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Abstract: Classical regression analysis relates the expectation of a response vari-

able to a linear combination of explanatory variables. In this article, we propose

a covariance regression model that parameterizes the covariance matrix of a mul-

tivariate response vector as a parsimonious quadratic function of explanatory vari-

ables. The approach is analogous to the mean regression model, and is similar to a

factor analysis model in which the factor loadings depend on the explanatory vari-

ables. Using a random-effects representation, parameter estimation for the model

is straightforward using either an EM-algorithm or an MCMC approximation via

Gibbs sampling. The proposed methodology provides a simple but flexible repre-

sentation of heteroscedasticity across the levels of an explanatory variable, improves

estimation of the mean function and gives better calibrated prediction regions when

compared to a homoscedastic model.
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1. Introduction

Estimation of a conditional mean function µx = E [y|x] is a well studied

data-analysis task for which there are a large number of statistical models and

procedures. Less studied is the problem of estimating a covariance function

Σx = Var [y|x] across a range of values for an explanatory x-variable. In the

univariate case, several procedures assume that the variance can be expressed

as a function of the mean, i.e. σ2x = g(µx) for some known function g (see, for

example, Carroll, Ruppert, and Holt (1982)). In many such cases the data can be

represented by a generalized linear model with an appropriate variance function,

or perhaps the data can be transformed to a scale for which the variance is

constant as a function of the mean (Box and Cox (1964)). Other approaches

separately parameterize the mean and variance, either giving a linear model for

the standard deviation (Rutemiller and Bowers (1968)) or forcing the variance

to be non-negative via a link function (Smyth (1989)). In situations where the

explanatory variable x is continuous and the variance function is assumed to be

smooth, Carroll (1982) and Müller and Stadtmüller (1987) propose and study

kernel estimates of the variance function.
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Models for multivariate heteroscedasticity have been developed in the con-

text of multivariate time series, for which a variety of multivariate “autoregres-

sive conditionally heteroscedastic” (ARCH) models have been studied (Engle

and Kroner (1995); Fong, Li, and An (2006)). However, the applicability of such

models is limited to situations where the heteroscedasticity is temporal in nature.

A recent approach by Yin et al. (2010) uses a kernel estimator to allow Σx to

vary smoothly with x. However, their focus is on a single continuous univariate

explanatory variable, and it is not clear how to generalize such an approach to

allow for discrete or categorical predictors. For many applications, it is desirable

to construct a covariance function {Σx : x ∈ X} for which the domain of the

explanatory x-variable is the same as in mean regression, that is, the explanatory

vector can contain continuous, discrete and categorical variables. With this goal

in mind, Chiu, Leonard, and Tsui (1996) suggested modeling the elements of

the logarithm of the covariance matrix, Φx = logΣx, as linear functions of the

explanatory variables, so that ϕj,k,x = βTj,kx for unknown coefficients βj,k. This

approach makes use of the fact that the only constraint on Φx is that it be sym-

metric. However, as the authors note, parameter interpretation for this model is

difficult. For example, a submatrix of Σx is not generally the matrix exponential

of the same submatrix of Φx, and so the elements of Φx do not directly relate

to the corresponding covariances in Σx. Additionally, the number of parameters

in this model can be quite large. For y ∈ Rp and x ∈ Rq, the model involves

a separate q-dimensional vector of coefficients for each of the p(p + 1)/2 unique

elements of Φx, thus requiring q × p(p+ 1)/2 parameters to be estimated.

Another clever reparameterization-based approach to covariance regression

modeling was provided by Pourahmadi (1999), who suggested modeling the un-

constrained elements of the Cholesky decomposition of Σ−1
x as linear functions

of x. The parameters in this model have a natural interpretation: The first j−1

parameters in the jth row of the Cholesky decomposition relate to the conditional

distribution of yj given y1, . . . , yj−1. This model is not invariant to reorderings of

the elements of y, and so is most appropriate when there is a natural order to the

variables, such as with longitudinal data. Like the logarithmic covariance model

of Chiu, Leonard, and Tsui (1996), the general form of the Cholesky factorization

model requires q × p(p+ 1)/2 parameters to be estimated.

In this article we develop a simple parsimonious alternative to these repar-

ameterization-based approaches. The covariance regression model we consider is

based on an analogy with linear regression, and is given by Σx = Ψ+BxxTBT ,

where Ψ is positive definite and B is a p×q real matrix. As a function of x, Σx is

a curve within the cone of positive definite matrices. The q× p parameters of B

have a direct interpretation in terms of how heteroscedasticity co-occurs among

the p variables of y. Additionally, the model has a random-effects representation,
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allowing for straightforward maximum likelihood parameter estimation using the

EM-algorithm, and Bayesian inference via Gibbs sampling. In the presence of

heteroscedasticity, use of this covariance regression model can improve estima-

tion of the mean function, characterize patterns of non-constant covariance, and

provide prediction regions that are better calibrated than regions provided by

homoscedastic models.

A geometric interpretation of the proposed model is developed in Section

2, along with a representation as a random-effects model. Section 3 discusses

methods of parameter estimation and inference, including an EM-algorithm for

obtaining maximum likelihood estimates (MLEs), an approximation to the co-

variance matrix of the MLEs, and a Gibbs sampler for Bayesian inference. A

simulation study is presented in Section 4 that evaluates the estimation error

of the regression coefficients in the presence of heteroscedasticity, the power of a

likelihood ratio test of heteroscedasticity, as well as the coverage rates for approx-

imate confidence intervals for model parameters. Section 5 considers an extension

of the basic model to accommodate more complex patterns of heteroscedasticity,

and Section 6 illustrates the model in an analysis of bivariate data on children’s

height and lung function. In this example it is shown that a covariance regres-

sion model provides better-calibrated prediction regions than a constant variance

model. Section 7 provides a summary.

