Tôhoku Math. Journ. 34 (1982), 495-498.

A CRITERION FOR UNIFORM INTEGRABILITY OF EXPONENTIAL MARTINGALES

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

TATSUYA OKADA

(Received November 28, 1981, revised April 17, 1982)

Let (Ω, F, P) be a complete probability space equipped with a nondecreasing right continuous family (F_i) of sub σ -fields of F such that F_o contains all null sets. We shall use the notations given in Meyer [5]. Let M be a local martingale with $M_o = 0$, M° its continuous part and $\langle M^\circ \rangle$ the increasing process associated with M° . We put $\Delta M_{\cdot} = M_{\cdot} - M_{\cdot}$ and assume the condition $\Delta M_{\cdot} > -1$ throughout this note. Denote the exponential martingale of M by $\mathscr{C}(M)$, that is, $\mathscr{C}(M)_i = \exp\{M_i - (1/2)\langle M^\circ \rangle_i + (\log(1 + x) - x) \cdot \mu_i\}$, where μ is the integer valued random measure associated with jumps of M. As is well-known, $\mathscr{C}(M)$ is a positive supermartingale with $\mathscr{C}(M)_o = 1$ but it is not always a uniformly integrable martingale. Girsanov [1] raised the problem of finding a sufficient condition for the process $\mathscr{C}(M)$ to be a uniformly integrable martingale. The purpose of this paper is to establish the following.

THEOREM. If, for some α with $0 \leq \alpha < 1$ and a non-negative constant C,

$$\begin{array}{ll} (1) \qquad (\exp{\{\alpha M_s+((1/2)-\alpha)\langle M^\circ\rangle_s-(1-\alpha)C\langle M^\circ\rangle_s^{_{1'2}}\\ \qquad +(\log{(1+x)-x}+(1-\alpha)x^2/(1+x))\cdot\mu_s\})_{s\in\mathscr{S},} \end{array}$$

is uniformly integrable, then $\mathcal{C}(M)$ is a uniformly integrable martingale. Here \mathscr{S}_b denotes the set of all bounded stopping times.

REMARK 1. The above theorem is an improvement of the results in Novikov [6], [8], Kazamaki [2], and Lépingle and Mémin [4]. For example, our theorem implies the result in [8] (resp. [4]) in the case of $\Delta M = 0$ and $\alpha = 1/2$ (resp. C = 0).

REMARK 2. Let $\tilde{M} = M - (\langle M^e \rangle - C \langle M^e \rangle^{1/2}) - (x^2/(1+x)) \cdot \mu$ and $A^{(\alpha)} = \log \mathscr{C}(M) - (1-\alpha)\tilde{M}$. If $\{\exp(A_S^{(\alpha)})\}_{s \in \mathscr{S}_b}$ is uniformly integrable for some α with $0 \leq \alpha < 1$, then so is $\{\exp(A_S^{(\beta)})\}_{s \in \mathscr{S}_b}$ for every β with $\alpha < \beta < 1$. Indeed, letting $S \in \mathscr{S}_b$, we have

T. OKADA

$$\exp{(A_S^{(eta)})} = \mathscr{C}(M)_S \exp{\{-(1-eta)\widetilde{M}_S\}} \ = \mathscr{C}(M)_S^{(eta-lpha)/(1-lpha)}\mathscr{C}(M)_S^{(1-eta)/(1-lpha)}\exp{\{-(1-eta)\widetilde{M}\}} \ .$$

Applying Hölder's inequality to the right hand side, we have $E[I_B \exp{(A_S^{(\beta)})}] \leq E[\mathscr{C}(M)_S]^{(\beta-\alpha)/(1-\alpha)} E[I_B \mathscr{C}(M)_S \exp{\{-(1-\alpha)\widetilde{M}_S\}}]^{(1-\beta)/(1-\alpha)}$ $\leq E[I_B \exp{(A_S^{(\alpha)})}]^{(1-\beta)/(1-\alpha)},$

for each $B \in F$.

