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Abstract: The phase reduction method is a dimension reduction method for weakly driven
limit-cycle oscillators, which has played an important role in the theoretical analysis of synchro-
nization phenomena. Recently, we proposed a generalization of the phase reduction method
[W. Kurebayashi et al., Phys. Rev. Lett. 111, 2013]. This generalized phase reduction method
can robustly predict the dynamics of strongly driven oscillators, for which the conventional
phase reduction method fails. In this generalized method, the external input to the oscillator
should be properly decomposed into a slowly varying component and remaining weak fluctua-
tions. In this paper, we propose a simple criterion for timescale decomposition of the external
input, which gives accurate prediction of the phase dynamics and enables us to systematically
apply the generalized phase reduction method to a general class of limit-cycle oscillators. The
validity of the criterion is confirmed by numerical simulations.
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1. Introduction
Synchronization of limit-cycle oscillators is a ubiquitous phenomenon that has been widely studied
in many disciplines including physics, chemistry, biology, mechanical engineering, and electrical en-
gineering [1–3]. The phase reduction method [1] has played a key role in the theoretical analysis
of synchronization phenomena of weakly driven limit-cycle oscillators. This method enables us to
reduce the dynamical equation of a high-dimensional limit-cycle oscillator to a one-dimensional phase
equation, which facilitates theoretical analysis of various synchronization phenomena. Recently, en-
gineering applications of the phase reduction method, e.g., dynamical analysis and optimal design of
circuit and other oscillators [4–9] and optimal control of periodically spiking neurons [10–12], have
been actively studied.

However, the conventional phase reduction method has a drawback in practical applications, i.e., it
works only when the external input to the oscillator can be assumed sufficiently weak. This limitation
significantly narrows the applicability of the conventional method, because the weakness of the input
cannot be assumed in many practical applications. In order to overcome this limitation, we recently
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proposed a generalized phase reduction method [13], which robustly works even for largely varying
inputs under appropriate conditions. Using the generalized method, we can theoretically analyze the
phase dynamics of strongly driven limit-cycle oscillators.

When we use the generalized phase reduction method, we need to decompose the external input
to the oscillator into a slowly varying low-frequency component and sufficiently weak fluctuations.
Though this timescale decomposition can significantly affect the accuracy of the resulting phase
equation, [13] did not provide an explicit criterion for decomposing the external input. In the present
study, we propose a simple practical criterion to decompose the external input into low-frequency
and high-frequency components, which yields a reasonable approximation of the oscillator dynamics.
The proposed decomposition method will enable us to systematically apply the generalized phase
reduction method to the analysis of various synchronization phenomena.

2. Generalized phase reduction method

We consider a limit-cycle oscillator driven by a general input I(t) = [I1(t), . . . , Im(t)]� ∈ R
m that

smoothly depends on time t, described by

dX(t)
dt

= F (X(t), I(t)), (1)

where X = [X1, . . . , Xn]� ∈ R
n is the state of the oscillator and F (X, I) = [F1(X, I), . . . , Fn(X, I)]�

∈ R
n is a vector field that represents the dynamics of the oscillator. We assume that there exists a

finite interval A ⊂ R
m of the input value I such that the vector field F (X, I) has a stable periodic

orbit X0(t, I) with period T (I) and frequency ω(I) := 2π/T (I) when the input I is kept constant,
and that this periodic orbit smoothly depends on I ∈ A.

Using the generalized phase reduction method [13], we can reduce the high-dimensional dynamics
of the limit-cycle oscillator described by Eq. (1) to a one-dimensional phase equation. We define a
generalized asymptotic phase Θ(X, I) of the limit cycle X0(t, I) that satisfies

∂Θ(X, I)
∂X

· F (X, I) = ω(I). (2)

for each constant I ∈ A. We then decompose the input I(t) into a low-frequency component q(εt) =
[q1(εt), . . . , qm(εt)]� ∈ A and a high-frequency component σp(t) = σ[p1(t), . . . , pm(t)]� ∈ R

m as

I(t) = q(εt) + σp(t), (3)

where the low-frequency component q(εt) is assumed to vary slowly as compared to the amplitude
relaxation time of the oscillator, and the high-frequency component σp(t) is assumed to be sufficiently
weak. The small parameters ε and σ represent the slow timescale of the low-frequency component
q(εt) and the intensity of the high-frequency component σp(t), respectively. We introduce a phase
variable θ(t) representing the state of the oscillator as

