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Abstract

Many machine learning applications involve jointly predicting multiple mutually
dependent output variables. Learning to search is a family of methods where the
complex decision problem is cast into a sequence of decisions via a search space.
Although these methods have shown promise both in theory and in practice, im-
plementing them has been burdensomely awkward. In this paper, we show the
search space can be defined by an arbitrary imperative program, turning learning
to search into a credit assignment compiler. Altogether with the algorithmic im-
provements for the compiler, we radically reduce the complexity of programming
and the running time. We demonstrate the feasibility of our approach on multi-
ple joint prediction tasks. In all cases, we obtain accuracies as high as alternative
approaches, at drastically reduced execution and programming time.

1 Introduction

Many applications require a predictor to make coherent decisions. As an example, consider recog-
nizing a handwritten word where each character might be recognized in turn to understand the word.
Here, it is commonly observed that exposing information from related predictions (i.e. adjacent
letters) aids individual predictions. Furthermore, optimizing a joint loss function can improve the
gracefulness of error recovery. Despite these advantages, it is empirically common to build inde-
pendent predictors, in settings where joint prediction naturally applies, because they are simpler to
implement and faster to run. Can we make joint prediction algorithms as easy and fast to program
and compute while maintaining their theoretical benefits?

Methods making a sequence of sub-decisions have been proposed for handling complex joint pre-
dictions in a variety of applications, including sequence tagging [30], dependency parsing (known as
transition-based method) [35], machine translation [18], and co-reference resolution [44]. Recently,
general search-based joint prediction approaches (e.g., [10, 12, 14, 22, 41]) have been investigated.
The key issue of these search-based approaches is credit assignment: when something goes wrong
do you blame the first, second, or third prediction? Existing methods often take two strategies:

• The system ignores the possibility that a previous prediction may have been wrong, differ-
ent costs have different errors, or the difference between train-time and test-time prediction.

• The system uses handcrafted credit assignment heuristics to cope with errors that the un-
derlying algorithm makes and the long-term outcomes of decisions.

Both approaches may lead to statistical inconsistency: when features are not rich enough for perfect
prediction, the machine learning may converge sub-optimally.
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Algorithm 1 MYRUN(X) % for sequence tagging, X: input sequence, Y: output

A sample user-defined function, where PREDICT and LOSS are library functions (see text). The credit
assignment compiler translates the code and data into model updates. More examples are in appendices.

1: Y ← []
2: for t = 1 to LEN(X) do
3: ref ← X[t].true_label
4: Y[t]← PREDICT(x=examples[t], y=ref , tag=t, condition=[1:t-1])
5: LOSS(number of Y[t] 6= X[t].true_label)
6: return Y

In contrast, learning to search approaches [5, 11, 40] automatically handle the credit assignment
problem by decomposing the production of the joint output in terms of an explicit search space
(states, actions, etc.); and learning a control policy that takes actions in this search space. These have
formal correctness guarantees which differ qualitatively from models such as Conditional Random
Fields [28] and structured SVMs [46, 47]. Despite the good properties, none of these methods have
been widely adopted because the specification of a search space as a finite state machine is awkward
and naive implementations do not fully demonstrate the ability of these methods.

In this paper, we cast learning to search into a credit assignment compiler with a new programming
abstraction for representing a search space. Together with several algorithmic improvements, this
radically reduces both the complexity of programming1 and the running time. The programming
interface has the following advantages:

• The same decoding function (see Alg. 1 for example) is used for training and prediction
so a developer need only code desired test time behavior and gets training “for free”. This
simple implementation prevents common train/test asynchrony bugs.

• The compiler automatically ensures the model learns to avoid compounding errors and
makes a sequence of coherent decisions.

• The library functions are in a reduction stack so as base classifiers and learning to search
approaches improve, so does joint prediction performance.

