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Abstract. In this paper, a new alternating direction implicit Galerkin–Legendre spectral method
for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The
temporal component is discretized by the Crank–Nicolson method. The detailed implementation of
the method is presented. The stability and convergence analysis is strictly proven, which shows that
the derived method is stable and convergent of order 2 in time. An optimal error estimate in space
is also obtained by introducing a new orthogonal projector. The present method is extended to solve
the fractional FitzHugh–Nagumo model. Numerical results are provided to verify the theoretical
analysis.
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1. Introduction. In the past decades, fractional calculus has been used to model
particle transport in porous media. Recently, there has been increasing interest in the
study of fractional calculus for its wide application in many fields of science and
engineering, such as the physical and chemical processes, materials, control theory,
biology, finance, and so on (see [3, 9, 25, 23, 33, 35]). In physics, fractional derivatives
are used to model anomalous diffusion, where particles spread differently than the
classical Brownian motion model [23]. Kinetic equations of the diffusion, diffusion-
advection, and Fokker–Planck equations with partial fractional derivatives were rec-
ognized as a useful approach for the description of transport dynamics in complex
systems. Reaction-diffusion models have been used for numerous applications in pat-
ten formation in biology, chemistry, physics, and engineering. These systems show
that diffusion can produce the spontaneous formation of spatial-temporal patterns.
The idea is to use a fractional-order density gradient to recover, at least at a phe-
nomenological level, the nonhomogeneities of the porous media. Given the structural
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analogy between Newton’s law of viscosity and Fick’s law of particles transport, the
usage of a fractional Newton’s law for descripting momentum transport in nonho-
mogeneous porous media could be considered. By using spatial averaging meth-
ods, Ochoa-Tapia, Valdes-Parada, and Alvarez-Ramirez [32] derived a Darcy-type
law from a fractional Newton’s law of viscosity, which is intended to describe shear
stress phenomena in nonhomogeneous porous media. Valdes-Parada, Ochoa-Tapia,
and Alvarez-Ramirez [39] studied reaction-diffusion phenomena in disordered porous
media with non-Fickian diffusion effects. They obtained an effective medium equation
of the concentration dynamics, which has a fractional Fick’s law for the particles flux.
They showed that the macroscale diffusion parameter is affected by the scaling from
mesoscale to macroscale, and by the disordered structure of the porous medium.

In this paper, we consider the following two-dimensional Riesz space fractional
nonlinear reaction-diffusion equation [3, 19]:
(1.1)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tu = Kx
∂2α1u

∂|x|2α1

+Ky
∂2α2u

∂|y|2α2

+ F (u) + f(x, y, t), (x, y, t)∈Ω×(0, T ], T > 0,

u(x, y, 0) = φ0(x, y), (x, y)∈Ω,

u = 0, (x, y, t)∈ ∂Ω× (0, T ],

in which 1
2 < α1, α2 < 1, Kx,Ky > 0, Ω = (a, b) × (c, d), ∂t =

∂
∂t . F (u) is nonlinear,

which satisfies the requirement that |∂uF (u)| is bounded when u is bounded or F (u)

satisfies the local Lipschitz condition, and ∂2α1

∂|x|2α1
and ∂2α2

∂|y|2α2
are the Riesz fractional

operators [9, 33, 36] defined by

∂2α1u

∂|x|2α1

= −c1(RLD
2α1

a,x u+RL D2α1

x,b u),

∂2α2u

∂|y|2α2

= −c2(RLD
2α2

c,y u+ RLD
2α2

y,d u),

where c1 = 1
2 cos(α1π)

, c2 = 1
2 cos(α2π)

. For n− 1 < β < n, n∈N, the operators RLD
β
a,x,

RLD
β
x,b, RLD

β
c,y, and RLD

β
y,d are defined as

RLD
β
a,xu =

∂n

∂xn

[

D−(n−β)
a,x u

]

=
1

Γ(n− β)

∂n

∂xn

∫ x

a

(x− s)n−β−1u(s, y, t) ds,

RLD
β
x,bu = (−1)n

∂n

∂xn

[

D
−(n−β)
x,b u

]

=
(−1)n

Γ(n− β)

∂n

∂xn

∫ b

x

(s− x)n−β−1u(s, y, t) ds,

RLD
β
c,yu =

∂n

∂yn

[

D−(n−β)
c,y u

]

=
1

Γ(n− β)

∂n

∂yn

∫ y

c

(y − s)n−β−1u(x, s, t) ds,

RLD
β
y,du = (−1)n

∂n

∂yn

[

D
−(n−β)
y,d u

]

=
(−1)n

Γ(n− β)

∂n

∂yn

∫ d

y

(s− y)n−β−1u(x, s, t) ds,

where D−µ
a,x and D−µ

x,b are the left and right Riemann–Liouville integral operators
defined by

D−µ
a,xu = RLD

−µ
a,xu =

1

Γ(µ)

∫ x

a

(x − s)µ−1u(s, y, t) ds, µ > 0,

D−µ
x,bu = RLD

−µ
a,xu =

1

Γ(µ)

∫ b

x

(s− x)µ−1u(s, y, t) ds, µ > 0.
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The left and right Riemann–Liouville integral operators D−µ
c,y and D−µ

y,d can be defined
similarly.

There are several analytical techniques to solve fractional differential equations
(FDEs), such as the Fourier transform method, the Laplace transform method, the
Mellin transform method, and the Green function method [23, 33]. Anh and Leo-
nenko [1] presented a spectral representation of the mean-square solution of the frac-
tional kinetic equation with random initial condition. The explicit strong solutions
for fractional Pearson diffusions are developed by using spectral methods involving
the Mittag–Leffler function in [10]. In most situations, analytical methods do not
work well on most FDEs, so the reasonable option is to resort to numerical methods.
Up to now, there has been some work on numerical methods for FDEs, such as finite
difference methods [12, 20, 26, 47], finite element methods [5, 6, 11, 14, 42], spectral
methods [13, 15, 16], and so on [28, 29, 30]. Numerical methods for FDEs mainly
focus on the linear equations; relatively few works have been developed for the non-
linear FDEs. Until now, there have existed limited studies for nonlinear FDEs; see,
for instance, [3, 6, 14, 17, 21, 48]. Very recently, Liu et al. [19] proposed an alternating
direction implicit finite difference method to solve (1.1) with first-order in space.

In this paper, a Crank–Nicolson type alternating direction implicit Galerkin–
Legendre spectral (CNADIGLS) method is developed to solve the two-dimensional
Riesz space fractional nonlinear reaction-diffusion equation, in which the temporal
component is discretized by the Crank–Nicolson method. The stability and conver-
gence are strictly proven, which shows that the CNADIGLS method is conditionally
stable and convergent with second-order accuracy in time, and the optimal error es-
timate in space is derived by introducing a new orthogonal projector. In the stability
analysis, the nonlinear function F (u) satisfies the local Lipschitz condition or |∂uF (u)|
is bounded in a suitable domain, which is a weaker condition compared with some
existing work [17, 21, 48]. The CNADIGLS method is extended to solve the frac-
tional FitzHugh–Nagumo monodomain model. Numerical experiments are provided
to verify the theoretical results, which are in good agreement with the theoretical
analysis.

The remainder of this paper is organized as follows. Section 2 gives some notation
and lemmas. In section 3, the CNADIGLS method is provided, and the implementa-
tion of the CNADIGLS method is also presented in detail. The stability and conver-
gence analysis is proven in section 4. In section 5, the derived method is extended to
solve the two-dimensional fractional FitzHugh–Nagumo model. The numerical results
are presented in section 6, and the conclusion is given in the last section.