2. A Covariance Regression Model

Let y ∈ Rp be a random multivariate response vector and x ∈ Rq be a

vector of explanatory variables. Our goal is to provide a parsimonious model and

estimation method for Cov [y|x] = Σx, the conditional covariance matrix of y

given x. We begin by analogy with linear regression. The simple linear regression

model expresses the conditional mean µx = E [y|x] as b+Bx, an affine function of

x. This model restricts the p-dimensional vector µx to a q-dimensional subspace

of Rp. The set of p × p covariance matrices is the cone of positive semidefinite

matrices. This cone is convex and thus closed under addition. The simplest

version of our proposed covariance regression model expresses Σx as

Σx = Ψ+BxxTBT , (2.1)

where Ψ is a p×p positive-definite matrix and B is a p×q matrix. The resulting

covariance function is positive definite for all x, and expresses the covariance as

equal to a “baseline” covariance matrix Ψ plus a rank-1, p × p positive definite

matrix that depends on x. The model given in (2.1) is in some sense a natural

generalization of mean regression to a model for covariance matrices. A vector

mean function lies in a vector (linear) space, and is expressed as a linear map

from Rq to Rp. The covariance matrix function lies in the cone of positive definite
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matrices, where the natural group action is matrix multiplication on the left and

right. The covariance regression model expresses the covariance function via such

a map from the q × q cone to the p× p cone.

2.1. Model flexibility and geometry

Letting {b1, . . . , bp} be the rows of B, the covariance regression model gives

Var [yj |x] = ψj,j + b
T
j xx

Tbj , (2.2)

Cov [yj , yk|x] = ψj,k + b
T
j xx

Tbk. (2.3)

The parameterization of the variance suggests that the model requires the vari-

ance of each element of y to be increasing in the elements of x, as the minimum

variance is obtained when x = 0. This constraint can be alleviated by including

an intercept term so that the first element of x is 1. For example, in the case

of a single scalar explanatory variable x, we abuse notation slightly and write

x = (1, x)T , bj = (b0,j , b1,j)
T , giving

Var [yj |x] = ψj,j + (b0,j + b1,jx)
2,

Cov [yj , yk|x] = ψj,k + (b0,j + b1,jx)(b0,k + b1,kx).

For any given finite interval (c, d) ⊂ R, there exist parameter values (b0,j , b1,j) so

that the variance of yj is either increasing or decreasing in x for x ∈ (c, d).

We now consider the geometry of the covariance regression model. For each

x, the model expresses Σx as a point Ψ inside the positive-definite cone plus a

rank-1 positive-semidefinite matrix BxxTBT . The latter matrix is a point on

the boundary of the cone, so the range of Σx as a function of x can be seen as

a submanifold of the boundary of the cone, but “pushed into” the cone by an

amount Ψ. Figure 1 represents this graphically for the simplest of cases in which

p = 2 and there is just a single scalar explanatory variable x. In this case, each

covariance matrix can be expressed as a three-dimensional vector (σ21, σ
2
2, σ1,2)

such that

σ21 ≥ 0 , σ22 ≥ 0 , |σ1,2| ≤ σ1σ2.

The set of such points constitutes the positive semidefinite cone, whose boundary

is shown by the outer surfaces in the two plots in Figure 1. The range ofBxxTBT

over all x and matrices B includes the set of all rank-1 positive definite matrices,

which is simply the boundary of the cone. Thus the possible range of Ψ +

BxxTBT for a given Ψ is simply the boundary of the cone, translated by an

amount Ψ. Such a translated cone is shown from two perspectives in Figure 1.

For a given Ψ and B, the covariance regression model expresses Σx as a curve

on this translated boundary. A few such curves for six different values of B are

shown in black in Figure 1.
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Figure 1. The positive-definite cone and a translation, from two perspectives.
The outer surface is the boundary of the the positive definite cone, and the
inner cone is the boundary plus a positive definite matrix Ψ. Black curves
on the inner cone represent covariance regression curves Ψ+BxxTBT for
different values of B.

The parameters in the covariance regression model are generally identifiable

given sufficient variability in the regressor x, at least up to sign changes of B.

To see this, consider the simple case of a single scalar explanatory variable x.

Abusing notation slightly, let x = (1, x)T so that (2.1) becomes

Σx(Ψ,B) = Ψ+ b1b
T
1 + (b1b

T
2 + b2b

T
1 )x+ b2b

T
2 x

2.

Now suppose that (Ψ̃, B̃) are such that Σx(Ψ,B) = Σx(Ψ̃, B̃) for all x ∈ R.
Setting x = 0 indicates that Ψ+ b1b

T
1 = Ψ̃+ b̃1b̃

T
1 . Considering x = ±1 implies

that b2b
T
2 = b̃2b̃

T
2 and thus that b̃2 = ±b2. If b2 ̸= 0, we have b1b

T
2 + b2b

T
1 =

b̃1b̃2
T
+ b̃2b̃1

T
, which implies that B̃ = ±B and Ψ̃ = Ψ. Thus these parameters

are identifiable, at least given an adequate range of x-values.

2.2. Random-effects representation

The covariance regression model also has an interpretation as a type of

random-effects model. Consider a model for observed data y1, . . . ,yn of the
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form

yi = µxi + γi ×Bxi + ϵi, (2.4)

E [ϵi] = 0 , Cov [ϵi] = Ψ,

E [γi] = 0 , Var [γi] = 1 , E [γi × ϵi] = 0.

The resulting covariance matrix for yi given xi is then

E [(yi − µxi)(yi − µxi)
T ] = E [γ2iBxix

T
i B

T + γi(Bxiϵ
T
i + ϵix

T
i B

T ) + ϵiϵ
T
i ]

=Bxix
T
i B

T +Ψ

=Σxi .

The model given in (2.4) can be thought of as a factor analysis model in which

the latent factor for unit i is restricted to be a multiple of unit’s explanatory

vector xi. To see how this impacts the variance, let {b1, . . . , bp} be the rows of

B. Then (2.4) can be expressed asyi,1 − µxi,1
...

yi,p − µxi,p

 = γi ×

b
T
1 xi
...

bTp xi

+

ϵi,1...
ϵi,p

 . (2.5)

We can interpret γi as describing additional unit-level variability beyond that

represented by ϵi. The vectors {b1, . . . , bp} describe how this additional vari-

ability is manifested across the p different response variables. Small values of bj
indicate little heteroscedasticity in yj as a function of x. Vectors bj and bk being

either in the same or opposite direction indicates that yj and yk become more

positively or more negatively correlated, respectively, as their variances increase.