θ(t) = Θ(X(t), q(εt)), (4)

which depends on the slow low-frequency component q(εt) of the input. We also define a conventional
phase sensitivity function Z(θ, q) ∈ R

n and two other sensitivity functions ξ(θ, q) ∈ R
m, ζ(θ, q) ∈ R

m

as follows:

Z(θ, q) =
∂Θ(X, q)

∂X

∣∣∣∣
X=X0(θ/ω(q),q)

, (5)

ξ(θ, q) =
∂Θ(X, q)

∂q

∣∣∣∣
X=X0(θ/ω(q),q)

, (6)

ζ(θ, q) = G(X, q)�Z(θ, q)
∣∣∣
X=X0(θ/ω(q),q)

, (7)

where the (j, k)-th element of G(X, q) ∈ R
n×m is given by G(j,k)(X, q) := ∂Fj(X,q)

∂qk
. Then, the

dynamics of the phase variable θ(t) is described by the following generalized phase equation [13]:
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dθ(t)
dt

= ω(q(εt)) + εξ(θ, q(εt)) · q̇(εt) + σζ(θ, q(εt)) · p(t)

+ O

(
ε2

λ(q(εt))2
,

εσ

λ(q(εt))
,

σ2

λ(q(εt))
,

εσ

λ(q(εt))2

)
. (8)

Here, q̇(t) denotes dq(εt)/d(εt) and the function λ(I) is the absolute value of the second largest
Floquet exponent of the oscillator (1) driven by a constant input I ∈ A, which characterizes the
amplitude relaxation time of the oscillator. The generalized phase equation (8) is valid when

σ

λ(q(εt))
� 1 and

ε

λ(q(εt))2
� 1, (9)

i.e., when the amplitude relaxation is sufficiently fast (see [13] for a detailed discussion). We hereafter
assume that these conditions are satisfied.

3. Simple criterion for timescale decomposition of external inputs

In the generalized phase reduction method, we need to decompose the input I(t) as in Eq. (3). How
to decompose the input I(t) is an important problem, which can significantly affect the accuracy of
the generalized phase equation (8). Our aim in this paper is to propose a simple criterion for choosing
the threshold frequency Ωd that gives a reasonable decomposition of the input into low-frequency and
high-frequency components for approximating the dynamics of the oscillator. In our derivation, the
essential parameter for the timescale decomposition is the amplitude relaxation time of the oscillator;
the statistical property of the external input I(t) (e.g., the power spectrum) is not important.

We define the decomposition of the input I(t) by a linear filter f(τ) as follows:

q(εt) =
∫ +∞

−∞
I(t − τ)f(τ)dτ, (10)

σp(t) = I(t) − q(εt), (11)

where f(τ) is assumed to be an ideal low-pass filter with the cutoff frequency Ωd, i.e., its amplitude
response A(Ω) := | ∫ +∞

−∞ f(τ)e−iΩτdτ | of f(τ) is given by

A(Ω) =

{
1 (|Ω| < Ωd),
0 (otherwise).

(12)

As discussed in Appendix A, we can describe the dynamics of a limit-cycle oscillator by the phase
and amplitude variables, where the amplitude variable represents the deviation of the oscillator state
from the periodic orbit. In particular, when the oscillator state X(t) is two-dimensional, it can be
fully described by a phase variable θ(t) defined in Eq. (4) and an amplitude variable r(t) defined as

r(t) = R(X(t), q(εt)), (13)

where the function R(X, I) of X ∈ R
n and I ∈ R

m satisfies

∂R(X, I)
∂X

· F (X, I) = −λ(I)R(X, I). (14)

As shown in Appendix A, we can derive the following dynamical equation for the amplitude variable
r(t):

dr(t)
dt

= −λ(q(εt))r + σζr(θ, r, q(εt)) · p(t) + εξr(θ, r, q(εt)) · q̇(εt) + O(σ2), (15)

where ζr(θ, r, q) = G(X, q)� ∂R(X,q)
∂X

∣∣
X=X̃(θ,r,q)

, ξr(θ, r, q) = ∂R(X,q)
∂q

∣∣
X=X̃(θ,r,q)

, and X̃(θ, r, q) is a

state point in R
n satisfying Θ(X̃, q) = θ and R(X̃, q) = r. This equation shows that the amplitude

r(t) fluctuates around r = 0 due to the external input.

