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§ 1. Introduction

This paper deals with the problem of variable selection in discriminant
analysis with q + 1 populations and a multivariate linear model. The variable
selection is important since there are situations where the deletion of some variables
from the original variables may be preferable for the practical aim of statistical
analysis. A number of step wise procedures have been proposed for reducing the
number of variables required to discriminate among the q + 1 populations (e.g.,
see McCabe [7], Farmer and Freund [2]). McKay [8] has proposed a procedure
for determining all subsets of variables that provide essentially as much separation
among the q +1 populations as the original set of variables, based on a simul-
taneous test procedure in Gabriel's [6] sense.

In this paper we propose a criterion for determining the "best" subset of
variables in the discriminant analysis whose aim is to interpret the differences
among the q + 1 populations in terms of only a few canonical discriminant
variables. We obtain a creterion, based on a model fitting approach. We regard
the problem of finding the "best" subset of variables as one of finding the "best"
model, by introducing a family of parametric models. The parametric models
are based on "no additional information hypotheses" due to Rao [10]. Our
criterion is obtained by applying Akaike's information criterion (Akaike [1])
to choice of the models. The problem of finding the "best" subset of variables
in a multivariate linear model is also discussed. This is a generalization of the
problem of variable selection in the discriminant analysis. Asymptotic distri-
butions of the criterion for variable selection in the multivariate linear model
are obtained, resulting in generalizations of Fujikoshi [5] in the case of two-group
discriminant analysis. The asymptotic distribution in the case when the original
variables are ordered a priori can be reduced to a simple form.

§ 2. Multiple discriminant analysis

Consider q + \ p-variate normal population 77α (α = l,..., q + 1) with means
μΛ and the same covariance matrix Σ. Let x = (xu...9 xp)' be the column vector
of the p variables. Assume that JVα samples from 77α are available. We will
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identify a subset of the variables x l s..., xp by the corresponding subset of the set

of subscripts 1,2,..., p. If j^ljί, j 2 , - >Jku)} *s s u c n a subset of subscripts,

x(j) will denote the vector variable whose components are specified by the

elements of j . We can express x(j) as

(2.1) x(j) = GO)*

where GO') is a fcO)xP matrix whose (α, ja) elements are all one for α = 1,..., k(j)

and other elements are zero. Let J be the family of all possible subsets of the

set of subscripts {1, 2,...,/?}. Then the problem of variable selection may be

regarded as how to select the "best" subset; from J.

It is important to consider the criterion for variable selection such that the

criterion relates as closely as possible to the practical aim of discriminant analysis.

We consider variable selection in the case when we are interested in interpreting

the differences among the q + 1 populations in terms of only a few canonical

discriminant variates. The discriminant analysis with this aim is called descriptive

discriminant analysis. We shall first introduce a family of parametric models

M(j), j GJ such that M(j) means that x(j) is the "best" subset of variables for the

descriptive discriminant analysis. Let Ω be the population between-groups

covariance matrix defined by

(2.2) Ω = Σlϋ (NjN)(μa - μ)(μΛ - μ)'

where μ = (l/N) Σl=\ Naμa and N = N1 + -~ + Nq+1. Then the coefficient vector

αα of the α-th canonical variate ya = a'ax is defined as the solution of

(2.3) ΩaΛ =λaΣaa,a'aΣaβ=δaβ

where λί > ••• >λp>0 are the characteristic roots of Σ~λΩand SΛβ is the Kronecker

delta. Let m be the number of non-zero characteristic roots of Σ~XΩ. Then

m = rank (Ω) < Min (p, q) and the differences among the q + 1 populations can

be summarized in terms of the first m canonical variates yu..., ym. It is natural

to say that a variable xy is irrelevant for the description of the differences among

the q + l populations if the y-th components of αα, α = l,..., m are all zero. This

implies the following definition of M(j).

