → ∞. Then r = 0.
(ii) Suppose the sequence (|ck+1|/|ck|) is bounded. For k ∈ N, define

Mk := sup{|cj+1|/|cj | : j ∈ N and j ≥ k}. Then (Mk) is a mono-
tonically decreasing sequence of nonnegative real numbers. Let L =
limk→∞ Mk. If L = 0, then r = ∞ and if L > 0, then r ≥ 1/L.

(iii) Suppose |ck+1|/|ck| �→ ∞ as k → ∞. For k ∈ N, define mk :=
inf{|cj+1|/|cj| : j ∈ N and j ≥ k}. Then (mk) is a monotonically
increasing sequence that is bounded above. Let ℓ := limk→∞ mk. If
ℓ �= 0, then r ≤ 1/ℓ.

[Note: L = lim supk→∞ |ck+1|/|ck| and ℓ = lim infk→∞ |ck+1|/|ck|.]
60. (Binomial Series) Let r ∈ R be such that r �∈ {0, 1, 2, . . .}, and define

f : (−1, 1) → R by f(x) = (1 + x)r. Show that

f(x) = 1 +

∞∑

k=1

r(r − 1) · · · (r − k + 1)

k!
xk for x ∈ (−1, 1).

(Hint: If x ∈ (−1, 1), n ∈ N, and Rn(x) denotes the Cauchy form of
remainder as given in Exercise 49 of Chapter 4, then

|Rn(x)| ≤
∣∣∣r(r − 1)

(r

2
− 1

)
· · ·

( r

n
− 1

)∣∣∣ (1 + c)r−1|x|n+1

for some c between 0 and x.)
61. Let f : [a, b] → R be an infinitely differentiable function. Assume that the

Taylor series of f around a converges to f(x) at every x ∈ [a, b], that is,

f(x) = f(a) +

∞∑

n=1

f (n)(a)

n!
(x − a)n, x ∈ [a, b].

Also, assume that the series obtained by integrating the above series term

by term converges to
∫ b

a f(x), that is,
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∫ b

a

f(x)dx = f(a)(b − a) +
∞∑

n=1

f (n)(a)

(n + 1)!
(b − a)n+1.

If M(f), T(f), and S(f) denote the Midpoint Rule, the Trapezoidal Rule,
and Simpson’s Rule for f , show that there are αn, βn, γn in R such that the
series

∑∞
n=4 αn(b − a)n,

∑∞
n=4 βn(b − a)n, and

∑∞
n=6 γn(b − a)n converge

and

(i)

∫ b

a

f(x)dx − M(f) =
f ′′(a)

24
(b − a)3 +

∞∑

n=4

αn(b − a)n,

(ii)

∫ b

a

f(x)dx − T (f) = −f ′′(a)

12
(b − a)3 +

∞∑

n=4

βn(b − a)n,

(iii)

∫ b

a

f(x)dx − S(f) = −f (4)(a)

2880
(b − a)5

∞∑

n=6

βn(b − a)n).

(Compare Lemmas 8.20 and 8.22, and the subsequent error estimates.)
62. Let f : [1,∞) → R be a nonnegative monotonically decreasing function

such that
∫∞
1

f(t)dt is convergent. For n ∈ N, let Bn :=
∑n

k=1 f(k) denote
the nth partial sum of the convergent series

∑∞
k=1 f(k). Show that

Bn +

∫ ∞

n+1

f(t)dt ≤
∞∑

k=1

f(k) ≤ Bn +

∫ ∞

n+1

f(t)dt + f(n + 1).

Use this result to show that
n∑

k=1

1

k2
+

1

n + 1
≤

∞∑

k=1

1

k2
≤

n∑

k=1

1

k2
≤

n∑

k=1

1

k2
+

1

n + 1
+

1

(n + 1)2
.

Further, show that if n ≥ 31, then
∣∣∣∣∣

∞∑

k=n+1

1

k2
− 1

n + 1

∣∣∣∣∣ <
1

1000
.

63. Let f : [1,∞) → R be a nonnegative monotonically decreasing function.
For n ∈ N, define cn :=

∑n
k=1 f(k) −

∫ n

1 f(t)dt. Show that limn→∞ cn

exists and

0 ≤ f(1) −
∫ 2

1

f(t)dt ≤ lim
n→∞

cn ≤ f(1).

