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Abstract—In recent years, Industrial Wireless Sensor Networks
(IWSNs) have emerged as an important research theme with
applications spanning a wide range of industries including
automation, monitoring, process control, feedback systems and
automotive. Wide scope of IWSNs applications ranging from
small production units, large oil and gas industries to nuclear
fission control, enables a fast-paced research in this field. Though
IWSNs offer advantages of low cost, flexibility, scalability, self-
healing, easy deployment and reformation, yet they pose certain
limitations on available potential and introduce challenges on
multiple fronts due to their susceptibility to highly complex
and uncertain industrial environments. In this paper a detailed
discussion on design objectives, challenges and solutions, for
IWSNs, are presented. A careful evaluation of industrial systems,
deadlines and possible hazards in industrial atmosphere are dis-
cussed. The paper also presents a thorough review of the existing
standards and industrial protocols and gives a critical evaluation
of potential of these standards and protocols along with a detailed
discussion on available hardware platforms, specific industrial
energy harvesting techniques and their capabilities. The paper
lists main service providers for IWSNs solutions and gives insight
of future trends and research gaps in the field of IWSNs.

Index Terms—Automation, IEEE802.15.4e, energy harvest-
ing, IWSNs, ISA100.11a, MAC, TDMA, WirelessHART, WSNs,
Zigbee, 6LoWPAN, CSMA/CA, Castalia, Fieldbus, Ethernet,
Mesh, Tree, Star, Bus, Flat Architecture, Hierarchical,security,
congestion, Wi-Fi, Bluetooth, UWB, Wasp Mote, Re-mote, Open-
Mote, SunSPOT, OMNeT++, MF, MiXiM, OPNET, Gradient,
Flat, Proactive routing, Data centric, PV,VLC, IoT, Cognitive
sensor networks, 6lo WG, OpenWSN.

I. INTRODUCTION

INDUSTRIES have always been under continuous im-

provements since the very beginning of the industrial era.

This gradual improvement is undoubtedly the outcome of

continuous technology development in this field, which has

kept the industries on its toes, looking for new methods for

improvement of productivity and operational efficiency. More

recently the continuous quality improvement has become the
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only mean to survive in the industrial race [1]. The past

few years have resulted in vast expansion in industries. This

expansion equipped the industries with the latest technology

at hand, to develop self-sufficient, spontaneous and com-

puterized work environments. Moreover, with the successful

incorporation of advance automation and process control, the

productivity and products’ quality has greatly improved [2].

These improvements, though highly impressive yet add high

complexity to the industrial processes and in some cases even

challenge the sufficiency of existing technologies to cope with

these rapid changes.

With the evolution of industries, new dimensions of research

have surfaced. In recent years, the IWSNs have emerged as an

efficient and cost effective solution for industrial automation

and process control [3], [4], [5], [6]. The advantages offered

by IWSNs have appeared to be a reason good enough to

persuade many industries to its adoption, especially in low

data rate applications [7], [8], [9]. One of the major factors

contributing to the popularity of IWSNs is its low installation

cost [10]. Compared to the cabling and maintenance costs of

wired networks (up to e4337 per meter [11]), the wireless

networking technologies offer a very small cost in fraction

of a euro for per meter of wireless connectivity. Apart from

the cost, the scalable nature of IWSNs make it an ideal

candidate for present as well as future dynamic industrial

environments [12], [13], [14], [15]. Furthermore, IWSNs offer

many advantages, including flexibility, self-organization, low

cost of installation, localized processing, interoperability and

easy deployment. Despite these significant benefits of the

technology, it suffers from constrained communication range,

small memory, delay, limited bandwidth, reliability issues,

limited battery capacity, security threats and interconnectivity

issues [16]. Among all the afore-mentioned factors, while

some favor the adoption of IWSNs in many applications,

others open new research challenges to be dealt with [17],

[18], [19].

Past few years have been very productive in addressing many

challenges presented by IWSNs. The main developments wit-

nessed until 2012 were carefully transformed to the IEEE

Wireless Personal Area Network (WPAN) standard 802.15.4e

[20], primarily targeting the industrial applications. Most of

the amendments listed in this standard further improve the long

chain of existing WPAN standards, [21], [22], [23], for indus-

trial applications. Many industrial solutions based on these

standards also emerged. Some significant contributions in-
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Fig. 1: Flow of the paper
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cluded, Zigbee, WirelessHART, ISA100.11a, 6LoWPAN Wia-

PA and Optimization of Communication for Ad hoc Reliable

Industrial network (OCARI) [24], [25], [26], [27], [28], [29].

Moreover, research and development, during past three years,

has significant impact in improving the IWSNs credibility for

process control and automation. A keen and persistent trend in

research developments was witnessed in these years, resulting

in significant improvements in MAC protocols, network layer

optimizations, energy harvesting techniques and incorporation

of new technologies in industrial wireless networks [30], [31],

[32].

These significant research developments in IWSNs have given

new heights to this market, resulting in a momentous rise in its

projected value ranging from $944.92 million to $3.795 Billion

in coming years [33], [34]. However, it is also expected that the

projection would highly depend on the research trends and sig-

nificance of improvements one witnesses in upcoming years.

To cope with the projected market trends, satisfy demands

of more sophisticated industrial applications and to meet the

crucial deadlines in highly sensitive industrial atmosphere, a

dedicated research targeting reliability, real-time data delivery,

incorporation of modular design and interoperability in IWSNs

is much needed.

The rest of the paper is organized as follows: Section II

discusses the main contributions of the paper. Section III

categorizes industrial Systems and traffic generated in these

system according to priority requirements. It also lists dead-

lines for selected industrial processes and discusses the failure

consequences. Section IV gives an overview of IWSNs. Sec-

tion V covers the design objectives and main challenges in

IWSNs. Section VI discusses the existing work, standards and

industrial protocols for IWSNs. Section VII gives overview

of available industrial motes and their technical specifica-

tions. It also lists the IWSNs based solution providers for

automation and process industry. Section VIII discusses MAC

layer optimizations and research developments over the years.

Network Layer developments are discussed in Section IX.

Energy harvesting techniques for IWSNs are discussed in

section X. Good practices and design solutions in IWSNs are

discussed in section XI. Section XII gives an insight of future

research directions in IWSNs. Finally, section XIII concludes

the discussion and gives final remarks.

To give better understanding of flow of the paper, the taxon-

omy of the paper is represented graphically in Fig. 1.

II. KEY CONTRIBUTIONS

This paper provides a detailed description of IWSNs and

its relevant areas of research and offers a wider perspective

on advancements in these domains. To justify the contribution

of the paper, some recently published key research articles,

surveys and studies are thoroughly evaluated and main contri-

bution of the published papers are highlighted in comparison

to this paper. For the evaluation purposes main strengths

and weaknesses of the published research are thoroughly

discussed. Apart from this, in reference to earlier surveys

published, Table I is formulated to present the contribution

of this paper in comparison to other review papers. Out of

the nineteen selected surveys, nine are published in IEEE

communication surveys and Tutorials in the years from 2010

to 2016, five are published in IEEE transactions and IEEE

Magazines, three in Elsevier journals and two in other journals.

A brief description of contributions and shortcomings of these

surveys and research articles are listed as follows.

In [16], authors make pioneer contribution in the field, and

present an overview of IWSNs highlighting challenges and

technical approaches in IWSNs. The paper discusses chal-

lenges in IWSNs in comparison to design goals. Paper also

discusses the wireless standards and protocols and briefly

touches energy harvesting. However, in this paper MAC layer

developments are not discussed. Furthermore, most of the

discussed topics cover a brief description and lack compre-

hensive details about the research.As the paper was published

in 2009, there is abundance of improvements which address

the needs of communication optimization, priority systems

and appropriate traffic segmentation in industrial environments

which are proposed afterwards and hence cannot be part of the

discussion in this paper. The presented standards and industrial

protocols have also seen a significant change in terms of

channel access and hence new issues have developed which

could not have been part of the discussion earlier.

In [19], authors present an industrial perspective of WSNs and

discuss its applications in industrial environments. The paper

discusses emerging challenges and expectations in IWSNs and

lists expected operation of different layers. A brief discussion

on the standards and protocols is also provided. However, the

paper gives a direct approach to the possible problems and

offers very limited information on classification of various

protocols with notable footprint. Some of the key research

areas in IWSNs including energy harvesting, WSN platforms,

available radios and potential technologies are not discussed

due to the scope of the paper.

In [25], authors discuss various WSN protocols and standards

and give an insight on the suitability of these standards in

industrial environments. The paper also provides a detailed

discussion on the OCARI technology and lists its specifica-

tions, suitability and network topology. However, the paper

did not mention any information on the research developments

and proposed protocols over the years. The scope of the

paper is limited and some prominent aspects like industrial

requirements, IWSN platforms, energy harvesting, industrial

deadlines, MAC developments etc. are not included.

In [35], authors present an introduction of WSNs and give

a detailed discussion on the energy harvesting techniques in

WSNs. The renewable energy resources are discussed in detail

however, the discussion is limited in terms of broader perspec-

tive of IWSNs and no information on industrial requirements,

MAC developments, challenges and design goals, standards

and research developments is presented.

In [36], authors discuss in detail the various MAC layer

developments in WSNs and discuss the IEEE standards and

well known protocols in conventional and industrial WSNs.

However, the paper does not specifically target IWSNs and

provide a generalized discussion on WSNs. The paper also

does not discuss the primary challenges in IWSNs, process

control requirements, energy harvesting, IWSN platforms and
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TABLE I: Comparison of this Paper with other Surveys and review papers

Attributes/ This

Main contributions Paper [35] [16] [19] [25] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50]

Future Technologies for I-
WSNs

✓ N N N N N N N N N N N N N N N N N N N

Industrial systems, priori-
ties of affiliated traffic and
Time deadlines for various
industrial processes

✓ N N N N N N N N N N N N N N N N N N N

Timeline for significan-
t developments leading to
IWSNs

✓ N N N N N N N N N N N N N N N N N N N

Priority criteria based di-
vision of wireless commu-
nication traffic

✓ N N N N N N N N N N P N N N N N N N N

Review of IWSNs tech-
nology and transition from
WSNs and wired network-
s

✓ N N N N N N N N N N N ✓ N N N N N N N

Review of MAC
layer developments
for conventional and
Industrial WSNs

✓ N N ✓ N ✓ O-D ✓ N N ✓ N N P ✓ N N P N N

Taxonomy of MAC proto-
cols

✓ N N N N N N ✓ N N ✓ N N N N N N N N N

Classification of well-
known MAC protocols

✓ N N ✓ N ✓ N ✓ N N ✓ N N P ✓ N N N N N

Review of IEEE standard-
s and Industrial protocols
for IWSNs

✓ N O-D ✓ ✓ ✓ P N N N N ✓ N N N N N N N ✓

Review and classification
of Energy sources and En-
ergy harvesting in IWSNs

✓ ✓ P N N N N N ✓ N N N N N N ✓ ✓ ✓ P N

Research Challenges in I-
WSNs

✓ N ✓ ✓ N N N N N ✓ P N P N N N N N N ✓

Design goals in IWSNs ✓ N ✓ ✓ N N N N N ✓ P ✓ N N N N N N N ✓

Hardware Architecture
and specification of
Wireless motes, IWSN
based solution providers

✓ N ✓ N N N N N P ✓ N N N N N N N N N N

✓: Covered N: Not Covered P: Partially Covered O-D: Out-Dated

noteworthy technologies for future IWSNs.

In [37], authors present a survey of WSN protocols and

standards and discuss the operation of the selected OSI lay-

ers. However, the discussion only focuses on Carrier Sense

Multiple Access (CSMA) based communication which is not

suitable for majority of industrial applications. Furthermore,

the scope of the paper is limited in terms of providing

a broader perspective of the research areas and limits the

discussion to a specific domain in WSNs.

In [38], authors present MAC layer development for mission

critical applications over the years. The paper does not take

into consideration the industrial standards and other research

areas in IWSNs including process control requirements, IWSN

platforms, industrial standards, energy harvesting etc.

In [39], [46], [47] and [48], authors present a survey of energy

harvesting sensor nodes. The papers discuss the potential of

various energy harvesting techniques for wireless motes and

provide application areas in WSNs. However, as the scope

of the papers suggest, the discussion is limited and does not

provide an insight into the industrial requirements and energy

harvesting potential of various techniques in accordance with

the industrial applications. Furthermore, the papers offer little

information regarding the broader perspective of IWNs and

key research areas in IWSNs are not part of the papers under

consideration.

In [40], authors present a survey on use of WSNs in indus-

trial automation and process control. The paper presents an

overview of different WSN communication technologies, and

discusses the possible challenges and solutions. However, the

discussion provided in the paper does not offer a consolidated

information on IWSNs and fails to discuss the primary IEEE

and industrial standards. The paper also does not provide any

discussion on the role of MAC layer given its significance in

IWSNs. Other key areas in IWSNs are also not discussed.

In [41], authors present a detailed discussion on the latency

issues of asynchronous MAC protocols for delay sensitive net-

works. The paper presents a classification of MAC protocols

and provides a comprehensive discussion on the latency issues
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in MAC. However, due to the scope of the paper the discussion

lacks a detailed survey of technologies and research areas in

IWSNs.

In [42], authors discuss suitability of WSNs for industrial

automation. The paper discusses different wireless standards

including Bluetooth and WPAN for communication in IWSNs.

The paper also discusses some of the industrial standards in

IWSNs and highlights their key characteristics. However, the

scope is limited and the potential of WSN technology and its

suitability in industrial applications is not discussed in detail.

