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1 Introduction

General relativity (GR) suffers the singularity problem [1], which indicates the incomplete-

ness of our understanding about the gravity theory as well as the origin of the Universe [2, 3].

Instead of looking for a UV(ultraviolet)-complete theory to describe what happens at the

“singularity”, investigating the possibility of a nonsingular origin of the Universe with the

effective theory, which captures low energy behaviors of the complete theory, is a significant

direction.

It seems that since [4], the perturbations of the Friedmann-Roberson-Walker back-

ground usually suffer from the ghost or gradient instabilities in nonsingular cosmological

models, see [5] for a review. Recently, this observation has been proved, up to the cubic

Galileon theory [6] and the Horndeski theory [7]. Based on the effective field theory (EFT)

of nonsingular cosmologies [8–10], this No-go result has been more clearly illustrated. It

is found that the stable nonsingular cosmological models can be implemented only in the

theories beyond cubic Galileon, (see also [11, 12]).

Recent progresses have inspired a wave of looking for stable nonsingular bounce [13–

15] (see also [16, 17]), along the road beyond the cubic Galileon (even the Horndeski

theory [18–20]). Moreover, the developments of scalar-tensor theory (the GLPV [21] and

DHOST theory [22–24], the mimetic gravity [25, 26]) might also be able to provide us with

some chances to implement stable nonsingular cosmologies. However, due to the complexity

of relevant theories, which component is required for a stable bounce is not clear. Thus so

far building a realistic and stable model is still difficult.

In refs. [8, 9], with the EFT of nonsingular cosmologies, it has been found that the

operator R(3)δg00 is significant for the stability of nonsingular bounce. Actually, in unitary

gauge, without getting involved in the specific theories,

Ladd−oper ∼
M4

2 (t)

2
(δg00)2 +

m̃2
4(t)

2
R(3)δg00 (1.1)

– 1 –
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might be the least set of operators added to GR to cure the instabilities, since (δg00)2 ∼ ζ̇2

while R(3)δg00 ∼ (∂ζ)2 at quadratic order.

In this paper, based on the covariant description of the R(3)δg00 operator, we propose a

covariant theory for stable nonsingular bounce, which has the quadratic order of the second

order derivative of the field φ but the background set only by P (φ,X). We illuminate

its application by constructing a fully stable nonsingular bounce model for the ekpyrotic

scenario [27, 28].

Note added. Several days after our paper appeared in arXiv, the preprint [29] appeared,

in which somewhat similar analysis is done in beyond Horndeski model with sort of similar

result.

2 Covariant description of R(3)δg00

In unitary gauge, φ = φ(t). We have

δg00 =
X

φ̇2(t)
+ 1 =

X

f2(t(φ))
+ 1, (2.1)

where X = φµφ
µ, φµ = ∇µφ and φµ = ∇µφ.

R(3) is the Ricci scalar on the 3-dimensional spacelike hypersurface. Using the Gauss-

Codazzi relation, it is straightforward (though tedious) to find

R(3) = R− φµνφ
µν − (�φ)2

X
+

2φµφµνφ
νσφσ

X2
− 2φµφµνφ

ν
�φ

X2

+
2(φν

νµφ
µ − φ µ

ν µφν)

X
, (2.2)

with φµν = ∇ν∇µφ and φν
νµ = ∇µ∇ν∇νφ. It is simple to check that the right hand side

of eq. (2.2) is 0 at the background level.

We define Sδg00R(3) =
∫

d4x
√−gLδg00R(3) , and have

Lδg00R(3) =
f1(φ)

2
δg00R(3)

=
f

2
R− X

2

∫

fφφd lnX −
(

fφ +

∫

fφ
2
d lnX

)

�φ (2.3)

+
f

2X

[

φµνφ
µν − (�φ)2

]

− f − 2XfX
X2

[φµφµρφ
ρνφν − (�φ)φµφµνφ

ν ]

after integration by parts, where f(φ,X) = f1

(

1 + X
f2

)

has the dimension of mass squared,

f2(φ) is defined in (2.1), and the total derivative terms have been discarded. One useful

formula for obtaining eq. (2.3) is

2B(φ,X)φµφµνφ
ν = ∇µ

(

φµ

∫

BdX
)

−X

∫

∂B
∂φ

dX −�φ

∫

BdX . (2.4)

– 2 –
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3 Stable nonsingular bounce

3.1 The covariant theory

Here, the EFT proposed is

S =

∫

d4x
√
−g

(

M2
p

2
R+ P (φ,X)

)

+ Sδg00R(3) , (3.1)

which is a covariant theory equivalent to GR plus the set of operators in (1.1), since

M4
2 (t) = φ̇4PXX and m̃2

4(t) = f1(φ).