2. Preliminaries. In this section, we introduce some notation and lemmas that
are needed in the following sections.

Let Ω be a finite domain satisfying Ω = Ix×Iy = (a, b)×(c, d), and denote by (·, ·)
the inner product on the space L2(Ω) with the L2 norm ‖ · ‖L2(Ω) and the maximum
norm ‖ · ‖L∞(Ω). We also define (·, ·) as the inner product on the interval Ix or Iy if
it does not cause confusion. Let µ be a nonnegative real number. We use Hµ(Ω) and
Hµ

0 (Ω) as the usual Sobolev spaces with the norm ‖ · ‖Hµ(Ω) and seminorm | · |Hµ(Ω)

(see [31, 35]). Denote by PN (Θ) the space of polynomials defined on the domain Θ
with the degree no greater than N ∈Z+. The approximation space V 0

N is defined as

V 0
N = (PN (Ix)⊗PN (Iy)) ∩H1

0 (Ω).

We introduce the Legendre–Gauss–Lobatto (LGL) interpolation operator IN :
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C(Ω̄)→VN as

INu(xk, yl) = u(xk, yl), k, l = 0, 1, . . . , N,

where xk and yl are LGL points on the intervals Īx and Īy, respectively.
Next, we introduce some spaces that are used in the formulation of the numerical

algorithms. We first introduce the spaces Jµ
L(Ω), J

µ
R(Ω), and Jµ

S (Ω) in R
2 (see [7]).

Definition 2.1. Let µ > 0. Define the seminorm

|u|Jµ

L
(Ω) =

(

‖RLD
µ
a,xu(x, y)‖2L2(Ω) + ‖RLD

µ
c,yu(x, y)‖2L2(Ω)

)1/2

and the norm

‖u‖Jµ

L
(Ω) =

(

‖u‖2L2(Ω) + |u|2Jµ
L(Ω)

)1/2

,

and denote Jµ
L(Ω) (or Jµ

L,0(Ω)) as the closure of C∞(Ω) (or C∞
0 (Ω)) with respect to

‖ · ‖Jµ
L(Ω), where C∞

0 (Ω) is the space of smooth functions with compact support in Ω.
Definition 2.2. Let µ > 0. Define the seminorm

|u|Jµ
R(Ω) =

(

‖RLD
µ
x,bu(x, y)‖2L2(Ω) + ‖RLD

µ
y,du(x, y)‖2L2(Ω)

)1/2

and the norm

‖u‖Jµ
R(Ω) =

(

‖u‖2L2(Ω) + |u|2Jµ

R
(Ω)

)1/2

,

and denote Jµ
R(Ω) (or Jµ

R,0(Ω)) as the closure of C∞(Ω) (or C∞
0 (Ω)) with respect to

‖ · ‖Jµ

R
(Ω).

Definition 2.3. Let µ �=n− 1/2, n∈N. Define the seminorm

|u|Jµ

S
(Ω) =

(

|(RLD
µ
a,xu(x, y),RLD

µ
x,bu(x, y))|+ |(RLD

µ
c,yu(x, y),RLD

µ
y,du(x, y))|

)1/2

and the norm

‖u‖Jµ

S
(Ω) =

(

‖u‖2L2(Ω) + |u|Jµ

S
(Ω)

)1/2

,

and let Jµ
S (Ω) (or Jµ

S,0(Ω)) denote the closure of C∞(Ω) (or C∞
0 (Ω)) with respect to

‖ · ‖Jµ

S
(Ω).

The fractional Sobolev space Hµ(Ω) can be defined via the Fourier transform
approach.

Definition 2.4 (see [31, 35]). Let µ > 0. Define the seminorm

|u|Hµ(Ω) = ‖ |ω|µF(u)(ω) ‖L2(R2)

and the norm

‖u‖Hµ(Ω) =
(

‖u‖2L2(Ω) + |u|2Hµ(Ω)

)1/2

,

where F(u)(ω) is the Fourier transformation of function u(x, y). And let Hµ(Ω) (or
Hµ

0 (Ω)) be the closure of C∞(Ω) (or C∞
0 (Ω)) with respect to ‖ · ‖Hµ(Ω).

Lemma 2.5 (see [35]). Let µ > 0, Ω = (a, b)× (c, d), u∈Jµ
L,0(Ω)∩J

µ
R,0(Ω). Then

(RLD
µ
a,xu,RLD

µ
x,bu) = cos(µπ)‖RLD

µ
−∞,xû‖2L2(R2) = cos(µπ)‖RLD

µ
x,∞û‖2L2(R2),

(RLD
µ
c,yu,RLD

µ
y,du) = cos(µπ)‖RLD

µ
−∞,yû‖2L2(R2) = cos(µπ)‖RLD

µ
y,∞û‖2L2(R2),
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where û is the extension of u by zero outside Ω. Furthermore, if µ �=n−1/2, n∈N, and
u∈Jµ

L,0(Ω), then there exists a positive constant C independent of u such that

|û|Jµ

L
(R2) ≤C|u|Jµ

L
(Ω).

Lemma 2.6. Let µ1, µ2 > 0, Ω = (a, b)×(c, d), u∈J
max{µ1,µ2}
L,0 (Ω)∩Jmax{µ1,µ2}

R,0 (Ω).
Then

(RLD
µ1

a,xRLD
µ2

c,yu,RLD
µ1

x,bRLD
µ2

y,du) = cos(µ1π) cos(µ2π)‖RLD
µ1

−∞,xRLD
µ2

−∞,yû‖2L2(R2),

(RLD
µ1

a,xRLD
µ2

y,du,RLD
µ1

x,bRLD
µ2

c,yu) = cos(µ1π) cos(µ2π)‖RLD
µ1

−∞,xRLD
µ2

−∞,yû‖2L2(R2),

where û is the extension of u by zero outside Ω.
Proof. The proof is similar to Lemma 3.1.4 in [35], we omit the details here. The

proof is completed.
Lemma 2.7 (see [7]). Let Ω = (a, b)×(c, d), µ �=n− 1

2 , n∈N, and u∈Jµ
L,0(Ω)∩J

µ
R,0(Ω)

∩Hµ
0 (Ω). Then there exist positive constants C1 and C2 independent of u such that

C1|u|Hµ(Ω) ≤ max
{

|u|Jµ

L
(Ω), |u|Jµ

R
(Ω)

}

≤C2|u|Hµ(Ω).(2.1)

Remark 2.1. In fact, the spaces Jµ
L,0(Ω), J

µ
R,0(Ω), J

µ
S,0(Ω), and Hµ

0 (Ω) are equiv-
alent, with equivalent seminorms and norms if µ �=n − 1/2, n∈N; see [7] for more
details.

Lemma 2.8 (see [7]). Let 1 < β < 2. Then for any u∈Hβ
0 (Ω) and v ∈H

β/2
0 (Ω),

we have

(RLD
β
a,xu, v) = (RLD

β/2
a,x u,RLD

β/2
x,b v), (RLD

β
x,bu, v) = (RLD

β/2
x,b u,RLD

β/2
a,x v).

3. The scheme and implementation. In this section, we first present the
Crank–Nicolson type ADI Legendre spectral method for (1.1). Then, we give the
detailed implementation of the proposed method.

Let τ be the time step size and nT be a positive integer with τ = T/nT and
tn = nτ for n = 0, 1, . . . , nT . Denote tn+1/2 = (tn + tn+1)/2 for n = 0, 1, . . . , nT − 1.
For the function u(x, y, t)∈C(Ω× [0, T ]), denote un = un(·) = u(·, tn). For simplicity,
we introduce the following notation:

δtu
n+1/2 =

un+1 − un

τ
, un+1/2 =

un+1 + un

2
.

3.1. The fully discrete scheme. In this subsection, we present the fully dis-
crete scheme for (1.1). We first give a simple description of the time discretization of

(1.1). Let Lxu = Kx
∂2α1u
∂|x|2α1

and Lyu = Ky
∂2α2u
∂|y|2α2

. Then (1.1) can be rewritten as

(3.1) ∂tu = (Lx + Ly)u+ F (u) + f(x, y, t).