Furthermore, some of the key research areas including energy

harvesting, IWSN platforms, MAC developments and the Time

Division Multiple Access (TDMA) based communication in

IWSNs is beyond the scope of this paper.

In [43], authors discuss the suitability of wired and wireless

sensor networks in industrial applications. The paper briefly

discusses ethernet and fieldbus protocols. The paper also

discusses the potential of WSNs in industrial applications and

possible challenges. However, the paper does not cover any

industrial standards, MAC layer developments, and wireless

communication technologies. Some other key research areas

in IWSNs like IWSN motes and energy harvesting are not

discussed as well.

In [44] and [45] authors present survey and developments in

MAC protocols, however, in [44] the MAC protocols are not

thoroughly analysed and paper fails to offer a suitable MAC

layer protocol classifications. In [45] a detailed discussion on

the MAC protocols can be found however, the paper does

not offer substantial insight in the industrial requirements for

MAC protocols and fails to relate the discussion in industrial

perspective. Furthermore, both the papers lack a detailed

discussion on the IWSNs and its various significant research

aspects.

In [50] authors survey the suitability of WSN in factory

automation. The paper discusses the possible challenges and

reliability issues of WSNs in industrial environments. Paper

also presents the security issues in using IWSNs. A brief

discussion on selected industrial standards is also provided.

However, paper lacks comprehensive background of IWSNs

and does not cover any details on categorization of indus-

trial applications, time deadlines, requirements, MAC layer

developments, hardware specifications, mote details, energy

harvesting and potential technologies for IWSNs.

In this paper, substantial effort has been made to, firstly present

a through review of up-to-date IWSN technology; secondly

provide critical analysis and summary of exiting works, and

thirdly highlight potential research areas and articulate signif-

icant research challenges Main contributions of the paper are

listed as under.

• The paper covers a detailed review of IWSNs, presents

IWSN architecture, discusses its strengths and limitations,

provides an insight on ongoing transition from WSNs to

IWSNs and wired networks to wireless networks, presents

significant wired and wireless protocols and standards and

lists the key application areas of IWSNs for industrial

environments.

• Provides a division of network traffic involved in IWSNs

into logical levels. The traffic types (levels) are defined

based on the critical nature, time deadlines and reliability

requirements for each of the targeted application areas

and industrial systems. Furthermore, practical examples

from industrial processes are presented with the time

deadlines, reliability, and security requirements

• A detailed review of key IEEE standards and industrial

protocols and their suitability for industrial applications is

provided. A taxonomy of significant developments, infor-

mation of standards and industrial protocols, development

of wireless motes, market trends, IWSN market value and

expected futuristic technologies for IWSNs is presented

along with the time information.

• A taxonomy of MAC protocols to categorize different

MAC based developments is presented along with the

classification of significant MAC protocols. The classi-

fication is based on the application area, channel access

scheme, frequency channels, priority scheduling and la-

tency information.

• A taxonomy of Routing protocols is presented to cate-

gorize different network layer developments. Each sub-

category of routing protocols is thoroughly discussed and

flagship routing protocols for each category are listed.

• The hardware architecture of wireless motes, technical

specifications and radio details of selected motes are

presented. Some significant IWSNs based solutions pro-

viding companies are also discussed.

• The main energy sources in industrial environments are

discussed. Different energy harvesting techniques are

reviewed and categorized. The life cycle and energy

specifications of energy harvesting techniques, usable and

reusable batteries and super capacitors are listed.

• Extensive research challenges, design objectives and de-

sign solutions for IWSNs are presented.

• Possible future research themes and technologies for

industrial networks including Internet of Things (IoT),

Visible Light Communication (VLC), Cognitive Radio

Sensor Networks (CRSNs), deterministic networks and

long life IWSNs are presented.

III. CRITICAL NATURE OF INDUSTRIAL ENVIRONMENTS

AND TRAFFIC DEADLINES

A. Industrial Systems

IWSNs offer services to specific range of applications,

which are significantly different from the traditional WSNs.

Therefore, based on the specific application characteristics,

Quality of Service (QoS), latency and security requirements,

the industrial systems are classified [19]. According to the

International Society of Automation (ISA), the industrial

systems can be distributed into six classes [51], [52]. This

classification is based on the nature of application, standard

operating procedure, access schemes, reliability, and latency

requirements. These systems are listed as under.

1) Safety/Emergency systems: Safety/emergency systems

handle issues of greater significance and of critical nature. For

such systems, action on the developed situations, are required

in matter of milliseconds. Any added delay can contribute to
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unwanted complications. Fire alarms, leakage of poisonous

gases and emission of radiations are some of the examples of

emergency systems.

2) Close loop regulatory control systems: Close loop regu-

latory systems require a periodic feedback for smooth running

of the processes. Such systems include both sensor and actu-

ator elements where a continuous feedback from the sensors

is needed to maintain the desired response of the actuation

part. Usually the time bounds between sensing values and

making the desired corrections using actuators, based on the

sensed values, are very low. Some examples of close loop

regulatory systems include autonomous cars or piloted drive,

motion adaptation for conveyor belt movements and affiliated

robotics etc.

3) Close loop supervisory systems: Close loop supervisory

systems also provide a feedback control like the regulatory

systems, except, these systems are asynchronous in nature and

a feedback mechanism is established when certain thresholds

are violated. Since, these systems are less critical in nature

compared to the regulatory control systems, therefore, time

and reliability bounds are more relaxed. Examples of close

loop supervisory control include slow changing and less crit-

ical processes like temperature control of a furnace or boiler

etc.

4) Open loop control systems: The open loop control

systems implement human operated process control. These

systems, instead of automated analysis, rely on human inter-

vention, where the operator after analysing the sensed data,

takes the necessary action.

5) Alerting systems: In industries, alerting systems usually

provide feedback of the sequential processes where regular or

prompt feedback is established as a surety mechanism. Such

systems offer tracking mechanism with regular feedbacks for

different stages of the processes. In some cases, event-based

alerting is also established.

6) Information gathering systems: Information gathering

systems are used to collect sensor reading regarding non-

actionable processes. The data gathering is targeted to provide

the pattern observations over long period of time, which can

serve as a baseline for the future changes and implementing

long term plans. These systems and information gathered in

similar systems is typically non-critical in nature and therefore,

the data accumulation phases can span days. The accumulated

data by information gathering systems usually undergoes a

computer based diagnosis to devise the improvement plans on

the basis of data analysis.

B. Traffic Types in Industrial Systems

A number of researches [30], [53], [54], [55] have cat-

egorized traffic in industrial environments in a number of

groups depending on the type and critical nature of the traffic.

In this paper, the traffic in an industrial setup, in reference

to presented industrial systems, is categorized in six groups.

These categories are defined on the basis of critical nature

of information, reliability, time constraints, medium access

control and channel access pattern. These traffic types are

listed in most critical to least critical order.

1) Safety/Emergency traffic: The safety or emergency traf-

fic is the traffic of highest priority, if mishandled, may threaten

a human life or incur damages to a plant. It is usually

asynchronous in nature and rarely triggers due to anomalies

and hazards such as risk of explosion or severe electrical

surges etc. Due to the sensitive nature of this traffic category,

high reliability is expected and fail-safe link is established with

multiple contingencies [55]. This type of traffic has highest

priority and usually prioritized over the rest of the traffic.

The time and reliability constraints of such industrial network

traffic require careful modelling along with the prioritized

access to communication channel [51].

2) Regulatory control traffic: The traffic originated from

the systems running close loop regulatory control contribute

significantly in density of IWSNs network traffic. There are

two primary reasons: the sampling rate of the sensors involved

in regulatory control is much higher and the information

generated by these systems is periodic. The regulatory control

traffic has much higher significance compared to other traffic

types [52], except emergency, due to the strict bounds of the

close loop systems. Furthermore, such control systems try to

minimize the dead-time between two consecutive communica-

tions to optimize the performance of the close loop systems.

Any negligence or delay in regulatory control traffic at network

layer can lead to the safety or emergency trigger, which

enhances the importance of this traffic. Since the regulatory

control traffic, poses synchronous information load, therefore,

it occupies constant bandwidth. Failure in communication may

lead to the instability of the process control, therefore high

reliability of such traffic is ensured [51], [55]

3) Supervisory control traffic: The supervisory control traf-

fic is quite similar to regulatory control traffic except, it is

asynchronous in nature. In this case, localized processing is

incorporated to identify if the specified thresholds are violated

in any manner. Based on the initial conditions (if the sensed

values are within specified thresholds or not), the priority

to traffic is assigned [374]. The behaviour of supervisory

control traffic can be related to emergency traffic, however,

due to less critical nature of applications at hand supervisory

control traffic, depending on the conditions, is either modelled

as regulatory control traffic [51], [373] (for value beyond

critical thresholds) or asynchronous alerting traffic [55] (for

value within the critical thresholds). Since the importance

of this type of traffic is dependent on the critical nature of

information, therefore, the critical and non-critical categories

are dealt separately. In critical case the information is regularly

reported from sensory data to control centre and requires

higher level of reliability whereas for the less critical case

asynchronous communication is established with less stringent

reliability conditions.

4) Open loop control traffic: It is termed as a low risk con-

trol traffic with relatively relaxed time and reliability bounds

[51], [12]. Since the failure in one or more communications

won't have a significant impact on the implemented process

control due to slow changing nature of the target control

systems, therefore reliability is not as important as in case

of emergency and regulatory systems. IWSNs in such systems

mainly report the information of less critical nature to the
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TABLE II: Traffic Categories and affiliated attributes in Industrial Wireless Sensor Networks [30], [51], [53], [54], [55]

Sr. Traffic category Case Priority Applications Tolerance Medium Access Control

Time constraint Reliability

1. Safety/Emergency
Traffic [51], [53],
[55]

- Very high Emergency/Alarms
Asynchronous

Few milliseconds High reliability
requirements

Pilot channels, Dedicated
frequency, prioritized slot-
ted access

2.

Regulatory control
traffic [51], [55]

- High Close loop process
control / critical
feedback Periodic

Tens of millisecond-
s

High reliability
requirements

Slotted access using TD-
MA or high priority C-
SMA/ CA based channel
access with enabled re-
transmissions

3.

Supervisory control
Traffic [51], [55]

i. Critical High Close loop process
control / critical
feedback Periodic

Tens of millisecond-
s

High reliability
requirements

Slotted access using TD-
MA or high priority C-
SMA/ CA based channel
access with enabled re-
transmissions

ii. Non-critical Low Asynchronous occa-
sional feedbacks

Seconds to hours Low reliability
with occasional
packet misses

CSMA/ CA based channel
access

4. Open loop control
traffic [51]

- Medium Periodic Seconds-minutes Medium reliabili-
ty requirements

Slotted ac-
cess/(CSMA/CA) based
channel access with high
priority overwrite ability

5.

Alerting traffic [51],
[55]

i. Critical Medium Periodic Seconds-minutes Medium reliabili-
ty requirements

Slotted ac-
cess/(CSMA/CA) based
channel access with high
priority overwrite ability

ii. Non-critical Low Asynchronous occa-
sional feedbacks

Seconds to hours Low reliability
with occasional
packet misses

CSMA/ CA based channel
access

6. Monitoring traffic
[51], [53], [55]

- - Monitoring
Application /
static feedback

minutes to hours Low reliability
requirements

Best effort service, CS-
MA/CA based channel ac-
cess

control unit where an operator analyses the output [55]. One

example of such control is the frequency component of legacy

hydroelectric generation units. As the frequency changes occur

as a function of output load on the system so these changes

are relatively slow. Based on the feedback from the sensory

elements, sampled frequency values are presented to operator,

who decides whether an increase or decrease in water valve

opening is needed to regulate the frequency of generated

electric power. Since it is a human dependent response system,

it can have unaccounted delays which are only affordable

because of the less critical nature of this traffic [55]. In such

cases, very occasional actions are expected in response to

the information received. Nevertheless, the accumulation of

readings from the sensors follows a periodic behaviour.

5) Alerting traffic: Alerting traffic follows a relatively low

duty cycle where the amount of information communicating

over the IWSNs is very much limited [51]. The frequency

of communication can only be increased if certain anomalies

occur. In case the information becomes critical the reliability

and priority of this traffic is increased otherwise a relatively

lower reliability assurance is needed and occasional failures

in packets communications dont cause major problems [52].

This category of industrial communication is more related to

emergency traffic in behaviour however, its intrinsic properties

are very much different from emergency traffic. In case of

anomalies the priority level of this traffic can be considered

on the similar levels of that of supervisory control traffic.

6) Monitoring traffic: Monitoring traffic is mostly

categorized as single way traffic as it is used to monitor the

status of the processes having relatively less significance in

the control and automation [51], [55]. In most cases, the

information collected in monitoring systems, assist in the

formation of future suggestions for system upgrades and

improvements. The occasional packet failures are common in

such systems and hence demand lower reliability bounds [55].

Traffic types discussed in this subsection along with the

priority requirements, time constraints, reliability and medium

access schemes, are represented in Table II.