Use this result to show that if

cn := 1 +
1

2
+ · · · + 1

n
− lnn,

then cn → γ, where γ satisfies 1 − ln 2 < γ < 1.
64. (Log-Convexity of the Gamma Function) Let Γℓ : (0,∞) → R be

defined by Γℓ(s) = lnΓ (s). Show that Γℓ is a convex function. (Hint: Use
Exercise 55 (iv) of Chapter 7 to show that if p, q ∈ (1,∞) with 1

p + 1
q = 1,

then Γ ((s/p) + (u/q)) ≤ Γ (s)1/pΓ (u)1/q for all s, u ∈ (0,∞).)
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Definition/Description Page

x ∈ D x is an element of D 1
N the set of all positive integers 1
Z the set of all integers 1
Q the set of all rational numbers 1
R the set of all real numbers 2∑

sum 3∏
product 3

A := B A is defined to be equal to B 3
R+ the set of all positive real numbers 4
∅ the empty set 4

sup S the supremum of a subset S of R 5
inf S the infimum of a subset S of R 5
maxS the maximum of a subset S of R 5
min S the minimum of a subset S of R 5

[x] the integer part of a real number x 6
⌊x⌋ the integer part or the floor of a real number x 6
⌈x⌉ the ceiling of a real number x 6
n
√

a the nth root of a nonnegative real number a 7√
a the square root of a nonnegative real number a 7

m | n m divides n 8, 18
m ∤ n m does not divide n 8, 18
± plus or minus 8

C ⊆ D C is a subset of D 9
=⇒ implies 9

D \ C the complement of C in D, namely, {x ∈ D : x �∈ C} 9
(a, b) the open interval {x ∈ R : a < x < b} 9
[a, b] the closed interval {x ∈ R : a ≤ x ≤ b} 9
[a, b) the semiopen interval {x ∈ R : a ≤ x < b} 9
(a, b] the semiopen interval {x ∈ R : a < x ≤ b} 9
∞ the symbol ∞ or the fictional right endpoint of R 9
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Definition/Description Page

−∞ the symbol −∞ or the fictional left endpoint of R 9
(a,∞) the semi-infinite interval {x ∈ R : x > a} 9
[a,∞) the semi-infinite interval {x ∈ R : x ≥ a} 9

(−∞, a) the semi-infinite interval {x ∈ R : x < a} 9
(−∞, a] the semi-infinite interval {x ∈ R : x ≤ a} 9
x �∈ D x is not an element of D 10
|a| the absolute value of a real number a 10

A.M. Arithmetic Mean 12
G.M. Geometric Mean 12
D × E the set {(x, y) : x ∈ D and y ∈ E} 14
idD the identity function on the set D 15
f|C the restriction of f : D → E to a subset C of D 16
g ◦ f the composite of g with f 15
f−1 the inverse of an injective function f 16
R[x] the set of all polynomials in x with coefficients in R 17

deg p(x) the degree of a nonzero polynomial p(x) 17
⇐⇒ if and only if 24
IVP Intermediate Value Property 28
k! the product of the first k positive integers 31

H.M. Harmonic Mean 33
GCD Greatest Common Divisor 37
LCM Least Common Multiple 37
x + iy the complex number (x, y) 38

C the set of all complex numbers 38
C[x] the set of all polynomials in x with coefficients in C 41
(an) the sequence whose nth term is an 43

an → a the sequence (an) tends to a real number a 44
lim

n→∞
an the limit of the sequence (an) 45

an = O(bn) (an) is big-oh of (bn) 53
an = o(bn) (an) is little-oh of (bn) 53
an ∼ bn (an) is asymptotically equivalent to (bn) 54
an → ∞ the sequence (an) tends to ∞ 54

an → −∞ the sequence (an) tends to −∞ 54
�→ does not tend to 55

lim sup
n→∞

an the limit superior of (an) 65

lim inf
n→∞

an the limit inferior of (an) 65

lim
x→c

f(x) the limit of the function f as x tends to c 82

lim
x→c−

f(x) the left (hand) limit of f as x tends to c 88

lim
x→c+

f(x) the right (hand) limit of f as x tends to c 88

f(x) = O(g(x)) f(x) is big-oh of g(x) as x → ∞ 90
f(x) = O(g(x)) f(x) is little-oh of g(x) as x → ∞ 90

f(x) ∼ g(x) f(x) is asymptotically equivalent to g(x) 90

f ′(c),
df

dx

∣∣∣∣
x=c

the derivative of f at the point c 104

f ′,
df

dx
the derivative (function) of f 105
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f ′′(c),
d2f