With the random-effects representation, the covariance regression model can

be seen as similar in spirit to the random-effects model for longitudinal data

discussed in Scott and Handcock (2001). There, the covariance among a set of

repeated measurements yi from a single individual i were modeled as yi = µi +

γiXiβ+ϵi, whereXi is an observed design matrix for the repeated measurements,

and γi is a mean-zero unit variance random effect. In their longitudinal data

application, Xi was constructed from a set of basis functions evaluated at the

observed time points, and β represented unknown weights. This model induces

a covariance matrix of Xiββ
TXT

i + Cov[ϵi] among the observations common

to an individual. For the problem we are considering, where the explanatory

variables are shared among all p observations of a given unit (i.e. the rows of

Xi are identical and equal to xi), the covariance matrix induced by Scott and

Handcock’s model reduces to (xTi β)
211T+Cov[ϵi], which is much more restrictive

than (2.4).
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The family of linear regression models is closed under linear transformations

of the outcome and explanatory variables, and the same holds for the covari-

ance regression model, as can be seen as follows: Suppose E [y|x] = Ax and

Cov [y|x] = BxxTBT + CCT , where Ψ = CCT is positive definite. Via the

random-effects representation, we can write y = Ax + γ × Bx + Cϵ. Letting

ỹ =D(y − e) and x̃ = F (x− g) for invertible D and F , we have

y =D−1ỹ + e = A(F−1x̃+ g) + γ ×B(F−1x̃+ g) +Cϵ , giving

ỹ = [DAF−1]x̃+ γ × [DBF−1]x̃+ [DC]ϵ

= Ãx̃+ γ × B̃x̃+ C̃ϵ,

which is a member of the class of covariance regression models.

3. Parameter Estimation and Inference

In this section we consider parameter estimation based on data Y = (yT1 , . . .,

yTn )
T observed under conditions X = (xT1 , . . . ,x

T
n )
T . We assume normal models

for all error terms:

γ1, . . . , γn
i.i.d.∼ normal(0, 1), (3.1)

ϵ1, . . . , ϵn
i.i.d.∼ multivariate normal(0,Ψ),

yi = µxi + γi ×Bxi + ϵi.

Let E = (eT1 , . . . , e
T
n )
T be the matrix of residuals for a given mean function

{µx,x ∈ X}. The log-likelihood of the covariance parameters (B,Ψ) based on

E and X is

l(Ψ,B : E,X) = c− 1

2

∑
i

log |Ψ+Bxix
T
i B|− 1

2

∑
i

tr[(Ψ+Bxix
T
i B

T )−1eie
T
i ].

(3.2)

After some algebra, it can be shown that the maximum likelihood estimates of

Ψ and B satisfy the following equations:∑
i

Σ̂−1
xi =

∑
i

Σ̂−1
xi eie

T
i Σ̂

−1
xi ,∑

i

Σ̂−1
xi B̂xix

T
i =

∑
i

Σ̂−1
xi eie

T
i Σ̂

−1
xi B̂xix

T
i ,

where Σ̂x = Ψ̂+ B̂xxT B̂T . While not providing closed-form expressions for Ψ̂

and B̂, these equations indicate that the MLEs give a covariance function Σ̂−1
xi

that, loosely speaking, acts “on average” as a pseudo-inverse for eie
T
i .

While direct maximization of (3.2) is challenging, the random-effects rep-

resentation of the model allows for parameter estimation via simple iterative
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methods. In particular, maximum likelihood estimation via the EM algorithm

is straightforward, as is Bayesian estimation using a Gibbs sampler to approx-

imate the posterior distribution p(Ψ,B|Y ,X). Both of these methods rely on

the conditional distribution of {γ1, . . . , γn} given {Y ,X,Ψ,B}. Straightforward
calculations give

{γi|Y ,X,Ψ,B} ∼ normal(mi, vi) ,where

vi = (1 + xTi B
TΨ−1Bxi)

−1,

mi = vi(yi − µxi)
TΨ−1Bxi.

A wide variety of modeling options exist for the mean function {µx : x ∈ X}.
For ease of presentation, in the rest of this section we assume that the mean func-

tion is linear, i.e. µx = Ax, using the same regressors as the covariance function.

This assumption is not necessary, and in Section 6 an analysis is performed where

the regressors for the mean and variance functions are distinct.

3.1. Estimation with the EM-algorithm

The EM-algorithm proceeds by iteratively maximizing the expected value of

the complete data log-likelihood, l(A,B,Ψ) = log p(Y |A,B,Ψ,X,γ), which is

simply obtained from the multivariate normal density

−2l(A,B,Ψ)

= np log(2π)+n log |Ψ|+
n∑
i=1

(yi−[A+γiB]xi)
TΨ−1(yi−[A+γiB]xi). (3.3)

Given current estimates (Â, B̂, Ψ̂) of (A,B,Ψ), one step of the EM algorithm

proceeds as follows: First, mi = E [γi|Â, B̂, Ψ̂,yi] and vi = Var [γi|Â, B̂, Ψ̂,yi]
are computed and plugged into the likelihood (3.3), giving

−2E [l(A,B,Ψ)|Â, B̂, Ψ̂]

= np log(2π) + n log |Ψ|+
n∑
i=1

E [(êi − γiBxi)
TA−1(êi − γiBxi)|Â, B̂, Ψ̂]

where êi = yi − Âxi and

E [(êi − γiBxi)
TΨ−1(êi − γiBxi)|Â, B̂, Ψ̂]

= (êi −miBxi)
TΨ−1(êi −miBxi) + vix

T
i B

TΨ−1Bxi

= (êi −miBxi)
TΨ−1(êi −miBxi) + six

T
i B

TΨ−1Bxisi,

with si = v
1/2
i . To maximize the expected log-likelihood, first construct the

2n × 2q matrix X̃ whose ith row is (xTi ,mix
T
i ) and whose (n + i)th row is
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(0Tq , six
T
i ), and let Ỹ be the 2n× p matrix given by (Y T ,0Tn×p)

T . The expected
value of the complete data log-likelihood can then be written as

−2E [l(A,B,Ψ)|(Â, B̂, Ψ̂)]−np log(2π)=n log |Ψ|+tr([Ỹ−X̃CT ][Ỹ−X̃CT ]TΨ−1)

with C = (A,B). The next step of the EM algorithm obtains the new values
(Ǎ, B̌, Ψ̌) as the maximizers of this expected log-likelihood. Since the expected
log-likelihood has the same form as the log-likelihood for normal multivariate
regression, (Ǎ, B̌, Ψ̌) are given by

(Ǎ, B̌) = Č = Ỹ T X̃(X̃T X̃)−1,

Ψ̌ =
1

n
(Ỹ − X̃ČT )T (Ỹ − X̃ČT ).