C. Critical Industrial Deadlines and Failure Consequences

The above discussion categorizes the types of the traffic

in an industrial environment, to define the priority levels,

time deadlines, class of control systems and relative medium

access schemes. In critical cases, a delay in conveying sensed

information can result in damage to the equipment, may lead

to an explosion or threat to a human life. Therefore it is

important to properly identify different traffic types originated
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TABLE III: Typical end-to-end delay and update requirements for industrial processes [17], [42], [57], [58]

Sensor Network Applications Security Requirements [59], [60] Update Frequency Battery Lifetime [17]

Monitoring and Supervision

Vibration sensor [17], [53] Low sec - days up to 3 years

Pressure sensor [17], [53] Low 1 sec up to 3 years

Temperature sensor [17], [53] Low 5 sec up to 3 years

Gas detection sensor [17], [53] Low 1 sec up to 3 years

Others/Data acquisition Low > 100ms up to 3 years

Maintenance diagnosis Low Sec-days -

Close Loop Control

Control valve [42], [53] medium to high 10 - 500 ms 5 years

Pressure sensor [17], [42], [53] medium to high 10 - 500 ms 5 years

Temperature sensor [17], [42], [53] medium to high 10 - 500 ms 5 years

Flow sensor [17], [42], [53] medium to high 10 - 500 ms 5 years

Torque sensor [17], [42], [53] medium to high 10 - 500 ms 5 years

Variable speed drive [53] medium to high 10 - 500 ms 5 years

Motion Control [42] Isochronous 250 µs to 1ms up to 1 year

Control Machine Tools [42] High 1ms to 10 ms up to 3 year

Interlocking and Control

Proximity sensor [17], [42], [53] medium to high 10 - 250 ms 5 years

Motor [17], [42], [53] medium to high 10 - 250 ms 5 years

Valve [17], [42], [53] medium to high 10 - 250 ms 5 years

Protection relays [17], [42], [53] medium to high 10 - 250 ms 5 years

Machinery and tools medium to high 10ms up to 3 years

Motion Control medium to high 1ms up to 3 years

CAN bus Deadlines

Periodic Messages [58] Medium 5 - 20 ms -

Non-periodic Messages [58] Medium 5 ms -

Fig. 3: A Typical Industrial Wireless Sensor Networks Setup [70]
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Fig. 2: Industrial Wired and Wireless Network technologies

and Standards [16], [23], [26], [27], [28], [29], [37], [79],

[80], [81], [82], [83], [84], [85], [86], [87], [88], [89]

in a system to affiliate right level of importance to each traffic

type. Although, the specification of needs and categorization of

information in different types is step towards the right direction

yet there is a lot of work needed in modeling the algorithms

and establishing priority as well as reliability constraints

acceptable to the control and automation community [56].

Moreover, the full potential of IWSNs must be exploited to

offer a better solution than the existing, to meet the deadlines

set forth for industrial process control, and automation.

Some of such requirements for different industrial equipment

are listed in Table III. As Shown in Table III, even a particular

sensing application has a broad range of parameters attached

to it. For instance, considering the temperature sensing in

close loop control, a wider range of update frequency is

affiliated as represented in Table III. The reason is much

more dependent on the core process and application area for

which the temperature sensing is considered. To justify the

variations, consider two application scenarios where in one

case the temperature sensing is used in fractional distillation

of crude oil and the other involves the operational temperature

of pressurized flammable gases. The former is much more

variation tolerant than the later as for fractional distillation

some significant temperature variations can increase the level

of impurities in different distilled oil products, which is

undesirable but not hazardous. However, in case of dealing

with pressurized flammable gases, the temperature variations

are much more sensitive and can even cause fire. Therefore,

in dealing with flammable gases, more frequent feedback is

desirable. This example also signifies the need for priority

of one information type over the other, as a mandatory part

of wireless communication link for timely actions on critical

processes. The presented information in Table III, gives an

overview of possible deadlines in industrial environments,

however, an application specific evaluation of different sensors

is needed to better classify the significance of a particular

sensing process, consequences of failure in its communication

and system type to which this sensing operation belongs.

Apart from the time deadlines and frequency of commu-

nication of individual nodes, the battery-operated nature of

IWSNs also affiliates a suitable value to lifetime of these

nodes. Longer battery life ensures an uninterrupted operation

of the processes and reduction in the maintenance cost. Rec-

ommendations for the desired battery lifetime of the sensor

nodes in different industrial applications are presented in

Table III, whereas a detailed discussion on the suitability of

various available batteries and energy harvesting techniques is

presented in Section X.

The importance of information communicated for the regu-

lation of an industrial process can vary significantly within

an industrial plant. Depending on the type of application at

hand, and nature of its severity, it must be shielded from the

intruders and cyber threats. Since, the external intervention can

raise significant issues in the control of processes; a suitable

protection from external threats must be implemented.

Unlike the wired networks where the intruders need to be

physically connected to the networks, the wireless networks

are much more susceptible to security threats, thus requiring

more suitable security techniques [356]. The main security

criteria for evaluation include confidentiality, integrity, authen-

ticity and availability [57], [357]. The importance of these

factors can be changed based on the application at hand.

In the industrial environments information security has been

considered an integral part of the standardization and is given

higher preference for more critical applications [82]. With

the rise in possible security threats, IWSNs appears to be

more vulnerable to information tampering, node control, denial

of service, flooding, radio interference, eavesdropping and

traffic analysis [357], [37], [42] and hence require appropriate

security and data encryption. A recommendation on security

requirements for different applications is presented in Table

III, whereas a detailed description of security features imple-

mented in IWSNs are listed in Section IV-D(5).

IV. INDUSTRIAL WIRELESS SENSOR NETWORKS

A. Wired and Wireless Networks in Industrial Environments

The communication networks established in industrial en-

vironments can be broadly divided in two categories, wired

and wireless. However, the strong interference experienced in

industrial environment along with high performance demands

make industrial solutions very challenging. It is for the same

reason; wired solutions were preferred over wireless in the

last decade. Many wired solutions were proposed to offer

high-speed communication, deterministic reliability, and real

time delivery [43]. The wired communication networks in the

industries were designed to target four specific objectives [57]

which included real-time assurance, guaranty for functional

safety, guaranty for security and centralized supervisory con-

trol of decentralized processes. Further requirements included

the ability of remote commissioning and maintenance of

distributed automation systems. Over the years many wired

standards and technologies were introduced to meet the strin-

gent real-time and reliability requirements of the industrial
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processes. These wired network developments can broadly be

classified in the fieldbus systems and Ethernet systems.

1) Fieldbus: Fieldbus systems have played a significant

part in the industrial automation for a long time resulting in

standardization of numerous technologies such as [73], [74].

Due a number of desirable characteristics such as deterministic

behaviour, lesser sensitivity to electrical noise, simplified

connectivity and ability to operate over long distance, fieldbus

networks are widely used in the industrial environment to

connect field level equipment including motors, transmitters,

control valves, proximity sensors, accelerometers, encoders,

monitoring and control devices. Some of the significant devel-

opments in the fieldbus systems offering complete protocol suit

include PROFIBUS, CAN, P-Net, Interbus, SwiftNet, Fieldbus

H1, and WorldFIP.

2) Ethernet: High data rates and larger bandwidth offered

by Ethernet qualifies it to serve as a backbone of the indus-

trial networks. Industrial Ethernet received wide acceptance

for communication among Programmable Logic Controllers

(PLC) and Supervisory Control And Data Acquisitions (S-

CADA) with TCP/IP enabled interlinking [43]. Furthermore,

the switch-based architecture, remote diagnosis, and self-

configuring tools of Ethernet offer significant improvement

over the fieldbus networks. Therefore, the use of Ethernet

at field level appeared to be a promising solution to the

interconnectivity problem [75] between high-level (Ethernet)

and low-level (Fieldbus) networks [76]. However, an accurate

priori delay estimation for effective operation of supervisory

control is imperative, therefore, the uncertainty in industrial

Ethernet must be addressed. Later, to improve the suitability

of Ethernet on field level, Real Time Ethernet (RTE) was

introduced [77] which used TDMA based channel access

scheme for improved reliability and predictable delays. Use

of TDMA resulted in the synchronization issues, which were

later addressed in IEEE1588 standard [78]. Over the years

some significant Ethernet based developments include High

Speed Ethernet (HSE), CC-LINK IE, EtherCAT and Sercos

III.

Although, the wired networks offered modest data rates and

reliability but failed in offering scalability, cost efficiency

and efficient network deployment. All these factors forced

the researchers to look into wireless communication solution

for industrial automation. Cost efficiency, flexibility and self-

healing abilities of IWSNs among many others vouched its

suitability for wider industrial application domains.

Suitability of IWSNs resulted in formation of many research

groups leading to various industrial and IEEE standards.

Some of the industrial protocols and standards include IEEE

802.15.4 and IEEE 802.15.4e, Zigbee, WirelessHART and

ISA100.11a. A more detailed discussion can be found in

Section VI, whereas a graphical representation of the existing

industrial wired and wireless network communication stan-

dards and protocols are shown in Fig. 2.

B. WSNs and IWSNs

WSNs are a type of networks with spatially distributed

autonomous devices working collaboratively to offer a variety

of monitoring applications [58]. These autonomous devices,

referred as nodes, serve as a the most appropriate technology

to monitor large physical environments [61]. Each node in

WSNs has a small range in tens of meters and information

from source to destination (Gateway) is transmitted in multi-

hop fashion [62]. This collaborative nature of WSNs allows

the flexibility of adding new nodes to the network and operate

in different network topologies [63], [64].

The transformation of WSNs from non-critical monitoring

[65] applications to highly critical process control, automation

and real time decision making [66], [67], [68], [69], pushed

this technology to limits. Highly sensitive nature of industrial

processes and plants add many constraints which are still a

challenge for WSNs. Moreover, since most of the industrial

environments have transformed into highly dynamic and vi-

brant processes, typical WSNs are no longer suitable to serve

as a solution.

IWSNs are a special domain of WSNs which particularly tar-

gets industrial applications [71], [72]. A typical representation

of IWSNs is presented in Fig. 3. The working principle of

IWSNs is quite similar to that of WSNs. However, the need for

strict timing deadlines, reliability constraints and critical nature

of industrial applications makes IWSNs an entirely different

research domain. As the industrial applications may involve

close loop control systems and critical processes automation,

the primary research focuses in IWSNs are reliability, real-

time data delivery and deterministic network designs. In some

cases, IWSNs also need a long network lifetime to synchronize

the maintenance of wireless networks with the industrial

equipment. Though the lifetime requirements highly depend

on industrial applications, yet the technological improvements

in industrial sector has significantly increased the maintenance

and life cycles of industrial equipment which is no less than

a challenge for IWSNs to meet with.

C. IWSNs Applications

At present, IWSNs are used in wide variety of applications.

Some of the applications include, monitoring, open-loop and

close-loop control of processes, and emergency response sys-

tems. A few of these scenarios are listed as under.

1) Area monitoring: One of the most common applications

of the IWSNs is area monitoring. Such monitoring in industrial

areas may involve sampling of some basic parameters of

interest, like temperature, pressure etc. The primary objective

of the sensors in similar scenario is to accumulate data

over a period of time and relay the data to the destination

using the established network. Such monitoring networks offer

information over extended periods of time which can be used

for the computer based analysis and future improvement and

recommendations [61]. Similar networks can be used in the

industry for slow changing processes where no direct action

is required.

2) Air/water quality and waste monitoring: The pollu-

tants from the industries cause environmental degradation and

severe problems for living systems. To keep check of the

pollutants in air IWSNs play a significant role. To evaluate

air pollution levels and proportion of dangerous gases in
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the atmosphere, large scale wireless networks are formulated.

These extended networks with a variety of sensors offer

improved accuracy.

Like air, it is of utmost importance that the water quality is

regularly checked so that the accurate records of the impurities,

added in water, are maintained. For such purposes, wireless

nodes are used to accumulate the data over time to provide

the updated information on the water condition in the nearby

lakes, rivers etc [165], [166]. Moreover, with the sensor nodes

deployed and permanent monitoring stations established, ac-

curate data can be collected. Deployment of the sensor nodes

also cuts the burden of manual readings. Water wastes also

contribute greatly to the surface as well as underground water

which if accurately evaluated can present a number of ways

to implement remedies.

3) Machine health monitoring: IWSNs have also been

used to evaluate the machinery condition. Sensor nodes are

deployed to evaluate conditions of various potentially impor-

tant machinery parts and to evaluate the need for machinery

maintenance [322]. The use of IWSNs also allow the feedback

of the rotatory parts in machines which were once inaccessible

using wired networks.

4) Structural monitoring: IWSNs are also used to sense the

movement and material binding of the structures. A relatively

higher vibration is observed, especially where large scale

machinery is used. The use of sensor networks helps the

engineers to monitor such structures in much detail and any

deterioration in the structure, overtime, can be identified. The

use of IWSNs allow better monitoring of foundations, reduced

costs of regular visits, better data collection and improved

data storage facilities. Monitoring of vibration and stress

vulnerable structures using wireless technology helps in taking

simultaneous reading of load, pressure and stress which not

only accurately formulates the status of the structure under

different conditions but also builds a database necessary for

the future structure improvements [320], [321].

5) Disaster prevention: Extension of the industries to min-

ing, underwater structures and critical areas where higher

chances of disaster exist, need careful and time to time

evaluation to identify any recently developed threats. Under

such circumstances, IWSNs offer means of regular data ac-

cumulation to identify any threats present [320]. IWSNs also

play key role in the mines where a certain proportion of gases

is maintained and in case of any failure, actuators (suction

pumps for extracting harmful gases) are instantly activated to

avoid any hazards.

6) Sensor and actor networks: Wireless Sensor and Actor

Networks (WSANs) offer a framework for distributed sensing

and feedback based control of processes [319]. Since the

wireless medium is used to establish connection between the

sensors, control center and actuators therefore two data streams

(Uplink:from sensors to control center and Downlink: from

control center to actuators) are maintained. As more network

elements are involved in such applications, more extensive

and carefully modelling of the network is needed. Since the

process control is implemented using sensory data therefore

such networks are time sensitive and need efficient and timely

data routing.

