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1. Introduction. In this paper we determine the stress distribution in isotropic

and anisotropic half-spaces which are bonded together at their plane interface except

over a region of infinite length and finite constant width. In this region there is a crack

which is subjected to an arbitrary nonuniform applied stress. Problems of this type for

dissimilar isotropic materials have been considered by England [3], Williams [4], Rice

and Sih [5] and Erdogan [6] while the two-dimensional problem of the partial bonding

of dissimilar anisotropic plates has been examined in some detail by Gotoh [10]. After

formulating the problem in Sec. 2 we proceed, in Sec. 3, to set out the relevant basic

equations for the stress and displacement in the isotropic and anisotropic materials.

In Sec. 4 we consider the boundary-value problem stated in Sec. 2 and show how it may

be reduced to a Hilbert problem so that its solution may be readily written down.

In Sec. 5 the particular case of a crack between the isotropic material, copper, and the

transverse^ isotropic material, titanium, is considered and it is shown that, as in the

case of a crack between dissimilar isotropic materials, the solution predicts that violent

oscillations occur in the stress near the ends of the crack.

2. Statement of the problem. Take Cartesian co-ordinates xx, x2, x3 and assume

the isotropic and anisotropic materials occupy the regions x2 > 0 and x2 < 0 respec-

tively. The region x2 > 0 will be denoted by L and the region x2 < 0 by R. The materials

are assumed to be bonded at all points of the interface x2 = 0 except those lying in the

region |xi| < a, — <» < x3 < °° where there is a crack which is opened by equal and

opposite tractions on each side of the crack. It is required to find the stress distribution

in the bonded material.

If the stress and displacement in the regions L and R are denoted by , u\ and a £ ,

u\ respectively, then the following conditions must be satisfied on x2 = 0:

crf2 = —pi(x,), x2 = 0+, |zi| < a (1)

arf2 = —Pifa), x2 = 0—, Ixil < a (2)

i = 1, 2, 3
and

iik — Uk , x2 — 0, | a (3)

fii = o"?2 , x2 = 0, \xx\ > a (4)

i, k = 1, 2, 3
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where the p,(zi) are the tractions over the crack faces. Also it is necessary that all

components of the stress vanish at infinity. We use the linear equations of elasticity

and seek a solution for which the stress and displacement are independent of x3 .

3. Fundamental equations. If z = Xi + ix2) z = xx — ix2 then the basic equations

for the stress and displacement for the isotropic material in L may be written in the form

n[ut + iu\] = Kip^z) — zft(z) — $2 (z), ^

= iff 3 (2) + $3 (z),

On + 0-2^ = 4 [ip[(z) + &'(z)],

<jl22 - i&i2 = 2[iff[(z) + m) + zft'(z) + fc'(z)], (6)

0-f3 + ic 23 = 2^3(2),

where the ip>(z) are analytic functions of z, n is the modulus of rigidity, k = 3 — 4?j,

77 being Poisson's ratio and primes denote differentiation with respect to z.

For the anisotropic material in R we follow the representation of Eshelby et al. [8]

and Stroh [7], The stress and displacement in R are related by

r   . dUk /—■.

^7' (7)

where i, j, k,l = 1, 2, 3, the are the elastic constants and the convention of summing

over a repeated Latin suffix is used. On substituting (7) in the equilibrium equations

daS/dXj = 0 we obtain

*'« = °" (8)

Now we suppose the u\ are independent of x3 and take

= Akx{x 1 + px2) (9)

where x(z) is an analytic function of the complex variable 2; (9) is a solution of (8)

provided the constant vector Ak satisfies the equations

(c,u 1 + pew + pci 2tl + p2ci2k2)Ai = 0. (10)

Values of Ak , not identically zero, can be found to satisfy these equations if p is a root

of the sextic equation

|c,m + pc,ii2 + pci 2ti + p2Ci 2k2\ = 0. (11)

It can be shown (see Eshelby et al. [8]) that Eq. (11) has no real root so that the roots

occur in complex conjugate pairs. The three roots with positive imaginary part will

be denoted by pa (a = 1, 2, 3) with complex conjugates pa ; the corresponding values

of Ak obtained from Eq. (10) are Aka and Aka . Summation over a, and generally over