We implement the credit assignment compiler in Vowpal-Wabbit (http://hunch.net/~vw/),
a fast online learning library, and show that the credit assignment compiler achieves outstanding em-
pirical performance both in accuracy and in speed for several application tasks. This provides strong
simple baselines for future research and demonstrates the compiler approach to solving complex
prediction problems may be of broad interest. Details experimental settings are in appendices.

2 Programmable Learning to Search

We first describe the proposed programmable joint prediction paradigm. Algorithm 1 shows sample
code for a part of speech tagger (or generic sequence labeler) under Hamming loss. The algorithm
takes as input a sequence of examples (e.g., words), and predicts the meaning of each element in
turn. The ith prediction depends on previous predictions.2 It uses two underlying library functions,
PREDICT(...) and LOSS(...). The function PREDICT(...) returns individual predictions based on x
while LOSS(...) allows the declaration of an arbitrary loss for the point set of predictions. The
LOSS(...) function and the reference y inputted to PREDICT(...) are only used in the training phase
and it has no effect in the test phase. Surprisingly, this single library interface is sufficient for both
testing and training, when augmented to include label “advice” from a training set as a reference
decision (by the parameter y). This means that a developer only has to specify the desired test time
behavior and gets training with minor additional decoration. The underlying system works as a
credit assignment compiler to translate the user-specified decoding function and labeled data into
updates of the learning model.

How can you learn a good PREDICT function given just an imperative program like Algorithm 1?
In the following, we show that it is essential to run the MYRUN(...) function (e.g., Algorithm 1)
many times, “trying out” different versions of PREDICT(...) to learn one that yields low LOSS(...).
We begin with formal definitions of joint prediction and a search space.

1With library supports, developing a new task often requires only a few lines of code.
2In this example, we use the library’s support for generating implicit features based on previous predictions.
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The system begins at the start state S and chooses the middle
action twice according to the rollin policy. At state R it considers
both the chosen action (middle) and one-step deviations from that
action (top and bottom). Each of these deviations is completed
using the rollout policy until reaching an end state, at which point
the loss is collected. Here, we learn that deviating to the top
action (instead of middle) at state R decreases the loss by 0.2.

Figure 1: A search space implicitly defined by an imperative program.

The definition of a TDOLR program:
• Always terminate.
• Takes as input any relevant feature information X .
• Make zero or more calls to an oracle O : X ′ → Y

which provides a discrete outcome.
• Report a loss L on termination.

Algorithm 2 TDOLR(X)
1: s← a
2: while s 6∈ E do
3: Compute xs from X and s
4: s← O(xs)
5: return LOSS(s)

Figure 2: Left: the definition; right: A TDOLR program simulates the search space.

Joint Prediction. Joint prediction aims to induce a function f such that for any X ∈ X (the input
space), f produces an output f(X) = Y ∈ Y(X) in a (possibly input-dependent) space Y(X). The
output Y often can be decomposed into smaller pieces (e.g., y1, y2, . . .), which are tied together by
features, by a loss function and/or by statistical dependence. There is a task-specific loss function

ℓ : Y × Y → R
≥0, where ℓ(Y ∗, Ŷ ) tells us how bad it is to predict Ŷ when the true is Y ∗.

Search Space. In our framework, the joint variable Ŷ is produced incrementally by traversing a
search space, which is defined by states s ∈ S and a mapping A : S → 2S defining the set of valid
next states.3 One of the states is a unique start state S while some of the others are end states e ∈ E.
Each end state corresponds to some output variable Ye. The goal of learning is finding a function
f : Xs → S that uses the features of an input state (xs) to choose the next state so as to minimize
the loss ℓ(Y ∗, Ye) on a holdout test set.4 Follow reinforcement learning terminology, we call the
function a policy and call the learned function f a learned policy πf .