REMARK 3. We give an example which satisfies the condition (1) of Theorem, but does not satisfy that of Lépingle and Mémin [4]. Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion with $B_0 = 0$ defined on a probability space (Ω, F, P) . We consider a stopping time τ given by $\tau = \inf \{t; B_t \leq t - t^{1/2} - 1\}$. We set $M = B^r$. Then putting C = 0, since $\tau \notin L^1$ and $\tau < \infty$ a.s., we have

$$egin{aligned} &E[\exp\left\{lpha M_{\infty}+(1/2-lpha)\langle M
ight
angle_{\infty}
ight\}]=E[\exp\left\{lpha(au- au^{1/2}-1)+(1/2-lpha) au
ight\}]\ &=E[\exp\left\{(1/2) au-lpha au^{1/2}-lpha
ight\}]\ &=E[\exp\left\{(1/2)(au^{1/2}-1)^2+(1-lpha)(au^{1/2}+1)-3/2
ight\}]\ &\geqq E[\exp\left\{(1-lpha)(au^{1/2}+1)-3/2
ight\}]=\infty \;. \end{aligned}$$

Therefore M does not satisfy the condition of Lépingle and Mémin [4]. But, putting C = 1, we find that for every $T \in \mathscr{S}_b$

$$\begin{split} E[\exp\left\{\alpha M_{T}+(1/2-\alpha)\langle M\rangle_{T}-(1-\alpha)\langle M\rangle_{T}^{1/2}\right\}]\\ &=E[\exp\left\{\alpha B_{T\wedge\tau}+(1/2-\alpha)T\wedge\tau-(1-\alpha)(T\wedge\tau)^{1/2}\right\}]\\ &\leq E[\exp\left\{\alpha B_{T\wedge\tau}+(1/2-\alpha)T\wedge\tau+(1-\alpha)(B_{T\wedge\tau}-T\wedge\tau+1)\right\}]\\ &=E[\exp\left\{B_{T\wedge\tau}-(1/2)T\wedge\tau+(1-\alpha)\right\}]\\ &=(\exp\left(1-\alpha\right))E[\mathscr{C}(M)_{T}]\leq\exp\left(1-\alpha\right). \end{split}$$

Therefore M satisfies the condition (1) of Theorem.

To prove Theorem, we need the following lemmas.

LEMMA 1. The inequality

$$\begin{array}{ll} (2) & (\mathscr{C}(M))^{\lambda} \leqq \mathscr{C}(\lambda M) \leqq \mathscr{C}(M) \exp\left\{(\lambda-1)\tilde{M} + C^{2}/2\right\},\\ hold \ for \ every \ \lambda \ with \ 0 \leqq \lambda \leqq 1. \end{array}$$

PROOF. By an easy calculation we have

 $\lambda \log (1+x) \leq \log (1+\lambda x) \leq \log (1+x) + (\lambda - 1)x/(1+x)$ for x > -1 and so

$$(\mathscr{C}(M))^{\lambda} = \exp \lambda \{M - (1/2)\langle M^{\circ}
angle + (\log (1 + x) - x) \cdot \mu\}$$

 $\leq \exp \{\lambda M - (\lambda^{2}/2)\langle M^{\circ}
angle + (\log (1 + \lambda x) - \lambda x) \cdot \mu\} = \mathscr{C}(\lambda M)$

496

$$\begin{split} &\leq \mathscr{C}(M) \exp \left\{ (\lambda - 1)M - (\lambda - 1)(\langle M^{\circ} \rangle - C \langle M^{\circ} \rangle^{1/2}) \right. \\ &\left. - (\lambda - 1)(x^2/(1 + x)) \cdot \mu - (1/2)\{(\lambda - 1) \langle M^{\circ} \rangle^{1/2} + C\}^2 + C^2/2 \} \\ &\leq \mathscr{C}(M) \exp \left\{ (\lambda - 1)\widetilde{M} + C^2/2 \right\} \,. \end{split}$$