dx2

∣∣∣∣
x=c

the second derivative of f at c 112

f ′′′(c),
d3f

dx3

∣∣∣∣
x=c

the third derivative of f at c 112

f (n)(c),
dnf

dxn

∣∣∣∣
x=c

the nth derivative of f at c 112

f ′
−(c) the left (hand) derivative of f at the point c 113

f ′
+(c) the right (hand) derivative of f at the point c 113

MVT Mean Value Theorem 120
≈ approximately equal 124

L’HR L’Hôpital’s Rule 133, 134
Pn the partition of [a, b] into n equal parts 180

m(f) the infimum of {f(x) : x ∈ [a, b]} 180
M(f) the supremum of {f(x) : x ∈ [a, b]} 180
mi(f) the infimum of {f(x) : x ∈ [xi−1, xi]} 180
Mi(f) the supremum of {f(x) : x ∈ [xi−1, xi]} 180
L(P, f) the lower sum for f with respect to P 181
U(P, f) the upper sum for f with respect to P 181
L(f) the lower Riemann integral of f 181
U(f) the upper Riemann integral of f 181∫ b

a f(x)dx the (Riemann) integral of f on [a, b] 182
f+ the positive part of f 200
f− the negative part of f 200

FTC Fundamental Theorem of Calculus 202∫
f(x)dx an indefinite integral of f 204[

F (x)
]b
a
, F (x)

∣∣b
a

the difference F (b) − F (a) 204
S(P, f) a Riemann sum for f corresponding to P 211
µ(P ) the mesh of a partition P 213

ln the (natural) logarithmic function 228
e the unique real number such that ln e = 1 229

exp the exponential function 230
arctan the arctangent function 241

π the real number 2 sup{arctanx : x ∈ (0,∞)} 241
tan the tangent function 244
sin the sine function 245, 246
cos the cosine function 245, 246
csc the cosecant function 250
sec the secant function 250
cot the cotangent function 250

sin−1 the inverse sine function 251
cos−1 the inverse cosine function 251
cot−1 the inverse cotangent function 252
csc−1 the inverse cosecant function 252
sec−1 the inverse secant function 253
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Definition/Description Page

∠(OP1, OP2) the angle between OP1 and OP2 264
L1 ‖ L2 the lines L1 and L2 are parallel 266
L1 ∦ L2 the lines L1 and L2 are not parallel 266

∡(L1, L2) the (acute) angle between L1 and L2 266
L1 ⊥ L2 the lines L1 and L2 are perpendicular 267
L1 �⊥ L2 the lines L1 and L2 are not perpendicular 267

∡(C1, C2; P ) the angle at P between C1 and C2 268
Area (R) the area of a region R 292
Vol (D) the volume of a solid body D 299, 303

ℓ(C) the length of a curve C 311
Area (S) the area of a surface S 321
Av(f) the average of a function f 325

Av(f ; w) the weighted average of f with respect to w 325
(x, y) the centroid of a curve or a planar region 326, 329

(x, y, z) the centroid of a surface or a solid body 327, 330
Q(f) a Quadrature Rule for f 336
R(f) Rectangular Rule for f 337
M(f) Midpoint Rule for f 337
T (f) Trapezoidal Rule for f 337
S(f) Simpson’s Rule for f 337
Rn(f) Compound Rectangular Rule for f 338
Mn(f) Compound Midpoint Rule for f 339
Tn(f) Compound Trapezoidal Rule for f 339
Sn(f) Compound Simpson’s Rule for f 339
∞∑

k=1

ak the series whose sequence of terms is (ak) 362

∫ ∞

a

f(t)dt the improper integral of f on [a,∞) 384

∫ b

−∞
f(t)dt the improper integral of f on (−∞, b] 398

∫ ∞

−∞
f(t)dt the improper integral of f on (−∞,∞) 398

∫ b

a+

f(t)dt the improper integral of f on (a, b] 399

∫ b−

a

f(t)dt the improper integral of f on [a, b) 400

∫ b−

a+

f(t)dt the improper integral of f on (a, b) 400

β(p, q) the beta function for p > 0 and q > 0 405
γ(s) the gamma function for s > 0 407
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α-δ condition, 91
β-δ condition, 91
ǫ-α condition, 89
ǫ-δ condition, 71, 81, 86
γ, 274
π, 241
d-ary expansion, 64
e, 229
kth Term Test, 367