Turning Search Space into an Imperative Program Surprisingly, search space can be repre-
sented by a class of imperative program, called Terminal Discrete Oracle Loss Reporting (TDOLR)
programs. The formal definition of TDOLR is listed in Figure 2. Without loss of generality, we
assume the number of choices is fixed in a search space, and the following theorem holds:

Theorem 1. For every TDOLR program, there exist an equivalent search space and for every search
space, there exists an equivalent TDOLR program.

Proof. A search space is defined by (A,E, S, l). We show there is a TDOLR program which can
simulate the search space in algorithm 2. This algorithm does a straightforward execution of the
search space, followed by reporting of the loss on termination. This completes the second claim.
For the first claim, we need to define, (A,E, S, l) given a TDOLR program such that the search
space can simulate the TDOLR program. At any point in the execution of TDOLR, we define an
equivalent state s = (O(X1), ..., O(Xn)) where n is the number of calls to the oracle. We define a
as the sequence of zero length, and we define E as the set of states after which TDOLR terminates.

3Comprehensive strategies for defining search space have been discussed [14]. The theoretical properties
do not depend on which search space definition is used.

4Note that we use X and Y to represent joint input and output and use x and y to represent input and output
to function f and PREDICT.
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Algorithm 3 LEARN(X, F)

1: T, ex, cache← 0, [], []
2: define PREDICT(x, y) := { T++ ; ex[T-1]← x; cache[T-1]← F(x, y, rollin) ; return cache[T-1] }
3: define LOSS(l) := no-op
4: MYRUN(X) % MYRUN(X) is a user-defined TDOLR program (e.g., Algorithm 1).
5: for t0 = 1 to T do
6: losses, t← 〈0, 0, . . . , 0〉, 0
7: for a0 = 1 to A(ex[t0]) do

8: Define PREDICT(x, y) := { t++ ; return







cache[t-1] if t < t0
a0 if t = t0
F(x,y,rollout) if t > t0

}

9: Define LOSS(val) := { losses[a0] += val }
10: MYRUN(X)
11: Online update with cost-sensitive example (ex[t0], losses)

For each s ∈ E we define l(s) as the loss reported on termination. This search space manifestly
outputs the same loss as the TDOLR program.

The practical implication of this theorem is that instead of specifying search spaces, we can specify
a TDOLR program (e.g., Algorithm 1), reducing the programming complexity of joint prediction.

3 Credit Assignment Compiler for Training Joint Predictor

Now, we show how a credit assignment compiler turns a TDOLR program and training data into
model updates. In the training phase, the supervised signals are used in two places: 1) to define
the loss function, and 2) to construct a reference policy π∗. The reference policy returns at any
prediction point a “suggestion” as to a good next state.5 The general strategy is, for some number of
epochs, and for each example (X,Y ) in the training data, to do the following:

1. Execute MYRUN(...) on X with a rollin policy to obtain a trajectory of actions ~a and loss ℓ0
2. Many times:

(a) For some (or for all) time step t ≤ |~a|
(b) For some (or for all) alternative action a′t 6= at (at is the action taken by ~a in time step t)
(c) Execute MYRUN(...) on X , with PREDICT returning a1:t−1 initially, then a′t, then acting

according to a rollout policy to obtain a new loss ℓt,a′

t

(d) Compare the overall losses ℓt,at
and ℓt,a′

t
to construct a classification/regression example

that demonstrates how much better or worse a′t is than at in this context.
3. Update the learned policy

The rollin and rollout policies can be the reference π∗, the current classifier πf or a mixture between
them. By varying them and the manner in which classification/regression examples are created, this
general framework can mimic algorithms like SEARN [11], DAGGER [41], AGGREVATE [40], and
LOLS [5].6

The full learning algorithm (for a single joint input X) is depicted in Algorithm 3.7 In lines 1–4, a
rollin pass of MYRUN is executed. MYRUN can generally be any TDOLR program as discussed
(e.g., Alg. 1). In this pass, predictions are made according to the current policy, F, flagged as rollin
(this is to enable support of arbitrary rollin and rollout policies). Furthermore, the examples (feature
vectors) encountered during prediction are stored in ex, indexed by their position in the sequence
(T), and the rollin predictions are cached in the variable cache (see Sec. 4).