The procedure is then repeated until a desired convergence criterion has been
met.

3.2. Confidence intervals via expected information

Approximate confidence intervals for model parameters can be provided by
Wald intervals, i.e. the MLEs plus or minus a multiple of the standard errors.
Standard errors can be obtained from the inverse of the expected information
matrix evaluated at the MLEs. The log-likelihood given an observation y is
l(B,Ψ : y) = log p(y|Σ) = −(p log 2π+ log |Σ|+eTΣ−1e)/2, where e = y−Ax
and Σ = Ψ+BxxTBT . Likelihood derivatives with respect to A and B are

l̇A =
∂l(A,B,Ψ : y)

∂A
=Σ−1exT ,

l̇B =
∂l(A,B,Ψ : y)

∂B
= −(∂ log |Σ|/∂B + ∂eTΣ−1e/∂B)

2

= −Σ−1BxxT +Σ−1eeTΣ−1BxxT

=HzBxx
T ,

whereHz = Σ−1/2(zzT −I)Σ−1/2 and z = Σ−1/2e. The derivative with respect
to Ψ is more complicated, as the p×p matrix Ψ has only p(p+1)/2 free parame-
ters. Following McCulloch (1982), we let ψ = vechΨ be the p(p+1)/2 vector of
unique elements of Ψ. As described there, derivatives of functions with respect
to ψ can be obtained as a linear transformation of derivatives with respect to Ψ,
obtained by ignoring the symmetry in Ψ:

l̇Ψ =
∂l(A,B,Ψ : y)

∂Ψ
= −(Σ−1 −Σ−1eeTΣ−1)

2

=
1

2
Σ−1/2(zzT − I)Σ−1/2 =

Hz

2
,

l̇ψ =
∂l(A,B,ψ : y)

∂ψ
=GTvec l̇Ψ = GTvec

Hz

2
,
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where G is the matrix such that vecX = GvechX, as defined in Henderson and

Searle (1979). Letting a = vecA, l̇a = vec l̇A and defining b and l̇b similarly, the

expected information is

I(a, b,ψ : x) = Ea,b,ψ

 l̇a l̇Ta l̇a l̇
T
b l̇a l̇

T
ψ

l̇b l̇
T
a l̇b l̇

T
b l̇b l̇

T
ψ

l̇ψ l̇
T
a l̇ψ l̇

T
b l̇ψ l̇

T
ψ

 ≡

 Iaa Iab Iaψ
ITab Ibb Ibψ
ITaψ ITbψ Iψψ

 .

The submatrices Iab and Iaψ can be expressed as expectations of mixed third

moments of independent standard normal variables, and so are both zero. Calcu-

lation of Ibb Ibψ and Iψψ involve expectations of (vecHz)(vecHz)
T , which has

expected value (Σ−1⊗Σ−1)(Ip2 +Kp,p), where Kp,p is the commutation matrix

described in Magnus and Neudecker (1979). Straightforward calculations show

that

Iaa = (xxT )⊗Σ−1,

Ibb = (xxTBT ⊗ Ip)(Σ−1 ⊗Σ−1)(Ip2 +Kp,p)(Bxx
T ⊗ Ip),

Ibψ = (xxTBT ⊗ Ip)(Σ−1 ⊗Σ−1)G,

Iψψ =
1

2
GT (Σ−1 ⊗Σ−1)G.

The expected information contained in observations to be made at x-values

x1, . . . ,xn is then I(a, b,ψ :X) =
∑n

i=1 I(a, b, ψ : xi). Plugging the MLEs into

the inverse of this matrix gives an estimate of their variance, V̂ar[(âT , b̂T , ψ̂T )T ] =

I−1(â, b̂, ψ̂ : X). Approximate confidence intervals for model parameters based

on this variance estimate are explored in the simulation study in the next section.

3.3. Posterior approximation with the Gibbs sampler

A Bayesian analysis provides estimates and confidence intervals for arbitrary

functions of the parameters, as well as a simple way of making predictive infer-

ence for future observations. Given a prior distribution p(A,B,Ψ), inference

is based on the joint posterior distribution, p(A,B,Ψ|Y ,X) ∝ p(A,B,Ψ) ×
p(Y |X,A,B,Ψ). While this posterior distribution is not available in closed-

form, a Monte Carlo approximation to the joint posterior distribution of (A,B,Ψ)

is available via Gibbs sampling. Using the random-effects representation of the

model in (3.1), the Gibbs sampler constructs a Markov chain in {A,B,Ψ, γ1, . . .,
γn} whose stationary distribution is the joint posterior distribution of these quan-

tities.

Calculations are facilitated by the use of a semi-conjugate prior distribution

for (A,B,Ψ), in which p(Ψ) is an inverse-Wishart(Ψ−1
0 , ν0) distribution having
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expectation Ψ0/(ν0 − p − 1) and C = (A,B) has a matrix normal prior dis-

tribution, {C|Ψ} ∼ matrix normal(C0,Ψ,V0). The Gibbs sampler proceeds by

iteratively sampling C = (A,B), Ψ and {γ1, . . . , γn} from their full conditional

distributions. One iteration of a Gibbs sampler is as follows:

1. Sample γi ∼ normal(mi, vi) for each i ∈ {1, . . . , n}, where
vi = (1 + xTi B

TΨ−1Bxi)
−1 ;

mi = vix
T
i Ψ

−1B(yi −Axi).
2. Sample (C,Ψ) ∼ p(C,Ψ|Y ,X, γ1, . . . , γn) as follows:

(a) sample Ψ ∼ inverse-Wishart(Ψ−1
n , ν0 + n), and

(b) sample C ∼ matrix normal(Cn,Ψ, [X
T
γXγ + V

−1
0 ]−1), where

Xγ = (X,ΓX), with Γ = diag(γ1, . . . , γn),

Cn = (Y TXγ +C0V
−1
0 )(XT

γXγ + V
−1
0 )−1 , and

Ψn = Ψ0 + (Y −XγCn)
T (Y −XγCn) + (Cn −C0)

TV −1
0 (Cn −C0).

