# A CRITERION FOR UNIFORM INTEGRABILITY OF EXPONENTIAL MARTINGALES 

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

tatsuya Okada

(Received November 28, 1981, revised April 17, 1982)

Let $(\Omega, F, P)$ be a complete probability space equipped with a nondecreasing right continuous family $\left(F_{t}\right)$ of sub $\sigma$-fields of $F$ such that $F_{0}$ contains all null sets. We shall use the notations given in Meyer [5]. Let $M$ be a local martingale with $M_{0}=0, M^{c}$ its continuous part and $\left\langle M^{c}\right\rangle$ the increasing process associated with $M^{c}$. We put $\Delta M_{.}=M_{.}-M_{.-}$ and assume the condition $\Delta M .>-1$ throughout this note. Denote the exponential martingale of $M$ by $\mathscr{E}(M)$, that is, $\mathscr{E}(M)_{t}=\exp \left\{M_{t}-\right.$ $\left.(1 / 2)\left\langle M^{c}\right\rangle_{t}+(\log (1+x)-x) \cdot \mu_{t}\right\}$, where $\mu$ is the integer valued random measure associated with jumps of $M$. As is well-known, $\mathscr{E}(M)$ is a positive supermartingale with $\mathscr{E}(M)_{0}=1$ but it is not always a uniformly integrable martingale. Girsanov [1] raised the problem of finding a sufficient condition for the process $\mathscr{E}(M)$ to be a uniformly integrable martingale. The purpose of this paper is to establish the following.

Theorem. If, for some $\alpha$ with $0 \leqq \alpha<1$ and a non-negative constant $C$,

$$
\begin{align*}
\left(\operatorname { e x p } \left\{\alpha M_{S}\right.\right. & +((1 / 2)-\alpha)\left\langle M^{c}\right\rangle_{S}-(1-\alpha) C\left\langle M^{c}\right\rangle_{S}^{1 / 2}  \tag{1}\\
& \left.\left.+\left(\log (1+x)-x+(1-\alpha) x^{2} /(1+x)\right) \cdot \mu_{s}\right\}\right)_{s \in \mathscr{S}_{b}}
\end{align*}
$$

is uniformly integrable, then $\mathscr{E}(M)$ is a uniformly integrable martingale. Here $\mathscr{S}_{b}$ denotes the set of all bounded stopping times.

Remark 1. The above theorem is an improvement of the results in Novikov [6], [8], Kazamaki [2], and Lépingle and Mémin [4]. For example, our theorem implies the result in [8] (resp. [4]) in the case of $\Delta M=0$ and $\alpha=1 / 2$ (resp. $C=0$ ).

Remark 2. Let $\tilde{M}=M-\left(\left\langle M^{c}\right\rangle-C\left\langle M^{c}\right\rangle^{1 / 2}\right)-\left(x^{2} /(1+x)\right) \cdot \mu$ and $A^{(\alpha)}=$ $\log \mathscr{E}(M)-(1-\alpha) \widetilde{M}$. If $\left\{\exp \left(A_{s}^{(\alpha)}\right)\right\}_{s_{\epsilon} \mathscr{S}_{b}}$ is uniformly integrable for some $\alpha$ with $0 \leqq \alpha<1$, then so is $\left\{\exp \left(A_{S}^{(\beta)}\right)\right\}_{S \in \mathscr{S}_{b}}$ for every $\beta$ with $\alpha<\beta<1$. Indeed, letting $S \in \mathscr{S}_{b}$, we have

$$
\begin{aligned}
\exp \left(A_{S}^{(\beta)}\right) & =\mathscr{E}(M)_{S} \exp \left\{-(1-\beta) \tilde{M}_{S}\right\} \\
& =\mathscr{E}(M)_{S}^{(\beta-\alpha) /(1-\alpha)} \mathscr{E}(M)_{S}^{(1-\beta) /(1-\alpha)} \exp \{-(1-\beta) \tilde{M}\}
\end{aligned}
$$