The algorithm then initiates one-step deviations from this rollin trajectory. For every time step,
(line 5), we generate a single cost-sensitive classification example; its features are ex[t0], and there

5Some papers assume the reference policy is optimal. An optimal policy always chooses the best next state
assuming it gets to make all future decisions as well.

6E.g., rollin in LOLS is πf and rollout is a stochastic interpolation of πf and oracle π∗ constructed by y.
7This algorithm is awkward because standard computational systems have a single stack. We have elected

to give MYRUN control of the stack to ease the implementation of joint prediction tasks. Consequently, the
learning algorithm does not have access to the machine stack and must be implemented as a state machine.
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are A(ex[t0]) possible labels (=actions). For each action (line 7), we compute the cost of that ac-
tion by executing MYRUN again (line 10) with a “tweaked” PREDICT which returns the cached
predictions at steps before t0, returns the perturbed action a0 at t0, and at future timesteps calls F

for rollouts. The LOSS function accumulates the loss for the query action. Finally, a cost-sensitive
classification example is generated (line 11) and fed into an online learning algorithm.

4 Optimizing the Credit Assignment Compiler

We present two algorithmic improvements which make training orders of magnitude faster.

Optimization 1: Memoization The primary computational cost of Alg. 3 is making predictions:
namely, calling the underlying classifier in Step 10. In order to avoid redundant predictions, we
cache previous predictions. The challenge is understanding how to know when two predictions are
going to be identical, faster than actually computing the prediction. To accomplish this, the user
may decorate calls to the PREDICT function with tags. For a graphical model, a tag is effectively
the “name” of a particular variable in the graphical model. For a sequence labeling problem, the
tag for a given position might just be its index. When calling PREDICT, the user specifies both the
tag of the current prediction and the tag of all previous predictions on which the current prediction
depends. The user is guaranteeing that if the predictions for all the tags in the dependent variables
are the same, then the prediction for the current example are the same.

Under this assumption, we store a cache that maps triples of 〈tag, condition tags, condition
predictions〉 to 〈current prediction〉. The added overhead of maintaining this data structure is tiny
in comparison to making repeated predictions on the same features. In line 11 the learned pol-
icy changes making correctness subtle. For data mixing algorithms (like DAgger), this potentially
changes Fi implying the memoized predictions may no longer be up-to-date. Thus this optimization
is okay if the policy does not change much. We evaluate this empirically in Section 5.3.

Optimization 2: Forced Path Collapse The second optimization we can use is a heuristic that
only makes rollout predictions for a constant number of steps (e.g., 2 or 4). The intuition is that
optimizing against a truly long term reward may be impossible if features are not available at the
current time t0 which enable the underlying learner to distinguish between the outcome of decisions
far in the future. The optimization stops rollouts after some fixed number of rollout steps.

This intuitive reasoning is correct, except for accumulating LOSS(...). If LOSS(...) is only declared at
the end of MYRUN, then we must execute T−t0 time steps making (possibly memoized) predictions.
However, for many problems, it is possible to declare loss early as with Hamming loss (= number
of incorrect predictions). There is no need to wait until the end of the sequence to declare a per-
sequence loss: one can declare it after every prediction, and have the total loss accumulate (hence
the “+=” on line 9). We generalize this notion slightly to that of a history-independent loss:

Definition 1 (History-independent loss). A loss function is history-independent at state s0 if, for any
final state e reachable from s0, and for any sequence s0s1s2 . . . si = e: it holds that LOSS(e) =
A(s0) +B(s1s2 . . . si), where B does not depend on any state before s1.