Suppose that u(x, y, t) is sufficiently smooth with respect to time. At each time level
n, the temporal derivative of (3.1) is discretized by the Crank–Nicolson method, i.e.,
∂tu(tn+1/2) = δtu

n+1/2 +O(τ2) and (Lx + Ly)u(tn+1/2) = (Lx + Ly)u
n+1/2 +O(τ2),

which yields

(3.2) δtu
n+1/2 = (Lx + Ly)u

n+1/2 +
1

2
(F (un+1) + F (un)) + f(tn+1/2) +O(τ2).
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Adding the perturbation term τ2

4 LxLyδtu
n+1/2 = O(τ2) to the left side of (3.2) gives

(3.3)
δtu

n+1/2 +
τ2

4
LxLyδtu

n+1/2 = (Lx + Ly)u
n+1/2

+
1

2
(F (un+1) + F (un)) + f(tn+1/2) +O(τ2).

One can also rewrite (3.3) into the following equivalent form:

(3.4)

(

1− τ

2
Lx

)(

1− τ

2
Ly

)

un+1 =
(

1 +
τ

2
Lx

)(

1 +
τ

2
Ly

)

un−1

+
τ

2
(F (un+1) + F (un)) + τf(tn+1/2) +O(τ3).

From (3.4), we can obtain the fully discrete CNADIGLS method for (1.1) as
follows: Find un+1

N ∈V 0
N for n = 0, 1, . . . , nT − 1 such that

(3.5)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

((

1− τ

2
Lx

)(

1− τ

2
Ly

)

un+1
N , v

)

=
((

1 +
τ

2
Lx

)(

1 +
τ

2
Ly

)

un
N , v

)

+
τ

2
(INF (un+1

N ) + INF (un
N), v) + τ(INf(tn+1/2), v) ∀v ∈V 0

N ,

u0
N = Π1,0

N φ0,

where Π1,0
N is an appropriate projection operator; see also Lemma 4.3 in section 4.

3.2. Implementation of the CNADIGLS method. In this subsection, we
give a detailed description of the implementation of the CNADIGLS method (3.5).
As in [38], the function spaces V x,0

N and V y,0
N can be expressed as

V x,0
N = span {φl(x) : l = 0, 1, . . . , N − 2} ,

V y,0
N = span {ϕl(y) : l = 0, 1, . . . , N − 2} ,

in which φl(x) and ϕl(y) are defined as in [38]:

(3.6)
φl(x) = Ll(x̂)− Ll+2(x̂), x̂∈ [−1, 1], x =

(b− a)x̂+ a+ b

2
∈ [a, b],

ϕl(y) = Ll(ŷ)− Ll+2(ŷ), ŷ ∈ [−1, 1], y =
(d− c)ŷ + c+ d

2
∈ [c, d],

where Ll(ẑ) (ẑ ∈ [−1, 1], l ∈ Z+) is the Legendre polynomial defined by the following
recurrence relation [37]:

(3.7) L0(ẑ) = 1, L1(ẑ) = ẑ, Ll+1(ẑ) =
2l+ 1

l + 1
ẑLl(ẑ)−

l

l + 1
Ll−1(ẑ), l ≥ 1.

The Jacobi polynomials P a,b
l (ẑ) (a, b > −1, ẑ ∈ [−1, 1], l ∈ Z+) are orthogonal

with respect to the weight function ωa,b(ẑ) = (1− ẑ)a(1 + ẑ)b; these polynomials are
used in the numerical computation. The explicit formula of the Jacobi polynomial is
stated as follows [37]:

(3.8) P a,b
l (ẑ) = 2−l

l
∑

j=0

(

l+ a

j

)(

l + b

l− j

)

(ẑ − 1)l−j(ẑ + 1)j .
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The Jacobi polynomials can also be generated by the three-term recurrence formula;
see [4, 37] for more details.

Therefore, the function space V 0
N = V x,0

N ⊗ V y,0
N can be given by

V 0
N = span

{

φk(x)ϕl(y), k, l = 0, 1, . . . , N − 2
}

.

Next, we give the matrix representation of the CNADIGLS method (3.5). The
unknown function un+1

N ∈ V 0
N has the following form:

(3.9) un+1
N =

N−2
∑

k=0

N−2
∑

l=0

cn+1
k,l φk(x)ϕl(y).

Set the matrices Mx,My, Sx, Sy ∈R
(N−1)×(N−1) that satisfy

(Mx)k,l = (φk, φl), (Sx)k,l = (RLD
α1

x,bφk,RLD
α1

a,xφl),

(My)k,l = (ϕk, ϕl), (Sy)k,l = (RLD
α2

y,dϕk,RLD
α2

c,yϕl).

Inserting un+1
N into the CNADIGLS method (3.5) and letting v = φkϕl (k, l = 0, 1, . . . ,

N − 2), we obtain the matrix representation of the CNADIGLS method as follows:

(3.10)
(

Mx −
τ

2
c1Kx(Sx + ST

x )
)

Cn+1
(

My −
τ

2
c2Ky(Sy + ST

y )
)T

= RHSn +Nn+1,

where Cn+1, RHSn, Nn+1 ∈R
(N−1)×(N−1), satisfying

(Cn+1)k,l = cn+1
k,l , k, l = 0, 1, . . . , N − 2,

RHSn =
(

Mx +
τ

2
c1Kx(Sx + ST

x )
)

Cn
(

My +
τ

2
c2Ky(Sy + ST

y )
)T

+ τGn,

(Gn)k,l = (INfn+1/2, φkϕl) +
1

2
(INF (un

N), φkϕl), k, l = 0, 1, . . . , N − 2,

Gn ∈R(N−1)×(N−1),

(Nn+1)k,l =
τ

2
(INF (un+1

N ), φkϕl), k, l = 0, 1, . . . , N − 2.

Let M1 = Mx − τ
2 c1Kx(Sx + ST

x ), M2 = My +
τ
2 c2Ky(Sy + ST

y ). Then (3.10) can
be rewritten into the following form:

(3.11) M1C
n+1MT

2 = RHSn +Nn+1.

Noticing that Nn+1 = Nn+1(un+1
N ), we can solve system (3.11) by the following
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iteration algorithm:

Set Cn+1,0 = Cn, un+1,0
N =

N−2
∑

k=0

N−2
∑

l=0

cn+1,0
k,l φk(x)ϕl(y);

for m = 0 : K − 1

Solve M1C
∗ = RHSn +Nn+1(un+1,m

N ) to obtain C∗;

Solve M2(C
n+1,m+1)T = (C∗)T to obtain Cn+1,m+1;

Compute un+1,m+1
N =

N−2
∑

k=0

N−2
∑

l=0

cn+1,m+1
k,l φk(x)ϕl(y);

If ‖un+1,m+1
N − un+1,m

N ‖L∞(Ω) ≤ ǫ

break;

end if

end for

Set Cn+1 = Cn+1,m+1.

Here K is a suitable positive integer and ǫ is a suitably small positive constant.
Obviously, we just need to solve an array of the algebraic systems of the form

Ax = b (A = M1,M2) to get the numerical solutions, which can be done in parallel.
The coefficient matrices (i.e., M1 and M2) of the algebraic system derived from the
CNADIGLS method have the same size as those of the coefficient matrix derived from
the corresponding one-dimensional FPDE [19].

Computation of the matrices Sx and Sy. We give an illustration of cal-
culating the matrices Sx and Sy. We mainly focus on the computation of Sx; the
computation of Sy is almost the same as that of Sx. The matrices Mx and My can
be easily derived from the orthogonality of the Legendre polynomials [37], so we omit
the details.

Lemma 3.1 (see [37]). Suppose that

Pα,β
n (x̂) =

n
∑

k=0

ĉnkP
a,b
k (x̂), a, b, α, β > −1,

where Pα,β
n (x̂) is a Jacobi polynomial. Then

ĉnk =ĉnk (α, β) =
Γ(n+ α+ 1)

Γ(n+ α+ β + 1)

(2k + a+ b+ 1)Γ(k + a+ b+ 1)

Γ(k + a+ 1)

×
n−k
∑

m=0

(−1)mΓ(n+ k +m+ α+ β + 1)Γ(m+ k + a+ 1)

(n− k −m)!m!Γ(k +m+ α+ 1)Γ(m+ 2k + a+ b+ 1)
.