Greek suffices, will always be indicated explicitly. It will be assumed that the roots p

are all distinct, equal roots being regarded as the limiting case of distinct roots. A general

expression for the displacement may then be written

uk = S AkaXa(za) + S Akaxa{za) (12)
a a

where za = x2 + p„x2. From (7) we write the stress as
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■ = E LiiaX'a{za) + E Liiax'a{za) (13)
a a

where

^iia (Cjjfcl PccCijk2)-^-ka • (14)

The following analysis can be expressed in a more compact form if we cast the expres-

sions (12) and (13) into an alternative form. We define

E Li2aXa(z) = "><(2) (15)
a

where the w,-(z) are analytic functions of 2. Stroh [7] has shown that the matrix [Li2a] is

nonsingular so we may write

X«(2) = MaiUi(z) (16)

where

E Li2aMai = Si;- . (17)
a

Hence substituting in (12) and (13) it follows that

uk = E AkaMcfUjfea) + E AkaMa,-w,-(fa), (18)
a a

<r* = E LiiaMaku'k(za) + E LijotMaku'k(za). (19)
a a

4. Solution of the problem. We require six functions ^,(2), <o,(z) (i = 1, 2, 3) which

are such that the stress and displacement given by Eqs. (5), (6), (18) and (19) satisfy

the conditions outlined in Sec. 2. Let

lim ^,(2) = 1), lim ^,(2) =
X 2—*0 + l2-»0-

then from (3), (5) and (18) the displacement is continuous across x2 = 0, l^l > a if

K'Z't(Zi) + K^Tfe) - a:i^i/+(Xi) — xi$r(xi) - ^2+fe) - ft'fo)

= 2fj.Bllo)~(x1) + 2p.B11w+i(x1),

K^ife) - + ®i^+(®i) - «i^r(®i) + ^r(^i) — ̂r^i)
= 2inB2iw~(x1) + 2ifiB2iu*(x1),

^3(^1) + i? 3(^1) = nB3jw~(xi) + fiB3iu+j(x1),

where

= E Aiailfa, (20)
a

Kip+i(xi) ~ Xit'Sfa) - ^2+(.Xi) - 2nBliw+i(x1)

= i(%i) £i*Ai (^1) 2 (%i) 2fiBijCi> ,(a;i)],

+ Zi^i'+(Z,) + i^fo) - 2itxB2ju*{x1)

= k^T(«i) + xi$'r(xi) + $2~(xi) + 2inB2iu~{x1), (21)

— v-BZiu>+j(xd = fiB3io)~(x 1) — ^~3(xi).
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Thus, if we put

Ki ,(?) - zipi(z) ~ M(z) ~ 2fiBljui(z) = ^(z), 2GL

—k$i(z) + 21?!'(2) + $2(2) + 2ixBuo>,(z) = <£i(2), z E R

k^i(z) + 2^1(2) + ^2(2) — 2inBijUjfz) = <t>2(z), z EL

Kfi(z) + 2i?i'(z) + ^(2) + 2z>52,«,(?) = <t>2{z), z E R

^3(2) - txB3ju,{z) = 4>3(z), z E L

nB3,<tij(z) — $3(z) = <£3(2), 2 E -R

where the functions <£, (2) are analytic in the whole plane cut along (—0, a), then Eqs. (21)

are satisfied identically. Similarly from (4), (6), (17) and (19) the stress will be con-

tinuous across the bonded interface if we put

2i'(2) + ^'(2) - iwi'fc) = ^(z), 2 E £

2^1"(2) + WG) + iui(z) = ^(2), z E R

2(*) + 2*1"(«s) + ^'(2) - «&) = 02(2), 2 E -L (23)

— 2^(2) — 21?1"(2) - &'(z) + 0)2(2) = #2(2), 2 E #

^3(2) — Ws(2) = ^3(2), 2 E £

it3(2) + 0)3(2) = 6 3{z), z ER

where the 6,(2) are analytic in the whole plane cut along (—a, a).

Eliminating the ^.(2) from (22) and (23) we obtain

OK2) = D(z) + EM), z E R (24)

Cu^(z) = F.^'iz) + Gue,(z), z G L (25)

and

where

[C„] =

ki — 2 n(Bn — iB21) k — 2fx(B12 — iB22) — 2fi(B13 — iB23)

— i + 2fx(B11 + iE>2i) 1 + 2fi(B12 + iB22) 2'n(Bl3 + iB23)

t*B3i [J.B32 fiB33 -{- i

and

[A,-] =

[F«] =

-1 1 0

1 1 0

0 0-1.