LEMMA 2. Let $0 \leq \alpha < 1$ and $0 \leq \lambda \leq 1$. Then we have the following inequalities:

$$\begin{aligned} (3) \qquad & \mathscr{E}(\lambda M) \leq \mathscr{E}(M)^{(\lambda-\alpha)/(1-\alpha)} \exp\left\{(1-\lambda)A^{(\alpha)}/(1-\alpha) + C^2/2\right\}, \\ (4) \qquad & \mathscr{E}(\lambda M) \leq \exp\left\{(\lambda-\alpha)\widetilde{M} + A^{(\alpha)} + C^2/2\right\}. \end{aligned}$$

PROOF. From the definition of $A^{(\alpha)}$, it follows immediately that $\widetilde{M} = (\log \mathscr{C}(M) - A^{(\alpha)})/(1-\alpha)$ and $\mathscr{C}(M) = \exp \{A^{(\alpha)} + (1-\alpha)\widetilde{M}\}$. Then we have

$$\begin{split} \mathscr{C}(\lambda M) &\leq \mathscr{C}(M) \exp\left\{(\lambda-1)\widetilde{M} + C^2/2
ight\} \ &= \mathscr{C}(M) \exp\left\{((\lambda-1)/(1-lpha))(\log \mathscr{C}(M) - A^{(lpha)}) + C^2/2
ight\} \ &= \mathscr{C}(M)^{(\lambda-lpha)/(1-lpha)} \exp\left\{(1-\lambda)A^{(lpha)}/(1-lpha) + C^2/2
ight\}. \end{split}$$

Hence

$$\begin{split} \mathscr{C}(\lambda M) &\leq \mathscr{C}(M) \exp\left\{(\lambda - 1)\widetilde{M} + C^2/2
ight\} \\ &= \exp\left\{A^{(lpha)} + (1 - lpha)\widetilde{M} + (\lambda - 1)\widetilde{M} + C^2/2
ight\} \\ &= \exp\left\{(\lambda - lpha)\widetilde{M} + A^{(lpha)} + C^2/2
ight\}. \end{split}$$
q.e.d.

We now prove Theorem. Since $\mathscr{C}(M)$ is a positive local martingale, we have $E[\mathscr{C}(M)_{\infty}] \leq 1$. Therefore, $\mathscr{C}(M)$ is a uniformly integrable martingale if and only if $E[\mathscr{C}(M)_{\infty}] \geq 1$. We prove Theorem by applying the method in [4]. We define the stopping time T_k by

$$T_k = \inf \{t > 0; \widetilde{M}_t \leq -k\}$$
, $k = 1, 2, \cdots$.

We show first that $\mathscr{E}(\lambda M)$ is a uniformly integrable martingale for any fixed λ with $\alpha < \lambda < 1$. Letting $B \in F$ and $S \in \mathscr{S}_b$, we have, by (3)

$$E[I_{B}\mathscr{E}(\lambda M)_{S}] \leqq (\exp{(C^{2}/2)})E[I_{B}\mathscr{E}(M)_{S}^{(\lambda-\alpha)/(1-\alpha)}\exp{\{(1-\lambda)A_{S}^{(\alpha)}/(1-\alpha)\}}]$$

Applying Hölder's inequality with exponents $(1 - \alpha)/(\lambda - \alpha) > 1$ and $(1 - \alpha)/(1 - \lambda)$ we first show that the right hand side of the above inequality is smaller than

$$(\exp{(C^2/2)})E[\mathscr{C}(M)_S]^{(\lambda-lpha)/(1-lpha)}E[I_B\exp{A_S^{(lpha)}}]^{(1-\lambda)/(1-lpha)}$$
 ,

which is dominated by

$$(\exp{(C^2/2)})E[I_B\exp{A_S^{(\alpha)}}]^{(1-\lambda)/(1-\alpha)}$$

Since $\{\exp A_s^{(\alpha)}\}_{s \in \mathscr{S}_b}$ is uniformly integrable by assumption, so is $\mathscr{C}(\lambda M)$. Next we consider the family $\{\mathscr{C}(\lambda M)_{T_k}; \alpha \leq \lambda \leq 1\}$ for each k. By using (2) and (4), we have