Lemma 3.2 (see [8]). For µ > 0, then

RLD
µ
−1,x̂Ln(x̂) =

Γ(n+ 1)

Γ(n− µ+ 1)
(1 + x̂)−µPµ,−µ

n (x̂), x̂ ∈ [−1, 1],

RLD
µ
x̂,1Ln(x̂) =

Γ(n+ 1)

Γ(n− µ+ 1)
(1− x̂)−µP−µ,µ

n (x̂), x̂ ∈ [−1, 1],

where Ln(x̂) is a Legendre polynomial and Pα,β
n (x̂)(α, β > −1) is a Jacobi polynomial.
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Since (RLD
α1

x,bφk,RLD
α1

a,xφl) = (RLD
α1

x,b(Lk(x̂)−Lk+2(x̂)),RLD
α1

a,x(Ll(x̂)−Ll+2(x̂))),
we just need to calculate (RLD

α1

x,bLk(x̂),RLD
α1

a,xLl(x̂)). It is easy to obtain

RLD
α1

a,xLk(x̂) =
1

Γ(1− α1)

d

dx

∫ x

a

(x− s)−α1Lk(ŝ) ds =

(

b− a

2

)−α1

RLD
α1

−1,x̂Lk(x̂),

RLD
α1

x,bLk(x̂) =

(

b − a

2

)−α1

RLD
α1

x̂,1Lk(x̂),

where we have used the transforms x = (b−a)x̂+a+b
2 ∈ [a, b] and s = (b−a)ŝ+a+b

2 ∈ [a, b].

Hence, using Lemma 3.1 and the transform x = (b−a)x̂+a+b
2 ∈ [a, b] once more, we have

(RLD
α1

a,xLk(x̂),RLD
α1

x,bLl(x̂)) =

∫ b

a
RLD

α1

a,xLk(x̂)RLD
α1

x,bLl(x̂) dx

=

(

b− a

2

)1−2α1
∫ 1

−1
RLD

α1

−1,x̂Lk(x̂)RLD
α1

x̂,1Ll(x̂) dx̂

=

(

b− a

2

)1−2α1 Γ(k + 1)

Γ(k − α1 + 1)

Γ(l + 1)

Γ(l − α1 + 1)

×
∫ 1

−1

(1 + x̂)−α1(1 − x̂)−α1Pα1,−α1

k (x̂)P−α1,α1

l (x̂) dx̂.

We calculate the integral

I(k, l, α1) =

∫ 1

−1

(1 + x̂)−α1(1− x̂)−α1Pα1,−α1

k (x̂)P−α1,α1

l (x̂) dx̂

in two ways. We first give the exact expression of the above integral I(k, l, α1). By
Lemma 3.1,

P−α1,α1

n (x̂) =

n
∑

k=0

ĉnk (−α1, α1, )P
−α1,−α1

k (x̂),

Pα1,−α1

n (x̂) =

n
∑

k=0

ĉnk (α1,−α1, )P
−α1,−α1

k (x̂).

By the orthogonality of Jacobi polynomials, one has

I(k, l, α1) =

min{l,k}
∑

r=0

ĉlr(−α1, α1)ĉ
k
r (α1,−α1)γ

−α1,−α1

r ,

where

γ−α1,−α1

r =
21−2α1(Γ(r − α1 + 1))2

(2r − 2α1 + 1)r!Γ(r − 2α1 + 1)
.

Next, we use the Gauss quadrature to calculate the integral I(k, l, α1), which reads
as

(3.12) I(k, l, α1) ≈
M
∑

j=0

ωjP
−α1,α1

l (x̂j)P
α1,−α1

k (x̂j),
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where {x̂j} are the Jacobi–Gauss–Lobatto points with respect to the weight function
ω−α1,−α1(x̂) = (1+ x̂)−α1(1− x̂)−α1 . If M > N , then the numerical integration (3.12)
is exact for all 0≤ k, l≤N . Of course, we can also choose Jacobi–Gauss or Jacobi–
Guass–Radau quadrature to approximate the integral I(k, l, α1); see [37] for more
details. In the numerical experiments, we use Jacobi–Gauss–Lobatto quadrature to
calculate the integral I(k, l, α1) for convenience.

4. Stability and convergence. In this section, we study the stability and con-
vergence of the CNADIGLS scheme (3.5). We first introduce some notation and
lemmas.

Denote

α = (α1, α2), αmax = max{α1, α2}, αmin = min{α1, α2},

and

(4.1)
A(u, v) =Kxc1

[

(RLD
α1

a,xu,RLD
α1

x,bv) + (RLD
α1

x,bu,RLD
α1

a,xv)
]

+Kyc2

[

(RLD
α2

c,yu,RLD
α2

y,dv) + (RLD
α2

y,du,RLD
α2

c,yv)
]

.

Then the orthogonal projection operator Πα,0
N : Hα1

0 ∩Hα2

0 (Ω) → V 0
N is defined as

(4.2) A(u −Πα,0
N u, v) = 0, u ∈ Hα1

0 ∩Hα2

0 (Ω) ∀v ∈V 0
N .

For simplicity, we denote ‖ · ‖0 = ‖ · ‖ = ‖ · ‖L2(Ω) and ‖ · ‖∞ = ‖ · ‖L∞(Ω). For
α = (α1, α2), we define a new seminorm | · |α and norm ‖ · ‖α as

|u|α =
(

Kx‖RLD
α1

a,xu‖2 +Ky‖RLD
α2

c,yu)‖2
)1/2

, ‖u‖α =
(

‖u‖2 + |u|2α
)1/2

.

From (4.1), we can easily obtain |u|α ≤C
√

A(u, u).
The seminorm |·|α and norm ‖·‖α are equivalent if u∈Hα1

0 ∩Hα2

0 (0 < α1, α2 ≤ 1),
which is given in the following lemma.

Lemma 4.1. For u∈Hµ
0 (Ω) and 0 < s < µ, we have

(4.3) ‖u‖≤C1‖RLD
s
a,xu‖≤C2‖RLD

µ
a,xu‖, ‖u‖≤C3‖RLD

s
c,yu‖≤C4‖RLD

µ
y,du‖,

where C1, C2, C3, and C4 are positive constants independent of u.
Proof. See Theorem 3.1.9 and Corollary 3.1.10 in [35]. The proof is completed.
Lemma 4.2. Suppose that Ω = (a, b)×(c, d), u∈Hα1

0 (Ω)∩Hα2

0 (Ω), 0 < α1, α2 ≤ 1.
Then there exists positive constants C1 < 1 and C2 independent of u, such that

(4.4) C1‖u‖α≤ |u|α≤‖u‖α≤C2|u|Hαmax (Ω).

Proof. The inequality |u|α ≤‖u‖α is obvious. By the definitions of | · |α and ‖ · ‖α,
we need only prove that the inequality ‖u‖2≤ ( 1

C2
1

− 1)|u|2α holds. From Lemma 4.1,

we have

|u|2α = Kx‖RLD
α1

a,xu‖2 +Ky‖RLD
α2

c,yu‖2 ≤C(‖RLD
αmax

a,x u‖2 + ‖RLD
ααmax

c,y u‖2)
= C|u|2Jmax

L
(Ω).

Using the above inequality, Lemma 2.7, and the inequality ‖u‖α≤ 1
C1

|u|α yields

‖u‖α≤ 1

C1
|u|α≤

√
C(C1)

−1|u|Jαmax

L (Ω) ≤C2|u|Hαmax (Ω).
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The proof is thus completed.
Next, we introduce the properties of the projectors Π1,0

N and Πα,0
N .

Lemma 4.3 (see [2]). Let s and r be real numbers satisfying 0≤ s≤ r. Then there
exist a projector Π1,0

N and a positive constant C depending only on r such that, for
any function u∈Hs

0 (Ω)∩Hr(Ω), the following estimate holds:

‖u−Π1,0
N u‖Hs(Ω) ≤CNs−r‖u‖Hr(Ω).