Applying Hölder's inequality to the right hand side, we have

$$
\begin{aligned}
E\left[I_{B} \exp \left(A_{S}^{(\beta)}\right)\right] & \leqq E\left[\mathscr{E}(M)_{S}\right]^{(\beta-\alpha) /(1-\alpha)} E\left[I_{B} \mathscr{B}(M)_{s} \exp \left\{-(1-\alpha) \tilde{M}_{S}\right\}\right]^{(1-\beta) /(1-\alpha)} \\
& \leqq E\left[I_{B} \exp \left(A_{S}^{(\alpha)}\right)\right]^{(1-\beta) /(1-\alpha)},
\end{aligned}
$$

for each $B \in F$.
Remark 3. We give an example which satisfies the condition (1) of Theorem, but does not satisfy that of Lépingle and Mémin [4]. Let $\left(B_{t}\right)_{t \geq 0}$ be a one-dimensional Brownian motion with $B_{0}=0$ defined on a probability space $(\Omega, F, P)$. We consider a stopping time $\tau$ given by $\tau=\inf \left\{t ; B_{t} \leqq t-t^{1 / 2}-1\right\}$. We set $M=B^{\tau}$. Then putting $C=0$, since $\tau \notin L^{1}$ and $\tau<\infty$ a.s., we have

$$
\begin{aligned}
& E\left[\exp \left\{\alpha M_{\infty}+(1 / 2-\alpha)\langle M\rangle_{\infty}\right\}\right]=E\left[\exp \left\{\alpha\left(\tau-\tau^{1 / 2}-1\right)+(1 / 2-\alpha) \tau\right\}\right] \\
& \quad=E\left[\exp \left\{(1 / 2) \tau-\alpha \tau^{1 / 2}-\alpha\right\}\right] \\
& \quad=E\left[\exp \left\{(1 / 2)\left(\tau^{1 / 2}-1\right)^{2}+(1-\alpha)\left(\tau^{1 / 2}+1\right)-3 / 2\right\}\right] \\
& \quad \geqq E\left[\exp \left\{(1-\alpha)\left(\tau^{1 / 2}+1\right)-3 / 2\right\}\right]=\infty
\end{aligned}
$$

Therefore $M$ does not satisfy the condition of Lépingle and Mémin [4]. But, putting $C=1$, we find that for every $T \in \mathscr{S}_{b}$

$$
\begin{aligned}
& E\left[\exp \left\{\alpha M_{T}+(1 / 2-\alpha)\langle M\rangle_{T}-(1-\alpha)\langle M\rangle_{T}^{1 / 2}\right\}\right] \\
& \quad=E\left[\exp \left\{\alpha B_{T \wedge \tau}+(1 / 2-\alpha) T \wedge \tau-(1-\alpha)(T \wedge \tau)^{1 / 2}\right\}\right] \\
& \quad \leqq E\left[\exp \left\{\alpha B_{T \wedge \tau}+(1 / 2-\alpha) T \wedge \tau+(1-\alpha)\left(B_{T \wedge \tau}-T \wedge \tau+1\right)\right\}\right] \\
& \quad=E\left[\exp \left\{B_{T \wedge \tau}-(1 / 2) T \wedge \tau+(1-\alpha)\right\}\right] \\
& \quad=(\exp (1-\alpha)) E\left[\mathscr{E}(M)_{T}\right] \leqq \exp (1-\alpha)
\end{aligned}
$$

Therefore $M$ satisfies the condition (1) of Therorem.
To prove Theorem, we need the following lemmas.

## Lemma 1. The inequality

$$
\begin{equation*}
(\mathscr{E}(M))^{\lambda} \leqq \mathscr{E}(\lambda M) \leqq \mathscr{E}(M) \exp \left\{(\lambda-1) \tilde{M}+C^{2} / 2\right\} \tag{2}
\end{equation*}
$$

hold for every $\lambda$ with $0 \leqq \lambda \leqq 1$.
Proof. By an easy calculation we have

$$
\lambda \log (1+x) \leqq \log (1+\lambda x) \leqq \log (1+x)+(\lambda-1) x /(1+x)
$$

for $x>-1$ and so

$$
\begin{aligned}
(\mathscr{E}(M))^{\lambda} & =\exp \lambda\left\{M-(1 / 2)\left\langle M^{c}\right\rangle+(\log (1+x)-x) \cdot \mu\right\} \\
& \leqq \exp \left\{\lambda M-\left(\lambda^{2} / 2\right)\left\langle M^{c}\right\rangle+(\log (1+\lambda x)-\lambda x) \cdot \mu\right\}=\mathscr{E}(\lambda M)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \mathscr{E}(M) \exp \left\{(\lambda-1) M-(\lambda-1)\left(\left\langle M^{c}\right\rangle-C\left\langle M^{c}\right\rangle^{1 / 2}\right)\right. \\
&\left.-(\lambda-1)\left(x^{2} /(1+x)\right) \cdot \mu-(1 / 2)\left\{(\lambda-1)\left\langle M^{c}\right\rangle^{1 / 2}+C\right\}^{2}+C^{2} / 2\right\} \\
& \leqq \mathscr{E}(M) \exp \left\{(\lambda-1) \widetilde{M}+C^{2} / 2\right\} .
\end{aligned}
$$

