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Let (Ω, F, P) be a complete probability space equipped with a non-
decreasing right continuous family (Ft) of sub σ-fields of F such that Fo

contains all null sets. We shall use the notations given in Meyer [5].
Let M be a local martingale with Mo = 0, Mc its continuous part and
(Mc) the increasing process associated with Mc. We put ΔM9 = Af. — M,_
and assume the condition AM. > — 1 throughout this note. Denote the
exponential martingale of M by ί?(Λf), that is, &(M)t = exp{ikft —
(l/2)<ikP>t + (log(l + x) — x)-μt}9 where μ is the integer valued random
measure associated with jumps of M. As is well-known, l?(Λf) is a
positive supermartingale with S?(Λf)o = 1 but it is not always a uniformly
integrable martingale. Girsanov [1] raised the problem of finding a
sufficient condition for the process i?(ΛΓ) to be a uniformly integrable
martingale. The purpose of this paper is to establish the following.

THEOREM. //, for some a with 0 <; a < 1 and a non-negative
constant C,

(1) (exp {aMs + ((1/2) - α)<M% - (1 - a)C(M°)T

+ (log (1 + x) - x + (1 - α)a?V(l + x)) - μs})s^b

is uniformly integrable, then $?(M) is a uniformly integrable martingale.
Here Sή> denotes the set of all bounded stopping times.

REMARK 1. The above theorem is an improvement of the results in
Novikov [6], [8], Kazamaki [2], and Lepingle and Memin [4]. For ex-
ample, our theorem implies the result in [8] (resp. [4]) in the case of
ΔM = 0 and a = 1/2 (resp. C = 0).

REMARK 2. Let M = M- «ikP> - C(Mc)ί/2) - (x2/(l + x))>μ and A{a) =
log ί?(Af) — (1 — a)M. If {exp (Aiα))}56 ̂  is uniformly integrable for some
a with 0 ^ a < 1, then so is {exp (Aψ)}s*&b for every β with a < β < 1.
Indeed, letting SeSΊ, we have
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exp (A(iη = &{M)a exp {- (1 - β)Ms}
α-α) exp {-(1 - β)M).

Applying Holder's inequality to the right hand side, we have

E[IBexv(Af)] ^ E[ϊ?(M)sγe-α)/α-α)E[IBϊ?(M)sexp{-α - α)Ms)r-β)/α-α)

^ E[IB exp (Aί?')]'1-^'1-"' ,

for each BeF.

REMARK 3. We give an example which satisfies the condition (1)
of Theorem, but does not satisfy that of Lepingle and Memin [4]. Let
(jBt)4δ0 be a one-dimensional Brownian motion with Bo = 0 defined on a
probability space (Ω, F, P). We consider a stopping time r given by
τ = inf {t; Bt ^ t - tm - 1}. We set M = Bτ. Then putting C = 0, since
τihx and τ < °° a.s., we have

(1/2 - α)(M)J] = #[exp{α(r - r1/2 - 1) + (1/2 - α)τ}]

- αr1/2 - α}]

= #[exp {(l/2)(τ1/2 - I)2 + (1 - α)(τ1/2 + 1) - 3/2}]

^ S[exp {(1 - α)(τm + 1) - 3/2}] = ~ .

Therefore M does not satisfy the condition of Lepingle and Memin [4].
But, putting C = 1, we find that for every T e &Ί>

#[exp {<xMT + (1/2 - α)(M)τ - (1 - α)<Jlί>f}]

= #[exp {αBTAτ + (1/2 - α)T A r - (1 - α)(Γ Λ r)1/2}]

^ ^[exp{αBΓΛr + (1/2 - « ) Γ Λ τ + ( l - α)(BTΛτ - Γ Λ r + 1)}]

= #[exp {BΓΛf - (1/2)Γ Λ r + (1 - «)}]

= (exp (1 - αJ^tg'ίAf)Γ] ^ exp (1 - α ) .

Therefore ikf satisfies the condition (1) of Therorem.

To prove Theorem, we need the following lemmas.

LEMMA 1. The inequality

(2) (&{M)Y ^ 8*(λJf) ^ g'(M) exp {(λ - 1)M + C2/2},

hold for every λ with 0 sΞ λ ϊ£ 1.