Lemma 4.4. Let αi, i = 1, 2 and r be arbitrary real numbers satisfying 0 < αi <
1, αi < r, αi �= 1/2. Then there exists a positive constant C independent of N such
that, for any function u ∈ Hr(Ω) ∩Hα1

0 (Ω) ∩Hα2

0 (Ω), the following estimate holds:

|u−Πα,0
N u|α ≤CNαmax−r‖u‖Hr(Ω).

Proof. One can easily derive that A(u, v) defined by (4.1) has the following
property:

A(u, v)≤C|u|α|v|α.

By the definition of the projector Πα,0
N ,

A(u−Πα,0
N u, v) = 0 ∀v ∈V 0

N .

Therefore, for uN ∈V 0
N ,

|u−Πα,0
N u|2α = A(u−Πα,0

N u, u−Πα,0
N u) = A(u −Πα,0

N u, u− uN )

≤ C|u−Πα,0
N u|α|u− uN |α.

Letting uN = Π1,0
N u and using Lemmas 4.2 and 4.3 leads to

|u−Πα,0
N u|α ≤C|u− Π1,0

N u|α ≤C|u−Π1,0
N u|Hαmax (Ω) ≤CNαmax−r‖u‖Hr(Ω).

The proof is completed.
Lemma 4.5 (see [4]). For any φ∈PN (Ω), the following inverse inequality holds:

‖φ‖∞≤CN‖φ‖,

where C is a positive constant independent of N and φ.
Lemma 4.6 (see [34]). Assume that kn is a nonnegative sequence, g0 > 0, and

the nonnegative sequence {φn} satisfies

φn ≤ g0 +

n−1
∑

j=0

kjφj , n≥ 1.

Then

φn ≤ g0 exp

⎛

⎝

n−1
∑

j=0

kj

⎞

⎠ , n≥ 1.
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Next, we consider the stability and convergence for the CNADIGLS scheme (3.5).
Let us first consider the stability. Rewrite the scheme (3.5) into the following equiv-
alent form:

(4.5)
(δtu

n+1/2
N , v)− ((Lx + Ly)u

n+1/2
N , v) +

τ2

4
(LxLyδtu

n+1/2
N , v)

=
1

2
(INF (un+1

N ) + INF (un
N ), v) + (INf(tn+1/2), v).

Suppose that uk
N and f(tn+1/2) have perturbations ũ

k
N ∈ V 0

N and f̃k+1/2, respectively.
Then, we obtain the perturbation equation of (4.5) as follows:

(4.6)
(δtũ

n+1/2
N , v)− ((Lx + Ly)ũ

n+1/2
N , v)

= −τ2

4
(LxLyδtũ

n+1/2
N , v) + (IN F̃n+1/2, v) + (IN f̃n+1/2, v),

where F̃n = F (un
N + ũn

N )− F (un
N ) and v ∈ V 0

N .

Let C0 be a suitable positive constant and Θ be an appropriate domain. We
suppose that F ′(z) is bounded in the suitable domain Θ. Let

(4.7) uN max = max
0≤n≤nT

‖un
N‖∞, FN max = max

z∈Θ
|F ′(z)|.

Suppose

‖ũn
N‖∞ ≤C0, 0≤n≤ k≤m, k,m∈Z+.(4.8)

We also suppose that

(4.9) ‖ũn+1
N ‖∞ ≤C1 if ‖ũn

N‖∞ ≤C0,

where C1 > 0 is independent of τ,N , and n. We will find that ‖ũn+1
N ‖∞ ≤C0 under

the condition (4.8) and some other assumptions.

In the following, C denotes a generic positive constant independent of τ,N , and
n, and the constant C will not be the same in the different equations or inequalities.

Letting v = δtũ
n+1/2
N in (4.6) yields

(4.10)

(δtũ
n+1/2
N , δtũ

n+1/2
N )− ((Lx + Ly)ũ

n+1/2
N , δtũ

n+1/2
N )

=− τ2

4
(LxLyδtũ

n+1/2
N , δtũ

n+1/2
N ) + (IN F̃n+1/2, δtũ

n+1/2
N ) + (IN f̃n+1/2, δtũ

n+1/2
N ).

Using the Cauchy–Schwartz inequality, we find

(4.11)
−((Lx + Ly)ũ

n+1/2
N , δtũ

n+1/2
N ) ≤ −τ2

4
(LxLyδtũ

n+1/2
N , δtũ

n+1/2
N )

+
1

2
(‖IN F̃n+1/2‖2 + ‖IN f̃n+1/2‖2).
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Using Lemma 2.5 and the property c1 cos(πα1) = 1/2 yields
(4.12)

−(Lxũ
n+1/2
N , δtũ

n+1/2
N ) =

c1Kx

2τ

[

(RLD
α1

a,x(ũ
n+1
N + ũn),RLD

α1

x,b(ũ
n+1
N − ũn))

+ (RLD
α1

x,b(ũ
n+1
N + ũn

N ),RLD
α1

a,x(ũ
n+1
N − ũn

N))
]

=
c1Kx

τ

[

(RLD
α1

a,xũ
n+1
N ,RLD

α1

x,bũ
n+1
N )− (RLD

α1

a,xũ
n
N ,RLD

α1

x,bũ
n
N )

]

=
c1Kx

τ

(

cos(πα1)‖RLD
α1

−∞,x
ˆ̃un+1
N ‖2L2(R2)

− cos(πα1)‖RLD
α1

−∞,x
ˆ̃un
N‖2L2(R2)

)

=
Kx

2τ

(

‖RLD
α1

−∞,x
ˆ̃un+1
N ‖2L2(R2) − ‖RLD

α1

−∞,x
ˆ̃un
N‖2L2(R2)

)

,

where ˆ̃un
N is the extension of ũn

N by zero outside Ω. We can similarly obtain
(4.13)

− (Lyũ
n+1/2
N , δtũ

n+1/2
N ) =

Ky

2τ

(

‖RLD
α2

−∞,y
ˆ̃un+1
N ‖2L2(R2) − ‖RLD

α2

−∞,y
ˆ̃un
N‖2L2(R2)

)

.

For v ∈V 0
N , we have

(LxLyv, v) = KxKyc1c2

(

(RLD
2α1

a,x +RL D2α1

x,b )(RLD
2α2

c,y + RLD
2α2

y,d )v, v
)

= 2KxKyc1c2

[

(RLD
α1

a,xRLD
α2

y,dv,RLD
α1

x,bRLD
α2

c,yv)

+(RLD
α1

a,xRLD
α2

c,yv,RLD
α1

x,bRLD
α2

y,dv)
]

= KxKy‖RLD
α1

−∞,xRLD
α2

−∞,y v̂‖L2(R2) ≥ 0,

where we have used Lemma 2.6, and v̂ is the extension of v by zero outside Ω. Hence,

(4.14) (LxLyδtũ
n+1/2
N , δtũ

n+1/2
N )≥ 0.

Summing n in (4.11) from 0 to k and using (4.12)–(4.14) give

(4.15)

|ũk+1
N |2α ≤Kx‖RLD

α1

−∞,x
ˆ̃uk+1
N ‖2L2(R2) +Ky‖RLD

α2

−∞,y
ˆ̃uk+1
N ‖2L2(R2)

≤C|ũ0
N |2α + Cτ

k+1
∑

n=0

|ũn
N |2α + Cτ

k
∑

n=0

‖f̃n+1/2‖2,

where we have used the properties KxKyc1c2 > 0, ‖ũn
N‖≤C|ũn

N |α (it can be obtained
from Lemma 4.1), and

(4.16)
‖IN F̃ j‖≤C‖F̃ j‖ = C‖F (uj

N + ũj
N )− F (uj

N)‖ = C‖F ′(uj
N + θũj

N )ũj
N‖

≤C‖ũj
N‖, 0 < θ < 1, j = n, n+ 1,

with (4.7) and (4.8) used.
For sufficiently small τ , it follows from (4.15) and (4.16) that

(4.17) |ũk+1
N |2α ≤C|ũ0

N |2α + Cτ

k
∑

n=0

|ũn
N |2α + Cτ

k
∑

n=0

‖f̃n+1/2‖2 = ρk + Cτ

k
∑

n=1

|ũn
N |2α,
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in which

ρk = ρk(ũ0
N , f̃) = C|ũ0

N |2α + Cτ

k
∑

n=0

‖f̃n+1/2‖2.