For example, Hamming loss is history-independent: A(s0) corresponds to loss through s0 and
B(s1 . . . si) is the loss after s0.8 When the loss function being optimized is history-independent, we
allow LOSS(...) to be declared early for this optimization. In addition, for tasks like transition-base
dependency parsing, although LOSS(...) is not decomposable over actions, expected cost per action
can be directly computed based on gold labels [19] so the array losses can be directly specified.

Speed Up We analyze the time complexity of the sequence tagging task. Suppose that the cost of
calling the policy is d and each state has k actions.9 Without any speed enhancements, each execu-
tion of MYRUN takes O(T ) time, and we execute it Tk + 1 times, yielding an overall complexity
of O(kT 2d) per joint example. For comparison, structured SVMs or CRFs with first order Markov

8Any loss function that decomposes over the structure, as required by structured SVMs, is guaranteed to
also be history-independent; the reverse is not true. Furthermore, when structured SVMs are run with a non-
decomposable loss function, their runtime becomes exponential in t. When our approach is used with a loss
function that’s not history-independent, our runtime increases by a factor of t.

9Because the policy is a multiclass classifier, d might hide a factor of k or log k.
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Figure 3: Training time (minutes) versus test accuracy for POS and NER. Different points corre-
spond to different termination criteria for training. The rightmost figure use default hyperparame-
ters and the two left figures use hyperparameters that were tuned (for accuracy) on the holdout data.
Results of NER with default parameters are in the appendix. X-axis is in log scale.

dependencies run in O(k2T ) time. When both memoization and forced path collapse are in effect,
the complexity of training drops to O(Tkd), similar to independent prediction. In particular, if the

ith prediction only depends on the i−1th prediction, then at most Tk unique predictions are made.10

5 System Performance

We present two sets of experiments. In the first set, we compare the credit assignment compiler
with existing libraries on two sequence tagging problems: Part of Speech tagging (POS) on the Wall
Street Journal portion of the Penn Treebank; and sequence chunking problem: named entity recogni-
tion (NER) based on standard Begin-In-Out encoding on the CoNLL 2003 dataset. In the second set
of experiments, we demonstrate a simple dependency parser built by our approach achieves strong
results when comparing with systems with similar complexity. The parser is evaluated on the stan-
dard WSJ (English, Stanford-style labels), CTB (Chinese) datasets and the CoNLL-X datasets for
10 other languages.11 Our approach is implemented using the Vowpal Wabbit [29] toolkit on top of
a cost-sensitive classifier [3] trained with online updates [15, 24, 42]. Details of dataset statistics,
experimental settings, additional results on other applications, and pseudocode are in the appendix.

5.1 Sequence Tagging Tasks

We compare our system with freely available systems, including CRF++ [27], CRF SGD [4], Struc-

tured Perceptron [9], Structured SVM [23], Structured SVM (DEMI-DCD) [6], and an unstructured
baseline (OAA) predicting each label independently, using one-against-all classification [3]12.

For each system, we consider two situations, either the default hyperparameters or the tuned
hyperparameters that achieved the best performance on holdout data. We report both conditions
to give a sense of how sensitive each approach is to the setting of hyperparameters (the amount of
hyperparameter tuning directly affects effective training time). We use the built-in feature template
of CRF++ to generate features and use them for other systems. The templates included neighboring
words and, in the case of NER, neighboring POS tags. The CRF++ templates generate 630k unique
features for the training data. However, because L2S is also able to generate features from its own
templates, we also provide results for L2S (ft) in which it uses its own feature template generation.

