A Course in
 Combinatorics

J. H. van Lint
Technical University of Eindhoven
and
R. M. Wilson
California Institute of Technology

CONTENTS

Preface xi

1. Graphs 1
Terminology of graphs and digraphs, Eulerian cir- cuits, Hamiltonian circuits
2. Trees 11
Cayley's theorem, spanning trees and the greedy algorithm
3. Colorings of graphs and Ramsey's theorem 20
Brooks' theorem, Ramsey's theorem and Ramsey numbers, the Erdős-Szekeres theorem
4. Turán's theorem and extremal graphs 29
Turán's theorem and extremal graph theory
5. Systems of distinct representatives 35
Bipartite graphs, P. Hall's condition, SDRs, König's theorem, Birkhoff's theorem
6. Dilworth's theorem and extremal set theory 42Partially ordered sets, Dilworth's theorem, Sperner'stheorem, symmetric chains, the Erdős-Ko-Radotheorem
7. Flows in networks 49
The Ford-Fulkerson theorem, the integrality theorem, a generalization of Birkhoff's theorem
8. De Bruijn sequences 56
The number of De Bruijn sequences
9. The addressing problem for graphs 62
Quadratic forms, Winkler's theorem
10. The principle of inclusion and exclusion; 70 inversion formulae
Inclusion-exclusion, derangements, Euler indica- tor, Möbius function, Möbius inversion, Burnside's lemma, problème des ménages
11. Permanents 79
Bounds on permanents, Schrijver's proof of the Minc conjecture, Fekete's lemma, permanents of doubly stochastic matrices
12. The Van der Waerden conjecture 91
The early results of Marcus and Newman, London's theorem, Egoritsjev's proof
13. Elementary counting; Stirling numbers 100
Stirling numbers of the first and second kind, Bell numbers, generating functions
14. Recursions and generating functions 109
Elementary recurrences, Catalan numbers, counting of trees, Joyal theory, Lagrange inversion
15. Partitions 132
The function $p_{k}(n)$, the partition function, Ferrers diagrams, Euler's identity, asymptotics, the Jacobi triple product identity, Young tableaux and the hook formula
16. (0,1)-Matrices 148Matrices with given line sums, counting (0,1)-matrices
17. Latin squares 157
Orthogonal arrays, conjugates and isomorphism, partial and incomplete Latin squares, counting Latin squares, the Evans conjecture
18. Hadamard matrices, Reed-Muller codes 172
Hadamard matrices and conference matrices, re- cursive constructions, Paley matrices, Williamson's method, excess of a Hadamard matrix, first order Reed-Muller codes
19. Designs 187The Erdös-De Bruijn theorem, Steiner systems,balanced incomplete block designs, Hadamard designs,counting, (higher) incidence matrices, the Wilson-Petrenjuk theorem, symmetric designs, projectiveplanes, derived and residual designs, the Bruck-Ryser-Chowla theorem, constructions of Steiner triplesystems, write-once memories
20. Codes and designs 214Terminology of coding theory, the Hamming bound,the Singleton bound, weight enumerators andMacWilliams' theorem, the Assmus-Mattson theorem,symmetry codes, the Golay codes, codes from projec-tive planes
21. Strongly regular graphs and partial geometries 231
The Bose-Mesner algebra, eigenvalues, the integralitycondition, quasisymmetric designs, the Krein condi-tion, the absolute bound, uniqueness theorems, partialgeometries, examples
22. Orthogonal Latin squares 250
Pairwise orthogonal Latin squares and nets, Eu-ler's conjecture, the Bose-Parker-Shrikhande theorem,asymptotic existence, orthogonal arrays and transver-saldesigns, difference methods, orthogonal subsquares
23. Projective and combinatorial geometries 269
Projective and affine geometries, duality, Pasch'saxiom, Desargues' theorem, combinatorial geometries,geometric lattices, Greene's theorem
24. Gaussian numbers and q-analogues 291
Chains in the lattice of subspaces, q-analogue of
Sperner's theorem, interpretation of the coefficients ofthe Gaussian polynomials, spreads
25. Lattices and Möbius inversion 298
The incidence algebra of a poset, the Möbius func- tion, chromatic polynomial of a graph, Weisner's theorem, complementing permutations of geometric lattices, connected labeled graphs
26. Combinatorial designs and projective geometries 313
Arcs and subplanes in projective planes, blocking sets, quadratic and Hermitian forms, unitals, general- ized quadrangles, Möbius planes
27. Difference sets and automorphisms 329
Automorphisms of symmetric designs, Paley-Toddand Stanton-Sprott difference sets, Singer's theorem
28. Difference sets and the group ring 342
The Multiplier Theorem and extensions, homomor- phisms and further necessary conditions
29. Codes and symmetric designs 355
The sequence of codes of a symmetric design, Wilbrink's theorem
30. Association schemes 364
Examples, the eigenmatrices and orthogonality re- lations, formal duality, the distribution vector of a subset, Delsarte's inequalities, polynomial schemes, perfect codes and tight designs
31. Algebraic graph theory: eigenvalue techniques 390
Tournaments and the Graham-Pollak theorem, the spectrum of a graph, Hoffman's theorem, Shannon capacity, applications of interlacing and Perron- Frobenius
32. Graphs: planarity and duality 403
Deletion and contraction, the chromatic polynomial, Euler's formula, Whitney duality, matroids
33. Graphs: colorings and embeddings 427
The Five Color Theorem, embeddings and coloringson arbitrary surfaces, the Heawood conjecture, theEdmonds embedding technique
34. Electrical networks and squared squares 449The matrix-tree theorem, the network of a squaredrectangle, Kirchhoff's theorem
35. Pólya theory of counting 461
The cycle index of a permutation group, counting orbits, weights, necklaces, the symmetric group, Stir- ling numbers
36. Baranyai's theorem 475
One-factorizations of complete graphs and complete designs
Appendix 1. Hints and comments on problems 481
Hints, suggestions, and comments on the problems in each chapter
Appendix 2. Formal power series 506
Formal power series ring, formal derivatives, inverse functions, residues, the Lagrange-Bürmann formula
Name Index 512
Subject Index 518