Next, we give the stability analysis for the CNADIGLS method (3.5).

Theorem 4.7. Suppose that uk+1
N (k = 0, 1, 2, . . . , nT − 1) are solutions of the

CNADIGLS scheme (3.5), F (z)∈C1(Θ) or F (z) satisfies the local Lipschitz condi-
tion, and C,C0, C1, and C∗ are suitable positive constants independent of k, τ , and N .
Assume ‖ũn+1

N ‖∞ ≤C1 under the condition ‖ũn
N‖∞ ≤C0 (0≤n≤ k). If ρk ≤ ( C0

C∗N
)2

exp(−CT ), then

(4.18) |ũk+1
N |2α ≤ ρk exp(C(k + 1)τ).

Proof. We adopt the mathematical induction method as in [22] to prove the
inequality (4.18). We consider only the case that F (z)∈C1(Θ); it is almost the
same when F (z) satisfies the local Lipschitz condition. One can easily verify that the
inequality (4.18) holds for k = 0. Next, we prove that the inequality (4.18) holds for
any 0≤ k≤nT − 1.

Assume that ‖ũn
N‖∞≤C0 (0≤n≤m). From (4.7)–(4.17), we have

(4.19) |ũk+1
N |2α ≤ ρk + Cτ

k
∑

n=0

|ũn
N |2α, 0≤ k≤m.

Using Gronwall’s inequality (see Lemma 4.6) yields

(4.20) |ũk+1
N |2α ≤ ρk exp(C(k + 1)τ), 0≤ k≤m.

Next, we prove that (4.20) holds for k = m+ 1. By Lemma 4.5, we have

(4.21) ‖ũm+1
N ‖∞≤CN‖ũm+1

N ‖≤C∗N |ũm+1
N |α.

Using the assumption (4.20) and inequality (4.21), we have

(4.22)

‖ũm+1
N ‖2∞≤ (C∗N)2|ũm+1

N |2α ≤ (C∗N)2ρm exp(C(m+ 1)τ)

≤ (C∗N)2
(

C0

C∗N

)2

exp(−CT ) exp(C(m+ 1)τ)

≤ (C0)
2 exp (−C(T − (m+ 1)τ)) ≤ (C0)

2.

Hence, one obtains ‖ũn
N‖∞ ≤C0 for 0≤n≤m+ 1. Repeating (4.7)–(4.17) yields

(4.23)

|ũm+2
N |2α ≤ ρm+1 + Cτ

m+1
∑

n=0

|ũn
N |2α ≤ ρm+1 + Cτ

m+1
∑

n=0

ρn−1 exp(Cnτ)

≤ ρm+1

(

1 + Cτ

m+1
∑

n=1

exp(Cnτ)

)

≤ ρm+1 exp(C(m+ 2)τ).

Hence, the inequality (4.18) holds for k = m+ 1. The proof is completed.

D
o

w
n
lo

ad
ed

 0
3
/2

2
/1

5
 t

o
 1

3
1
.1

8
1
.2

5
1
.1

3
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CNADIGLS FOR TWO-DIMENSIONAL RSFDE 2613

Next, we consider the convergence analysis of the CNADIGLS scheme (3.5). De-
note u∗ = Πα,0

N u, e = u∗ − uN , and η = u − u∗. Using the property of the projector

Πα,0
N defined by (4.2), we can obtain the error equation

(4.24)

(δte
n+1/2, v)− ((Lx + Ly)e

n+1/2, v) +
τ2

4
(LxLyδte

n+1/2, v)

=
1

2
(IN (F (un+1

N )− F (un+1
∗ )), v) +

1

2
(IN (F (un

N )− F (un
∗ )), v) + (Rn, v) ∀v ∈V 0

N ,

where
(4.25)

Rn =− δtη
n+1/2 + ∂tu(tn+1/2)− δtu

n+1/2 − τ2

4
LxLyδtu

n+1/2
∗

+
1

2

(

INF (un+1
∗ )− F (un+1) + INF (un

∗ )− F (un)
)

+ INf(tn+1/2)− f(tn+1/2).

Next, we give the following convergence theorem.
Theorem 4.8. Suppose that m≥ 2, u, and un+1

N (0≤n≤nT −1) are the solutions
of (1.1) and the CNADIGLS method (3.5), respectively. If m≤N+1, u∈C3(0, T ;Hm

(Ω)), F ∈L2(0, T ;Hm(Ω)), F (z)∈C1(Θ), or F (z) satisfies the local Lipschitz condi-
tion, f ∈C(0, T ;Hm(Ω)) and φ0 ∈Hm(Ω), then there exists a positive constant C
independent of n, τ , and N such that

(4.26) |un+1
N − u(tn+1)|α ≤C(τ2 +Nαmax−m).

Proof. According to Theorem 4.7, we need only estimate

|e0|2α + ‖Rn‖2, n = 1, 2, . . . , nT

to get the error bound for the scheme (3.5). By (4.24) and Lemma 4.4, we can directly
derive the following error bounds:

‖INf(tn+1/2)− f(tn+1/2)‖≤CN−m, ‖ηnt ‖≤C|ηnt |α ≤CNαmax−m,

‖∂tu(tn+1/2)− un
t ‖≤Cτ2, ‖τ2LxLy(u∗)

n
t ‖≤ τ2(‖LxLyη

n
t ‖+ ‖LxLyu

n
t ‖)≤Cτ2.

For INF (uk
∗)− F (uk), k = n, n+ 1, we have

‖INF (uk
∗)− F (uk)‖≤ ‖IN (F (uk

∗)− F (uk))‖+ ‖INF (uk)− F (uk)‖
≤C‖ηk‖+ ‖INF (uk)− F (uk)‖
≤CNαmax−m.

Therefore, ‖Rn‖≤C(τ2 +Nαmax−m). For the initial error e0, we have

‖e0‖α = ‖Πα,0
N φ0 −Π1,0

N φ0‖α≤‖Πα,0
N φ0 − φ0‖α + ‖φ0 −Π1,0

N φ0‖α≤CNαmax−m.

Hence, we find

(4.27) |en+1|α ≤C(τ2 +Nαmax−m).

By using Lemma 4.4 again, we have

|un+1
N − u(tn+1)|α = |un+1

N −Πα,0
N un+1 +Πα,0

N u(tn+1)− u(tn+1)|α
≤ |en+1|α + ‖Πα,0

N u(tn+1)− u(tn+1)‖Hαmax (Ω)

≤C(τ2 +Nαmax−m).
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The proof is completed.
Remark 4.1. If u∈C3(0, T ;Hm(Ω)), m > 1 + r/2, 0≤ r≤ 1, and the operator

Π1,0
N in (3.5) is replaced by the interpolation projector IN , then we still have the error

estimate (4.26) because of the following estimate [2]:

‖INu− u‖Hr(Ω) ≤CN r−m‖u‖Hm(Ω).

In the numerical simulation, we use IN to replace Π1,0
N for convenience.

5. Application to fractional FitzHugh–Nagumo model. Mathematical
models of electrical activity in cardiac tissue are becoming increasingly powerful tools
in the study of cardiac arrhythmias. In this context, the fractional model presented
here represents a new approach to dealing with the propagation of the electrical
potential in heterogeneous cardiac tissue. Bueno-Orovio, Kay, and Burrage [3] pro-
posed a fundamental rethinking of the homogenization approach via the use of a frac-
tional Fick’s law (see [24, 27]) and, in particular, we introduce a fractional FitzHugh–
Nagumo monodomain model in which we capture the spatial heterogeneities and spa-
tial connectivities in the extracellular domain through the use of fractional derivatives.
The fractional FitzHugh–Nagumo monodomain model consists of a coupled fractional
Riesz space nonlinear reaction-diffusion model and a system of ordinary differential
equations, describing the ionic fluxes as a function of the membrane potential.