7) Industrial automation and feedback control: The in-

corporation of IWSNs in industrial automation brings many

benefits, however the critical nature of the processes in such

environments demands strict time and reliability bounds [17],

[42]. Certain assurances on packet reception and reliability

must also be provided for feedback control systems to operate

properly. There is also a need of extensive measures to be

implemented to counter the uncertainties of wireless medium

of communication [343].

8) Emergency response in industries: Another emerging

application area for the IWSNs is the flawless communication

establishment of highly critical information. Since the con-

sequences of delay and penalty of failure is much higher,

this particular field desires a relatively flawless operation

of IWSNs in terms of reliability and relative time bounds

[352]. Although, IWSNs offer great potential for this area of

application, however, it is still a long way from perfection.

D. IWSN Architecture

Over the years, a gradual rise in the implementation of

IWSNs can be seen. Due to consistent research efforts during

recent years, the present architecture can be characterized

into several attributes. The performance of IWSNs is mainly

influenced by hardware, network topology, channel access

schemes, network architecture, data collection, interconnec-

tivity, and security schemes. Therefore, the suitability of

IWSNs in different applications is mainly determined from

the selection and choice of these attributes. Each selection

of IWSNs scheme, whether it is used for critical or non-

critical applications offer some benefits but also pose certain

limitations. Therefore, in application specific design, it is very

important to have a careful selection of suitable attributes.

Some of the key influencing factors are discussed below.

1) Nodes/Motes: Each network in IWSNs is formed with

individual nodes, primarily equipped with a processing unit,

radio, memory, sensor board and battery. In certain specific

applications, the individual nodes may be equipped with

energy harvesters, dual radios or multiple processors to of-

fer off-the-shelf benefits [38], [90], [91]. Objective for such

variations may include network lifetime extension, diversity,

multithreading etc. [39], [92], [93]. A general architecture

of wireless node is presented in Fig. 10, whereas a detailed

discussion on wireless nodes can be found in Section VII.

2) Network Topology: In IWSN architecture, the network

topology greatly influences the target application areas. Any

IWSN may have a variety of network topologies with each

offering a different blend of characteristics. Nodes within a

network are more generally connected in star, mesh and tree

topology [371]. However some other topologies including ring,

bus, grid and circular are also sometime considered [371].

Some variants of the above topologies like tier1 and split-tier1

are also sometime considered [94], [95].

• Mesh topology (as represented in Fig. 4 (a)) provides

better reliability and connectivity in case of larger net-

works but offers extended delay as a consequence of

allowing multiple links to gateway and flexibility to opt

most stable route for information communication [362].



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, JULY 2017 12

Fig. 4: Layered view of the Hierarchical architecture in IWSNs. Layer 1: Representation of sensor nodes affiliated with

cluster-heads in a clustered network, Layer 2: Virtual representation of Cluster-heads connection with the gateway (a) Mesh

Network Representation, (b) Tree Network Representation, (c) Star Topology Representation

Fig. 5: Industrial Wireless Sensor Network Architecture. (a) Flat architecture with multi-hop communication to Sink, (b)

Distributed control implementation with cluster-head based localized decisions for reduced delay and improved security

In this topology, each node is connected to multiple nodes

which allows the networks to offer improved reliability

along with self-healing abilities [363].

• Tree topology (represented in Fig. 4 (b)) offers dedicated

links which allows less information overhead [364]. Each

nodes communication takes fixed number of hops to

reach the destination which adds deterministic behaviour

to the communication. Tree topology offers gradient

information field which limits the information packets

straying from the path [365]. However, this topology is

link dependent and failure in key linking nodes can affect

large network branches. Furthermore, in time sensitive

industrial applications, the use of extended branches is

not feasible due to added delay.

• Star topology (represented in Fig. 4 (c)) offers direct

access to the gateway which gives great improvement in

the real-time data delivery however, on the other hand,

reliability starts suffering with the increase in number of

connected nodes especially in contention based channel

access schemes[366], [367].

• Bus topology considers symmetric connection to all the

nodes in the network and information is broadcasted onto

the network. All nodes in the network can see all the

communications but only the intended recipient receives
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the message. Bus topology is easy to install however,

congestion control and security of information are major

issues [368], [371].

• Ring topology forms a circular ring of nodes. Each

node in the ring topology is connected to exactly two

nodes where each communication in the ring can either

be clockwise or anti-clockwise [369], [371]. The ring

increases the chances of failure as a disconnection in

the ring can result in the failure of entire system. Fur-

thermore, the security and congestion issues are more

prominent.

• Circular topology formulates circular sensing area with

sink at the centre. The nodes are deployed with uniform

density and network can span a large area. The topology

can accommodate widespread sensing nodes capable of

forming multi-hop network. The communication from the

sensor nodes to the sink can be single-hop or multi-hop

depending on the sensing node's distance from the sink

and transmission range. The circular topology is easy to

establish and maintain however, geographical attributes

are hard to find in industrial environment [370], [371].

• Grid topology partitions the network into non-

overlapping square grids of the same size. Each grid

accommodates one working node at a time. For grids

with multiple nodes, the grid activity is handled by grid-

head which collects data from the grid. The routing in

this topology is performed in grid by grid manner [371],

[372].

3) Channel access schemes: In IWSNs two channel access

schemes, TDMA and CSMA/CA, derived from IEEE 802.15.4

[23] and IEEE 802.15.4e [20] standards are commonly used. In

TDMA based channel access, the nodes follow a time slotted

access for data communication. The nodes are synchronized

using synchronization beacons and each node is scheduled

to communicate in a pre-specified time-slot [20], [200]. In

this way, a guaranteed channel access is ensured. The TDMA

based channel access is well suited for periodic communi-

cations needed in regulatory control and open loop control.

However, TDMA poses limits to the instant communication

ability of a node with the gateway.

In CSMA/CA based channel access, the opportunistic com-

munication is established where depending on availability

of channel, a node attempts to communicate [23]. Since no

dedicated bandwidth is specified for a node, a guaranteed

channel access cannot be ensured. CSMA/CA based schemes

also suffer from reliability issues as the number of connected

nodes are increased.

Hybrid channel access schemes are also introduced where the

contention based (CSMA/CA) and slotted (TDMA) channel

access schemes are adaptively used, to improve overall per-

formance of the network [10], [236], [239].

The details of TDMA based channel access schemes are

presented in Section VI-B(2) and Section VIII-A(2), a detailed

discussion regarding CSMA/CA based access schemes and

standards can be found in Section VI-B(1) and Section VIII-

A(1) whereas the discussion related to hybrid channel access

schemes is further continued in Section VIII.

4) Network architecture: Network architecture also serves

as a decisive factor in performance of IWSNs. Network

architecture may be flat or hierarchical, but the choice is

mainly influenced by the requirements of the application. The

following discussion summarizes the key features of each

architecture type.

• Flat architecture offers traditional benefits of low com-

plexity and is suitable for small networks. However,

as the network starts to expand, the delay starts be-

coming unbearable. Furthermore, to handle the multi-

hop communication, the control overhead and data relay

path selection information in term of routing tables and

other path selection mechanism overstress the network. In

addition to this, in flat architecture certain nodes become

stress points or bottle neck for the network performance.

A representation of flat architecture is shown in Fig. 5(a).

• Hierarchical architecture on the other hand offer quick

access to the critical information and keeps the clusters

small enough to avoid traffic overload. On the down side,

hierarchical architecture adds extra complexity where

each node must be affiliated with suitable cluster head

and failure in doing so may induce longer time delays

and compromised reliability. A hierarchical architecture

is represented in Fig. 4, where layered view is used to

present the connectivity of the nodes. As it can be seen

in the figure, at layer 1, the sensor nodes are connected to

cluster-head and information from the nodes is collected

at cluster-head in timely fashion. Layer 2 represents

the upper hierarchy of connections in the hierarchical

architecture, where the cluster-heads are connected to

the control center/Gateway. The communication in the

represented scenario is a two step process where in the

first step the sensor data is accumulated at the cluster-

head whereas in second step the accumulated date is

forwarded to gateway/control center.

5) Security: IWSNs inherently possess security issues and

due to its wireless nature, the regular wired network security

protocols do not offer sufficient protection desired in such

networks [356]. IWSNs are vulnerable to malicious attacks

such as information tampering, interference, flooding, denial

of service and eavesdropping [37], [42], [357]. It is for the

same reason, security is considered as a mandatory attribute

of industrial protocols and standards. To address the security

threats, multilayer security functions are introduced. To im-

prove the security in IWSNs countermeasures such as data

encryption, cryptographic key establishment, frame protection,

key rotation and device management are implemented to

ensure data integrity and industry grade security [19], [40],

[354].

The higher stakes in industry encourages use of multilayer

security. It is for the same reason security is an integral

part of well-known industrial standards for IWSNs. Security

related features of some of the well-known industrial protocols

and standards are listed as follows whereas a more detailed

discussion on these standards is presented later in Section VI-

C.

WirelessHART offers a secure networking solution where
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security is implemented in both MAC and Network Layers.

Message Integrity Check (MIC)is implemented to ensure hop

by hop data integrity whereas end to end data integrity is

ensured at network layer. Security is ensured by security

manager application which handles security services. It is also

responsible for generation of security keys. WirelessHART

also uses 128-bit AES encryption for added security [19], [82].

In ISA100.11a, security manager is implemented which is

responsible for authentication, generation, distribution and s-

torage of the security keys. ISA100.11a also ensures end to end

security [82]. The security features in ISA100.11a are similar

to WirelessHART, however, unlike WirelessHART, security

features in ISA100.11a are optional and can be disabled to

offer more flexibility, improve overall network efficiency and

boost battery life where security is not mandatory.

In Zigbee, different levels of security are implemented. To

offer a secure communication, frame integrity check is per-

formed. Key based entity authentication is also implemented

to ensure the authenticity of the nodes. On the network

layer, active network key is implemented to offer network

layer authentication [358]. Further to aforementioned features,

symmetric cipher is used to protect data from unauthorized

access [358]. Like ISA100.11a and WirelessHART, Zigbee

defines Trust Center which serves the purpose of a security

manager.

In 6LoWPAN, Time Slotted Channel Hopping (TSCH) is im-

plemented for efficient multi-hop communications in IWSNs.

With security feature enabled in frame control, 6LoWPAN

additionally adds security control, frame counter and key

identifier for secure communication and protection from replay

attacks. Furthermore, a 32, 64 or 128 bits Message Integrity

Code (MIC) is used to enable encryption of data [359].

On the network layer, to provide integrity, authenticity, and

confidentiality for IP datagrams, Authentication Header (AH)

and Encapsulating Security Payloads (ESP) are added [359].

6) Data collection: In the industrial environments, the

stable operation of the processes is dependent on the effective

communication of sensory data to control centre. Depending

on the wide variety of applications in industrial environments,

the data collection mechanism can change. The communica-

tion for data collection in the industrial environments can be

divided in three categories, namely periodic, event-based and

on-demand communication, where each of these categories

target a particular type of industrial system.

In periodic communication mode, the data is communicated in

regular intervals, handled by TDMA or slotted channel access,

ensured for the efficient process control [20], [212]. Periodic

data communication is most suitable for regulatory control sys-

tem and open loop control systems. Furthermore, some of the

monitoring systems also implement loosely bounded periodic

data communication tolerant to time variations in delivery of

information. The periodic communication is scheduled at the

start of the network and the cycle is repeated by sensor nodes

which are responsible to transmit data regularly [360].

The event-based communication depends on the communica-

tion of data that takes into consideration the critical circum-

stances and sends data in case of occurrence of an event [360].

In industrial applications, the event can be programmed as a

violation of a particular threshold or occurrence of emergency

circumstances, which need to be reported. This type of data

communication is usually preferred in emergency systems

[352] and alerting systems. The supervisory control systems

also use event-based triggers to initiate communication of

sensory data in case of violation of a threshold; however, in

this case the communication is established for longer duration

with periodic feedback.

The on-demand communication is established in cases where

the communication from a particular sensor node is requested

by the coordinator or sink [361]. This can occur if the

sensor data from particular node or a system is desired or a

particular node communication has failed, therefore, a request

for transmission of data can be generated.

7) Interconnectivity: A variety of applications in IWSNs

may need a suitable interconnectivity mechanism with the

existing fieldbus and Ethernet standards. Moreover, certain

applications may need access to IP and the Internet. These fac-

tors definitely steer the choice of suitable industrial solutions.

Although, Zigbee, 6LoWPAN and wirelessHART are some

of the examples offering distinct blend of interconnectivity

options in wide range of automation and supervisory control

industry [40], yet the connectivity to fieldbus elements is still

a challenge.

E. Congestion in IWSNs

In most IWSN applications, communication is bounded by

strict time and reliability constraints. These strict bounds make

IWSNs more vulnerable to congestion problems. In network

communications, congestion causes considerable delay, packet

loss, energy wastage and uncertainty. The congestion is most-

ly attributed to un-coordinated transmission of information,

simultaneous data reporting and buffer overflow [442]. To

overcome the problems of congestion various researches have

been documented in the literature.

Congestion in the network is minimized using congestion con-

trol policies and congestion control mechanisms. Congestion

control policies are usually termed as open-loop congestion

control as these policies dictate certain rules regarding retrans-

mission of packets, packet acknowledgments and discarding

packets [443]. The effective implementation of congestion

control policies reduces the overall network overhead and

limit excessive transmissions in the network. However, the

policies cannot ensure run-time congestion minimization. To

address the dynamic congestion issues and to minimize con-

gestion adaptively, congestion control mechanisms are defined.