173



The approximation error of the generalized phase equation (8) is O(r) (see Appendix A). Thus, we
can minimize the approximation error by minimizing the deviation r(t) from the periodic orbit. As
shown in Appendix B, we can approximate ξr(θ, 0, I) by ζr(θ, 0, I) as follows:

ξr(θ, 0, I) =
1

λ(I)
ζr(θ, 0, I) + O

(
1

λ(I)2

)
. (16)

Moreover, from Eq. (15), the order of r can be evaluated as follows:

r = O

(
ε

λ(q(εt))
,

σ

λ(q(εt))

)
. (17)

By plugging Eqs. (16) and (17) into Eq. (15), we can obtain

dr(t)
dt

= −λ(q(εt))r + ζr(θ, 0, q(εt)) · Ĩ(t) + O

(
ε2

λ(q(εt))
,

εσ

λ(q(εt))
,

σ2

λ(q(εt))

)
. (18)

where Ĩ(t) is a transformed external input, whose j-th element is given by

Ĩj(t) := σpj(t) +
ε

λ(q(εt))
q̇j(εt), (19)

for j = 1, . . . , m. We define the variance Vj(Ωd) of Ĩj(t) as

Vj(Ωd) = lim
τ→∞

1
τ

∫ τ

0
[Ĩj(t)]2dt, (20)

which is finite because I(t) is smooth and bounded. For smaller Vj(Ωd), the fluctuation of r(t)
becomes smaller and the generalized phase equation will give more precise prediction of the phase
dynamics.

To derive a simple criterion for determining the threshold frequency Ωd, we assume that the decay
rate λ(q(εt)) of r(t) does not vary too violently and thus its typical values can be characterized by

λc := λ(q(εt)) = λ

(
lim

τ→∞
1
τ

∫ τ

0
q(εt)dt

)
, (21)

where q(εt) is the long-time average of the slowly varying part of the input, q(εt). Though this is a
rather rough characterization of the decay rate of r(t), it enables us to derive a simple criterion for
the threshold frequency. Replacing λ(q(εt)) in Eq. (19) with λc, Eq. (20) can be estimated as follows:

Vj(Ωd) ≈ 2
∫ Ωd

0

Ω2

λ2
c

Pj(Ω)dΩ + 2
∫ ∞

Ωd

Pj(Ω)dΩ, (22)

where Pj(Ω) is the power spectrum of Ij(t). The optimal threshold frequency Ωd = Ω∗
d that minimizes

this approximate variance Vj(Ωd) can be determined as

Ω∗
d = λc, (23)

because this Ω∗
d satisfies

Vj(Ωd) − Vj(Ω∗
d) = 2

∫ Ω∗
d

Ωd

(
1 − Ω2

d

λ2
c

)
Pj(Ωd)dΩ ≥ 0, for Ωd ≤ Ω∗

d, (24)

Vj(Ωd) − Vj(Ω∗
d) = 2

∫ Ωd

Ω∗
d

(
Ω2

d

λ2
c

− 1
)

Pj(Ωd)dΩ ≥ 0, for Ωd ≥ Ω∗
d. (25)

Thus, under the above approximating assumptions, the optimal timescale for the decomposition of
the input that minimizes the variance Vj(Ωd) of the input coincides with the characteristic amplitude
relaxation time of the oscillator.
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Fig. 1. Time series of the input I(t) to the oscillator for γ = 5, and the
low-frequency and high-frequency components q(εt) and σp(t) decomposed by
low-pass filters with the threshold frequencies Ωd = 0.5, 2, 5 and 10.

We propose Eq. (23) as a simple criterion for choosing the value of the threshold frequency Ωd. It
gives the optimal Ωd for predicting the oscillator dynamics when λ(q(εt)) is strictly constant, and
is expected to provide a reasonable prediction even if λ(q(εt)) varies slowly. The criterion (23) is
valid for general external inputs, including periodic signals with delta-peaked power spectra, because
we did not introduce any assumptions on the statistical property of the input in the derivation
of the criterion (23). Also, though we assumed that the state of the oscillator is two-dimensional
for simplicity, the above result can be generalized to higher-dimensional cases by regarding λ(q) as
the absolute value of the second largest Floquet exponent among the n Floquet exponents of the
oscillator, because the deviation from the periodic orbit is dominated by the slowest amplitude mode
characterized by the second largest Floquet exponent.