The two-dimensional fractional FitzHugh–Nagumo model is given as [3, 19]

(5.1)

⎧

⎪

⎨

⎪

⎩

∂tu = Kx
∂2α1u

∂|x|2α1

+Ky
∂2α2u

∂|y|2α2

− Iion(u,w), (x, y, t)∈Ω×(0, T ],

∂tw = ε(u− C3w − urest), (x, y, t)∈Ω×(0, T ]

with zero Dirichlet boundary conditions and initial conditions

u(x, y, 0) = u0(x, y), w(x, y, 0) = w0(x, y),

where u is a normalized transmembrane potential and w is a dimensionless time-
dependent recovery variable; Kx and Ky are the diffusion coefficients; and Iion(u,w)
is the ionic current with a cubic nonlinear reaction term. It is known that this model
has traveling wave solutions with an appropriate choice of parameters and stimulus.
In order to develop our numerical method for the coupled differential equations (5.1),
it is solved by operator splitting whereby we first solve a two-dimensional fractional
Riesz space nonlinear reaction-diffusion model for given w for u, then solve the ODE
with new u for w at each time step.

The two equations of (5.1) are discretized as the CNADIGLS method (3.5); the
fully numerical approximation for (5.1) is given as follows: Find un+1

N , wn+1
N ∈V 0

N for
n = 1, 2, . . . , nT − 1 such that
((

1− τ

2
Lx

)(

1− τ

2
Ly

)

un+1
N , v

)

=
((

1 +
τ

2
Lx

)(

1 +
τ

2
Ly

)

un
N , v

)

+
τ

2
(IN (Iion(u

n
N , wn

N )), v) +
τ

2
(IN (Iion(u

n+1
N , wn+1

N )), v) ∀v ∈V 0
N ,(5.2)

(wn+1
N , v) +

εC3τ

2
(wn+1

N , v) = (wn
N , v)− εC3τ

2
(wn

N , v)

+
ετ

2
(un+1

N + un
N − 2urest, v) ∀v ∈ V 0

N ,(5.3)

u0
N = INu0, w0

N = INw0.(5.4)
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6. Numerical examples. In this section, we present numerical examples to
verify our theoretical analysis. We also use the scheme (5.2)–(5.4) to simulate the
fractional FitzHugh–Nagumo model [3].

Example 6.1. Consider the following two-dimensional fractional diffusion equa-
tion:

(6.1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tu = K
∂2α1u

∂|x|2α1

+K
∂2α2u

∂|y|2α2

− F (u) + f(x, y, t), (x, y, t)∈Ω×(0, 1],

u(x, y, 0) = x2(1 − x)2y2(1− y)2, (x, y)∈Ω,

u(x, y, t) = 0, (x, y, t)∈ ∂Ω× (0, 1],

where Ω = (0, 1)× (0, 1), F (u) = u2, and

f(x, y, t) =− exp (−t)x2(1− x)2y2(1− y)2 + exp (−2t)x4(1− x)4y4(1− y)4

+Kc1 exp(−t)y2(1 − y)2
[

2

Γ(3− 2α1)
(x2−2α1 + (1− x)2−2α1 )

− 12

Γ(4− 2α1)
(x3−2α1 + (1− x)3−2α1) +

24

Γ(5− 2α1)
(x4−2α1 + (1− x)4−2α1 )

]

+Kc2 exp(−t)x2(1− x)2
[

2

Γ(3− 2α2)
(y2−2α2 + (1− y)2−2α1)

− 12

Γ(4− 2α2)
(y3−2α2 + (1 − y)3−2α2) +

24

Γ(5− 2α2)
(y4−2α2 + (1− y)4−2α2)

]

.

The exact solution of (6.1) is

u(x, y, t) = exp (−t)x2(1− x)2y2(1 − y)2.

We use the CNADIGLS method to solve the equation (6.1). The convergence
orders in time and space in the L2-norm sense are defined as

(6.2) order =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log(‖e(τ1, N, tn)‖/‖e(τ2, N, tn)‖)
log(τ1/τ2)

in time,

log(‖e(τ,N1, tn)‖/‖e(τ,N2, tn)‖)
log(N1/N2)

in space,

where e(τ,N, tn) = u(x, y, tn) − un
N is the error equation, τ1 �= τ2, and N1 �=N2. The

convergence orders in the L∞-norm and Lα-norm can be defined similarly, where the
Lα-norm is defined as

(

‖RLD
α1

a,xu‖2 + ‖RLD
α2

c,yu)‖2
)1/2

.

We choose K = 1/2; Tables 1–3 display the maximum errors at the Legendre–
Gauss–Lobatto points, the L2 errors and Lα errors at t = 1 for different values of
α1, α2 (α1 = α2 = 0.75 in Table 1, α1 = α2 = 0.9 in Table 2, and α1 = 0.6, α2 = 0.8
in Table 3). One can find that the second-order accuracy in time is observed, and the
spectral accuracy in space is also shown. The numerical results are well in line with
the theoretical analysis.

For convenience, we set F (u) = u, choose the suitable right-hand side function
f(x, y, t), and give the initial condition and the boundary conditions such that (6.1)
has the exact solution u(x, y, t) = exp (−t)x2(1 − x)2y2(1 − y)2. We compare the
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Table 1
The L∞ errors on the LGL points, L2 errors, and Lα errors for Example 6.1, t = 1, α1 = α2 =

0.75.

τ N L∞-error Order L2-error Order Lα-error Order

1e− 4 16 1.0518e-07 3.6524e-08 6.7232e-07
1e− 4 32 6.7761e-09 N−3.9562 1.5809e-09 N−4.5300 5.9458e-08 N−3.4992

1e− 4 64 4.3243e-10 N−3.9699 6.6281e-11 N−4.5760 5.3002e-09 N−3.4877

1e− 4 128 2.7403e-11 N−3.9801 5.2077e-12 N−3.6699 4.7253e-10 N−3.4876

1e− 1 512 1.6400e-05 5.6880e-06 3.0634e-05
1e− 2 512 1.6080e-07 τ2.0085 5.5723e-08 τ2.0089 2.9441e-07 τ2.0172

1e− 3 512 1.6077e-09 τ2.0001 5.5712e-10 τ2.0001 2.9430e-09 τ2.0002

1e− 4 512 1.6078e-11 τ2.0000 5.5701e-12 τ2.0001 2.9671e-11 τ1.9965

Table 2
The L∞ errors on the LGL points, L2 errors, and Lα errors for Example 6.1, t = 1, α1 = α2 =

0.9.

τ N L∞-error Order L2-error Order Lα-error Order

1e− 4 16 5.3959e-08 2.2974e-08 7.9744e-07
1e− 4 32 3.5203e-09 N−3.9381 1.2153e-09 N−4.2407 8.7989e-08 N−3.1800

1e− 4 64 2.2588e-10 N−3.9621 6.0616e-11 N−4.3254 9.7123e-09 N−3.1794

1e− 4 128 2.5935e-11 N−3.1226 8.3732e-12 N−2.8559 1.0695e-09 N−3.1829

1e− 1 512 2.8691e-05 1.0063e-05 8.2009e-05
1e− 2 512 2.7827e-07 τ2.0133 9.7559e-08 τ2.0135 7.5975e-07 τ2.0332

1e− 3 512 2.7819e-09 τ2.0001 9.7530e-10 τ2.0001 7.5917e-09 τ2.0003

1e− 4 512 2.7814e-11 τ2.0001 9.7486e-12 τ2.0002 7.6914e-11 τ1.9943

present method (3.5) with the finite difference method in [19]; the results are shown
in Table 4. Obviously, the present method (3.5) gives better numerical solutions in
this example.