Lemma 2. Let $0 \leqq \alpha<1$ and $0 \leqq \lambda \leqq 1$. Then we have the following inequalities:

$$
\begin{gather*}
\mathscr{E}(\lambda M) \leqq \mathscr{C}(M)^{(\lambda-\alpha) /(1-\alpha)} \exp \left\{(1-\lambda) A^{(\alpha)} /(1-\alpha)+C^{2} / 2\right\},  \tag{3}\\
\mathscr{E}(\lambda M) \leqq \exp \left\{(\lambda-\alpha) \widetilde{M}+A^{(\alpha)}+C^{2} / 2\right\} \tag{4}
\end{gather*}
$$

Proof. From the definition of $A^{(\alpha)}$, it follows immediately that $\tilde{M}=\left(\log \mathscr{E}(M)-A^{(\alpha)}\right) /(1-\alpha)$ and $\mathscr{E}(M)=\exp \left\{A^{(\alpha)}+(1-\alpha) \tilde{M}\right\}$. Then we have

$$
\begin{aligned}
\mathscr{E}(\lambda M) & \leqq \mathscr{E}(M) \exp \left\{(\lambda-1) \tilde{M}+C^{2} / 2\right\} \\
& =\mathscr{E}(M) \exp \left\{((\lambda-1) /(1-\alpha))\left(\log \mathscr{E}(M)-A^{(\alpha)}\right)+C^{2} / 2\right\} \\
& =\mathscr{E}(M)^{(\lambda-\alpha) /(1-\alpha)} \exp \left\{(1-\lambda) A^{(\alpha)} /(1-\alpha)+C^{2} / 2\right\}
\end{aligned}
$$

Hence

$$
\begin{align*}
\mathscr{E}(\lambda M) & \leqq \mathscr{E}(M) \exp \left\{(\lambda-1) \widetilde{M}+C^{2} / 2\right\} \\
& =\exp \left\{A^{(\alpha)}+(1-\alpha) \widetilde{M}+(\lambda-1) \tilde{M}+C^{2} / 2\right\} \\
& =\exp \left\{(\lambda-\alpha) \widetilde{M}+A^{(\alpha)}+C^{2} / 2\right\} .
\end{align*}
$$

We now prove Theorem. Since $\mathscr{E}(M)$ is a positive local martingale, we have $E\left[\mathscr{C}(M)_{\infty}\right] \leqq 1$. Therefore, $\mathscr{E}(M)$ is a uniformly integrable martingale if and only if $E\left[\mathscr{C}(M)_{\infty}\right] \geqq 1$. We prove Theorem by applying the method in [4]. We define the stopping time $T_{k}$ by

$$
T_{k}=\inf \left\{t>0 ; \widetilde{M}_{t} \leqq-k\right\}, \quad k=1,2, \cdots
$$

We show first that $\mathscr{E}(\lambda M)$ is a uniformly integrable martingale for any fixed $\lambda$ with $\alpha<\lambda<1$. Letting $B \in F$ and $S \in \mathscr{S}_{b}$, we have, by (3)

$$
E\left[I_{B} \mathscr{C}(\lambda M)_{S}\right] \leqq\left(\exp \left(C^{2} / 2\right)\right) E\left[I_{B} \mathscr{G}(M)_{S}^{(\lambda-\alpha) /(1-\alpha)} \exp \left\{(1-\lambda) A_{S}^{(\alpha)} /(1-\alpha)\right\}\right]
$$

Applying Hölder's inequality with exponents $(1-\alpha) /(\lambda-\alpha)>1$ and $(1-\alpha) /(1-\lambda)$ we first show that the right hand side of the above inequality is smaller than

$$
\left(\exp \left(C^{2} / 2\right)\right) E\left[\mathscr{C}(M)_{S}\right]^{(1-\alpha) /(1-\alpha)} E\left[I_{B} \exp A_{S}^{(\alpha)}\right]^{(1-\alpha) /(1-\alpha)},
$$

which is dominated by

$$
\left(\exp \left(C^{2} / 2\right)\right) E\left[I_{B} \exp A_{S}^{(\alpha)}\right]^{(1-2) /(1-\alpha)} .
$$