Congestion control mechanisms use congestion detection like

channel load, buffer overflow etc. to detect and locate conges-

tion in IWSNs [444]. With the use of TDMA based communi-

cation in IWSNs, the congestion from neighbouring nodes is

significantly reduced. However, due to the limited capacity of

the network, the packet in-flow from the upstream nodes may

be exceeding the threshold. In such cases, congestion control

mechanisms implement congestion notification for upstream

nodes to counter the congestion problem [445].

Different congestion detection techniques and congestion no-

tification mechanisms are presented in Fig. 6. The figure also
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Fig. 6: Congestion in IWSNs

presents congestion control policies and congestion control

mechanisms to address the congestion issues in IWSNs.

Further discussion regarding these categories and congestion

control on the whole, can be found in [444], [443], [445],

[442], [446] and [447].

V. IWSNS DESIGN OBJECTIVES AND CHALLENGES

The development in IWSNs over the years is influenced by

certain design objectives. However, the achievement of these

design objectives is affected by certain limitations of IWSNs.

The primary design objectives and possible design challenges

in IWSNs are listed as follows.

A. Design Goals and Objectives

In IWSNs, continuous research has provided much wanted

improvements in past few years. It is because of the efforts

of many individuals and some joint ventures that IWSNs

have recently witnessed much wider acceptability in several

industrial applications. Due to a broad scope of the potential

applications of IWSNs and with rising challenges, certain

design objectives need to be considered.

Wireless links in industrial automation, whether it is for

emergency communication, process control, feedback systems,

altering or monitoring networks, requires certain performance

and reliability assurances. To fulfil these requirements using

IWSNs, certain design goals and objectives must be set forth.

Although, design objectives are very much linked to individual

applications, their requirements, and targeted industrial sys-

tems, yet the design goals and objectives for different cases

are listed as under.

• Efficient resource (battery, processing power, memory,

bandwidth etc.) usage

• Ensuring predictable delay and latencies (Mandatory con-

dition for effective regulatory and supervisory control)

• Managing congestion free communication

• Accurate time synchronization

• Real-time assurance

• Security of information

• Modular design for improved scalability

• Interoperability with existing infrastructure

• Prioritized communication

The above-listed objectives offer best practices for ex-

tended network life time, reliability of communication, an

appropriate priori information of delay for efficient regulatory

and supervisory control, a scalable network offering modular

design for more flexibility, improved security features, jitter

minimization, surety of real-time communication for sensitive

processes and proper priority affiliation to different traffic

types for timely and precedence based communication. The

design goals, research developments and limitation in achiev-

ing these design objectives are presented in Table IV. Whereas,

certain other challenges offering notable deterrent in achieving

these objectives are listed in Section V-B.

B. Design Challenges

The collaborative nature of IWSNs enables this technology

to bring many off the shelf advantages, however, there are

certain bounds to the benefits offered by IWSNs especially

when coping with harsh environments. These bounds give rise
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to certain research challenges as well. The major challenges

in the present IWSNs are as under.

1) Resource constraint: IWSNs do serve as a cost-effective

and efficient solution to the industrial automation and process

control. Although, the low cost and reduced complexity of the

IWSNs offer a suitable solution for the industrial applications

yet it also adds cap to the resources of the tiny wireless

motes [17], [19], [50]. Resource constraints in IWSNs can be

divided into six different sections as below.
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TABLE IV: Goals and Objectives: limitations and research developments

Goals and

Objectives

Aspects Progress and

Research S-

tatus

Description

Efficient

Resource

Usage

Battery Partially

addressed

Limitations

1) Limited battery capacity [323], [35], [39]

2) Capacity increase at the cost of size, weight, and price [16]

3) Decrease in the battery capacity with time and recharge cycles [35], [39]

Research developments and improvements

1) Energy efficient utilization of IWSNs

• Sleep scheduling [324], [325], [326], [327]

• Transmission power control [104], [105], [106], [107]

• Deep sleep and passive listening [324], [328], [329]

• Data redundancy reduction [118], [330]

2) Use of rechargeable batteries with energy harvesting for extended unsu-

pervised operation [35], [39]

Processing

power

Addressed

1) Wide variety of microcontroller with diverse range of processing capa-

bilities suitable for IWSNs [331], [332]

2) Tremendous reduction in cost factor (Use of SuperSRAM and DRAM)

[333]

Memory Partially

addressed

Limitations

1) Limited memory capacity in the available wireless nodes and microcon-

trollers [334], [335]

2) Limited code memory, restricting implementation of complex algorithms.

[100]

Possible solutions and remedies

1) Introduction of more powerful nodes with extended memory [169], [336]

2) Optimized memory utilization [100], [337]

Bandwidth

and

transmission

Partially

addressed

Limitations

1) Overlapping spectrum in IWSNs [98], [338]

2) Possible interference due to overlapping channels in WiFi, WPAN and

other technologies operating in ISM band [143], [301]

Research developments and improvements

1) Cognitive channel access for interference avoidance [305], [308]

2) Adaptive channel selection and contention free channel access [339]

Predictable

Delay and

Latencies

Delay and

Deadlines

with

predictable

latency

Partially

addressed

Limitations

1) Hard deadlines [42], [53]

2) Unpredictable delays in dense networks [340]

3) Unsynchronized deadlines and asynchronous channel access requirements

from emergency and supervisory control.[51], [53]

Research developments and improvements

1) Segmented slot access and retransmissions [20], [82], [95], [138]

2) Priority based communication [55], [218], [219]

3) Asynchronous communication scheduling protocols for emergency com-

munication [149]

4) QoS assurance [11], [31], [305]
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Congestion

free com-

munication

CSMA/CA

schemes

Partially

addressed

Limitations

1) Random channel access [209], [210], [225]

2) Interference [98]

3) Lack of scheduling of communications [214], [215], [217]

4) Back-off based delay in CSMA/CA based access schemes [340]

Research developments and improvements

1) Channel estimation [341], [342]

2) Kalman based and other congestion control algorithms [343], [344]

3) Use of slotted CSMA/CA schemes [211], [212]

TDMA

schemes

Addressed

1) Use of TDMA for interference free communication [20], [200]

2) Guaranteed channel access [20], [201], [202]

Time

synchro-

nization

Single-hop

topology

Addressed

1) Use of beacon enabled communication for nodes synchronization [20]

2) Synchronization with the master clock. [20], [345]

3) Ensuring recalibration of the faulty (lagging, leading) clocks [345], [346]

Time

synchro-

nization

Multi-hop

networks

Partially

addressed

Limitations

1) Large networks with multi-hop communication [345]

2) Non-linear processing and communication delays. [347]

3) Usage of low cost and less accurate clocks

Research developments and improvements

1) Consensus based time synchronization: Average Time Synchronization

(ATS) and Maximum Time Synchronization (MTS) [348]

2) Post facto synchronization and tunable synchronization [349]

3) Source clock frequency recovery (SCFR) based and distributed time

synchronization [350], [351]

Real-time

assurance

Emergency Partially

addressed

Limitations

1) Asynchronous access requirements [352]

2) Effects of TDMA induced access delay on instant channel access require-

ments [352]

Research developments and improvements

1) Multichannel solution [203], [223], [224]

2) Priority based channel access execution [55], [218], [219]

3) Maximum delay assurance [20]

Process con-

trol

Partially

addressed

Limitations

1) Periodic channel access requirements [51], [55]

2) Deadlines in milliseconds [42], [53]

3) Lack of appropriate remedies in case of communication failure [20], [235]

Research developments and improvements

1) Priority based access [55], [218], [352]

2) Shared slots for retransmission of critical communication [20]

3) On-demand channel access [352]

4) Deadline optimized communications [20], [55]
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Security
Security

threats,

integrity and

authenticity

Partially

addressed

Limitations

1) Information tampering [37], [353]

2) Node control [37], [42]

3) Denial of service [37], [42]

4) flooding [37], [42], [353]

5) radio interference [37], [42], [353]

Research developments and improvements

1) Hop by hop data integrity [19]

2) Data encryption [19], [40]

3) Cryptographic key establishment [40], [354]

4) Frame protection and device management [40], [354]

Interoper-

ability

WPAN

to Other

mediums

Partially

addressed

Limitations

1) Lack of standardization [16]

2) Integration with existing systems [19]

3) Too many technologies in play [19]

Research developments and improvements

1) Multi-interface motes [152], [153], [162]

2) Interoperability with the IPv6 and other networks [28]

Prioritized

communi-

cation

Static/Dynamic Partially

addressed

Limitations

1) Priority Establishment

2) Attributes of priority [55], [218]

3) When and how to be prioritized [219]

4) Static priority systems [55]

Research developments and contributions

1) Introduction of priority systems [51], [55]

2) Optimization of protocols w.r.t to channel access and priority of service

[53], [55], [352].

3) Redefinition of usage of shared slots and asynchronous channel access

[10]

4) Hybrid channel access schemes for improved flexibility [53]

5) Multichannel schemes for improved performance [29], [53]

• Battery: IWSNs are equipped with limited battery. The

battery issue is even more critical where the motes are

inaccessible due to critical nature of the application.

For instance, thermal analysis of installed machines and

interior sensor placement in large synchronous generation

units need long lasting battery to make the most of these

inaccessible motes. For most of the cases in IWSNs

the motes are designed to last longer with the inbuilt

ability to preserve battery where possible. This property

especially helps in applications where replacing a mote

is more effective than replacing battery of an existing

mote. However, not much improvements can be seen

in enhancing the existing energy sources (Lithium-Ion,

Alkaline, Zinc-air etc.), thus, leaving the only solution to

increase the size of the battery which is not an efficient

alternate. Hence the battery capacity becomes a major

bottle neck for most of the cases where motes cannot be

used to full potential to achieve extended features [96],

[97].

• Communication range: IWSNs suffer from limited

range especially in harsh industrial environments. The

communication range for wireless sensor motes can

extend from 10m to 300m depending on the severity of

reflection, refraction, diffraction, multipath, interference

and fading [142], [153], [173]. The short range, where

at one instance adds to the lifetime of the network,

it also affects the real-time delivery of the data to

destination. Hence, gives rise to the need of efficient

routing algorithms in multi-hop communication.

• Bandwidth: For the IWSNs, a dedicated band specified

for industrial, scientific and medical (ISM) applications is

used. This band is reserved internationally for the use of

radio frequency (RF) energy for industrial, scientific and

medical purposes. Where this dedicated band provides

scope for low cost industrial communication, it also limits

the band access as well. Most of the radios available,
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operate at 2.4GHz, with an accessible frequency band-

width of 73MHz. This frequency bandwidth is divided in

eleven channels [98]. The technology offers a data rate of

250kbps which, for some of the applications in industrial

domain, serve as a bottleneck. The industrial applications

using 868MHz and 915MHz instead of 2.4 GHz suffer

even lower data rates [98].

• Memory storage: Limited memory in IWSNs offers

a major challenge [99], [100]. Even with some of the

latest motes in market, memory still remains a constraint.

Though increase in memory is not one of the tough tasks

yet it comes with an additional cost, especially for the

applications requiring a large number of motes. With the

limited memory capacity, the scope of more sophisticated

algorithms is restricted [100], [101]. A more efficient

memory allocation and optimized memory utilization is

expected to improve most of the existing technology

without additional cost.

• Processing capability: The rapid improvements in the

Micro Electro Mechanical Systems (MEMS) enable the

present-day chips, the processing capability of several

hundreds of MHz at a relatively low cost. But in IWSNs

low clocks are preferred. Only reason that justifies this

adoption in the field of IWSNs is the fact that with high

processing capabilities, the chip becomes more power

hungry and results in early depletion of the battery. To

avoid such high power consumption and to extend the

network life, the motes are mostly low clocked and hence

offer ability to run only low complexity algorithms [100].

• Half duplex communication: Till present, almost all

of the motes available in the market offer half duplex

communication [102], [103]. This attribute of the motes,

used for industrial applications, adds need to use co-

operative nature of communication along with better

synchronization. Certain mechanisms have been proposed

to overcome the half duplex nature of the available motes

like CSMA/CA with exponential back off but still it poses

serious limitations to the practical use of motes.

2) Energy consumption and network lifetime: As discussed

earlier, battery capacity per unit volume remains almost static

over the years. some improvements presented over time are

either restrained by cost factor or instability of battery ma-

terial in industrial atmosphere. Therefore, the smart energy

consumption and means to efficiently optimize the energy

usage of the motes has been thoroughly investigated. However,

while the energy efficiency is achieved using transmission

power control, energy efficient routing, sleep scheduling, or

localized processing, there is no benchmarking and most of

the accomplished work is questionable due to lack of its

authenticity in harsh environments. Since the use of IWSNs in

some inaccessible industrial environment signifies the need of

efficient energy utilization to offer extended network lifetime

to cope with the long-lasting lifetime of the industrial equip-

ment, a thorough evaluation of existing research in stringent

industrial environments is much needed.

3) Time Constraint: Time deadlines are one of the most

critical parameters in an industrial automation and process

control, where slight delays can cause severe damages to the

equipment, spoil an entire lot under production, or can even

cause threat to human life. Delay can be even more critical

for sensitive processes under observation like nuclear plants.

In any industrial setup, a whole system is devised to extract

the critical information from various individual processes and

establish a control system to make critical runtime decisions.