4. Numerical simulations
In order to confirm the validity of our criterion (23), we performed numerical simulations for evaluating
the effect of the threshold frequency Ωd on the approximation accuracy of the generalized phase
equation (8). In the simulation, we use a modified Stuart-Landau oscillator [1] defined as

dx(t)
dt

= F1(x, y, I(t)) := e2I(t)(x − y − I) − [(x − I(t))2 + y2](x − I(t)), (26)

dy(t)
dt

= F2(x, y, I(t)) := e2I(t)(x + y − I) − [(x − I(t))2 + y2]y, (27)

where X = [x, y]� is a state variable, and I(t) is the input to the oscillator that is decomposed
into a low-frequency component q(εt) and a high-frequency component σp(t). For this oscillator, the
absolute value of the second largest Floquet exponent is λ(q) = 2e2q.

Defining the phase θ(t) for this oscillator as
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Fig. 2. Mean square errors of the generalized phase equation (8) versus the
threshold frequency Ωd for γ = 5, 7 and 10. The arrow represents the threshold
frequency Ωd = 2 given by the criterion (23).

θ(t) = Θ(x(t), y(t), q(εt)) = tan−1 y(t)
x(t) − q(εt)

, (28)

we can reduce Eqs. (26) and (27) to the following generalized phase equation:

dθ(t)
dt

= e2q(εt) − εeq(εt) sin θ · q̇(εt) + σ[e2q(εt) − eq(εt) cos θ] · p(t). (29)

We generated the input to the oscillator I(t) by a Fourier series given by

I(t) =
500∑
�=1

A� sin(α�t + β�), (30)

where β� is an i.i.d. random number drawn from a uniform distribution in [0, 2π],

A� =
√

10−3
γ

1 + γ2α2
�

, (31)

α� = 0.1(
 − 0.5), (32)

and γ is a parameter representing the characteristic scale of I(t). In this case, the long-time average
of I(t) becomes zero. Thus, the criterion (23) gives a threshold frequency

λc = λ(q)
∣∣
q=0

= 2. (33)

We computed the time series of the state variable X(t) = [x(t), y(t)]� through direct numerical
simulations of Eqs. (26) and (27), and evaluated the approximation accuracy of the generalized phase
equation (8) by the mean square error MSE(Ωd) defined as

MSE(Ωd) =
1
τ

∫ τ

0

[
θ̇exact(t) − θ̇approx(t)

]2
dt, (34)

where θ̇approx(t) is a predicted value of θ̇(t) obtained by plugging θ(t) = Θ(x(t), y(t), q(εt)) into the
generalized phase equation (8), and θ̇exact(t) is the exact value of θ̇(t) given by

θ̇exact(t) =
∂Θ(x(t), y(t), q(εt))

∂x
F1(x(t), y(t), I(t)) +

∂Θ(x(t), y(t), q(εt))
∂y

F2(x(t), y(t), I(t))

+
∂Θ(x(t), y(t), q(εt))

∂q

dq(εt)
dt

, (35)

which can be directly calculated from the time series of X(t), q(εt) and I(t). Note that the exact
value of θ̇(t) (Eq. (35)) also depends on the value of Ωd, because the definition of the phase variable
θ(t) (Eq. (34)) itself depends on Ωd.
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Figure 1 shows the time series of I(t), q(εt) and σp(t) for Ωd = 0.5, 2, 5 and 10 and γ = 5. Figure 2
shows the mean square error MSE(Ωd). We see that MSE(Ωd) has a minimum for each value of the
parameter γ, which is in reasonable agreement with the criterion (23), i.e., λc = 2. Though the
criterion (23) proposed in this paper is based on a simplifying assumptions, these results indicate that
our criterion is able to give a reasonable threshold frequency Ωd.