Example 6.2. Consider the fractional FitzHugh–Nagumo model [3]

(6.3)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tu = Kx
∂2α1u

∂|x|2α1

+Ky
∂2α2u

∂|y|2α2

+ u(1− u)(u− µ)− w,

(x, y, t)∈ (0, 2.5)× (0, 2.5)×(0, T ],

∂tw = ε(βu − γw − δ), (x, y, t)∈ (0, 2.5)× (0, 2.5)×(0, T ],

where µ = 0.1, ε = 0.01, β = 0.5, γ = 1, δ = 0, which is known to generate stable
patterns in the system in the form of spiral waves. The initial conditions are taken as

u(x, y, 0) =

{

1, (x, y)∈ (0, 1.25]× (0, 1.25),

0 elsewhere,

w(x, y, 0) =

{

0, (x, y)∈ (0, 2.5)× (0, 1.25),

0.1, (x, y)∈ (0, 2.5)× [1.25, 2.5),

with homogenous Dirichlet boundary conditions being used in the simulation.
The trivial state (u,w) = (0, 0) was perturbed by setting the lower-left quarter

of the domain to u = 1 and the upper half part to w = 0.1, which allows the initial
condition to curve and rotate clockwise, generating the spiral pattern. The model
parameters have been taken from [3].

In the simulation, we choose parameters τ = 0.1, N = 200. The domain is taken
as (0, 2.5)× (0, 2.5) and the final time T is set to be T = 1000.
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Table 3
The L∞ errors on the LGL points, L2 errors, and Lα errors for Example 6.1, t = 1, α1 =

0.6, α2 = 0.8.

τ N L∞-error Order L2-error Order Lα-error Order

1e− 4 16 1.1572e-07 3.5293e-08 5.9085e-07
1e− 4 32 7.4243e-09 N−3.9622 1.4846e-09 N−4.5712 5.4947e-08 N−3.4267

1e− 4 64 4.7221e-10 N−3.9748 6.1695e-11 N−4.5888 5.1960e-09 N−3.4026

1e− 4 128 2.9956e-11 N−3.9785 4.1339e-12 N−3.8996 4.9294e-10 N−3.3979

1e− 1 512 1.2869e-05 4.4792e-06 2.0659e-05
1e− 2 512 1.2660e-07 τ2.0071 4.4002e-08 τ2.0077 2.0024e-07 τ2.0136

1e− 3 512 1.2659e-09 τ2.0001 4.3995e-10 τ2.0001 2.0018e-09 τ2.0001

1e− 4 512 1.2658e-11 τ2.0000 4.3980e-12 τ2.0001 2.0491e-11 τ1.9899

Table 4
Comparison of the L∞ errors of the present method (3.5) and the finite difference method in

[19] for Example 6.1 with F (u) = u, t = 1, α1 = α2 = 0.75.

1/τ N L∞-error L∞-error [19]
40 40 8.6778e-07 5.6949e-05
80 80 2.1647e-07 2.9406e-05
160 160 5.4080e-08 1.4925e-05
320 320 1.3516e-08 7.5139e-06

The spiral wave of the stable rotating solutions of the FitzHugh–Nagumo model
(6.3) (i.e., α1 = α2 = 1) with Kx = Ky = 1e − 4 and Kx = Ky = 1e − 5 are
shown in Figures 1 and 2, respectively. Figures 3 and 4 display the behaviors for the
fractional FitzHugh–Nagumo model (6.3) with α1 = α2 = 0.75 and α1 = α2 = 0.85,
respectively, with Kx = Ky = 1e−4. We find that as expected, the wave travels more
slowly as fractional orders α1 and α2 decrease. The width of the excitation wavefront
is markedly reduced when decreasing the fractional power (i.e., 2α1 and 2α2), as is the
wavelength, with the domain being able to accommodate a large number of wavefronts
for smaller fractional powers.

It is important to emphasize that the role of reducing the fractional power is not
equivalent to the influence of a decreased diffusion coefficient in the pure diffusion
case. This can be observed by comparing Figures 3 and 4 with Figure 2.

For anisotropic diffusion ratiosKx = 1e−4,
Ky

Kx
= 0.25 < 1 and Ky = 1e−4, Kx

Ky
=

0.25 < 1, wave propagation at t = 1000 is shown in Figures 5 and 6. It is found that
the spiral wave proceeds to follow an elliptical pattern. For anisotropic fractional
ratios α1 = 1, α2

α1
= 0.825 < 1 and α2 = 1, α1

α2
= 0.825 < 1 with Kx = Ky = 1e − 4,

a contrasting effect on the curvature of the solutions is shown in Figures 7 and 8,
reflecting a distinct superdiffusion scale in each of spatial dimensions of the system.
These results were first reported in [3].

7. Conclusions. In this paper, a new Crank–Nicolson alternating direction im-
plicit Galerkin–Legendre spectral method to solve two-dimensional Riesz space frac-
tional nonlinear reaction-diffusion equations was described and demonstrated. We dis-
cussed the stability and convergence of the method, which shows that the CNADIGLS
method is stable and convergent of order 2 in time, and the optimal error estimate
in space is also derived by introducing a new orthogonal projector. The CNADIGLS
method is also extended to solve the fractional FitzHugh–Nagumo model. We present
numerical experiments to verify the theoretical analysis, which is in good agreement
with the theoretical analysis. These methods and supporting theoretical results can
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x

y

t = 1000, (α
1
,α

2
) = (1,1)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Fig. 1. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 4, α1 =
α2 = 1.
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1
,α

2
) = (1,1)

0 0.5 1 1.5 2 2.5
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1
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2.5

Fig. 2. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 5, α1 =
α2 = 1.
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) = (0.75,0.75)
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Fig. 3. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 4, α1 =
α2 = 0.75.

x
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t = 1000, (α
1
,α

2
) = (0.85,0.85)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Fig. 4. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 4, α1 =
α2 = 0.85.

be applied to solve other fractional nonlinear partial differential equations and higher-
dimensional problems.
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x
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) = (1,1)

0 0.5 1 1.5 2 2.5
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Fig. 5. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = 1e− 4, Ky = 0.25e−
4, α1 = α2 = 1.
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0 0.5 1 1.5 2 2.5
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2.5

Fig. 6. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = 0.25e − 4,Ky =
1e− 4, α1 = α2 = 1.
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) = (1,0.825)
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Fig. 7. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 4, α1 =
1, α2 = 0.825.

x
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) = (0.825,1)
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Fig. 8. Spiral waves in the the FitzHugh–Nagumo model (6.3) with Kx = Ky = 1e − 4, α1 =
0.825, α2 = 1.

We find that the coefficient matrix derived from CNADIGLS method (3.5) is a
dense matrix, which is different from the Galerkin spectral methods for the classi-
cal differential equation (see [46], where the coefficient matrix derived is sparse by
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choosing suitable base functions). Some fast solution techniques were developed in
[43, 44, 45, 40, 41] to solve the space fractional differential equations, in which the
fractional derivative operators are discretized by the finite difference methods that
yield a coefficient matrix with special structures. For the present method, the ma-
trices (see Sx and Sy below (3.9)) derived from the scheme (3.5) do not have special
structures as do those in [43, 44, 45, 40, 41]. Fast solution techniques for Galerkin
spectral methods of the fractional differential equations are still under investigation.
Recently, Wang and Yang [42] pointed out that fast solution techniques developed in
[43, 44, 45, 40, 41] cannot be applied to the nonconventional Petrov–Galerkin finite
element method. Fortunately, the present method can be implemented in parallel;
therefore, the computational cost can be reduced.

The present method can be extended to solve the three-dimensional problem;
all the theoretical results still hold true. However, the Galerkin spectral method
in the present paper cannot be extended to the fractional diffusion equations with
variable diffusivity coefficients, since the Galerkin weak formulation loses coercivity;
see Lemma 3.2 in [42]. Maybe the Petrov–Galerkin spectral method can be developed
to solve the fractional diffusion equations with variable coefficients (see [42], where the
Petrov–Galerkin finite element method was proved to be well posed). If we drop the

term τ2

4 (LxLy(u
n+1−un), v) in (3.5), we obtain the non-ADI method; the theoretical

results still hold true for such a case. They also hold true for one-dimensional and
three-dimensional fractional diffusion equations.
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