A Course in Combinatorics

J. H. van Lint

Technical University of Eindhoven

and

R. M. Wilson

California Institute of Technology

CONTENTS

Preface	xi
1. Graphs	1
Terminology of graphs and digraphs, Eulerian cir- cuits, Hamiltonian circuits	
2. Trees Cayley's theorem, spanning trees and the greedy algorithm	11
3. Colorings of graphs and Ramsey's theorem	20
Brooks' theorem, Ramsey's theorem and Ramsey numbers, the Erdős-Szekeres theorem	
4. Turán's theorem and extremal graphs Turán's theorem and extremal graph theory	29
5. Systems of distinct representatives Bipartite graphs, P. Hall's condition, SDRs, König's theorem, Birkhoff's theorem	35
6. Dilworth's theorem and extremal set theory	42
Partially ordered sets, Dilworth's theorem, Sperner's theorem, symmetric chains, the Erdős-Ko-Rado theorem	
7. Flows in networks	49
The Ford-Fulkerson theorem, the integrality theorem, a generalization of Birkhoff's theorem	
8. De Bruijn sequences	56
The number of De Bruijn sequences	

V1	A Course in Combinatorics	
9. The address Quadratic forms, W	sing problem for graphs Winkler's theorem	62
10. The princi inversion f Inclusion-exclusion tor, Möbius function lemma, problème de	ple of inclusion and exclusion; formulae , derangements, Euler indica- n, Möbius inversion, Burnside's s ménages	70
11. Permanent Bounds on perman conjecture, Fekete's stochastic matrices	s ents, Schrijver's proof of the Minc lemma, permanents of doubly	79
12. The Van d	er Waerden conjecture	91
The early results o theorem, Egoritsjev	f Marcus and Newman, London's 's proof	
13. Elementary	y counting; Stirling numbers	100
Stirling numbers of numbers, generating	f the first and second kind, Bell functions	
14. Recursions	and generating functions	109
Elementary recurrent of trees, Joyal theor	ences, Catalan numbers, counting y, Lagrange inversion	
15. Partitions		132
The function $p_k(n)$ diagrams, Euler's in triple product identi formula), the partition function, Ferrers lentity, asymptotics, the Jacobi ity, Young tableaux and the hook	
16. (0,1)-Matr	ices	148
Matrices with given	$n \ line \ sums, \ counting \ (0,1)-matrices$	
17. Latin squa	res	157
Orthogonal arrays, partial and incomple squares, the Evans	conjugates and isomorphism, ete Latin squares, counting Latin conjecture	
18. Hadamard	matrices, Reed-Muller codes	172
Hadamard matrices cursive construction method, excess of a Reed-Muller codes	s and conference matrices, re- is, Paley matrices, Williamson's Hadamard matrix, first order	

Con	tent	s

19.	Des	igns				
The	Erdő	s-De Br	uijn the	eorem, S	teiner syste	ms,
balan	nced in	ncomplet	e block	designs,	Hadamard	designs,

counting, (higher) incidence matrices, the Wilson-Petrenjuk theorem, symmetric designs, projective planes, derived and residual designs, the Bruck-Ryser-Chowla theorem, constructions of Steiner triple systems, write-once memories

20. Codes and designs

Terminology of coding theory, the Hamming bound, the Singleton bound, weight enumerators and MacWilliams' theorem, the Assmus-Mattson theorem, symmetry codes, the Golay codes, codes from projective planes

231 21. Strongly regular graphs and partial geometries

The Bose-Mesner algebra, eigenvalues, the integrality condition, quasisymmetric designs, the Krein condition, the absolute bound, uniqueness theorems, partial geometries, examples

22. Orthogonal Latin squares	250
Pairwise orthogonal Latin squares and nets, Eu- ler's conjecture, the Bose-Parker-Shrikhande theorem, asymptotic existence, orthogonal arrays and transver- sal designs, difference methods, orthogonal subsquares	
23. Projective and combinatorial geometries	269
Projective and affine geometries, duality, Pasch's axiom, Desargues' theorem, combinatorial geometries, geometric lattices. Greene's theorem	- X

,24.	Gaussian	numbers	and	q-analogues	291
------	----------	---------	-----	-------------	-----

Chains in the lattice of subspaces, q-analogue of Sperner's theorem, interpretation of the coefficients of the Gaussian polynomials, spreads

187

214

25. Lattices and Möbius inversion	298
The incidence algebra of a poset, the Möbius func- tion, chromatic polynomial of a graph, Weisner's theorem, complementing permutations of geometric lattices, connected labeled graphs	
26. Combinatorial designs and projective geometries	313
Arcs and subplanes in projective planes, blocking sets, quadratic and Hermitian forms, unitals, general- ized quadrangles, Möbius planes	
27. Difference sets and automorphisms	329
Automorphisms of symmetric designs, Paley-Todd and Stanton-Sprott difference sets, Singer's theorem	
28. Difference sets and the group ring	342
The Multiplier Theorem and extensions, homomor- phisms and further necessary conditions	
29. Codes and symmetric designs	355
The sequence of codes of a symmetric design, Wilbrink's theorem	
30. Association schemes	364
Examples, the eigenmatrices and orthogonality re- lations, formal duality, the distribution vector of a subset, Delsarte's inequalities, polynomial schemes, perfect codes and tight designs	
31. Algebraic graph theory: eigenvalue techniques	390
Tournaments and the Graham-Pollak theorem, the spectrum of a graph, Hoffman's theorem, Shannon capacity, applications of interlacing and Perron- Frobenius	
32. Graphs: planarity and duality	403
Deletion and contraction, the chromatic polynomial, Euler's formula, Whitney duality, matroids	
33. Graphs: colorings and embeddings	427
The Five Color Theorem, embeddings and colorings on arbitrary surfaces, the Heawood conjecture, the Edmonds embedding technique	
34. Electrical networks and squared squares	449
The matrix-tree theorem, the network of a squared rectangle, Kirchhoff's theorem	

viii

Contents	ix
35. Pólya theory of counting	461
The cycle index of a permutation group, counting orbits, weights, necklaces, the symmetric group, Stir- ling numbers	
36. Baranyai's theorem	475
One-factorizations of complete graphs and complete designs	
Appendix 1. Hints and comments on problems Hints, suggestions, and comments on the problems in each chapter	481
Appendix 2. Formal power series	506
Formal power series ring, formal derivatives, inverse functions, residues, the Lagrange-Bürmann formula	
Name Index	512
Subject Index	518

z