The covariant action (3.1) actually belongs to a subclass of the DHOST theory [22, 23]

(see appendix A for details), which could avoid the Ostrogradski instability, up to quadratic

order of the second order derivative of φ. Ijjas and Steinhardt used the quartic Horndeski

action in [13]. In (2.3), though the nonminimal coupling f(φ,X)R is similar to that in [13],

terms ∼ �φ, φµνφ
µν , (�φ)2, (�φ)φµφµνφ

ν and φµφµρφ
ρνφν also appear simultaneously

with the coefficients set by δg00R(3), so that the effect of Sδg00R(3) on background is canceled

accurately. Here, the background is set only by P (φ,X). In [14], (�φ)2 is used, which shows

itself the Ostrogradski ghost, see also earlier [30], how to remove it requires argumentation.

The quadratic action of scalar perturbation for (3.1) is

S
(2)
ζ =

∫

a3Qs

(

ζ̇2 − c2s
(∂ζ)2

a2

)

d4x , (3.2)

in which

Qs =
2φ̇4PXX −M2

p Ḣ

H2
, c2sQs = M2

p

(

ċ3
a

− 1

)

(3.3)

and c3 = a(1 + 2f1
M2

p
)/H. We can see that the sound speed of scalar perturbation can be

directly modified by f1(φ), namely, the function before δg00R(3) operator. Therefore, the

gradient instability of scalar perturbation could be cured by proper choice of f1(φ), while

that of tensor perturbation is unaffected by Sδg00R(3) , hence is same with that of GR.

A fully stable nonsingular bounce (Qs > 0 and c2s = 1) can be designed with (3.1). In

the bounce phase, Ḣ > 0. However, Qs > 0 can be obtained, since P (φ,X) contributes

φ̇4PXX in Qs. While around the bounce point H ≃ 0,

c2s ∼ −Ḣ

(

1 +
2f1
M2

p

)

. (3.4)

Thus we will have c2s > 0 for 2f1 < −M2
p , as has been clarified in refs. [8, 10]. It should be

mentioned that if f1 = 0, we have c2s ∼ −Ḣ < 0 around the bounce point, thus Sδg00R(3)

is needed to contribute f1. Here, we always could set c2s ∼ O(1) with a suitable f1(φ) (see

also [10]) which satisfies

2f1(φ) =
H

a

∫

a
(

Qsc
2
s +M2

p

)

dt−M2
p . (3.5)

– 3 –
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3.2 A stable nonsingular bounce model

With (3.1), building a nonsingular bounce model is simple. The ghost-free nonsingular

bounce is set by P (φ,X), while c2s ≃ 1 is set by using suitable f1 and f2 in (2.1).

As a specific model, we set P (φ,X) in (3.1) as

P (φ,X) =

[

k0
(1 + κ1φ2)2

− 1

]

X/2 +
q0

(1 + κ2φ2)2
X2 − V (φ) , (3.6)

where the potential is ekpyrotic-like

V (φ) = −V0

2
eφ/M1

[

1− tanh

(

φ

M2

)]

, (3.7)

with constant M1,M2, V0, and k0, κ1 responsible for the switching of the sign before X/2

around φ ≃ 0, and q0, κ2 for the appearance of X2 around φ ≃ 0, see [31] for a similar

P (φ,X), which might allow for a supersymmetric counterpart [32].