Since $\left\{\exp A_{S}^{(\alpha)}\right\}_{S \in \mathscr{S}_{b}}$ is uniformly integrable by assumption, so is $\mathscr{E}(\lambda M)$. Next we consider the family $\left\{\mathscr{E}(\lambda M)_{T_{k}} ; \alpha \leqq \lambda \leqq 1\right\}$ for each $k$. By using
(2) and (4), we have

$$
\begin{aligned}
\mathscr{C}(\lambda M)_{T_{k}}= & I_{\left\{T_{k}=\infty \mid\right.} \mathscr{E}(\lambda M)_{T_{k}}+I_{\left\{T_{k}<\infty\right\}} \mathscr{E}(\lambda M)_{T_{k}} \\
\leqq & I_{\left\{T_{k}=\infty\right)} \mathscr{E}(M)_{T_{k}} \exp \left\{(1-\lambda) k+C^{2} / 2\right\} \\
& +I_{\left\{T_{k}<\infty\right\}} \exp \left\{(\alpha-\lambda) k+A_{T_{k}}^{(\alpha)}+C^{2} / 2\right\} \\
\leqq & \mathscr{E}(M)_{T_{k}} \exp \left\{k+C^{2} / 2\right\}+I_{\left\{T_{k}<\infty\right\rangle} \exp \left\{A_{T_{k}}^{(\alpha)}+C^{2} / 2\right\},
\end{aligned}
$$

for each $\lambda$ with $\alpha \leqq \lambda \leqq 1$. The last expression, which is independent of $\lambda$, is integrable, hence $\left\{\mathscr{E}(\lambda M)_{T_{k}} ; \alpha \leqq \lambda \leqq 1\right\}$ is uniformly integrable. Then $\mathscr{E}(\lambda M)_{T_{k}} \rightarrow \mathscr{E}(M)_{T_{k}}$ in $L^{1}$ as $\lambda \rightarrow 1$, since $\mathscr{E}(\lambda M)_{T_{k}} \rightarrow \mathscr{E}(M)_{T_{k}}$ a.e. as $\lambda \rightarrow 1$. Combining this fact with the uniform integrability of $\left(\mathscr{E}(\lambda M)_{t}\right)_{t \geq 0}$, we have $E\left[\mathscr{E}(M)_{T_{k}}\right]=\lim _{\lambda \rightarrow 1} E\left[\mathscr{E}(\lambda M)_{T_{k}}\right]=1$. On the other hand, recalling the uniform integrability of $\left\{\exp A_{S}^{(\alpha)}\right\}_{S \in \mathscr{S}_{b}}$ and using (4), we find

$$
\begin{aligned}
E\left[\mathscr{E}(M)_{T_{k}} I_{\left\langle T_{k}<\infty\right)}\right] & \leqq(\exp \{-(1-\alpha) k\}) E\left[\exp \left(A_{T_{k}}^{(\alpha)}\right) I_{\left.\mid T_{k}<\infty\right)}\right] \\
& \leqq(\exp \{-(1-\alpha) k\}) \sup _{S \in \mathscr{S}_{b}} E\left[\exp \left(A_{S}^{(\alpha)}\right)\right] \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. Consequently, we have

$$
\begin{aligned}
1 & =E\left[\mathscr{C}(M)_{T_{k}}\right]=E\left[\mathscr{E}(M)_{T_{k}} I_{\left\{r_{k}<\infty\right\rangle}\right]+E\left[\mathscr{C}(M)_{\infty} I_{\left\{T_{k}=\infty\right)}\right] \\
& \leqq E\left[\mathscr{E}(M)_{T_{k}} I_{\left\{T_{k}<\infty\right\}}\right]+E\left[\mathscr{C}(M)_{\infty}\right] .
\end{aligned}
$$

Letting $k \rightarrow \infty$, we obtain $E\left[\mathscr{C}(M)_{\infty}\right] \geqq 1$, which completes the proof.

## References

[1] I. V. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theor. Probability Appl. 5 (1960), 285-301.
[2] N. Kazamaki, On a problem of Girsanov, Tôhoku Math. J. 29 (1977), 597-600.
[3] D. Lépingle and J. Mémin, Sur l'intégrabilité uniforme des martingales exponentielles, Z. Wahrsch. Gebiete 42 (1978), 175-203.
[4] D. Lepingle and J. Memin, Intégrabilité uniforme et dans $L^{r}$ des martingales exponentielles, Mathématiques et Informatique de Renne, Fascicule 1 (1978).
[5] P. A. Meyer, Un cours sur les intégrales stochastiques, Lecture Notes in Math. 511, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[6] A. A. Novikov, On an identity for stochastic integrals, Theor. Probability Appl. 17 (1972), 717-720.
[7] A. A. Novikov, On conditions for uniform integrability of continuous non-negative martingales, Theor. Probability Appl. 24 (1979), 820-824.
[8] A. A. Novikov, On conditions for uniform integrability for continuous exponential martingales, Lecture Notes in control and Information Sciences 25 (1978), SpringerVerlag, Berlin-Heidelberg-New York, 304-310.
Mathematical Institute
TôHoku University
Sendai, 980
Japan