(2.4) MO): G(j*)ax = 0, α = 1,..., m and

(Σϊ-i GU)axa'M))% > 0, for any γej

where j * is the complement of j with respect to {1, 2,..., p}. It is known (Fujikoshi

[4]) that

(2.5)
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= "'= G(j*)lμq+ί - ΣG(j)'{G(j)Σ(KJ)'}-*<KJ)μq+1].

The latter statement in (2.5) is equivalent to "no additional information hypo-
thesis" due to Rao [10]. Since H(j)otr {GifiΣGijy^GifiΩGti)' = tr Σ~XΩ
(McKay [8]), we can write M(j) as

(2.6) M(j): tr {Gi^ΣGijγ^GiβΩGijΎ = tr Σ~XΩ and

tr {G(ί)ΣGiί)'}-ιG(ι)ΩGiί)r < tr Σ~ιΩ for any

proper subset i of j .

Since tr {G(j)ΣG{j)'}-ιG(j)ΩG(jy and t r l ^ Ω are the distances among the
q + \ populations based on x(j) and x respectively, we can say that if M(j) is
true, x(j) is a parsimoneous subset of variables that provides essentially the same
information as x for the descriptive discriminant analysis.

Next we shall derive Akaike's information criterion (Akaike [1]), for choice
of the models {M(j); j eJ}. The criterion is to choose the model for which

(2.7) AIC (j) = - 2 log Lφ(j)) + 2p(j)

is minimized, where L(Θ) is the likelihood function of observations, Θ(j) is the
maximum likelihood estimate of Θ = {μί,..., μq+ί9Σ} under M(j) and p(j) is the
dimensionality of Θ under M(j). This criterion was constructed to choose a
model such that the model yields the best predictions for future observations with
the same structure as the original observations. Let B and W be the matrices of
sums of squares and products due to between groups and within groups, re-
spectively, based on random samples of size Na from Πa (α=l,..., g + 1). Con-
sidering the conditional distribution of Jt(y*) given x(j) and using (2.5), it is shown
that

(2.8) -21ogMaxM ωL(0) = Np{l + log(2π/N)} + JVlog \G(j)WG(j)f\

+ N log |G(;*) [T - TG{jy{G{j)TG{j)ΎιG{j)T-\G(n'\

where T=B+W. Since the correspondence between Θ and μιa

 =

G{nUP-ΣG{jy{GU)Σ{jyy'G{j)]μa, and Σ* = (G(j)\ G(j*)'yΣ(G(j)', G(j*)') is
is one-to-one, we have

(2.9) 2p(j) = 2{(q + l)k(j) + p - fc( j) + \p{p +1)}

+ 2p(q + l) - 2q(p-k(j)).

Therefore the criterion based on (2.7) is equivalent to choosing the model M(j)
to minimize
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(2.10)

) = AlC(j) -

-2q(p-k(j))

where4({l,2,...,p}) = 0.
For the case of two populations, i.e., q — ί we obtain

(2.11) A(j) = JVlog [1 + (D2-D(j)2)l{N(N-2)l(NίN2) + DO')2}]

where D and D(y) are the sample Mahalanobis distance between Π1 and Π2

based on x and jc(j), respectively. The criterion in the special case was derived
by Fujikoshi [5].

It may be noted that the first term of A(j) in (2.10) is the likelihood ratio
statistic for testing the no aditional information hypothesis H(j) in (2.5). This
test statistic was introduced by Rao [9].

§ 3. Extension to a multivariate linear model

In this section we deal with the problem of variable selection in a multivariate
linear model which is a generalization of the case described in the previous section.
Consider a matrix X whose rows are independent N observations of the p vector
variate JC = (Xj,..., xp)' being normally distributed with common covariance
matrix Σ and expectation

(3.1) E(X) = ZΞ

where Z is a known N x b matrix of rank b and Ξ is a b x p matrix of unknown
parameters. Let

(3.2) S2 = tτΣ-1Ω

where NΩ = (CΞy{C(ZfZ)-1C}-ίCΞ and C is a known q x b matrix of rank q.
The quantity δ2 can be regarded as a measure of deparatures from the nullity of
the hypothesis "CE = 0'\ If we put
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C: q x (q + 1) =

1 0 ••• 0 - 1

0 1 ... 0 - 1

0 0 ••• 1 - 1

in multiple discriminant analysis, then Ω is equal to the population between-

groups covariance matrix in (2.2). We consider the variable selection in the case

when we want to have a large δ2. The quantity δ2 for a subvector variate x(j) =

G(j)x may be defined by

(3.3) δ2(j) = tr {G(j)ΣG(j)'}-iG(j)Q(KJ)'.