The background equations are

3M2
pH

2 = −2φ̇2PX − P , (3.8)

M2
p Ḣ = φ̇2PX . (3.9)

Initially φ ≪ −M2,−1/
√
κ1,−1/

√
κ2, we have P (φ,X) = −X/2+V0e

φ/M1 , the Universe

is in the ekpyrotic phase with the equation of state parameter

ωekpy =
M2

p

3M2
1

− 1 > 1. (3.10)

Around φ ≃ 0, we have

Ḣ ≃
(

k0 − 1

2
− 2q0φ̇

2

)

φ̇2 > 0. (3.11)

Thus the bounce could occur. However, after the bounce the field φ will be canonical

again but with V (φ) = 0. It is possible that the phase after the bounce might be the

inflation [33–36], we will consider it elsewhere.

Here, in the quadratic action (3.2) of scalar perturbation,

Qs = −
M2

p Ḣ

H2
+

4q0
(1 + κ2φ2)2H2

φ̇4 > 0 (3.12)

can be obtained, while c2s = 1 can be obtained by setting suitable f1(φ) in (2.3), which is

given by (3.5), and f2(φ) = φ̇(t(φ)).

The background evolution is numerically plotted in figure 1. We show the behaviors of

f1(φ) and f2(φ) with respect to φ in figure 2 while we require c2s = 1 throughout. In both

figures 1 and 2, we set k0 = 1.2, κ1 = 30, q0 = 1.25, κ2 = 20, V0 = 2 × 10−7, M1 = 0.22

and M2 = 0.1. We set the initial condition of φ as φini = −0.54 and φ̇ini = 2.24 × 10−4,

while the initial value of t is tini = −2000. We see that with f1 and f2 plotted in figure 2,

the Lagrangian (3.1) with P (φ,X) in (3.6) will bring a fully stable nonsingular bounce

(Qs > 0 and c2s = 1).

– 4 –
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Figure 1. The background evolution of ekpyrotic Universe.

(a) f1(φ) for c
2
s ≡ 1. (b) f2(φ) for c

2
s ≡ 1.

Figure 2. The expressions of f1(φ) and f2(φ) with respect to φ.
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4 Discussion

The exploration of stable nonsingular bounce has been still a significant issue. Recently, it

has been found in refs. [8, 9] that the operator R(3)δg00 in EFT of nonsingular cosmologies

is significant for the stability of bounce. Here, based on the covariant description of the

R(3)δg00 operator, we propose a covariant theory (3.1) for stable nonsingular bounce.

Our (3.1) is actually a subclass of the DHOST theory [22, 23], but the cosmological

background is set only by P (φ,X). The P (φ,X) nonsingular bounce model could be ghost-

free [31, 37], but suffers the problem of c2s < 0, which can not be dispelled by using the

Galileon interaction ∼ �φ [6–9]. Actually, in [10, 38], it is observed that the Galileon

interaction only moves the period of c2s < 0 to the outside of the bounce phase, but can

not remove it, see also earlier [39]. Thus it could be imagined that the quadratic order of

the second order derivative of φ, i.e., φµνφ
µν , (�φ)2, φµφµρφ

ρνφν and (�φ)φµφµνφ
ν , might

play crucial roles in stable nonsingular bounce model. However, due to the complexity of

relevant theories, what kind of combination of these components is required for a stable

cosmological bounce is unclear. Here, the corresponding combination (2.3) is just what

told by the covariant description of the R(3)δg00 operator.

With (3.1), the design of stable nonsingular bounce model is simple, as illuminated

for the ekpyrotic scenario. Our work actually offers a concise way to the fully stable

nonsingular cosmologies. See also [40–48] for other interesting studies.

Here, the importance of the EFT of nonsingular cosmologies is obvious. Actually, the

role of R(3)δK in EFT [8] is similar to that of R(3)δg00, where Kµν is the extrinsic curvature

on the 3-dimensional spacelike hypersurfaces. The covariant description of R(3)δK involves

the term ∼ (�φ)R, which might have the Ostrogradski ghost unless certain constraint is

imposed. This issue will be revisited. In mimetic gravity [25, 26] (see e.g. [49] for review),

since the mimetic constraint suggests δg00 = 0 (which is the source of instabilities [50–

53]), one might apply the operator R(3)δK to make the (possibly-built) nonsingular bounce

stable,1 instead of R(3)δg00. The mimetic gravity with the couple (�φ)R has been proposed

in ref. [54]. We will back to the relevant issues.
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A Correspondence with a subclass of DHOST theory