For all close loop control systems, a particular time deadline

is of imminent importance and functionality of the control

system depends on the real-time delivery of this information.

In IWSNs the real-time data delivery appears to be a major

challenge due to limited range and susceptibility to the harsh

industrial interference, humidity, multipath, dust and highly

caustic environments [16]. Therefore, if the IWSNs are opted

as an alternate for wired networks this aspect must be thor-

oughly evaluated and verified.

4) Interference, reliability, and bit error rate: In any

industrial environment, interference is one of the inherited

problems and usually appears as a major challenge in IWSNs.

Interference is relatively high in industrial setups due to

high noise, electromagnetic radiations, multipath distortion,

humidity, dust and dynamic atmosphere. All these factors

contribute to relatively reduced range, distorted and noisy

transmission, frequency selective fading and non-reliable links,

eventually resulting in extended packet delay and high packet

loss ratio. To offer a reliable communication without violating

critical deadlines, the impact of interference cannot be ignored.

Transmission power control [107] and optimal communica-

tion power adjustment algorithms along with certain other

strategies can be considered as a source of contention and

interference avoidance within the local area networks [104],

[105], [106], none the less the issue needs to be addressed

properly.

For more critical processes, the data received from different

carefully placed sensors to sample the critical information

serves as a marker to identify the stability of the process.

Moreover, the CSMA/CA based channel sensing and collision

avoidance schemes can ensure the reliability up to certain

extent but with the increased traffic, the reliability starts to

suffer [108], [109]. Also some parameters including the Link

Quality Indicator (LQI) and Radio Signal Strength Indicator

(RSSI) are considered as the identifiers for the link quality

and reliability yet they may be deceptive [110]. Bit error

rate, on the other hand offers more reliable evaluation of

performance of the communication in digital wireless link.

However, achieving a bit error rate of the order supported by

the wired networks is a major challenge due to uncertainty in

wireless channels. Usually the bit error rate is carefully defined

based on the needs of the process along with acceptable levels

of error.
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5) Variable link capacity: IWSNs operate at relatively low

data rate with an upper cap of 250 kbps with only few

exceptional high data rate schemes. The achievable data rates

in reality are relatively less due to congestion, interference,

high distortion noise, multipath distortion and synchronization

overhead. Moreover, contrary to general assumptions, the link

capacity is not constant rather it depends on the channel

conditions. The changing link capacity forces the researchers

to model the link with ability to provide connectivity between

source and destination with certain traffic carrying capacity

along with the implementation of counter measures for the

imminent uncertainty in wireless links.

6) Synchronization: The evolution of IWSNs for industrial

applications enforced the need of reliable data communication.

It was the basic reason why most of the industrial applications

of WSNs have seen a dramatic shift from CSMA/CA based

channel access schemes to Time Division Multiple Access

(TDMA). The use of TDMA ensured a higher percentage

of contention free channel access to the source/sensor nodes

in IWSNs. However, it also gives rise to the need of proper

synchronization among the wireless motes in the network.

7) Sleep Scheduling: With TDMA in place, efficient sleep

scheduling algorithms can exponentially enhance the lifetime

of the network. At the same time, for any industrial plant,

information has great significance and missing critical in-

formation can be catastrophic. Hence, advanced mechanisms

are needed to provide a proper scheduling with alternate

paths in place to carry critical information. Moreover, other

mechanisms must be exploited to offer extended network

lifetime without undermining the performance of the network.

Though a great contribution in this aspect has been witnessed

[111], [112], [113], [114], [115], [116], [117], yet the sleep

scheduling for hybrid access schemes are not much optimized

and though these schemes offer better performance yet fail to

provide good energy efficiency and sleep scheduling [10].

8) Data redundancy: In IWSNs, data redundancy is usually

exploited to achieve better reliability. However, beyond certain

bounds, the redundancy becomes a source of quality degra-

dation. Mostly the redundancy is modeled as a static aspect

of a protocol [118], [119]; however, there is a need to treat

redundancy as a dynamic aspect, which is directly linked to

communication overhead and link capacity.

9) Scalability: Scalability is one of the most important

attributes of the IWSNs. The emphasis on this aspect is even

greater for industrial applications due to the ever-changing

industrial environment. Although the use of IWSNs as a

solution for industrial processes inherently offers flexibility

to the changes in the existing processes yet the scalability

stands as a major hurdle. It is observed that an increase in

the network size results in computational and communication

overhead, which becomes unbearable for the wireless nodes

and hence the process fails to cope with the increased demand.

10) Network topology: Careful selection of network topol-

ogy is very important as it has notable impact on the intrinsic

properties and performance of the network. In literature, many

topologies were listed with their benefits and weaknesses.

Some of these topologies include star, mesh, tree, circular,

grid, ring, bus, tier-1 network topology, split tier-1 network

topology and linear topology [371]. In some cases, star topol-

ogy (extended as multi directional split tier-1 topology) and

hierarchical topology (a multi-level star topology) were con-

sidered. Some adaptive and static schemes were introduced to

improve the performance of industrial wireless networks [120],

[121]. It is known that all these topologies have certain effects

on the various performance metrics including the reliability,

real-time data delivery, bit rate and complexity. However, to

establish a direct relationship of performance metrics with a

topology under investigation, still needs extensive evaluation.

11) Security: IWSNs, whether used in critical or non-

critical industrial application, is always vulnerable to security

threats [122], [123]. The security threats may be active or

passive. To overcome the threats of the external interference

and to block malicious information, the need for sophisticated

encoding schemes and malicious information identifiers is

inevitable. Moreover, some hardware based security schemes

[124] may assist in ensuring better security features for indus-

trial applications.

12) Coexistence: In the past few years significant improve-

ments in the existing structure of IWSNs have been witnessed.

In all these years with various researches carried out, different

domains of IWSNs were targeted. From all the significant

improvements whether they included network layer, MAC

layer or PHY layer, the only attribute of these researches re-

mained ambiguous was the coexistence of these improvements.

Although these improvements in different layers and aspects

of IWSNs emerged in form of standardization [20], [82], [140]

, however, still the there is much room for improvement. For

all the algorithms defined, whether they target routing, MAC

restructuring, sleep scheduling, transmission power control or

any other, the evaluation of collective enhancement of these

achievements is still a challenge [375].

13) Information priority scheduling: All the information in

industrial applications can be divided into multiple categories

based on the critical nature of the information. It has always

been a challenge to optimize the flow of information and

prioritize the critical information due to the existing MAC

layer structure in the baseline standards. Some scheduling

algorithms were proposed [10], [30], [55] to prioritize the

information but priority scheduling still remains a challenge

in an industrial atmosphere.

14) Contention free medium access: Contention free medi-

um access remains one of the most considerable attributes

in any industrial environment. This served as a primary

reason for the changes in the industrial standards for WPAN

from CSMA/CA to TDMA. With the use of TDMA, current

standards offer guaranteed access to the medium in the spec-

ified slots. However, the problem is not completely resolved

as retransmissions still use contention based channel access

schemes. For retransmission, the latest industrial standards use

shared slots [20], with contention based access to the slot. All

the sources with lost packets use CSMA/CA based scheme

with exponential back off to gain access to the shared slot,

which once again pose challenge of maintaining collision free

medium access [20].

15) Energy harvesting: In the past few years, no significant

improvements in the existing batteries have been made. For
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longer network lifetime, the solution emerges from either

bigger battery attachment or efficient battery utilization. One

other trend has also been seen where the energy harvesting

schemes are used to offer extended network lifetime. Howev-

er, the energy harvesting techniques in IWSNs need further

evaluation.

16) Mote size and protective casing: With the recent de-

velopment in the fabrication of sophisticated printed circuit

boards and nano-technology at hand, the size of the motes

can be significantly reduced, yet the battery remains a ma-

jor contributor in size of the mote. Moreover, the energy

harvesting schemes can also add to the size of the mote.

With certain frequency bands (868MHz and 915MHz) still in

use for industrial automation and process control, the antenna

size also contributes significantly in increased mote size and

dimensions.

Apart from this, the harsh industrial environments encourage

the use of suitable protective casing for sensitive equipment.

Any equipment used in the industry is needed to be tested

for the critical conditions, that it will go through during

its operation on an industrial floor. Same is the case with

the wireless sensor motes, which need to survive in harsh

industrial environments. Any design of casing for these motes

may need to withstand, hot and cold climate, excessive heat,

rapid temperature fluctuations, corrosion, humidity, fumes,

fungus, vibration, pressure and radiations. Hence, design of

casing for the wireless motes has great significance and must

not be considered lightly. Unfortunately, this particular area

lacks substantial research to assist in low weight, low cost

and reliable casings for harsh environments.

17) Multi-hop communication: One of the primary reasons

for opting IWSNs for industrial applications was the inherited

ability of these networks to establish multi-hop communica-

tion. This feature of IWSNs permits the flexibility to add

new sources and allows coping with the structural changes

in industrial plants without changing the existing structure of

IWSNs. The feature adds flexibility to the network, however,

it is also a challenge to establish a good communication

link between source and destination without overloading a

particular path and ensuring timely delivery of the information

to the control unit.

The listed challenges and limitations encourage extensive

research in IWSNs. In order to overcome these challenges

and to achieve the design objectives and goals in IWSNs,

prominent contributions have been made. Section VI to Section

XI discuss some of such contributions and important research

developments in IWSNs.

VI. POTENTIAL STANDARDS FOR IWSNS

COMMUNICATION

This section discusses different standards potentially suit-

able for IWSN. The discussion is divided in three sub-sections.

Section VI-A discusses the less relevant wireless standards

which could be and have been used for limited applications in

WSNs. Section VI-B discusses more relevant WSN standards

including IEEE802.15.4 and IEEE802.15.4e which discuss

Physical and MAC specifications. Section VI-C focuses on the

industrial protocols and standards which defined upper layers

of the protocol stack using IEEE802.15.4 or IEEE802.15.4e

as a baseline.

Wireless networks, have gained much popularity in this

decade with many notable improvements in wireless indus-

trial solutions. Significant reduction in individual mote price,

improvement in processing and communication capabilities,

development of protocols to facilitate communication and

overcome interference are some of the improvements one can

witness. All these improvements, especially the development

of industrial wireless communication standards and protocols,

assisted in wide scale implementation of IWSNs in industry.

A detailed review of the wireless technologies, standards and

industrial protocols for IWSNs are listed as follow.

The wireless technologies that fall in the domain of WPAN are

standardized by 802.15, a working group of IEEE. There are

ten different groups working in 802.15, where each address

certain aspects in standardization of WPAN.

1) IEEE 802.15.1 covers Bluetooth technology which is

discussed in detail in Section VI-A(1).

2) IEEE802.15.2 addresses the coexistence issue in multi-

ple devices operating in ISM band. A related discussion

is presented in Section XII-F.

3) IEEE802.15.4 addresses the low datarate WPAN and

plays a vital role in defining Physical and MAC layer

specifications for low rate and low power networks

including low-rate WPAN standard for industrial au-

tomation and process control. Further details can be

found in Section VI-B.

4) IEEE802.15.5 addresses the issues of interoperability

and scalability of wireless mesh networks in both low

and high rate WPAN. A more detailed discussion regard-

ing interoperability in low-rate WPAN can be found in

Section XII.

Apart from these, other WPAN group focuses are listed as

follows.

5) IEEE802.15.3 covers high-rate WPAN (suitability issues

in industries due to high power requirements and unnec-

essarily high data rates compared to low data generated

by sensors)

6) IEEE802.15.6 covers Body Area Networks (short range,

unsuitable for industries)

7) IEEE802.15.7 covers Visible Light Communication

(VLC) (Lack of existence of infrastructure and suitabil-

ity to broader range of applications in industries)

8) IEEEP802.15.8 addresses peer to peer and infrastructure

less communication (Fewer application that fall in this

category in industrial automation and process control)

9) IEEE P802.15.9 addresses Key Management Protocol

(KMP)

10) IEEE P802.15.10 addresses issues in routing in dynami-

cally changing wireless networks (A less likely scenario

due to the presence of static environments in industry)

The focuses of 802.15 groups listed in (5)-(10) are out of the

scope of this paper. However, some details regarding possible

developments regarding IWSNs can be found in Section IV-

D(5), discussing security and local key management, Section
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VI-A(3) discussing UWB as high-rate WPAN and Section XII-

E covering potential of VLC in IWSN.

Furthermore, some other suitable standards apart from low-rate

WPAN used in IWSNs under special circumstances including

Bluetooth, Wi-Fi and Ultra-Wide Band (UWB), are also dis-

cussed. Whereas, more concerned area in WPAN standards,

low-rate WPAN i.e. IEEE802.15.4 and IEEE802.15.4e are

discussed in greater detail.

A. Selected Wireless Technologies and Standards

Many wireless technologies were considered to fulfil the

needs of industrial applications. In all the technologies, test-

ed for industrial wireless solutions, the aim was to benefit

from the free unlicensed ISM band dedicated for industrial,

scientific and medical ISM purposes. Wi-Fi, Ultra-Wide Band

(UWB), and Bluetooth are three main technologies other than

the IEEE802.15.4 based variants with potential to handle

the industrial applications while utilizing the dedicated band.

A brief discussion on benefits and shortcomings of these

three technologies are listed as follows, while IEEE802.15.4,

IEEE802.15.4e and industrial adaptation of these WPAN stan-

dards are discussed in detail in Section VI-B and Section VI-C

respectively.