A.M.-G.M. inequality, 12
A.M.-H.M. inequality, 39
Abel’s kth Term Test, 367, 411
Abel’s inequality, 33
Abel’s Lemma, 376
Abel’s Test, 412
Abel’s Test for improper integrals, 414
absolute extremum, 148
absolute maximum, 147
absolute minimum, 147
absolute value, 10
absolutely convergent, 366, 388
accumulation point, 101
acute angle, 264
algebraic function, 19
algebraic number, 21
angle, 264
angle between two curves, 268
angle between two lines, 266
antiderivative, 202
arc length, 311, 315
Archimedean property, 6
arctangent, 241
area, 183, 292

arithmetic-geometric mean, 62
asymptote, 92
asymptotic error constant, 178
attains its bounds, 22
attains its lower bound, 22
attains its upper bound, 22
average, 324, 325

base, 234
base of the natural logarithm, 237
basic inequalities for absolute values, 10
basic inequalities for powers and roots,

11
basic inequality for rational powers, 39
basic inequality for Riemann integrals,

183
beta function, 406
bijective, 15
binary expansion, 64
binomial coefficient, 31
binomial inequality, 12
binomial inequality for rational powers,

39
binomial series, 383, 417
Bolzano–Weierstrass Theorem, 56
boundary point, 148
bounded, 4, 22
bounded above, 4, 22
bounded below, 4, 22
bounded variation, 411

Carathéodory’s Lemma, 107
cardinality, 15
cardioid, 262
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Cartesian coordinates, 261
Cartesian equation, 262
Cauchy completeness, 59
Cauchy condition, 212
Cauchy Criterion, 58, 364, 386
Cauchy Criterion for limits of functions,

87
Cauchy form of remainder, 146
Cauchy principal value, 398, 400
Cauchy product, 416
Cauchy sequence, 57
Cauchy’s Condensation Test, 410
Cauchy’s Mean Value Theorem, 132
Cauchy’s Root Test, 370
Cauchy–Schwarz inequality, 12
ceiling, 6
ceiling function, 21
centroid, 326
centroid of a curve, 326
centroid of a planar region, 329
centroid of a solid body, 329
centroid of a surface, 327
Chain Rule, 111
closed interval, 9
closed set, 72
cluster point, 62
codomain, 14
coefficient, 17
coefficient of a power series, 376
common refinement, 181
Comparison Test, 367
Comparison Test for improper integrals,

393
Comparison Test for improper integrals

of the second kind, 401
complex numbers, 38
composite, 15
Compound Midpoint Rule, 339
Compound Rectangular Rule, 338
Compound Simpson’s Rule, 339
Compound Trapezoidal Rule, 339
concave, 24
concave downward, 24
concave upward, 24
conditionally convergent, 366, 389
constant function, 15
constant polynomial, 17
content zero, 226
continuous, 67

Continuous Inverse Theorem, 78
continuously differentiable, 118
contraction, 177
contractive, 177
Convergence of Newton Sequences, 168
Convergence Test for Fourier integrals,

397
Convergence Test for trigonometric

series, 374
convergent, 44, 362, 384, 398–400, 404
converges, 44, 362, 384
convex, 24
cosecant function, 250
cosine function, 245
cotangent function, 250
countable, 38
critical point, 148
cubic polynomial, 17

D’Alembert’s Ratio Test, 370
decimal expansion, 64
decreasing, 23, 49
Dedekind’s Tests, 412
Dedekind’s Tests for improper integrals,

414
definite integral, 204
definition of π, 241
definition of e, 229
degree, 17, 19, 41
degree measure, 265
derivative, 104
differentiable, 104
Differentiable Inverse Theorem, 112
digit, 64
Dirichlet function, 68, 184
Dirichlet’s Test, 373
Dirichlet’s Test for improper integrals,