Up to cubic order of φµν , the covariant action of DHOST can be written as (see e.g., [24])

SDHOST =

∫

d4x
√
−g
[

p(φ,X) + q(φ,X)�φ+ g2(φ,X)R+ Cµνρσ
(2) φµνφρσ

+g3(φ,X)Gµνφ
µν + Cµνρσαβ

(3) φµνφρσφαβ

]

, (A.1)

1Communication with Mingzhe Li.
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where R and Gµν denote the usual 4-dimensional Ricci scalar and Einstein tensor associated

with the metric gµν , respectively;

Cµνρσ
(2) φµνφρσ =

5
∑

A=1

aA(φ,X)L
(2)
A , (A.2)

with

L
(2)
1 = φµνφ

µν , L
(2)
2 = (�φ)2 , L

(2)
3 = (�φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 ,
(A.3)

and

Cµνρσαβ
(3) φµνφρσφαβ =

10
∑

A=1

bA(φ,X)L
(3)
A , (A.4)

with

L
(3)
1 = (�φ)3 , L

(3)
2 = (�φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµ
ρ ,

L
(3)
4 = (�φ)2 φµφ

µνφν , L
(3)
5 = �φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ ,

L
(3)
7 = φµφ

µνφνρφ
ρσφσ , L

(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ ,

L
(3)
9 = �φ (φµφ

µνφν)
2 , L

(3)
10 = (φµφ

µνφν)
3 ;

(A.5)

extra conditions on the functions aA and bA need to be satisfied so that there is no extra

propagating degree of freedom, see [24] and references therein for further discussions.

Comparing with (A.1), we find our model (3.1) corresponds to the covariant form of

DHOST theory with

p(φ,X) = P (φ,X)− X

2

∫

fφφd lnX , q(φ,X) = −fφ −
∫

fφ
2
d lnX ,

g2(φ,X) =
M2

p + f

2
, g3(φ,X) = 0 , (A.6)

a1 = −a2 =
f

2X
, a3 = −a4 =

f − 2XfX
X2

, a5 = 0 ,

and bA = 0.

In the EFT formalism, the quadratic action for DHOST theory can be written as

S
(2)
DHOST=

∫

d3xdta3
M2

2

{

δKµνδK
µν−

(

1+
2

3
αL

)

δK2+(1+αT )

(

R(3) δ
√
h

a3
+δ2R

(3)

)

(A.7)

+H2αKδN2+4HαBδKδN+(1+αH)R(3)δN+4β1δKδṄ+β2δṄ
2+

β3
a2

(∂iδN)2
}

,

where δN = δg00/2, δ2R
(3) stands for the second order term in the perturbative expansion

of R(3), the dimensionless time-dependent functions αL, αT , αK , αB, αH , β1, β2 and β3
satisfy certain conditions so that there is no extra propagating degree of freedom, see [24]

for details.

– 7 –
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Comparing with (A.7), we find our model (3.1) corresponds to

M = Mp , αL = αT = αB = 0 , β1 = β2 = β3 = 0 ,

αK =
4M4

2

M2
pH

2
=

4X2PXX

M2
pH

2
, αH =

2m̃2
4

M2
p

=
2f1(φ)

M2
p

. (A.8)

Note that the results in eqs. (A.8) should be evaluated at background level in the quadratic

action if we derive them from eqs. (A.6) by using formulae given in eqs. (2.14) of [24].

According to the above results, our model (3.1) belongs to a subclass of the DHOST

theory with αL = 0 and αT = 0. As has been pointed out in ref. [24], in such a DHOST

theory, in the linear regime for a Minkowski background (namely, at the limit a = 1 and

H = 0) the Newton’s constant is GN = 1
8πM2

p

1
(1+αH)2

. In our specific numerical example,

the Universe is nearly slowly expanding Friedmann Universe at large positive times, which

is nearly Minkowskian. However, in that limit, the contribution from Lδg00R(3) (or the value

of f1(φ)) is already vanishing, i.e., αH = 0, hence GR is retrieved and GN = 1
8πM2

p
at large

positive times.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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