1) Bluetooth: Based on IEEE 802.15.1 standard, Bluetooth

offers energy efficiency apart from low cost modules. In Blue-

tooth, seventy-nine channels are available with each offering a

bandwidth of 1MHz to support high data rates [130]. Bluetooth

devices use universal short-range radio link with frequency

hopping spread spectrum (FHSS). FHSS ensures the security

with the facility to access currently unoccupied channels.

The protocol offers two connectivity topologies, piconet and

scatternet [131]. Every piconet is formed by a Bluetooth

device working as a master. The master-slave connection is

established in a piconet where one master device can exist per

piconet with one or more slave devices. A slave device can

only establish a point to point link with the master, and can

be put in the standby mode to improve energy efficiency. In a

piconet, a master clock synchronization is also established.

Multiple overlapping piconets form a scatternet where one

device can be part of multiple piconets. However, a device

can work as a master in only one piconet. Bluetooth devices

offer a communication range of up to 100m, however, mostly

the preferable communication range is up to 10m [131].

Use of Bluetooth offers improved security, cost efficiency and

reduced energy consumption, however, the intrinsic properties

of Bluetooth limit the maximum number of connected nodes

in a network. In earlier versions, only eight nodes could

connect to an interface, hence affecting the suitability of Blue-

tooth in realistic industrial networks. With the introduction of

Bluetooth 4.0, some of the constraints are relaxed. However,

the master-slave interconnection in Bluetooth lacks flexibility

and increases the protocol complexity. Furthermore, Bluetooth

does not offer any support for mesh networking and fails to

provide suitable mechanism for multi-hop communication, a

core aspect of majority of the industrial wireless networks.

Apart from these scatternet based multi-hop networks are

inefficient and unsuitable for dense industrial networks [131],

[133], [134]. The lack of flexibility, support for limited nodes,

master-slave link establishment, increased complexity and lack

of multi-hop communication support are some of the issues,

which affect the suitability of Bluetooth based solutions for

fast paced and dynamic industrial networks [132], [131].

2) Wi-Fi: Based on IEEE 802.11standard, with possible

variations of 802.11 (a/b/e/g/n/p/ac ... ay) [125], [126], [127],

[128], [129], Wi-Fi offers a high data-rate using the frequency

band of 2.401GHz to 2.473GHz. Use of Wi-Fi allows large

number of nodes, which improves the possibility for scalable

networks. The network is formed using a centralized device

to offer high data rates over short distances [132]. Several

components in IEEE802.11 architecture interact to provide

support for station mobility. A primitive cell consisting on

mobile or fixed stations, is formed using Wi-Fi technolo-

gy, referred as Basic Service Set (BSS) based on which

IEEE802.11 employs independent basic service set (IBSS)

and extended service set (ESS) network configurations [131].

IEEE 802.11 allows formation of ad-hoc networks where the

stations can communicate without any Access Point (AP). An

extended form of network can also be achieved using multiple

BSS where the interconnection is established using Wireless

Distribution System (WDS) [131]. However, WDS also has

some disadvantages including throughput cut down for each

WDS repeating hop, and elimination of rotated encryption

key support. Furthermore, Wi-Fi modules are relatively ex-

pensive and consume more energy as compared to Zigbee

and Bluetooth, which affect the suitability of Wi-Fi in battery

operated networks [131]. With high power consumption, the

lifetime of the IEEE802.11 networks is severely compromised,

increasing maintenance and replacement costs. The short life-

time expectancy of IEEE 802.11 assisted networks also incurs

unscheduled off times in the regular operation of industrial

processes. Apart from these, high-speed data communication

is not always desired, especially when the information is more

vulnerable to interception due to high power transmission.

Another issue that was noted in Wi-Fi networks was high

multipath interference due to reflection of signals from the

walls and other obstacles in indoor industrial environments

[132]. Furthermore, increasing the number of devices in a

single Wi-Fi connection, also affects the signal strength of

the individual devices [132].

3) UWB: In UWB the information is communicated using

very short pulses emitted in periodic sequence using radio

frequency. Due to the use of impulses, UWB signal can be

defined as an instantaneous spectral occupancy signal [135].

UWB has wide band of 500MHz with achievable data rates of

110Mbps [131]. Due to high achievable data rates, the UWB

is termed as high-rate WPAN, also referred as IEEE802.15.3.

UWB can be used in short-range applications and precise

localization [133]. Due to the short range communication

capabilities, UWB is used in indoor applications with high

data rate requirements. High data rate in UWB) is suitable

to assist multiple video and multimedia streams for indoor

applications. Apart from this, UWB can fit in to short range

cable replacement such as a wireless alternate for USB 2.0

and IEEE1394 [131].

The standardization and further developments of UWB include
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TABLE V: PHYSICAL Layer Parameters of IEEE 802.15.4 Standard [23]

PHY (MHz) Frequency Band Data Parameters Spreading Parameters

(MHz)

Symbol Rate Symbols Bit Rate Modulation Chip rate

(kSymbols/s) (kb/s) kChip/s

780 779-787 62.5 16-ary orthogonal 250 O-QPSK 1000

780 779-787 62.5 16-ary orthogonal 250 MPSK 1000

868/915 868-868.6 20 Binary 20 BPSK 300

902-928 40 Binary 40 BPSK 600

868/915 (optional) 868-868.6 12.5 20-bit PSSS 250 ASK 400

902-928 50 5-bit PSSS 250 ASK 1600

868/915 (optional) 868-868.6 25 16-ary orthogonal 100 O-QPSK 400

902-928 62.5 16-ary orthogonal 250 O-QPSK 1000

950 950-956 100 Binary 100 GFSK

950 950-956 20 Binary 20 BPSK 300

2450 DSSS 2400-2483.5 62.5 16-ary orthogonal 250 O-QPSK 2000

IEEE P802.15.3a, IEEE 802.15.3b, IEEE 802.15.3c along with

ongoing developments for amendment 3d for IEEE 802.5.3.

IEEE P802.15.3a operates in the frequency band of 3.1GHz

to 10.6 GHz with fractional bandwidth of 20% with the

transmission range of 5m and dynamic power range of 80

dB [136]. The improvements are targeted at imaging and

multimedia communications. IEEE802.15.3b improves 2003

standard by adding interoperability to MAC along with some

other features like MAC layer management entity, logical link

control and added contention periods in frame. IEEE802.15.3c

targeted millimetre wave based amendments in the Physical

layer operating at a frequency of 57-64GHz with a communi-

cation range of 10m [137].

Majority of the improvements introduced in the UWB target

high-speed short-range communication which fail to align with

the requirements of industrial applications. More suitable stan-

dards like IEEE 802.15.3 and IEEE 802.15.3b can at best serve

as a supporting technology for IWSNs. Thus leaving UWB

for industrial applications where the distance is relatively

small with a need of extremely high data rate requirements.

Furthermore, a relatively higher power requirement and ability

to connect to eight motes at most, limit the scope of use of

UWB for wide industrial market. High peak energy pulses also

makes data more vulnerable to security attacks [135].

To give a quantitative comparison of power consumption

of UWB and Wi-Fi, in comparison to tradition WSN, the

power consumption of CC2430 (Zigbee), CX53111 (Wi-Fi)

and XS110 (UWB) are presented in Fig. 7. The power

consumption for transmission and reception of these modules

is same due to the longer duration of active listening period

compared to shorter transmission period [131].

B. IEEE WPAN for WSNs/IWSNs

IEEE WPAN standards offer a baseline for different working

groups, covering details of the Physical and MAC layer. Based

on the specifications of IEEE 802.15.4 [21] and 802.15.4e

[20] ZigBee Alliance , ISA100 wireless compliance institute,

HART communication foundation and other groups have de-

fined protocols with upper layer specifications like ZigBee,

Fig. 7: Power consumption for Wi-Fi and UWB in

comparison of Zigbee [131]

WirelessHART, ISA100.11a, 6LoWPAN and MiWi [27], [28],

[29], [138].

1) IEEE 802.15.4: The standard offers specification of the

Physical and MAC layer for low power, low cost, low speed

and energy efficient communication within the nearby devices.

The technology targets long life self-configurable network-

s with the ability of autonomous operation. The standard

describes Physical and MAC layer architecture, functional

overview, frame formats, management services, security oper-

ations, modulation schemes, transmission power, RF require-

ments and quality metrics.

Physical layer specifications provide frequency requirements,

RF details, modulation schemes, spreading parameters, trans-

mission power, channel details and assignment of UWB chan-

nels. It also specifies the recommended receiver sensitivity and

link quality measure along with the channel state assessment.

Details of some of the Physical layer parameters are listed in

Table V.

The MAC layer handles the access to the physical channel

including generation of beacons, synchronization mechanism

to the generated beacons, motes association and disassociation

to PAN. It also manages the assurance of contention free medi-

um access by implementing CSMA/CA mechanism, support
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for device security, handling guaranteed time slot mechanism

and reliable link assurance between the MAC entities [23]. In

addition, the MAC layer controls the operating conditions of

the motes by nominating them either as full-function device

or reduced-function device. Full-function device can switch

between a coordinator (a node which controls and coordinates

a network) and a sensing device (a node which sense data

and relay information in the network) whereas the reduced-

function device only works as a simple sensing device. The

MAC layer also defines the layout of the superframe with

the details of inter-frame separation, Contention Access Period

(CAP) and contention Free Period (CFP).
2) IEEE 802.15.4e: The amendments in the existing WPAN

standard IEEE 802.15.4 were focused on enhancing the suit-

ability of existing standard for critical industrial applications of

IWSNs. Thus, IEEE 802.15.4e mainly targets the real-time and

reliability constraints in IWSNs. Some notable changes were

introduced in the existing standard including the use of TDMA

based channel access in IEEE 802.15.4e that replaced the

CSMA/CA based access technique. This change offers guaran-

teed access to the channel to improve reliability. The changes

introduced in new standard mainly targeted MAC layer with

the inclusion of synchronization beacons for synchronization

in new TDMA based access scheme. For retransmissions,

shared slots are used which follow the CSMA/CA based

access scheme with exponential back off (same mechanism is

used in IEEE 802.15.4 during regular channel access schemes

where the transmitter waits for random slots of time before

retransmission, if the channel is busy). The modified standard

also includes the structural amendments in the security header

and control field.

C. Selected Industrial Standards for WSNs/IWSNs

Based on IEEE 802.15.4 and IEEE 802.15.4e many in-

dustrial protocols were formed to address the delicate nature

and versatility of the industrial applications. Some of these

protocols are listed as under. The listed protocols use Physical

and MAC layer specifications of either IEEE 802.15.4 or IEEE

802.15.4e and extend their own upper layers model.
1) WirelessHART: WirelessHART is the technology solu-

tion in IWSNs, based on HART communication protocol de-

veloped by HART Communication Foundation [82]. With the

built-in support for multiple IWSN topologies, WirelessHART

offers solutions for monitoring, automation and process control

for industrial applications. WirelessHART is widely accepted

for industrial automation and process control with over 30

million HART devices installed worldwide [26]. The protocol

is based on IEEE 802.15.4 standard with Direct Sequence

Spread Spectrum (DSSS) and TDMA synchronized channel

access mechanism. The protocol offers high reliability by

incorporating the suggested modifications in IEEE 802.15.4e

[139] along with channel hopping for enhanced security. It

also supports the addressing of up to 2
16 devices.

Link layer addressing is sufficiently large, enabling around

65000 devices within a single network but the network size

is limited by the power consumption and latency issues.

Nevertheless the WirelessHART also lacks in interoperability

and fails compatibility to IP based devices and internet.

2) ZigBee: ZigBee, a protocol based on the IEEE 802.15.4

and developed by ZigBee Alliance offers a modest data rate of

250kbps [131]. It has sixteen channels each with a bandwidth

of 2 MHz and an ability to connect 65000 devices at once.

These specifications allow the formation of mesh networks

with single and multi-hop communication. ZigBee mainly

focuses on low cost and low power solution for extended

lifetime and improved deployment and maintenance cost.

It is one of the most widely used standards with over 70

million ZigBee devices installed worldwide [28]. Based on

the IEEE 802.15.4, ZigBee provides upper layer specifications

for a wide variety of applications. Currently, Zigbee Alliance,

a non-profit open group offers three solutions referred as

ZigBee PRO, ZigBee RF4CE and ZigBee IP. Apart from

a relatively wider variety of solutions, ZigBee nodes are

capable of connecting in mesh, star and tree topologies which

further enhance the scope of its applications in industrial

environment. Apart from this, a special feature in ZigBee PRO

(ZigBee Green) allows battery less nodes to integrate with the

networks, thus providing flexibility of greener technology.

ZigBee, on the other hand, uses CSMA/CA scheme for

channel access which reduces its scope for time constraint

and reliability critical industrial applications. Furthermore the

exponential back-off mechanism triggered in case of channel

unavailability introduces unwanted delay, which is not ap-

preciated in time constraint industrial applications. Some of

the overlapping channels in ZigBee and Wi-Fi also introduce

unwanted interference in the presence of Wi-Fi.

3) ISA100.11a: ISA100.11a is a wireless network solution

by ISA100 Wireless Compliance Institute. ISA100.11a targets

monitoring, automation and process control applications in

industrial setup. A notable architectural resemblance is found

in ISA100.11a and WirelessHART. For instance, the use

of 2.4GHz operational frequency, implementation of TDMA

based synchronized access and channel hopping functions in

upper Data Link sub-layer are some of the many similarities in

these two protocols. However, Network and Transport layer of

ISA100.11a are derived from 6LoWPAN [139], which allows

the use of IPv6 addressing in this standard.

