NOTES

This section is devoted to brief research and expository articles, notes on methodology
and other short items.
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A CRITERION FOR TESTING THE HYPOTHESIS THAT TWO
SAMPLES ARE FROM THE SAME POPULATION

By W. J. Dixon

1. Introduction. The purpose of this paper is to consider a criterion for
testing the hypothesis that two samples have been drawn from populations with
the same distribution function, assuming only that the cumulative distribution
function common to the two populations is continuous. Let the two samples,
0, and On, be of size n and m respectively. We may assume n < m without
loss of generality. Suppose the elements u; , - - - , u, of O, are arranged in order
from the smallest to the largest, that is, u1 < u2 < -+ < u,. These may be
represented as points along a line. The elements of 0., represented as points
on the same line are then divided into (n 4+ 1) groups by the first sample, O,.
Let m; be the number of points having a value less than u;, m; the number

lying between u; and w41, (¢ = 1,2, ..., n) and Mma4q the number greater than
Un, (Mppr = m — my — mg — ... — m,). The criterion here proposed is'
n+1 2
2 _ 1 _ m.)
(1) ¢’ = f__:l (n i m)

1 A similar criterion

| e,

'd’=g —on

for two samples of the same size was investigated (unpublished) by A. M. Mood. He
found the mean and variance to be

2n + 1 . 8(n—1)2n + 1)
E(d?) = an oh = B Tra—

3

It can be seen that this is the sum of the squares of the differences between the ordinates
of the two cumulative sample distributions calculated at the jumps of the first sample
distribution.
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200 W. J. DIXON

2. The mean and variance of C°. The only case of continuous cumulative
distribution functions F(z) of any interest in statistics is that in which dF(z) =
J(x) dz, where f(z) is a probability density function. Let us write:

n=[ @, m=[ 1@ o= [ S0,

where of course Ppy1 = 1 — p1 — P2 — -+« — Dn.
Now, the joint distribution law of the p; is
(2) P@1,- - ,pa) = nldp .- dpa
and the conditional distribution of the m, given the p; is
m!
ml - m,

(3) P(ml, "‘;mﬁllpl; "',pﬂ) = +l!p1l”1p'2”2 R p"'::-iil

Therefore the joint probability law of the m; and p; is

Im! my . m.
@ P(m, p) = o DT PP - DR A - e

May
n+1 1 m’.
Let o(8) = ¢(61, «++, 0ny1) = E[exp ’_Zl 0; (n i~ ﬁ)]’ then

. n+l a2¢
®) EC) = - ;,;z‘] ,
el % _Jo=0
ntl gy e
2\2) _ — an2 an?
® Bl(C)] = 2 ]o-o + 2o ao?]a-o
and

0 o0 = Tu [ e[ 0. (;2 - =) | Ptm, ),

t==1
where Z,, denotes the usual multinomial summation over all integral values of
m; > 0 for which Zm; = m and the integration is over the generalized tetra-

hedron defined by p; > 0 and p1 + p2 + -+ + Purn < 1. If we perform
the summation first, we obtain

u+l 0
8 On+1

®) o(6) = nle™ "“f (ple o Prpre ™ ) dpr -+ dpa.
Differentiating twice with respect to 6; and setting the ¢'s equal to zero, we get

fo _ 1 2 1 2 m — 1 2]‘
60?]0-0—7‘![[(%4- 1) +(,,',_,, n+ 1)1’.+ Tp; dpy -« dpn.

If we now integrate and sum from one to n + 1, we find

nn+4+m-41)
m(n + 1)(n + 2)°

9) E(C") =
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Performing the operations indicated in (6), we obtain E[(C)*] from which we
subtract [E(CH)]’ and have as the variance of C°,

ola = dnm — 1)m +n+ )(m +n+2)
¢ m3(n + 2)%(n + 3)(n + 4) :

3. Significance values of C°. If we let C% be defined as the smallest value
of C? for which P(C* > C2%) < o then we can compute the value of C? fairly

TABLE I
Values of C%. o = 0.01, 0.05, 0.10

N\
m 2 3 4 5 6 7 8 9 10
4

— ——  .800
5 | — —— .800 .833

——  .750 .800 .833

.857

6 | — .750 .800 .833 .857

— .750 .800 .556 .413

.833 .857 .875
7 — .750 .800 .588 .612  .467
.667 .750 .555  .425  .449  .426

— —— .800 .833 .857 .656 .670
8 — 750 .800 .594 .482 .469 .389
.667  .531 .425 .413 .357 .375 .358

— — .800 .833 .660 .677 .543 .554
9 —  .750 .602 .448 .413 .431 .395 .381
.667 .552 .454 .389 .363 .356 .321 .307

— —— .800 .833 .677 .555 .549 .480  .449
10 | .667 .750 .480 .493 .437 .415 .349 .340 .349
.487 .430 .380 .373 .357 .315 .309 .280 .269

readily for small values of m and n. The values of C* for m, n < 10 are given
in Table I for « = 0.01, 0.05 and 0.10. Since the distribution of C* is not
continuous the probabilities P(C* > C%) will, in general, be less than a.
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It will be seen that if m and n increase indefinitely in the ratio n/m = «,
then nC® converges stochastically to ¥ + 1 whereas nC® ranges from 0 to
n’/(n + 1) which indicates a tail to the right. This suggests that for larger
values of m and n, it is reasonable to try to fit the distribution of #C? by the
method of moments using a distribution of the form

( k z2)§v—l

11 4t g (ke
(11) Fra’ | k)
which has

2
E@) =7, on=1

Setting z* = nC?, we see that we can consider nkC® distributed as x* with »
degrees of freedom. Of course, » is not necessarily an integer, but x° tables
may be used for approximate values of the probability that nkC® will exceed
certain values,’ or the values of nkC® that will be exceeded a certain per cent
of the time.> More exact values of these probabilities that nkC® will exceed
a certain value may be found from a table of the incomplete Gamma, function.*

To calculate & and v directly, the following formulas obtained by equating
the mean and variance of (11) to the mean and variance of nC* may be used:

(12) k=am(n+ 2)/n, v=an(n+m+1)/(n+ 1),

where

_ m(n + 3)(n + 4)
2m — D)(m+n+2)(n+1)°

If the fitted curve (11) is used to obtain significance values of nC?, there is a
tendency toward rejecting slightly over 10009, especially for small values of
m and n. The error is probably due to fitting a curve having an infinite range.
The discrepancy decreases as m and 7 increase.