11 0

-1 1 0

0 0 1

[<?„] =

K K 0

-1 1 0

0 0 i

K — K 0

1 -1 0

0 0 i

(26)

(27)

Provided the matrix [C,,] is nonsingular it follows from Eqs. (24) and (25) that
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cofc) = HuDik<t>'k(z) + H,JSuek(?), z G R (28)

«,<(*) = HjiFik4>'k(z) + z G L (29)

where

CihHki = a„. (30)

Using (6), (19), (23), (28) and (29), we may write the boundary conditions (1) and (2) as

flttei) - 07(zi) + i[RuFih<t>'k+{xl) + HuGikSk(xi)]

+ i[HuDik<l>'k~(xi) + HuFik&~k(xi)] = -ipifri), Nil < a (31)

e+{xx) - 0-fo) + [HiiFik4>'k+(x1) + S^GMx,)]

+ [H^D.^rixr) + HjiEilte~k{xCi] = -p,(a;,), l^l < a j = 2, 3 (32)

and

[5-„F^r(®i) + tflfo)]

+ [Hi.-Da^rfe) + i?i,^,A:0i(a:i)] = -p,(zi), |xx| < o j = 1, 2, 3. (33)

Hence the problem reduces to one of finding functions 6i{z) and 4><(z) which are analytic

in the whole plane cut along (—a, a) and satisfy Eqs. (31), (32) and (33). Also the stress

and rotation vanish at infinity so it is necessary that

#(z)=0(l /z2), di(z) = 0 (1/ 2j2) as |*|-*». (34)

From (31), (32) and (33) it follows that

6*(x0 = 9~(x), \xi\ < a i = 1, 2, 3 (35)

so that the functions 0,(z) are analytic in the whole plane including the entire real axis

and hence, from condition (34), must be identically zero. Hence (31), (32) and (33)

reduce to

Pik<t>'t+(xi) - Qjk<t>'k~(x0 = -Pi(xi), |zi| < a (36)

where we have put

SifFa = Pik , HjiDik = -Qik . (37)

Multiplying by constants N,- which are yet to be determined and summing over j, we

obtain

N,PtM*{x0 - N&tfrfrx) = -NiPifrd, W < a. (38)

The N,- are chosen such that

NtPik = Rk , NjQik = \Rk , (39)

where the Rk and X are yet to be determined. Eliminating the Rt, we obtain

(Qit - XPjk)Nj = 0. (40)

These equations have a nontrivial solution if

\Qik — XP j fc 1 = 0, (41)

which is a cubic in X with roots which will be denoted by X7 (7 = 1, 2, 3); the corre-
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sponding values of Nf and R,- obtained from (40) and (39) will be denoted by Nyi and Ry].

Eqs. (38) may now be written

[Ryl<f>'k+(xj)] - \y[Ryk<t>'k+{x0] = -Nyip,(x1), 1^1 < a, y = 1, 2, 3. (42)

The problem (42) is a special case of the Hilbert problem. The appropriate solution

may be written in the form

where

p I r(.\ Xy(z) f NyiPi(xi) dXi -I r> o (a o\
Ryk<t>k(z) — 2wi J_aX;(Xi)(Xi_zy y- 1.2,3 (43)

Xy(z) = (z ~ a)m \z + a) ™, m = ~ log \y

where we select the branch of Xy(z) such that zXy (z) —> 1 as \z\ —» ® and choose the

argument of XT to lie between 0 and 2ir. Provided the matrix Ryk is nonsingular we may

write

- e («)
where

RakSkP = Sa0 (45)

Having obtained the 4>'k{z) from (44) we may use (28) and (29) to find co,-(z) and then

Eqs. (23) give the ^, (z). Eqs. (6) and (19) then give the stress at all points of the bonded

material.

In obtaining (44) it was assumed that the matrices [C,-,] and [Ryk\ were nonsingular.

Since these matrices depend on the elastic constants of both the upper and lower half-

spaces it follows that there may be combinations of isotropic and anisotropic materials

for which one or both of the matrices is singular and in such cases the preceding analysis

could not be applied.

Finally, in this section, it may be mentioned that although, for simplicity, the

preceding discussion has been limited to the case of a single crack, it is not difficult to

generalise the results to include the case of several cracks.

5. Crack between copper and titanium. We consider the particular case of a crack

between the isotropic material copper and the transversely isotropic material titanium.