In the absence of strong prior information, default values for the prior parameters

{C0, V0, Ψ0, ν0} can be based on other considerations. In normal regression for

example, Zellner (1986) suggests a “g-prior” which makes the Bayes procedure

invariant to linear transformations of the design matrix X. An analogous result

can be obtained in the covariance regression model by selecting C0 = 0 and

V0 to be block diagonal, consisting of two q × q blocks both proportional to

(XTX)−1, i.e. the prior precision of C is related to the precision given by the

observed design matrix. Often the proportionality constant is set equal to the

sample size n so that, roughly speaking, the information in the prior distribution

is equivalent to that contained in one observation. Such choices lead to what

Kass and Wasserman (1995) call a “unit-information” prior distribution, which

weakly centers the prior distribution around an estimate based on the data. For

example, setting ν0 = p + 2 and Ψ0 equal to the sample covariance matrix of

Y weakly centers the prior distribution of Ψ around a “homoscedastic” sample

estimate.

4. Simulation Study

In this section we present a simulation study to evaluate the MLEs obtained

from the proposed covariance regression model. In addition to evaluating the

ability of the model to describe heteroscedasticity, we also evaluate the effect of

heteroscedasticity on the estimation of the mean function.

As is well known, the ordinary least squares (OLS) estimator of a matrix

of multivariate regression coefficients has a higher mean squared error (MSE)

than the generalized least squares (GLS) estimator in the presence of known
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heteroscedasticity. The OLS estimator, or equivalently the MLE assuming a

homoscedastic normal model, is Â = Y TX(XTX)−1 or equivalently, â =

vec(Â) = [(XTX)−1XT ⊗ Ip]y, where y = vecY . The variability of the es-

timator around a = vecA is given by

Cov [â] = [(XTX)−1XT ⊗ Ip]Ω[X(XTX)−1 ⊗ Ip],

whereΩ is the np×np covariance matrix y. If the rows of Y are independent with

constant variance Σ, then Ω = In⊗Σ, Cov [â] reduces to (XTX)−1⊗Σ and â is

the best linear unbiased estimator of vecA (see, for example, Mardia, Kent, and

Bibby (1979, Sec. 6.6)). If the rows of Y are independent but with known non-

constant covariance matrices {Σi, i = 1, . . . , n} then the GLS estimator âGLS is

more precise than the OLS estimator in the sense that Cov [â] = Cov [âGLS]+H,

where H is positive definite.

In general, the exact nature of the heteroscedasticity will be unknown, but

if it can be well-estimated then we expect an estimator that accounts for het-

eroscedasticity to be more efficient in terms of MSE. The precision of covariance

regression parameter estimates B̂ and Ψ̂ can be described by the expected infor-

mation matrix given in the previous section, but how this translates into improved

estimation for the mean is difficult to describe with a simple formula. Instead,

we examine the potential for improved estimation of A with a simulation study

in the simple case of p = q = 2, for a variety of sample sizes and scales of the het-

eroscedasticity. Specifically, we generate samples of size n ∈ {50, 100, 200} from

the multivariate normal model with E [y|x] = Ax and Var [y|x] = Ψ+BxxTBT ,

where xT = (1, x)T , A = [(1,−1)T , (−1, 1)T ] and

B =
w

w + 1
×B0, Ψ =

1

w + 1
×Ψ0, B0 =

(
1 1

−1 1

)
, Ψ0 = B0

(
1 0

0 1
3

)
BT

0 ,

(4.1)

where we consider w ∈ {0, 1/3, 1, 3}. Note that if x is uniformly distributed

on [−1, 1] then the expected value of B0xx
TBT

0 is equal to Ψ0. As a result,

the average value of Ψ+BxxTBT , averaged across uniformly distributed design

points, is constant across values of w. The resulting mean and variances functions

for x ∈ (−1, 1) and w ∈ {0, 1/3, 1, 3} are shown graphically in Figure 2. The

means for y1 and y2 are decreasing and increasing, respectively, with x, whereas

for w ̸= 0 the variances are increasing and decreasing, respectively.

For each combination of n and w, 1000 datasets were generated by simulat-

ing x-values from the uniform(-1,1) distribution, then simulating y conditional

on x = (1, x)T from the model given by (4.1). The EM-algorithm described

in Section 3.1 was used to obtain parameter estimates of the model parame-

ters. In terms of summarizing results, we first evaluate the covariance regression
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Figure 2. Population mean and variance functions for the simulation study.
The black line is the mean function, and the gray lines give the mean plus
and minus two standard deviations under w ∈ {0, 1/3, 1, 3}.

model in terms of its potential for improved estimation of the mean function.
The first set of four columns of Table 1 compares the ratio of E [||A− ÂOLS||2]
to E [||A− ÂCVR||2], the former being the MSE of the OLS estimate and the
latter the MSE of the MLE from the covariance regression (CVR) model. Not
surprisingly, when the sample size is low (n = 50) and there is little or no het-
eroscedasticity (w ∈ {0, 1/3}), the OLS estimator slightly outperforms the overly
complex CVR estimator. However, as the sample size increases the CVR esti-
mator improves to roughly match the OLS estimator in terms of MSE. In the
presence of more substantial heteroscedasticity (w ∈ {1, 3}), the CVR estimator
outperforms the OLS estimator for each sample size, with the MSE of the OLS
estimator being around 40% higher than that of the CVR estimator for the case
w = 3.