The goodness of fit at the 0.01, 0.05 and 0.10 significance levels was tested
for two cases.

Case 1. n =9, m = 10; nk = 23§, » = 52,

The exact distribution in the region under consideration is the following:

a

(o1 ... .26 || .28 .30 .32 J||.34 .36 .40 .42 ||.4 .48

P(C*>C3) | ... .121 | .090 .082 .072 | .037 .033 .025 .025 || .015 .007 ...

The values of C2 from the fitted curve are Cn = 0422, Chs = 0.323 and
C% = 0.277. The double rule indicates the divisions (from the fitted curve)

for « = 0.01, 0.05 and 0.10.

t Karl Pearson, Tables for Statisticians and Biometricians, part 1, Table XII.
3R. A. Fisher, Statistical Methods for Research Workers, Table III.
¢ Tables of the Incomplete Gamma Function, Biometrika Office, London.
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Case2. n=12,m = 12; nk = 65.068, v = 8.938.
The important part of the exact distribution for our purposes is:

C ... .215 || 229 .243 .256 || .270 ... .326 | .340 .354 .381

PC*>Cy) | ... .120) .109 .078 .057 || .046 ... .017 [/.014 .011 .009

The values of C% from the fitted curve are C3 = 0.3315, Chs = 0.2587 and
Cho = 0.2244.

4. Examples. 1. Two samples of ten members each are drawn and it is
desired to test, using a rejection region of size «, the hypothesis that these two
samples could have originated from the same population about which nothing
is assumed except that it is continuous. The first sample was found to divide
the second sample into the following groups: 0, 0, 0, 3, 0, 4, 0, 0, 2, 1, 0.

C=(&k—4%"+ G -5+ — %)+ G — &)+ 7(&)* = .209
which we see from Table I is not a significant value even for & = 0.10 since
C,zlo = (.269.

2. A sample of 15 divides a second of 25 into the following.16 groups: 0, 1,
0,0541,39,00,1,0,1,0,0.

C' = (F— o)+ F — )"+ (Fs — )"+ (& — %) +4(% — )" +8(%)’
nC® = 2302 k=7511 »=10.19
nkC® = 17.295
which gives a significant value for @ = 0.10 but not for « = 0.05, since nkC%, =

16.233, nkC%s = 18.568. Actually P(nkC? > 17.29) = .077.

6. Remarks. If we set W equal to the number of m; which are zero and
V =n+4 1 — W then V is the number of non-zero m; ; further, 2V ~ U where
U is the total number of runs, the criterion proposed in the paper of Wald
and Wolfowitz in the present issue of the Annals of Mathematical Statistics.
Now,

(13) W= ILm 2z,

210t 1 Zp+1-00 $=1

so that, setting
. > f b> 1 _m\]$ mp
(14) P = m | eXp [‘_1 0; (n F1 - ;’l_@-’)] ~ T (m: p)r

analogous to (7), we have

n+1l ,2
EWC) = lm 3 "’_i"]
(]

2
Tyt 4Bn+ 10 k=1 801,
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from which we can find

o _ 2n(1 — m)
Pve®TvTe® = iin F 2)(m + n)

and

e o (+3)m+HYm+n —1)
Pue? =Pve = (0 DYm + n + D(m + n + 2)°

If n/m = v (a fixed constant) and = is large

2 n

=n4+m
p° will be near 1 when » is much larger than m. This corresponds, in com-
puting C°, to dividing the smaller sample into subgroups by the larger. In
this case U and C” give essentially the same information. When m and n are
more nearly equal the two criteria are quite different. For » > m, C* has
fewer possible values than for » < m, and is therefore a more sensitive test
when n < m.

While it is doubtful that this test is biased for large samples, this question
will not be considered in the present note.

L
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SIGNIFICANCE TEST FOR SPHERICITY OF A NORMAL #-VARIATE
DISTRIBUTION

By Joun W. MAUCHLY

1. Introduction. This note is concerned with testing the hypothesis that a
sample from a normal n-variate population is in fact from a population for
which the variances are all equal and the correlations are all zero. A popula-
tion having this symmetry will be called ‘‘spherical.” Under a linear orthogonal
transformation of variates, a spherical population remains spherical, and conse-
quently the features of a sample which furnish information relevant to this
hypothesis must be invariant under such transformations.

A situation for which this test is indicated arises when the sample consists
of N n-dimensional vectors, for which the variates are the n» components along
coordinate axes known to be mutually perpendicular, but having an orientation
which is, a priori at least, quite arbitrary. A specific application for two
dimensions, treated elsewhere [1], may be mentioned. Each of N days fur-
nishes a sine and a cosine Fourier coefficient for a given periodicity, and these,
when plotted as ordinate and abcissa, yield a somewhat elliptical cloud of N
points. The sine and cosine functions are orthogonal, and their variances have