Training time. In Figure 3, we show trade-offs between training time (x-axis, log scaled) and
prediction accuracy (y-axis) for the aforementioned six systems. For POS tagging, the independent
classifier is the fastest (trains in less than one minute) but its performance peaks at 95% accuracy.
Three other approaches are in roughly the same time/accuracy trade-off: L2s, L2S (ft) and Structured

Perceptron. CRF SGD takes about twice as long. DEMI-DCD (taking a half hour) and CRF++ (taking

10We use tied randomness [34] to ensure that for any time step, the same policy is called.
11PTB and CTB are prepared by following [8], and CoNLL-X is from the CoNLL shared task 06.
12 Structured Perceptron and Structured SVM (DEMI-DCD) are implemented in Illioins-SL[7]. DEMI-

DCD is a multi-core dual approach, while Structured SVM uses cutting-planes.
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Parser AR BU CH CZ
+ DA DU

+ JA
+ PO

+ SL
+ SW PTB CTB

DYNA 75.3 89.8 88.7 81.5 87.9 74.2 92.1 88.9 78.5 88.9 90.3 80.0

SNN 67.4∗ 88.1 87.3 78.2 83.0 75.3 89.5 83.2∗ 63.6∗ 85.7 91.8# 83.9#

L2S 78.2 92.0 89.8 84.8 89.8 79.2 91.8 90.6 82.2 89.7 91.9 85.1

BEST 79.3 92.0 93.2 87.30 90.6 83.6 93.2 91.4 83.2 89.5 94.4# 87.2#

Table 1: UAS on PTB, CTB and CoNLL-X. Best: the best known result in CoNLL-X or the best
published results (CTB, PTB) using arbitrary features and resources. See details and additional
results in text and in the appendix.15

over five hours) are not competitive. Structured SVM runs out of memory before achieving compet-
itive performance (likely due to too many constraints). For NER the story is a bit different. The
independent classifiers are not competitive. Here, the two variants of L2S totally dominate. In this
case, Structured Perceptron is no longer competitive and is essentially dominated by CRF SGD. The
only system coming close to L2S’s performance is DEMI-DCD, although it’s performance flattens
out after a few minutes.13 The trends in the runs with default hyperparameters show similar behav-
ior to those with tuned, though some of the competing approaches suffer significantly in prediction
performance. Structured Perceptron has no hyperparameters.

Test Time. In addition to training time, one might care about test time behavior. On NER, predic-
tion times where 5.3k tokens/second (DEMI-DCD and Structured Perceptron, 20k (CRF SGD and
Structured SVM), 100k (CRF++), 220k (L2S (ft)), and 285k (L2S). Although CRF SGD and Struc-

tured Perceptron fared well in terms of training time, their test-time behavior is suboptimal. When
the number of labels increases from 9 (NER) to 45 (POS) the relative advantage of L2S increases
further. The speed of L2S is about halved while for others, it is cut down by as much as a factor of
8 due to the O(k) vs O(k2) dependence on the label set size.

5.2 Dependency Parsing

To demonstrate how the credit assignment compiler handles predictions with complex dependencies,
we implement an arc-eager transition-based dependency parser [35]. At each state, it takes one of
the four actions {Shift, Reduce, Left, Right} based on a simple neural network with one hidden
layer of size 5 and generates a dependency parse to a sentence in the end. The rollin policy is the
current (learned) policy. The probability of executing the reference policy (dynamic oracle) [19]
for rollout decreases over each round. We compare our model with two recent greedy transition-
based parsers implemented by the original authors, the dynamic oracle parser (DYNA) [19] and the
Stanford neural network parser (SNN) [8]. We also present the best results in CoNLL-X and the
best-published results for CTB and PTB. The performances are evaluated by unlabeled attachment
scores (UAS). Punctuation is excluded.

Table 1 shows the results. Our implementation with only ˜300 lines of C++ code is competitive
with DYNA and SNN, which are specifically designed for parsing. Remarkably, our system achieves
strong performance on CoNLL-X without tuning any hyper-parameters, even beating heavily tuned
systems participating in the challenge on one dataset. The best system to date on PTB [2] uses a
global normalization, more complex neural network layers and k-best POS tags. Similarly, the best
system for CTB [16] uses stack LSTM architectures tailored for dependency parsing.