396
discontinuous, 67
discriminant, 18
disk method, 306
divergent, 44, 362, 384, 398–400
diverges, 54, 362, 384
divides, 8
domain, 14
domain additivity of lower Riemann

integrals, 223
domain additivity of Riemann integrals,

187
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domain additivity of upper Riemann
integrals, 223

doubly infinite interval, 9

elementary function, 272
elementary transcendental functions,

227, 269
endpoints, 9
error function, 358
error in linear approximation, 158
error in quadratic approximation, 160
Euler’s constant, 274
Euler’s Summation Formula, 391
evaluation, 18
even function, 16
exponent, 234
exponential function, 230
exponential series, 363
Extended Mean Value Theorem, 122
extended real numbers, 9

factor, 8
factorial, 31
finite set, 15
First Derivative Test for local maximum,

152
First Derivative Test for local minimum,

151
First Mean Value Theorem for integrals,

225
fixed point, 161
floor, 6
floor function, 21
folium of Descartes, 353
for all large k, 366
for all large t, 388
Fourier cosine transform, 415
Fourier sine transform, 415
function, 14
Fundamental Theorem of Algebra, 41
Fundamental Theorem of Calculus, 202
Fundamental Theorem of Riemann

Integration, 205

G.M.-H.M. inequality, 33
gamma function, 407
GCD, 37, 40
generalized binomial inequality, 12
geodesic, 317

geometric series, 362
graph, 14
great circle, 317
greatest common divisor, 37, 40
greatest lower bound, 5
grouping of terms, 416
growth rate, 53

Hölder inequality for integrals, 281
Hölder inequality for sums, 281
harmonic mean, 33
harmonic series, 363
Hausdorff property, 33
helix, 315
homogeneous polynomial, 41
horizontal asymptote, 92
hyperbolic cosine, 275
hyperbolic sine, 275
hypergeometric series, 412

identity function, 15
implicit differentiation, 115
implicitly defined curve, 114
improper integral, 384
improper integral of the second kind,

399
improper integrals of the first kind, 399
increasing, 23, 49
increment function, 107
indefinite integral, 204
induction, 32
inequality for rational roots, 39
infimum, 5
infinite series, 361
infinite set, 15
infinitely differentiable, 112
infinity, 9
injective, 15
instantaneous speed, 104
instantaneous velocity, 104
integer part, 6
integer part function, 21
integrable, 182, 225
Integral Test, 390
Integration by Parts, 206
Integration by Substitution, 207
interior point, 104
Intermediate Value Property, 28
Intermediate Value Theorem, 77
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interval, 9

interval of convergence, 377
inverse function, 16
inverse trigonometric function, 251
irrational number, 8

IVP, 28
IVP for derivatives, 118

L’Hôpital’s Rule for 0

0
indeterminate

forms, 133
L’Hôpital’s Rule for ∞

∞
indeterminate

forms, 134
Lagrange form of remainder, 123
Lagrange’s identity, 13
Laplace transform, 415

laws of exponents, 6, 239
laws of indices, 6, 239
LCM, 37
leading coefficient, 17

least common multiple, 37
least upper bound, 5
left (hand) derivative, 113

left (hand) endpoint, 9
left (hand) limit, 88
Leibniz Test, 374
Leibniz’s rule for derivatives, 113

Leibniz’s rule for integrals, 221
lemniscate, 263
length, 226, 314, 359
limaçon, 263

limit, 44, 81, 89, 102
Limit Comparison Test, 369
Limit Comparison Test for improper

integrals, 394
limit inferior, 65
limit of composition, 99
limit point, 101

limit superior, 65
Limit Theorem for functions, 84
Limit Theorem for sequences, 45

linear approximation, 157
linear convergence, 177
linear polynomial, 17
Lipschitz condition, 201

local extremum, 26
local maximum, 25
local minimum, 25
log-convex, 408

log-convexity of the gamma function,
418

logarithmic function, 228
logarithmic function with base a, 237
lower bound, 4
lower limit, 65
lower Riemann integral, 182
lower sum, 180

Maclaurin series, 380
maximum, 5
mean value inequality, 120
Mean Value Theorem, 120
mesh, 213
Midpoint Rule, 337
minimum, 5
Minkowski inequality for integrals, 281
Minkowski inequality for sums, 281
modulus, 10
monic, 17
monotonic, 23, 49
monotonically decreasing, 23, 49
monotonically increasing, 23, 49
multiplicity, 144
MVT, 117

natural logarithm, 228
natural numbers, 1
necessary and sufficient conditions for a

point of inflection, 155
necessary condition for a local

extremum, 151
necessary condition for a point of

inflection, 155
negative, 3
negative part, 200
Nested Interval Theorem, 65
Newton method, 167
Newton sequence, 167
Newton–Raphson method, 167
nodes, 337
nonexpansive, 177
normal, 115, 116
number line, 1
number of elements in a finite set, 15