In practical data analysis settings it is often recommended to favor a simple
model over a more complex alternative unless there is substantial evidence that
the simple model fits poorly. With this in mind, we consider an estimator ÂMS

based on model selection:

1. Perform the level-α likelihood ratio test of H0 : B = 0 versus H1 : B ̸= 0

2. Calculate ÂMS as follows:

(a) If H0 is rejected, set ÂMS = ÂCVR;

(b) If H0 is accepted, set ÂMS = ÂOLS.
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Table 1. MSE comparison and power from the simulation study. The sample
size is n and the magnitude of the covariance effects is w. The first set of
columns gives the ratio of the MSE of the OLS estimator to that from the
covariance regression model; the second set of columns gives the estimated
power of the likelihood ratio test for heteroscedasticity; the third set of
columns gives the relative MSE of the model selected estimator.

relative MSE power relative MSE
w w w

n 0 1/3 1 3 0 1/3 1 3 0 1/3 1 3
50 0.92 0.93 1.01 1.36 0.083 0.106 0.550 0.993 0.98 0.98 0.98 1.36
100 0.96 0.97 1.06 1.42 0.056 0.121 0.855 1.000 1.00 1.00 1.05 1.42
200 0.99 0.99 1.06 1.41 0.057 0.154 0.996 1.000 1.00 1.00 1.06 1.41

Table 2. Observed coverage of 95% Wald confidence intervals, for the case
w = 1.

n b1,1 b1,2 b2,1 b2,2 ψ1,1 ψ1,2 ψ2,2

50 0.89 0.88 0.90 0.89 0.88 0.94 0.87
100 0.92 0.92 0.93 0.93 0.93 0.96 0.93
200 0.94 0.95 0.94 0.93 0.95 0.97 0.96

The asymptotic null distribution of the -2 log-likelihood ratio statistic is a χ2

distribution with p × q degrees of freedom. The second set of four columns in

Table 1 describes the estimated finite-sample level and power of this test when

α = 0.05. The level of the test can be obtained from the first column of the set,

as w = 0 corresponds to the null hypothesis being true. The level is somewhat

liberal when n = 50, but is closer to the nominal level for the larger sample sizes

(note that power estimates here are subject to Monte Carlo error, and that 95%

Wald intervals for the actual levels contain 0.05 for both n = 100 and n = 200).

As expected, the power of the test increases as either the sample size or the

amount of heteroscedasticity increase. The MSE of ÂOLS relative to ÂMS, given

in the third set of four columns, shows that the model selected estimate ÂMS

performs quite well, having essentially the same MSE as the OLS estimate when

there is little or no heteroscedasticity, but having the same MSE as the CVR

estimate in the presence of more substantial heteroscedasticity.

Beyond improved estimation of the regression matrix A, the covariance re-

gression model can be used to describe patterns of non-constant covariance in

the data. If the likelihood ratio test described above rejects the constant covari-

ance model, it will often be of interest to obtain point estimates and confidence

intervals for B and Ψ. In terms of point estimates, recall that the sign of B

is not identifiable, with B and −B corresponding to the same covariance func-

tion. To facilitate a description of the simulation results, estimates of B were
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Figure 3. Sampling distribution quantiles of the covariance regression pa-
rameter estimates for the case w = 1 and n ∈ {50, 100, 200}. Horizontal gray
lines are the true parameter values, and vertical lines and dots give the 2.5,
50, and 97.5 percentiles of the sampling distributions for each parameter and
sample size, with sample size increasing from left to right for each group of
three lines.

processed as follows: Given a parameter value B̌ from the EM algorithm, the

value of B̂ was taken to be either B̌ or −B̌ depending on which was closer to

B = [(1,−1)T (1, 1)T ].

In the interest of brevity we present detailed results only for the case w = 1,

as results for other values of w follow similar patterns. Figure 3 shows 2.5%,

50%, and 97.5% quantiles of the empirical distribution of the 1000 B̂ and Ψ̂-

values for the case w = 1. Although skewed, the sampling distributions of the

point estimates are generally centered around their correct values, becoming more

concentrated around the truth as the sample size increases. The skew of the

sampling distributions diminishes as the log-likelihood becomes more quadratic

with increasing sample size.

Regarding confidence intervals, as described in Section 3.3, an asymptotic

approximation to the variance-covariance matrix of B̂ and Ψ̂ can be obtained

by plugging the values of the MLEs into the inverse of the expected information

matrix. Approximate confidence intervals for individual parameters can then be

constructed with Wald intervals. For example, an approximate 95% confidence

interval for bj,k would be b̂j,k ± 1.96× se(b̂j,k), where the standard error se(b̂j,k)

is the approximation of the standard deviation of b̂j,k based on the expected

information matrix. Table 2 presents empirical coverage probabilities from the
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simulation study for the case w = 1 (results for other non-zero values of w are

similar). The intervals are generally a bit too narrow for the low sample size case

n = 50, although the coverage rates become closer to the nominal level as the

sample size increases.

4.1. Multiple regressors

The proposed covariance regression model may be of particular use when

the covariance depends on several explanatory variables in a simple way. For

example, consider the case of one continuous regressor x1 and two binary regres-

sors x2 and x3. There are four covariance functions of x1 in this case, one for

each combination of x2 and x3. As in the case of mean regression, a useful par-

simonious model might assume that the differences between the groups can be

parameterized in a relatively simple manner. For example, consider the random

effects representation of a covariance regression model with additive effects:

yi =Axi + γi ×Bxi + ϵi
Bxi = b0 + b1xi,1 + b2xi,2 + b3xi,3,

where b0, b1, b2, b3 are four p × 1 column vectors of B. In particular, suppose

Axi = (1,−1)T + (−1, 1)Txi,1, Cov [ϵi] = Ψ0/(w+ 1) where Ψ0 is as in the first

simulation study and

B =
w

w + 1

(
1 1 1

2 1

− 1 1 − 1
2 − 1

)
.

Note that the “baseline” case of x2 = x3 = 0 corresponds to the covariance

function in the previous simulation study, and the effects of non-zero values of

x2 or x3 are additive on the scale of the random effect γi. The four covariance

functions of x1 are plotted in Figure 4 for the case w = 1/3.

As in the previous study, we generated 1000 datasets for each value of

w ∈ {1/3, 1, 3} with a sample size of n = 50 for each of the four groups. We esti-

mated the parameters in the covariance regression model as before using the EM

algorithm, and compared the results to those obtained using the kernel estimator

described in Yin et al. (2010). This latter approach requires a user-specified ker-

nel bandwidth, which we obtain by cross-validation separately for each simulated

dataset.