The elastic behaviour of transversely isotropic materials is characterized by five elastic

constants which will be denoted by A, N, F, C and L. If it is assumed that the xi-axis

is normal to the transverse planes then the only nonzero ciiki which are of interest

are given by

Cull = Cj Cu 22 = F; £-2222 = ^ ' ^1133 = R,

^2233 = X, C]33] = L; C1212 = L, C2332 = 2 (N).

Eq. (11) thus reduces to

[HA - N)p2 + L][ALp4 - (JF2 + 2FL - AC)p2 + CL] = 0, (46)

so that we may put

p\ = -2 LI {A - IV),

and then p\ and p\ are the roots of the quartic factor of (46). Substituting in Eq. (10),
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we find that a suitable choice of Aka is

[A..] =

0
-i(F + L)p2 —i(F + L)p.

C + Lpl C + Lp 3

0 i i

I 0 0

and hence it follows from (14) that

[Li2 a] =

MA — N) o o

The elastic constants for titanium are A = 16.2, N = 9.2, F = 6.9, C = 18.1, L = 4.67

and for copper they are E = 12.34, n = 4.47. If each of these numerical values is mul-

tiplied by 1011 then the units for the constants are dynes/cm2. Also we take the value

of Poisson's ratio for copper to be r? = 0.38 so that k = 1.48. Substituting these values

of the constants in the appropriate matrices, we find that

0 1.55 0.61

[Aha] = 0 I I , [I/,-2a] =

_1 0 0

0 0 — 0.25i

[Mai] = — 0.18i 0.14 0

L 0.22 i -0.29 0

Hence from (25) and (30)

0 14.28* 6.94i

0 -10.78 -8.71

4.04 i 0 0

0.13i 0.04 0

[Bkj] = -0.04 —0.15i 0

0 0 — 0.25i

2.29i 2.44 0

[C,-,.] = — 2.56i 2.7 0 , [Hki] =

0 0 2.11i

0.41i 0.02z 0

[Pik] = 0.02 0.39 0 , [Qik] =

0 0 0.47t_

so that the roots of (41) are

Xi = -1, X2 = -0.9, X3 = 1/X2 = -1.11.

Hence using (40) a suitable choice of the Ny, is

0 0 1

[Ny<] = — 0.99i 1 0

0.99i 1 0

-0.22 i 0.2 i 0

0.21 0.18 0

0 0 —0.47?

-0.4K 0.02z 0

0.02 -0.39 0

0 0 — 0.47i.
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and therefore

[-R-rJ —

0 0 0.47

0.43 0.41 0

-0.39 0.37 0

[S»] =

0 1.13 -1.27

0 1.2 1.47

— 2.14? 0 0

This completes the calculation of the constants. If we let p{(xO = P, (constant) then

we may integrate (44) to obtain

4>i(z) = -{S^NuPil 1 - eXx(?)]/2 + <S*2iV2iP,[ 1 - (2 + 0.04ai)X2(z)]/1.9

+ Sk3N3iPAl - (2 - 0Mai)X3(z)]/2.11] (47)

where

Xt(z) = (z - a)~1/2(2 + a)~1/2, X2(z) = (2 - a)~W2) + in{z + a)-(1/2>-'n

X3{z) = (z - a,ya/2)-in(z + a)~a/2) + '"

"ith n - 0.02.

Numerical values for the stress in the bonded material for this particular case may now

be obtained through Eqs. (28), (29), (23), (6) and (19).
It has been shown (see Salganik [2] and England [3]) that violent oscillations occur

in the stress near a straight crack between two bonded isotropic materials. This phe-

nomenon is accompanied by interpenetration of the crack surfaces. The form of Eq. (47)

indicates that a similar situation exists for the particular case considered in this section.

However, this oscillatory behaviour of the stress is confined to a small region around

the crack tip and since the material is beyond the elastic limit in this region the linear

theory of elasticity would not apply. Hence for all practical purposes this irregularity

in the local stress may be ignored. It is of interest to note that, for the particular case

considered here, the antiplane applied shear stress a23 = — P3 does not contribute to

the oscillatory nature of the stress (that this is so may be seen from Eq. (47) when we

recall that N23 = Nsz = 0) and it is not difficult to show that this is also the case for

dissimilar isotropic materials. Finally it may be mentioned that, in the example of this

section, the plane and anti-plane parts of the problem could have been treated separately.

This uncoupling of the problem into two independent parts will not occur in the general

case although it will always occur when the x3 = 0 plane is a plane of elastic symmetry.
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