oblique asymptote, 92
obtuse angle, 264
odd function, 16
one dimensional content zero, 226
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one-one, 15
one-to-one correspondence, 15
onto, 14
open interval, 8
order of convergence, 178
orthogonal intersection of curves, 268

parameter domain, 303
parametrically defined curve, 114
partial fraction decomposition, 18
Partial Summation Formula, 373
partition, 180
Pascal triangle, 32
Pascal triangle identity, 32
periodic, 221
perpendicular lines, 267
Picard Convergence Theorem, 163
Picard method, 163
Picard sequence, 163
piecewise smooth, 314
point of inflection, 26
polar coordinates, 261
polar equation, 262
polynomial, 17
polynomial function, 19
positive part, 200
power, 6, 7, 234
power function, 235
power mean, 39
power mean inequality, 286
power series, 376
prime number, 37
primitive, 202
prismoidal formula, 359
properties of gamma function, 407
properties of power function with fixed

base, 235
properties of the arctangent function,

241
properties of the exponential function,

231
properties of the logarithmic function,

228
properties of the power function with

fixed exponent, 237
properties of the tangent function, 244

quadratic approximation, 159
quadratic convergence, 178

quadratic polynomial, 17
quadrature rule, 336
quotient, 17
quotient rule, 109

Raabe’s Test, 372, 411
radian measure, 265
radius of convergence, 377
range, 14
Ratio Comparison Test, 369, 411
Ratio Test, 370
rational function, 18, 19
rational number, 1
real analytic function, 383
Real Fundamental Theorem of Algebra,

18
rearrangement, 416
rearrangement of terms, 416
reciprocal, 3
rectangular coordinates, 261
Rectangular Rule, 337
rectifiable, 359
recurring, 64
reduced form, 8
refinement, 181
relatively prime, 8
remainder, 123
restriction, 16
rhodonea curves, 263
Riemann condition, 185
Riemann integral, 182, 225
Riemann sum, 211
right (hand) derivative, 113
right (hand) endpoint, 9
right (hand) limit, 88
right angle, 264
Rolle’s Theorem, 119
root, 7, 18, 41, 144
root mean square, 39
Root Test, 370
Root Test for improper integrals, 395
rose, 263

Sandwich Theorem, 47, 86, 364, 386
Schlömilch form of remainder, 146
secant function, 250
second derivative, 112
Second Derivative Test for local

maximum, 152
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Second Derivative Test for local
minimum, 152

Second Mean Value Theorem for
integrals, 225

semi-infinite interval, 9
semiclosed interval, 9
semiopen interval, 9
sequence, 43
sequence of partial sums, 362
sequence of terms, 362
series, 361
shell method, 307
signed angle, 265
Simpson’s Rule, 337
sine function, 245
slice, 298
sliver, 302
smooth, 311
solid angle, 322
solid of revolution, 306
source, 14
spiral, 262
steradian, 323
Stirling’s formula, 283
strict local extremum, 27
strict local maximum, 27
strict local minimum, 27
strict point of inflection, 27
strictly concave, 25
strictly convex, 25
strictly decreasing, 25
strictly increasing, 25
strictly monotonic, 25
subsequence, 55
sufficient conditions for a local

extremum, 151
sufficient conditions for a point of

inflection, 155
sum, 362
supremum, 5
surface area, 303
surjective, 14
symmetric, 16

tangent, 115
tangent function, 244

tangent line approximation, 158
target, 14
Taylor formula, 123
Taylor polynomial, 123
Taylor series, 380
Taylor’s Theorem, 122
Taylor’s Theorem for integrals, 224
Taylor’s Theorem with integral

remainder, 224
telescoping series, 365
tends, 54
term, 43
ternary expansion, 64
Theorem of Bliss, 224
Theorem of Darboux, 214
Theorem of Pappus for solids of

revolution, 334
Theorem of Pappus for surfaces of

revolution, 333
Thomae’s function, 100, 198
thrice differentiable, 112
total degree, 41
transcendental function, 20, 269
transcendental number, 21
Trapezoidal Rule, 337
triangle inequality, 11
trigonometric function, 251
twice differentiable, 112

unbounded, 4
uncountable, 38
uniformly continuous, 79
upper bound, 4
upper limit, 65
upper Riemann integral, 182
upper sum, 180

vertical asymptote, 92

Wallis formula, 282
washer method, 306
weight function, 325
weighted average, 325
weights, 337

zero polynomial, 17
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