In general, it holds that

(3.4) δ2(ί) < δ\j) < δ2

for any z, j such that i^j. Our problem is to find a parsimonious subset of vari-

ables that provides the same value as δ2. For this purpose we consider the same

model as in (2.6), i.e.,

(3.5) M(j): δ2(j) = δ2 and δ2(ί) < δ2 for any proper subset i of j,

which means that x(j) is the "best" subset of variables. The other expressions

for M(j) are obtained by using the equivalence of the following three statements

(3.6), and (3.7) and (3.8):

(3.6) δ\j) = δ2,

(3.7) H(j): C[Ξ - ΞGUy{G{j)ΣG{jy}-'GU)Σ-\G{n' = O,

(3.8) GC/*K = 0, α = l , . . . , m ,

where m = rank(Ω) and αα are the characteristic vectors of Ω with respect to Σ

as in (2.3). McKay [8] has proved the equivalence of (3.6) and (3.7). The

equivalence of (3.7) and (3.8) is obtained by the same argument as in multiple

discriminant analysis due to Fujikoshi [4]. The hypothesis (3.7) can be inter-

preted as the hypothesis that JC(J*) supplies no additional information about

deparatures from nullity of the hypothesis "C£ = 0 " , independently of x(j). It

is known (Rao [9]) that likelihood ratio statistic for testing H(j) is

(3.9) -iVlo

where T=W+B,

(3.10) B = {Ca)'{C{Z'Z)-ιC}~γCS, W= X'(IN-
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and a={Z'Z)~1Z'X. This result is obtained by considering the conditional

distribution of JC(J*) given x(j). The matrices WandB are the matrices of sums

of sequares and products due to error and departure from the hypothesis in the

problem of testing "CΞ = O" against "CΞΦO". Using (3.9) it is easily seen that

the selection criterion based on (2.7) is equivalent to choosing the model M(j)

to minimize

(3.11)

T I / \G(j) TGUΪl

where A({1, 2,...,p}) = 0.

§ 4. Asymptotic distributions

We denote the subset j to minimize the A(j) in (3.11) by j( J), i.e.,

(4.1)

In the following we assume that the model M(/o) in (3.5) is true, whereyo = {l,...,

k). Then we have that

Al: tr {GU)ΣG{jy}-γGU)ΩG{j)f = δ* for j e Jx

and

A2: tr {GifiΣGijγ^GifiΩGiJ)' < δ2 for jeJ2

where ^ 2 = trΣ~1ί2, Jι = {j',j^j0} Π J and J2 = J{V[J. This is easily seen by

using the equivalence of (3.6) and (3.8). In general, we are interested in knowing

how large is the probability of Pr ()(J) =j0). Apart from it, to derive the distribu-

tion of j( J) may be fundamental in studying the statistical properties of the

selection method )(J). In the following we shall derive the asymptotic distribu-

tion when M(j0) is true.

The matrices W and B in (3.10) are independently distributed as a central

Wishart distribution Wp(N — b, Σ) and a noncentral Wishart distribution Wp(q,

Σ; NΩ), respectively. The matrix Ω depends on N. It is natural to assume that

Ω = O(1) with respect to N. For simplicity we make the following assumption

forί2:

A3: Ω is a fixed matrix.

Let Σ and Ω be partitioned as

(Σn Σ12\ [Ωn Ωl2\
(4.2) Σ = , Σn : k x k and Ω = , Ωίt: k x k.