$$\begin{split} \mathscr{C}(\lambda M)_{T_k} &= I_{{}_{(T_k=\infty)}} \mathscr{C}(\lambda M)_{T_k} + I_{{}_{(T_k<\infty)}} \mathscr{C}(\lambda M)_{T_k} \ &\leq I_{{}_{(T_k=\infty)}} \mathscr{C}(M)_{T_k} \exp\left\{(1-\lambda)k + C^2/2\right\} \ &+ I_{{}_{(T_k<\infty)}} \exp\left\{(lpha-\lambda)k + A_{T_k}^{(lpha)} + C^2/2\right\} \ &\leq \mathscr{C}(M)_{T_k} \exp\left\{k + C^2/2\right\} + I_{{}_{(T_k<\infty)}} \exp\left\{A_{T_k}^{(lpha)} + C^2/2\right\} \end{split}$$

for each λ with $\alpha \leq \lambda \leq 1$. The last expression, which is independent of λ , is integrable, hence $\{\mathscr{C}(\lambda M)_{T_k}; \alpha \leq \lambda \leq 1\}$ is uniformly integrable. Then $\mathscr{C}(\lambda M)_{T_k} \to \mathscr{C}(M)_{T_k}$ in L^1 as $\lambda \to 1$, since $\mathscr{C}(\lambda M)_{T_k} \to \mathscr{C}(M)_{T_k}$ a.e. as $\lambda \to 1$. Combining this fact with the uniform integrability of $(\mathscr{C}(\lambda M)_t)_{t\geq 0}$, we have $E[\mathscr{C}(M)_{T_k}] = \lim_{\lambda \to 1} E[\mathscr{C}(\lambda M)_{T_k}] = 1$. On the other hand, recalling the uniform integrability of $\{\exp A_S^{(\alpha)}\}_{S \in \mathscr{S}_b}$ and using (4), we find

$$\begin{split} E[\mathscr{C}(M)_{T_k}I_{|T_k<\infty|}] &\leq (\exp\left\{-(1-\alpha)k\right\})E[\exp\left(A_{T_k}^{(\alpha)}\right)I_{|T_k<\infty|}]\\ &\leq (\exp\left\{-(1-\alpha)k\right\})\sup_{s\in\mathscr{S}_h}E[\exp\left(A_s^{(\alpha)}\right)] \to 0 \end{split}$$

as $k \to \infty$. Consequently, we have

$$\begin{split} 1 &= E[\mathscr{C}(M)_{T_k}] = E[\mathscr{C}(M)_{T_k} I_{|T_k < \infty|}] + E[\mathscr{C}(M)_{\infty} I_{|T_k = \infty|}] \\ &\leq E[\mathscr{C}(M)_{T_k} I_{|T_k < \infty|}] + E[\mathscr{C}(M)_{\infty}] \;. \end{split}$$

Letting $k \to \infty$, we obtain $E[\mathscr{C}(M)_{\infty}] \ge 1$, which completes the proof.

References

- I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, Theor. Probability Appl. 5 (1960), 285-301.
- [2] N. KAZAMAKI, On a problem of Girsanov, Tôhoku Math. J. 29 (1977), 597-600.
- [3] D. LÉPINGLE AND J. MÉMIN, Sur l'intégrabilité uniforme des martingales exponentielles, Z. Wahrsch. Gebiete 42 (1978), 175-203.
- [4] D. LÉPINGLE AND J. MÉMIN, Intégrabilité uniforme et dans L^r des martingales exponentielles, Mathématiques et Informatique de Renne, Fascicule 1 (1978).
- [5] P. A. MEYER, Un cours sur les intégrales stochastiques, Lecture Notes in Math. 511, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [6] A. A. NOVIKOV, On an identity for stochastic integrals, Theor. Probability Appl. 17 (1972), 717-720.
- [7] A. A. NOVIKOV, On conditions for uniform integrability of continuous non-negative martingales, Theor. Probability Appl. 24 (1979), 820-824.
- [8] A. A. NOVIKOV, On conditions for uniform integrability for continuous exponential martingales, Lecture Notes in control and Information Sciences 25 (1978), Springer-Verlag, Berlin-Heidelberg-New York, 304-310.

Mathematical Institute Tôhoku University Sendai, 980 Japan

498