We compare each estimated covariance function Σ̂x to the truth Σx with a

discrepancy function given by

g(Σ̂x : Σx) =
∑
x1∈X

1∑
x2=0

1∑
x3=0

(
log |Σ̂x|+ tr(Σ̂−1

x Σx)
)
,
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Figure 4. Population mean and variance functions for the second simulation
study. The black line is the mean function, and the gray lines give the mean
plus and minus two standard deviations under w = 1/3. Moving out from
the center, the gray lines correspond to (x2, x3) = (0, 0), (1, 0), (0, 1) and
(1, 1).

where X is a set of 10 equally-spaced x1-values between -1 and 1. Note that this

discrepancy is minimized by the true covariance function. For the case w = 1/3,

where the heteroscedasticity is a minimum, the CVR estimator had a lower value

of the function g than the kernel density estimator in 73.2% of the simulations.

For the w = 1 and w = 3 cases, the CVR estimator had a lower g-value in

98.5% and 99.5% of the simulations, respectively, with the average difference in

g between the two estimators increasing with increasing w. However, the point

here is not that the kernel estimator is deficient, but that the kernel estimator

cannot take advantage of situations in which the covariance functions across

groups are similar in some easily parameterizable way.

5. Higher Rank Models

The model given by (2.1) restricts the difference between Σx and the baseline

matrix Ψ to be a rank-one matrix. To allow for higher-rank deviations, consider

the following extension of the random-effects representation in (2.4):

y = µx + γ ×Bx+ ϕ×Cx+ ϵ, (5.1)

where γ and ϕ are mean-zero variance-one random variables, uncorrelated with
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each other and with ϵ. Under this model, the covariance of y is

Σx = Ψ+BxxTBT +CxxTCT .

This model allows the deviation of Σx from the baseline Ψ to be of rank 2. Ad-

ditionally, we can interpret the second random effect ϕ as allowing an additional,

independent source of heteroscedasticity for the set of the p response variables.

Whereas the rank-1 model essentially requires that extreme residuals for one el-

ement of y co-occur with extreme residuals of the other elements, the rank-2

model allows for more flexibility, and can allow for heteroscedasticity across indi-

vidual elements of y without requiring extreme residuals for all of the elements.

Further flexibility can be gained by adding additional random effects, allowing

the difference between Σx and the baseline Ψ to be of any desired rank up to

and including p.

Identifiability: For a rank-r model with r > 1, consider a random-effects rep-

resentation given by yi − µxi =
∑
γi,k ×B(k)xi + ϵi. Let B1 = (b

(1)
1 , . . . , b

(r)
1 )

be the p × r matrix defined by the first columns of B(1), . . . ,B(r), and define

{Bj : k = 1, . . . , q} similarly. The model can then be expressed as

yi − µxi =

q∑
k=1

xkBkγi + ϵi.

Now suppose that γi is allowed to have a covariance matrix Φ not necessarily

equal to the identity. The above representation shows that the model given by

{B1, . . . ,Bk,Φ} is equivalent to the one given by {B1Φ
1/2, . . . ,BkΦ

1/2, I}, and
so without loss of generality it can be assumed that Φ = I, i.e. the random

effects are independent with unit variance. In this case, note that Var [γi] =

Var [Hγi] where H is any r × r orthonormal matrix. This implies that the

covariance function Σx given by {B1, . . . ,Bk, I} is equal to the one given by

{B1H, . . . ,BkH, I} for any orthonormalH, and so the parameters in the higher

rank model are not completely identifiable. One possible identifiability constraint

is to restrict B1 = {b(1)1 , . . . , b
(r)
1 }, the matrix of first columns of B(1), . . . ,B(r),

to have orthogonal columns.

Estimation: The random-effects representation for a rank-r covariance regres-

sion model is

yi = µxi +
r∑

k=1

γi,k ×B(k)xi + ϵi

= µxi + B̃(γi ⊗ xi) + ϵi , where B̃ = (B(1), . . . ,B(r)).
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age age

Figure 5. FEV and height data, as a function of age. The lines correspond
to the mean functions plus and minus two standard deviations, as estimated
by rank 1 and rank 2 covariance regression models, in gray and black, re-
spectively.

Estimation for this model can proceed with a small modification of the Gibbs

sampling algorithm given in Section 3, in which B(k) and {γi,k, i = 1, . . . , n} are

updated for each k ∈ {1, . . . , r} separately. An EM-algorithm is also available for

estimation of this general rank model. The main modification to the algorithm

presented in Section 3.1 is that the conditional distribution of each γi is multi-

variate normal, which leads to a more complex E-step in the procedure, while

the M-step is equivalent to a multivariate least squares regression estimation, as

before. We note that, in our experience, convergence of the EM-algorithm for

ranks greater than 1 can be slow, due to the identifiability issue described earlier.

6. Lung Function and Height Data

To illustrate the use of the covariance regression model we analyze data on

forced expiratory volume (FEV) in liters and height in inches of 654 Boston

youths (Rosner (2000)). One feature of these data is the general increase in

the variance of these variables with age, as shown in Figure 5. As the mean

responses for these two variables are also increasing with age, one possible mod-

eling strategy is to apply a variance stabilizing transformation to the data. In

general, such transformations presume a particular mean-variance relationship,

and choosing an appropriate transformation can be prone to much subjectivity.

As an alternative, a covariance regression model allows heteroscedasticity to be

modeled separately from the mean, and also allows for modeling on the original
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Figure 6. Sample variances and correlations as a function of age, along with
rank 1 and 2 covariance regression fits in gray and black lines, respectively.

scale of the data.

6.1. Maximum likelihood estimation

Ages for the 654 subjects ranged from 3 to 19 years, although there were only

two 3-year-olds and three 19-year-olds. We combine the data from children of

ages 3 and 19 with those of the 4 and 18-year-olds, respectively, giving a sample

size of at least 8 in each age category.

As seen in Figure 5, average FEV and height are somewhat nonlinear in age.

We model the mean functions of FEV and height as cubic splines with knots at

ages 4, 11 and 18, so that that E [yi|agei] = Awi, where y
T
i = (FEVi, heighti)

and wi is a vector of length five determined by agei and the spline basis. For

the regressor in the variance function we use xi = (1, age
1/2
i , agei)

T . Note that

including age1/2 as a regressor results in linear age terms being in the model. We

also fit both rank 1 and rank 2 models to these data, and compare their relative

fits:

Rank 1 model: Cov [yi|agei] = Ψ+Bxix
T
i B

T .