\Σ21 Σ22J \Ω2ί Ω22J
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The following Lemma is useful in reducing our distribution problem.

LEMMA 1. Assume that trΣ^} Ωίl=tτΣ~XΩ. Then there exists a lower

triangular matrix

(4.3) A = [ ),An:kxk
)

such that A21 is a lower triangular matrix,

(4.4) AΩA' = A and AΣA' = Ip

where /l=diag(λ 1,..., λk, 0,..., 0) and λί>- >λk are the possible non-zero

roots ofΣ~ιΩ.

PROOF. Let Σ2IΛ = ^22 ~~ ̂ 21 ^Ti1 ^12- Then there exists a lower triangular

matrix A22 such that A22Σ22.XA22 = /p_fc. We define Atl and A2ί by HΣi{12

and —A22Σ2XΣ\\, respectively, where H is an orthogonal matrix. Then AΣA'

= /p. We use that

(4.5) t rΓΓ/Ωn =tτΣ-ιΩ

<=Φ (-Σ2ίΣ-ίl,Ip_k)Ω=O

λa = chα(lr/ O n ) , α = 1,..., k,

where chα (M) is th α-th largest characteristic root of M. The equivalences follows

from

:τi, iP-k)Ω(-Σ:

and

λa > cha(Σ^Ωlx), α = 1,..., k (e.g., see Gabriel [6]).

Using the above properties we have

O
AΩA' =

O O

and hence we can choose H satisfying AΩAf = A.

LEMMA 2. Assume that A1~A3 hold. Then

(4.6) l i m ^ ΛTM(i) = 0 < l i m ^

for any i9j such that ieJt and jeJ2.

PROOF. Since JV^FFand N~ίB converge to Σ and Ω, respectively, we have



210 Yasunori FUJIKOSHI

l i m ^ N-U(j) = -logQΣ\I\Σ + β|)

-log \ikω +

Using (4.5) it is seen that for ieJ1

chα (Σ~ιΩ) = chα ({Gf(0^G(0/}"1G(0OG(0/) for any α,

and for j e J2

chα(Σ-*Ω) > chα({GiΛΣGijΎr'GiΛOUϊ) for any α,

and the inequality holds strictly for some α. This implies (4.6).

Using the same argument as in Shibata [11] or Fujikoshi [5] from Lemma 2

we have the following reduction for the asymptotic distribution of J(J):

(4.7) l im^ „ Pr ()( J) = j) = r(j \)0,J)

ί 111%^ Pr (A(j) < A(m), m e J x), jeJu

1 0, jeJ2.

Now we study asymptotic behaviour of A(j),jeJι. For jeJu we can

write G(j) as

(4.8) G(j) = , W): (k{j) -k)x(p- k).
O () )

Then we have

A{j) = TV log
Wγί W12L(JΪ

L(j)W21 LU)W22LUΪ

Tn Ti2L(JΪ

L{j)T2ί L(j)T22L(jY

(4.9) -

= A(jo) + Nlog {\L(j)W22.1LUΪ\l\LU)T22.iLUΪ\}

- 2q(k -

where W22.1 = W22-W21W^}W12, T22., = T22-T2Xτ-χ{T,2, and WΛβ and Taβ

are the submatrices of Wand T, respectively, partitioned as in (4.2). Let

(4.10) W* = AW A' and B* = ABA'

which are independently distributed as a central Wishart distribution WP(N—b,
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/p) and a noncentral Wishart distribution Wp(q, Ip; NΛ), respectively. We can

write B* as B* = U*'U*, where

y / \ O

(4.11) \^

\ o o
2={zxβ): qxp and zα/J's are independent identically random variables with the

standard normal distribution. Let

U* = (17?, t/f), £/?: q x k, Z = (Z l f Z2), Z t : 4 x Jk,

Since T22.1-W22.ι=(U2-U1Wj}Wί2)'(Iq+U1WjlU\)-1(U2-U1W^W12)

(Fujikoshi [3]), it holds that

(4.12) τ 2 2 . ! - w22Λ = 4ϊ i( i/ !