5. Conclusion
In this paper, we proposed a simple criterion of the threshold frequency for timescale decomposition
of the external input for generalized phase reduction of limit-cycle oscillators. Under the assumptions
that the amplitude relaxation is sufficiently fast and the timescale of the amplitude relaxation can be
characterized by the second largest Floquet exponent of the oscillator when it is driven by a constant
long-time average of the input, we derived a criterion for choosing the threshold frequency, which
is simple and physically reasonable. We confirmed the validity of our criterion by direct numerical
simulations. The criterion proposed in this paper is simple and easy to use, and thus it will be helpful
in the engineering applications of the generalized phase reduction method, e.g., optimal design of
circuit oscillators [7, 8] and optimal control of periodically spiking neurons [10, 11].
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Appendix

A. Variable transformation
In the following appendices, we briefly review the derivation of the generalized phase equation (8),
including the transformation of the state variable X(t) to the phase variable θ(t) and the amplitude
variable r(t), and the relation between the sensitivity functions, Eq. (16). The results shown here are
the same as those given in the Supplementary Information of our previous paper, [13].

We consider a limit-cycle oscillator whose dynamics depends on a time-varying input I(t):

Ẋ(t) = F (X(t), I(t)). (A-1)

The state variable X(t) is assumed to be two-dimensional here, but the result can be extended to
higher-dimensional cases. As argued in the Supplementary Information of [14] by Goldobin et al., we
can define a phase θ = Θ(X, I) and an amplitude r = R(X, I) of the oscillator satisfying

∂Θ(X, I)
∂X

· F (X, I) = ω(I), (A-2)

∂R(X, I)
∂X

· F (X, I) = −λ(I)R(X, I), (A-3)

where λ(I) is the absolute value of the second Floquet exponent of the oscillator for constant I. Thus,

θ̇(t) = ω(I), ṙ(t) = −λ(I)r (A-4)

when the input I is constant and in the given range A ⊂ R
m.

When the parameter I(t) varies with time, we decompose I(t) into a slowly varying component
q(εt) and remaining weak fluctuations σp(t) as I(t) = q(εt) + σp(t), and define the phase θ(t) and
the amplitude r(t) of the oscillator as

θ(t) = Θ(X(t), q(εt)), (A-5)

r(t) = R(X(t), q(εt)). (A-6)

The dynamical equations for θ(t) and r(t) are then given by
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θ̇ =
∂Θ(X, I)

∂X

∣∣∣∣
(X,q(εt))

· dX(t)
dt

+
∂Θ(X, I)

∂I

∣∣∣∣
(X,q(εt))

· dq(εt)
dt

, (A-7)

ṙ =
∂R(X, I)

∂X

∣∣∣∣
(X,q(εt))

· dX(t)
dt

+
∂R(X, I)

∂I

∣∣∣∣
(X,q(εt))

· dq(εt)
dt

. (A-8)

Plugging I(t) = q(εt) + σp(t) into Eq. (A-1) and expanding it in σ, we obtain

Ẋ = F (X, q(εt)) + σG(X, q(εt))p(t) + O(σ2), (A-9)

where G(X, q) is the matrix defined in the main article as G(j,k)(X, q) := ∂Fj(X,q)
∂qk

(j, k = 1, 2 here).
Substituting Eqs. (A-2), (A-3), and (A-9) into Eqs. (A-7) and (A-8), we obtain

θ̇ = ω(q(εt)) + σ
∂Θ(X, I)

∂X

∣∣∣∣
(X,q(εt))

· G(X, q(εt))p(t) + ε
∂Θ(X, I)

∂I

∣∣∣∣
(X,q(εt))

· q̇(εt) + O(σ2),

(A-10)

ṙ = −λ(q(εt))r + σ
∂R(X, I)

∂X

∣∣∣∣
(X,q(εt))

· G(X, q(εt))p(t) + ε
∂R(X, I)

∂I

∣∣∣∣
(X,q(εt))

· q̇(εt) + O(σ2),

(A-11)

where q̇(εt) = dq(εt)/d(εt). By defining ζθ(θ, r, I) ∈ R
m, ζr(θ, r, I) ∈ R

m, ξθ(θ, r, I) ∈ R
m and

ξr(θ, r, I) ∈ R
m, respectively, as

ζθ(θ, r, I) = G(X, I)�
∂Θ(X, I)

∂X

∣∣∣∣
X=X(θ,r,I)

, (A-12)

ζr(θ, r, I) = G(X, I)�
∂R(X, I)

∂X

∣∣∣∣
X=X(θ,r,I)

, (A-13)

ξθ(θ, r, I) =
∂Θ(X, I)

∂I

∣∣∣∣
X=X(θ,r,I)

, (A-14)

ξr(θ, r, I) =
∂R(X, I)

∂I

∣∣∣∣
X=X(θ,r,I)