PROOF. By an easy calculation we have

λ log (1 + x) ^ log (1 + λa&) ̂  log (1 + a;) + (λ - 1)»/(1 + x)

for x > — 1 and so

(Sf (ΛΓ))a = exp λ{M - (1/2)<MC> + (log (1 + *) - x) μ)

^ exp {XM - (λV2)<M0> + (log (1 + Xx) - Xx) - μ) =
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exp {(λ - 1)M - (λ - 1)«MC> - C(Me)m)

- (λ - I)(α2/(1 + a?)) μ - (l/2){(λ - 1)<MC>1/2 + C}2 + C2/2}

^ gf (M) exp {(λ - l)iίf + C2/2} .

LEMMA 2. Let 0 ^ α < 1 and 0 <: λ <; 1. TΛew we have the follow-
ing inequalities:

( 3 ) if (λikf) ^ ^{M)a-a)ni-a) exp {(1 - λ)A(α)/(l - α) + C2/2} ,

( 4 ) gf (λikf) ^ exp {(λ - a)M + A(α) + C2/2} .

PROOF. From the definition of A{a), it follows immediately that
M = (log gf (M) - A(α))/(1 - a) and g'CΛf) = exp {A(α) + (1 - α ) # } . Then
we have

if (λM) ^ g'Cilf) exp {(λ - 1)M + C2/2}

exp {((λ - 1)/(1 - α))(log &(M) - AM) + C2/2}
α)/(1-α) exp{(l - λ)A(α)/(l - α) + C2/2} .

Hence

Ϊ?(XM) ^ &(M) exp {(λ - 1)M + C2/2}

= exp {A(α) + (1 - α)Jίϊ + (λ - 1)M + C2/2}

= exp {(λ - ά)M + A{a) + C2/2} . q.e.d.

We now prove Theorem. Since if (ikf) is a positive local martingale,
we have E[^{M)^\ ^ 1. Therefore, <ί?(M) is a uniformly integrable
martingale if and only if E^iM)^] ^ 1. We prove Theorem by apply-
ing the method in [4]. We define the stopping time Tk by

Tk = inf {ί > 0; Mt £ -k] , k = 1, 2, . .

We show first that £?(λAf) is a uniformly integrable martingale for any
fixed λ with a < λ < 1. Letting B e f and Se<9*b, we have, by (3)

E[IB&(\M)S] ^ (exv(C2l2))E[IBϊf(Mys

λ-a)ni~a) exp{(l - λ)^ α ) /( l - a)}] .

Applying Holder's inequality with exponents (1 — α)/(λ — a) > 1 and
(1 — α)/(l — λ) we first show that the right hand side of the above
inequality is smaller than

(exp {C2β))E[^{M)s]
a-a)nι-a)E[IB exp A{

s

aψ-λ)/a'a) ,

which is dominated by

(exp (C2/2))E[IB exp A{

8

a)]{1-λ)/{1-a) .

Since {exp Ast)}serb is uniformly integrable by assumption, so is i?(λilf).
Next we consider the family {ί?(XM)Tje; a ^ λ ^ 1} for each k. By using
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(2) and (4), we have

ϊ?(xM)Tk = I{Tk=oo)ξf(xM)Tk + I{Tk<QO)&{xM)Tk

^ I{Tk=oo]ϊ?(M)Tkexv{(l - X)k + C2/2}

+ I{Tk<oo} exp {(a - X)k + Aft + C2/2}

^ ξ?(M)Tk exp {k + C2/2} + I{Tk<OΛ) exp {Aft + C2/2} ,

for each X with a <; X ^ 1. The last expression, which is independent
of λ, is integrable, hence {&(xM)Tk, a <; X ^ 1} is uniformly integrable.
Then §f(λM)Γfc-> ^(M)Γ f c in U as λ-> 1, since ^(λΛf)^-* &(M)Tk a.e. as
λ -> 1. Combining this fact with the uniform integrability of (^(xM)t)t^Of

we have E[&(M)Th] = lim^ E[&(\M)Th] = 1. On the other hand,
recalling the uniform integrability of {exp A^]}Se^b and using (4), we
find

E[ί?(M)TkI{Tk<<»}] ^ ( e x p { - ( l - a)k})E[exv(Aft)I{Tk<<»}]

^ (exp {-(1 - a)k}) sup £/[exp (Aι

s

a))] -> 0

as fe-> oo. Consequently, we have

1 = tf [Sf (Λf )ΓJ =

^ E[ϊ?(M)TkLTk<oo]]

Letting k-+ <*>, we obtain E\^{M)J^ ^ 1, which completes the proof.
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