5.3 Empirical evaluation of optimizations

In Section 3, we discussed two approaches for computational improvements. Memoization avoids
re-predicting on the same input multiple times while path collapse stops rollouts at a particular

13We also tried giving CRF SGD the features computed by L2S (ft) on both POS and NER. On POS, its
accuracy improved to 96.5 with essentially the same speed. On NER it’s performance decreased.

15(∗) SNN makes assumptions about the structure of languages and hence obtains substantially worse perfor-
mance on languages with multi-root trees. (+) Languages contains more than 1% non-projective arcs, where a
transition-based parser (e.g. L2S) likely underperforms graph-based parser (Best) due to the model assump-
tions. (#) Numbers reported in the published papers [8, 16, 2].
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NER POS
LOLS Searn LOLS Searn

No Opts 96s 123s 3739s 4255s
Mem. 75s 85s 1142s 1215s
Col.@4+Mem. 71s 75s 1059s 1104s
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Figure 4: The table on the left shows the effect of Collapse (Col) and Memorization (Mem.). The
figure on the right shows the speed-up obtained for different historical lengths and mixing rate of
rollout policy. Large α corresponds to more prediction required when training the model.

point in time. The effect of the different optimizations depends greatly on the underlying learning
algorithm. For example, DAgger does not do rollouts at all, so no efficiency is gained by either
optimization.16 The affected algorithms are LOLS (with mixed rollouts) and Searn.

Figure 4 shows the effect of these optimizations on the best NER and POS systems we trained
without using external resources. In the left table, we can see that memoization alone reduces
overall training runtime by about 25% on NER and about 70% on POS, essentially because the
overhead for the classifier on POS tagging is so much higher (45 labels versus 9). When rollouts
are terminated early, the speed increases are much more modest, essentially because memoization
is already accounting for much of these gains. In all cases, the final performance of the predictors
is within statistical significance of each other (p-value of 0.95, paired sign test), except for Col-
lapse@2+Memoization on NER, where the performance decrease is only insignificant at the 0.90
level. The right figure demonstrates that when α increases, more prediction is required during the
training time, and the speedup increases from a factor of 1 (no change) to a factor of as much as 9.
However, as the history length increases, the speedup is more modest due to low cache hits.

6 Related Work

Several algorithms are similar to learning to search approaches, including the incremental structured
perceptron [10, 22], HC-Search [13, 14], and others [12, 38, 45, 48, 49]. Some fit this framework.

Probabilistic programming [21] has been an active area of research. These approaches have a differ-
ent goal: Providing a flexible framework for specifying graphical models and performing inference
in those models. The credit assignment compiler instead allows a developer to learn to make co-
herent decisions for joint prediction (“learning to search”). We also differ by not designing a new
programming language. Instead, we have a two-function library which makes adoption and integra-
tion into existing code bases much easier.

The closest work to ours is Factorie [31]. Factorie is essentially an embedded language for writ-
ing factor graphs compiled into Scala to run efficiently.17 Similarly, Infer.NET [33], Markov Logic
Networks (MNLs) [39], and Probabilistic Soft Logic (PSL) [25] concisely construct and use proba-
bilistic graphical models. BLOG [32] falls in the same category, though with a very different focus.
Similarly, Dyna [17] is a related declarative language for specifying probabilistic dynamic programs,
and Saul [26] is a declarative language embedded in Scala that deals with joint prediction via integer
linear programming. All of these examples have picked particular aspects of the probabilistic mod-
eling framework to focus on. Beyond these examples, there are several approaches that essentially
“reinvent” an existing programming language to support probabilistic reasoning at the first order
level. IBAL [36] derives from O’Caml; Church [20] derives from LISP. IBAL uses a (highly opti-
mized) form of variable elimination for inference that takes strong advantage of the structure of the
program; Church uses MCMC techniques, coupled with a different type of structural reasoning to
improve efficiency.
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