Rank 2 model: Cov [yi|agei] = Ψ+Bxix
T
i B

T +Cxix
T
i C

T .

Parameter estimates from these two models are incorporated into Figure 5.

The MLEs of the mean functions for the rank 1 and 2 models, given by thick

gray and black lines respectively, are indistinguishable. There are some visible

differences in the estimated variance functions, represented in Figure 5 by curves

at the mean ± 2 times the estimated standard deviation of FEV and height as a

function of age. A more detailed comparison of the estimated variance functions

for the two models is given in Figure 6. The estimated variance functions for

FEV match the sample variance function very well for both models, although the
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Table 3. Age-specific coverage rates for the 90% homoscedastic predictive
ellipse and the 90% heteroscedastic (covariance regression) predictive ellipse.

age group

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

sample size 11 28 37 54 85 94 81 90 57 43 25 19 13 8 9

homoscedastic 1 0.96 0.97 0.96 0.96 0.95 0.95 0.88 0.75 0.81 0.76 0.74 0.92 0.75 0.78

heteroscedastic 1 0.86 0.92 0.89 0.88 0.93 0.95 0.91 0.89 0.91 0.88 0.89 0.92 0.88 0.89

second plot in the figure indicates some lack of fit for the variance function for

height by the rank 1 model at the younger ages.

Another means of evaluating this lack of fit is with a comparison of maxi-

mized log-likelihoods, which are -1927.809 and -1922.433 for the rank 1 and rank

2 models respectively. As discussed in Section 5 the first columns of B and C

are not separately identifiable and may be transformed to be orthogonal without

changing the model fit. As such, the difference in the number of parameters

between the rank 1 and rank 2 models is four. A likelihood ratio test comparing

the rank 1 and rank 2 models gives a p-value of 0.0295, based on a χ2
4 null dis-

tribution, suggesting moderate evidence against the rank 1 model in favor of the

rank 2 model.

6.2. Prediction regions

One potential application of the covariance regression model is to make pre-

diction regions for multivariate observations. Erroneously assuming a covariance

matrix to be constant in x could give a prediction region with correct coverage

rates for an entire population, but incorrect rates for specific values of x, and

incorrect rates for populations having distributions of x-values that are different

from that of the data. For the FEV data, an approximate 90% prediction ellipse

for y for each age can be obtained from the set

{y : (y − µ̂age)
T Σ̂−1

age(y − µ̂age) < χ2
.9,2},

where µ̂age = Âw, Σ̂age = Ψ̂+ B̂xxT B̂T and w and x are vector-valued func-

tions of age as described above.

Ellipses corresponding to the fit from the rank 2 model are displayed graphi-

cally in Figure 7, along with the data and an analogous predictive ellipse obtained

from the homoscedastic model. Averaged across observations from all age groups,

the homo- and heteroscedastic ellipses contain 90.1% and 90.8% of the observed

data respectively, both percentages being very close to the nominal coverage rate

of 90%. However, as can be seen from Table 3, the homoscedastic ellipse gener-

ally overcovers the observed data for the younger age groups, and undercovers for

the older groups. In contrast, the flexibility of the covariance regression model
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Figure 7. Observed data and approximate 90% predictive ellipsoids for each
age. The black ellipsoids correspond to the covariance regression model, and
the gray to the homoscedastic multivariate normal model.

allows the confidence ellipsoids to change size and shape as a function of age, and

thus match the nominal coverage rate fairly closely across the different ages.

7. Discussion

This article has presented a model for a covariance matrix Cov[y|x] = Σx

as a function of an explanatory variable x. We have presented a geometric

interpretation in terms of curves along the boundary of a translated positive
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definite cone, and have provided a random-effects representation that facilitates

parameter estimation. This covariance regression model goes beyond what can

be provided by variance stabilizing transformations, which serve to reduce the

relationship between the mean and the variance. Unlike models or methods which

accommodate heteroscedasticity in the form of a mean-variance relationship, the

covariance regression model allows for the mean function µx to be separately

parameterized from the variance function Σx.

The covariance regression model accommodates explanatory variables of all

types, including categorical variables. This could be useful in the analysis of

multivariate data sampled from a large number of groups, such as groups de-

fined by the cross-classification of several categorical variables. For example, it

may be desirable to estimate a separate covariance matrix for each combina-

tion of age group, education level, race, and religion in a given population. The

number of observations for each combination of explanatory variables may be

quite small, making it impractical to estimate a separate covariance matrix for

each group. One strategy, taken by Flury (1984) and Pourahmadi, Daniels, and

Park (2007), is to assume that a particular feature of the covariance matrices

(principal components, correlation matrix, Cholesky decomposition) is common

across groups. A simple alternative to assuming that certain features are ex-

actly preserved across groups would be a covariance regression model, allowing

a parsimonious but flexible representation of the heteroscedasticity across the

groups.

While neither the covariance regression model nor its random effects rep-

resentation in Section 2 assume normally distributed errors, normality was as-

sumed for parameter estimation in Section 3. Accommodating other types of

error distributions is feasible and straightforward to implement in some cases.

For example, heavy-tailed error distributions can be accommodated with a mul-

tivariate t model, in which the error term can be written as a multivariate normal

random variable multiplied by a χ2 random variable. Estimates based upon this

data-augmented representation can then be made using the EM algorithm or the

Gibbs sampler (see, for example, Gelman et al. (2004, Chap. 17)).

Like mean regression, a challenge for covariance regression modeling is vari-

able selection, i.e. the choice of an appropriate set of explanatory variables.

One possibility is to use selection criteria such as AIC or BIC, although non-

identifiability of some parameters in the higher-rank models requires a careful

accounting of the dimension of the model. Another possibility may be to use

Bayesian procedures, either by MCMC approximations to Bayes factors, or by

explicitly formulating a prior distribution to allow some coefficients to be zero

with non-zero probability.

Replication code and data for the analyses in this article are available at the

first author’s website: http://www.stat.washington.edu/~hoff.

http://www.stat.washington.edu/~hoff
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