, (A-15)

where X(θ, r, I) ∈ R
2 represents an oscillator state with θ = Θ(X, I), r = R(X, I), and parameter

I, Eqs. (A-10) and (A-11) can be written as

θ̇ = ω(q(εt)) + σζθ(θ, r, q(εt)) · p(t) + εξθ(θ, r, q(εt)) · q̇(εt) + O(σ2), (A-16)

ṙ = −λ(q(εt))r + σζr(θ, r, q(εt)) · p(t) + εξr(θ, r, q(εt)) · q̇(εt) + O(σ2). (A-17)

Here, ζθ(θ, 0, I) and ξθ(θ, 0, I) with r = 0 correspond to the sensitivity functions ζ(θ, I) and ξ(θ, I)
defined in the main article. The other two functions ζr(θ, r, I) and ξr(θ, r, I) represent sensitivities
of the amplitude variable to the small fluctuations and to the slowly varying component of the input,
respectively.

When λ(q(εt)) is sufficiently large, the amplitude r(t) takes tiny values around 0, and the phase θ(t)
approximately obeys Eq. (A-16) with r = 0, i.e., the generalized phase equation (8), which yields an
approximation error of O(r). See [13] for a detailed discussion on the validity of the approximation.

B. Derivation of Eq. (16)
In this Appendix, we derive Eq. (16). As explained in the main article, we assume the existence of
a stable limit-cycle orbit X0(t, I) with frequency ω(I) satisfying dX0(t, I)/dt = F (X0(t, I), I) that
smoothly depends on I for each constant I ∈ A. We denote the phase of the oscillator as θ(t) = ω(I)t,
and represent the oscillator state as X0(t, I) = X0(θ(t), I) by using the phase θ(t) instead of t.

We differentiate both sides of Eq. (A-3) with respect to I and plug in X = X0(θ, I). From the
left-hand side, we obtain

∂

∂I

[
∂R(X, I)

∂X
· F (X, I)

]∣∣∣∣
X=X0(θ,I)

=
[

∂

∂X

(
∂R(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

+ ζr(θ, 0, I), (B-1)
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where we used the definition of G(X, I) and Eq. (A-13) with r = 0. The first term on the right-hand
side can be further calculated as[

∂

∂X

(
∂R(X, I)

∂I

)]
F (X, I)

∣∣∣∣
X=X0(θ,I)

=
[

∂

∂X

(
∂R(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

dX0(θ(t), I)
dt

= ω(I)
[

∂

∂X

(
∂R(X, I)

∂I

)]∣∣∣∣
X=X0(θ,I)

∂X0(θ, I)
∂θ

= ω(I)
∂

∂θ

(
∂R(X, I)

∂I

)∣∣∣∣
X=X0(θ,I)

= ω(I)
∂ξr(θ, 0, I)

∂θ
, (B-2)

where we used the chain rule for the derivative ∂/∂θ and Eq. (A-15). Similarly, by differentiating the
right-hand side of Eq. (A-3) with respect to I, we can derive

∂

∂I
[−λ(I)R(X, I)]

∣∣∣∣
X=X0(θ,I)

= −
[
dλ(I)

dI
R(X, I) + λ(I)

∂R(X, I)
∂I

]∣∣∣∣
X=X0(θ,I)

= −λ(I)ξr(θ, 0, I),

(B-3)

where we used R(X, I)
∣∣
X=X0(θ,I)

= 0. Thus, we obtain a linear first-order ordinary differential
equation for ξr(θ, 0, I),

ω(I)
∂ξr(θ, 0, I)

∂θ
+ ζr(θ, 0, I) = −λ(I)ξr(θ, 0, I), (B-4)

which can be solved as

ξr(θ, 0, I) = − 1
ω(I)

∫ θ

−∞
eλ(I)(θ′−θ)/ω(I)ζr(θ′, 0, I)dθ′ =

1
λ(I)

∫ ∞

0
e−sζr

(
θ − ω(I)

λ(I)
s, 0, I

)
ds. (B-5)

By expanding the integrand, the order of ξr(θ, 0, I) can be estimated as

ξr(θ, 0, I) =
1

λ(I)

∫ ∞

0
e−sζr(θ, 0, I)ds + O

(
1

λ(I)2

)

=
1

λ(I)
ζr(θ, 0, I) + O

(
1

λ(I)2

)
, (B-6)

which gives Eq. (16).
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