and

(4.13) W22.x =

where W12.X = W\2-W^W^W^ and W*, are the submatrices of W* par-
tioned as in (4.2). Let

(4.14) ( l/N)W*=/ ί , + (l/VΪV)K

Substituting (4.11) and (4.14) into (4.12) and (4.13), we obtain the following ex-

pressions :

(4.15) Γ22.x - W22., = A^

(4.16) (1/N)^22 i = Σ2 2.i

where ^ . j =Σ22-Σ2ι Σϊl Σ12,

k + Λι O X-1/2 / A\'2

(4.17) Γ = ( ( Z 2 -

/I1=diag(l1,..., Afc) and Fα/} are the submatrices of V partitioned as in (4.2).

When JV tends to infinity, the elements of Y: q x {p — k) are independently distri-

buted as JV(O, 1). Using (4.15) and (4.16) we obtain
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(4.18) Nlog{\LU)W22.1L(jY\l\L(j)T22.1L(j)'\}

where

(4.19)

Therefore it holds that for any j , meJt

(4.20) A(j)-A{m)

= tr{K(m) - K(j)}YΎ- 2{k(m) - p

From (4.7) and (4.20) we have the following Theorems 1 and 2:

THEOREM 1. Suppose that the model M(j0) in (3.5) is true and the assump-

tion A3 is satisfied, where j o = {ί, 2,..., k}. Then

(4.21) l im^ „ Pr (j (J) = ) = r(j | j 0 , J)

Pr(tr{K(m) - K(j)}YΎ< 2q{k(m) - k(j)}, meJι),jeJu

0, jeJ2,

where Jί = {j;jΏ.j0} Π J, J2 = 3\ Π J, K(j) is defined by (4.19), k(j) is the number
of the elements of j , Y=(yaβ); qx(p—k) and yxβ's are independent identically
random variables with the standard normal distribution.

THEOREM 2. Let J be a subfamily of J, and)(J) the selection method defined
by MmJ<sjA(j) = A(j(J)). Then under the same assumptions as in Theorem 1
and the assumption of Jίφ0 it holds that

(4.22) l i m ^ Pr Q( J) = j) = r(j \j0, J)

_ j Pr(tr{K(m) - k(j)}YΎ<: 2q{k(m) - k(j)}, meJ^jeJ,,

~\θ, jeJ2,

where Jι=J\ Π J and J2 = J2 Π J.

We note that similar results are also obtained if we replace the assumption
A3 in Theorems 1 and 2 by a weak assumption

A3': There exists a positive semi-define matrix Ωo such that lim^^^ Ω = Ω0

and tr{GO )IGθr}-1GO )ΩoGα)<tr^-1ί2o for je J2.
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In this case we need only to change the matrix A used in the definition of K(j)
by Ao, where Ao is the matrix A in Lemma 1 with Ω — Ωo.

We can obtain a further reduction of (4.22) when an ordering of variables is
given a priori. As such a subfamily, consider the family of p models, M(j), j e J o ,
where

(4.23) Λ) = {{1}, {1,2},..., {1,2,...,/;}}.

We denote the subset {1,..., j} by j . Then, since A22 is a lower triangular matrix,
we have

(4.24) [
\ O O

This implies

(4.25) l i m ^ Pr(j( Jo) = ) = r(j \jΌ, Jo)

sq(j-k)tq(p-j)9 k<j<p,

0, j < k - U

where

(4.26) sq(k) = Pr ( n * = 1 (I/. > 0)), tq(k) = Pr ( n * = 1 (l/β < 0)),

, = ί,(0) = l, C/α = ( ^ 1 - 2 ^ ) + .+(Wς-2^) and {Wς} is a sequence of in-
dependent χ\ random variables. For a reduction of sq(k) and ̂ (/c), see Spitzer
[12] and Shibata [11]. We note that the asymptotic distribution of J(J0)
depends only on q, p and k, but not on the values of Ξ and Σ.
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