S.M. Srivastava

A Course on Borel Sets

With 11 Illustrations

Contents

Acknowledgments Introduction				
1	Care	linal and Ordinal Numbers	1	
	1.1	Countable Sets	1	
	1.2	Order of Infinity	4	
	1.3	The Axiom of Choice	7	
	1.4	More on Equinumerosity	11	
	1.5	Arithmetic of Cardinal Numbers	13	
	1.6	Well-Ordered Sets	15	
	1.7	Transfinite Induction	18	
	1.8	Ordinal Numbers	21	
	1.9	Alephs	24	
	1.10	Trees	26	
	1.11	Induction on Trees	29	
	1.12	The Souslin Operation	31	
	1.13	Idempotence of the Souslin Operation	34	
2	Тор	ological Preliminaries	39	
	2.1	Metric Spaces	39	
	2.2	Polish Spaces	52	
	2.3	Compact Metric Spaces	57	
	2.4	More Examples	63	

	2.5	The Baire Category Theorem	69		
	2.6	Transfer Theorems	74		
3	Star	idard Borel Spaces	81		
	3.1	Measurable Sets and Functions	81		
	3.2	Borel-Generated Topologies	91		
	3.3	The Borel Isomorphism Theorem	94		
	3.4	Measures	100		
	3.5	Category	107		
	3.6	Borel Pointclasses	115		
4	Ana	lytic and Coanalytic Sets	127		
	4.1	Projective Sets	127		
	4.2	Σ_1^1 and Π_1^1 Complete Sets	135		
	4.3	Regularity Properties	141		
	4.4	The First Separation Theorem	147		
	4.5	One-to-One Borel Functions	150		
	4.6	The Generalized First Separation Theorem	155		
	4.7	Borel Sets with Compact Sections	157		
	4.8	Polish Groups	160		
	4.9	Reduction Theorems	164		
	4.10	Choquet Capacitability Theorem	172		
	4.11	The Second Separation Theorem	175		
	4.12	Countable-to-One Borel Functions	178		
5	Sele	ction and Uniformization Theorems	183		
	5.1	Preliminaries	184		
	5.2	Kuratowski and Ryll-Nardzewski's Theorem	189		
	5.3	Dubins - Savage Selection Theorems	194		
	5.4	Partitions into Closed Sets	195		
	5.5	Von Neumann's Theorem	198		
	5.6	A Selection Theorem for Group Actions	200		
	5.7	Borel Sets with Small Sections	204		
	5.8	Borel Sets with Large Sections	206		
	5.9	Partitions into G_{δ} Sets	212		
	5.10	Reflection Phenomenon	216		
	5.11	Complementation in Borel Structures	218		
	5.12	Borel Sets with σ -Compact Sections	219		
	5.13	Topological Vaught Conjecture	227		
	5.14	Uniformizing Coanalytic Sets	236		
References 24					
Gl	Glossary				
Index					

t