The MAC sub-layer uses CSMA/CA mechanism for the

channel access. However, retransmissions can benefit from

frequency, time and spatial diversity. An optional implementa-

tion of IEEE 802.15.4, CSMA/CA based exponential back-off

mechanism is also available. It also allows implementation of

TDMA based channel access and channel hopping with ARQ

interference suppression mechanism.

4) 6LoWPAN: 6LoWPAN is a IPV6 based low power

wireless personal area network [140], [141]. 6LoWPAN

offers the benefit of interfacing directly with other IP

devices or existing IP networks. It also inherits the security,

architecture, network management and transport layer

protocols from the existing structure. The use of IPV6

enables the 6LoWPAN devices to readily embed in the

existing wired industrial Ethernet setup. To ensure low power

operation, the superframe is divided into active and inactive

regions where the coordinator can go into low power or sleep

mode to conserve energy. Low power listening mode is also

included to further improve the energy efficiency. To provide
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TABLE VI: Selected Industrial Protocols and Standards [20], [23], [27], [28], [29], [138], [142]

Industrial Research group Multi- Estimate Access Channel Network Base Interoper- Green Data

Standard / Institute / Topologies of Scheme Access Size Standard ability Motes Rate

and Protocols Working Alliance Support Devices (IP & Support kbps

Internet)

WirelessHART HART Available 30 Direct TDMA 2
16 IEEE 802.15.4 No No 250

[82], [138] Communication Million Sequence

Foundation Spread

Spectrum

(DSSS)

Zigbee Zigbee Available 70 DSSS CSMA/CA 2
16 IEEE 802.15.4 Yes Yes 250

[21], [143], [144] Alliance Million (Zigbee (Zigbee

IP) Pro)

ISA100.11a ISA100 Mesh DSSS TDMA IPV6 IEEE 802.15.4 Yes No 250

[20], [82], [139] Wireless Routing - Channel (Transport Addressing (IPV6)

Compliance Hopping Layer),

Institute CSMA

(MAC)

6LoWPAN Internet Available CSMA/CA IPV6 IEEE 802.15.4 Yes (IPV6), No 20-250

[27], [141] Engineering - - Addressing 802.15.4

Task Force Compliance

Fig. 8: Protocol Stack Structure for selected Industrial Standards [82], [139], [141]

security from external attacks, the protocol incorporates

128-bit AES. To extend the scope of 6LoWPAN, the ability

to interact with MAC devices is included which enables the

6LoWPAN devices to integrate with other IEEE802.15.4

based devices.

On the other hand, in 6LoWPAN, the channel access and

reliability are a bit compromised with the use of CSMA/CA

based channel access. To initiate transmission, the devices

have to compete for the channel access using CSMA/CA

based mechanism which adds uncertainty. Moreover, the

protocol support low data rates ranging from 20 to 250 kbps.

A brief overview of the selected industrial protocols is

presented in Table VI whereas the protocol stack of the

above mentioned industrial protocols and responsibilities of

different layers in the protocol stack are presented in Fig. 8

and Table VII respectively.

The technological developments in the past few years,

whether it involves hardware platforms or standardization of

access schemes, leaves a significant impact on improving

credibility of IWSNs. A review of the milestones achieved

in last two decades is presented in Fig. 9. It pinpoints the

main contributions and milestones achieved in hardware

platform design, standards and industrial protocols. Although,

a more detailed description of the milestones represented in

taxonomy in Fig. 9 can be found in Section VI, VII and XII,

yet the taxonomy presents broader perspective of significant

events in the past. The taxonomy also gives a fair insight

in the future market value of IWSNs and potential of future

technologies in industrial applications.

VII. IWSN PLATFORMS, FIELD-TRIALS, SIMULATORS

AND SERVICE PROVIDERS

A. Industrial Motes and Available Radios

Wireless sensor motes used for industrial applications are

equipped with a processor, memory, sensor board, radio,
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Fig. 9: Taxonomy of Wireless Motes, Standards, Industrial Protocols, IWSNs Market value & Projections and Future

Industrial Technologies [20], [21], [22], [23], [26], [27], [28], [29], [129], [130], [142], [145], [146], [147], [148]
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TABLE VII: Salient Features of Protocol Stack of selected Industrial Standards

Layers
Functionality

WirelessHART ISA100.11a Zigbee 6LoWPAN

Application Layer - HART command [51] - Publishing / Subscribe,
Client/Server, bulk, Alert
event notification
- Wired fieldbus protocol
interoperability by Object
mapping or protocol
tunneling [51], [82]

- ZigBee Application Layer
[51]

- HTTP
- Constrained application Pro-
tocol (COAP)
- Message queue telemetry
transport (MQTT)
- Websocket [27], [355]

Transport Layer - Connection orient and
connection less communi-
cation
- Transport layer ack-
nowledgements
- Message-based Priority
[51], [82]

- Transport layer ack-
nowledgements
- Message-based and
Contract-based priority
[20], [51]

— - UDP preferred due to low
overhead and energy load
over TCP
- TCP → Transport Layer Se-
curity (TLS)
- UDP → Datagram Trans-
port layer security (DTLS)
[355]

Network Layer - Extended HART Address
[51]

- IPv6 addressing (6LoW-
PAN) [51]

- Zigbee Routing Algorithms
- Route Aggregation
- Tree routing
(AODV) [21], [51]

- IPv6 routing protocol for
low-power and lossy network-
s (RPL) [355]

Data Link Layer - TSMP features
- Superframe Optimization
- No frequency reuse for ded-
icated links [51], [138]

- TSMP features
- CSMA/CA
- Channel Hopping (SH, FH,
Hybrid)
- AFH and BlackListing
- Superframe Optimization
[51]

- CSMA/CA
- Beacon Sync.
- Frequency Agility [51],
[143]

- Adaptation of IPv6 to IEEE
802.15.4
- CSMA/CA
- Beacon Sync [27], [355]

Physical Layer - IEEE 802.15.4, 2.4 GHz,
868 MHz, 915 MHz
- DSSS
- Data rate 250 Kb/s [23], [82]

- IEEE 802.15.4, 2.4 GHz,
868 MHz, 915 MHz
- DSSS
- Data rate 250 Kb/s [21]

- IEEE 802.15.4, 2.4 GHz,
868 MHz, 915 MHz
- DSSS
- Data rate 250 Kb/s [21], [23]

- IEEE 802.15.4, 2.4 GHz,
868 MHz, 915 MHz
- DSSS
- Data rate 250 Kb/s [21], [27]

battery and probable extensions for energy harvesting and

protective packaging. On the software end the software platfor-

m, developer tool and simulators provide substantial support.

All these factors contribute equally and serve as a decisive

factor in adoption of a particular mote for certain process

control application. For instance, a process, which requires lot

of different sensors and high sampling rates, may demand a

mote with more flexible external sensor attachment options

and a relatively wide band communication standard. Some

other applications may demand connectivity to a relatively

larger network, which may disqualify certain Bluetooth, based

wireless modules [149].

Industrial motes are application specific which allow a low

power, efficient and delay sensitive solution. Furthermore,

most of the industrial solutions are reinvented with modular

based solutions, where the radio requirements, processing

needs, temperature tolerance, moisture resistivity, memory

requirements, interoperability and channel access schemes are

specifically modelled to offer a low cost effective solution,

fully optimized for the application at hand. As an example,

if a particular industrial application requires an 8-bit, 4 MHz

processor, capable of executing 1 Million Instructions Per Sec-

ond (MIPs) to sense, sample, synchronize and communicate

information, there is no point of adding a 32 bit architecture

working at 48 MHz, and processing 30 MIPS: one, it will

add additional cost to the solution (more critical for larger

number of deployments), two, it will consume more power,

being running on higher clocks, three, more heat is produced

and affiliated heat dissipation issues arise.

For industrial automation and process control many commer-

cial solutions are available along with some research initiatives

to fill the gaps. All these works focus on more flexible

solution design, targeting mainstream industrial applications.

Some of the motes and radio modules designed for industrial

automation are listed as follows. Please note that each of

discussed motes, radios and System on Chip (SoC) are labelled

with M (Mote), R (Radio) or SoC.

1) WirelessHART compliant solutions for industrial au-

tomation:

• LTC5800 (SoC): LTC5800 is designed by dust networks

to achieve a high reliability of the order up to 99.999%

to minimize the risk in the industrial applications. The

LTC5800 based motes are wirelessHART compatible and

offers time synchronized network-wide scheduling, per

transmission frequency hopping, network wide reliability

and low power operation [150]. LTC5800 belongs to

Eterna family of SoC, which provides a scalable, reliable,

energy efficient and robust networking solution.

• LTP5900-WHM (M): LTP5900-WHM features AR-

M Cortex-M3 32-bit microprocessor which runs Wire-

lessHART, enabling it to form mesh networks with self-

healing ability. The physical and MAC layer are adopt-

ed from IEEE802.15.4 and IEEE802.15.4e respective-

ly where encryption and authentication is also ensured

[151]. It includes temperature and drift compensation for

real-time network synchronization. Frequency hopping
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and reliability optimization is ensured. Apart from this,

smart networking technology allows LTP5900 to form

self-healing mesh networks.

The core communication in the WirelessHART based solutions

listed above is very similar and only minor changes are intro-

duced. All these solutions offer good reliability and scalable

modular design however, do suffer from interoperability issues.

2) Zigbee and 6LoWPAN compliant solutions:

• Kinetis KW2xx (M): Panasonic Kinetis KW2xx series

implements SMAC and Thread. Thread [152] being an

IPv6 mesh networking protocol developed by industry

leading technology companies, offers better interconnec-

tivity, Over The Air Programming (OTAP) and support

for multiple IDEs and Real Time Operating Systems

(RTOS). Some of the Kinetis KW2xx includes ARM

Cortex-M4, 32-bit microprocessors which also imple-

ments IEEE802.15.4 [153]. KW21Z, being on the low

end uses Cortex-M0 to enable energy efficient operation.

The application areas of Kinetis KW2xx in industries

include climate control, safety access control and security

[152].

• JN517x series (M): JN517x series by NXP supports

Zigbee 3.0, which bridges the gap between the MAC

devices and IoT by offering suitable interconnectivity. It

is also compatible with Thread and IEEE802.15.4 [154].

• Ember EM35x (SoC): Silicon Labs Ember EM35x ARM

SoCs are Integrated with Zigbee. The use of ARM

Cortex-M3 based Zigbee SoCs are used which offer better

energy efficiency and improved performance. AES 128

encryption is also implemented for improved security

[155].

• OpenMote (M): OpenMote follows modular approach

where CC2538, OpenBase and battery are connected

together to offer extended performance [156]. Although

openMote is more research oriented solution yet the use

of CC2538 in OpenMote offers many of the shelf benefits

and is found in many industrial applications as well. It

is a SoC from Texas Instruments operating at 2.4 GHz

band. It is fully compatible with IEEE 802.15.4 and

provides both 6LoWPAN and Zigbee implementations on

the higher layers [157].

• Re-Mote (M): Re-Mote from Zolertia also uses CC2538

[157] and hence possesses similar features as the Open-

Mote. However, Re-Mote is particularly optimized for the

IoT [158]. Apart from this, Re-mote also features CC1200

[159] for 868/915 MHz band communications which is

facilitated by multi-band antenna.

• Z1 (M): Z1 by Zolertia is designed to target both

commercial and industrial applications. To offer full com-

pliance to IEEE802.15.4 and 6LoWPAN, Z1 is equipped

with CC2420 and MSP430 radios It also provides support

for TinyOS and Contiki [160].

All these motes are suitable for small scale industrial mesh

networking. With the increase in the number of nodes the

operation is significantly compromised. Therefore, these motes

are not suitable for critical processes especially if a large

number of sensor motes need regular communications within

Fig. 10: IWSN Mote Hardware Architecture

a specified time.

3) XYR 6000 (ISA100.11a compliant (SoC)): XYR 6000

are developed by Honeywell as a replacement to seamlessly

expensive wired links, especially for where using wired links

are either too costly, time consuming, inaccessible or the

instrumentation schemes are frequently changing. XYR 6000

implements IEEE802.15.4 Physical layer and IEEE802.15.4e

MAC layer. These modules are integrated in Honeywell

OneWireless network and are compliant with ISA100.11a. The

gateway is capable to communicate with up to 100 nodes

within a given time. The gateway and associated nodes also

offer IEEE802.11b/g interface for improved interoperability.

XYR 6000 also offer end to end industry security, multispeed

monitoring, reliability, improved performance, and ruggedness

for industrial hazardous environments [161].

4) Wi-Fi/Bluetooth enabled motes:

• RN1810/RN1810E (SoC): RN1810 is created by Mi-

crochip and it incorporates an on-board TCP/IP network-

ing stack, 2.4GHz transceiver, cryptographic accelerator,

real-time clock, RF power amplifier and power manage-

ment subsystem. The module is capable of providing data

rates of up to 2Mbps with an extended range of 400

meters [162]. The SPI interface allows the module to

integrate with Microchip PIC microcontroller family.

• muRata Com 6M (SoC): It is a TIs WL1271L chipset

based module which provides Bluetooth 4.0, Bluetooth

Low Energy (BLE) and IEEE802.11b/g/n connectivity.

muRata Com6M integrates with TIs OMAP, DaVinci and

Integra to offer extended features.

• Intel Mote (IMote) and IMote2 (M): The design

of IMote is optimized to offer improved performance,

bandwidth efficiency, low power operation and cost ef-

fectiveness. It includes an ARM7 core and IEEE802.15.1

(Bluetooth) compatible radio. To improve the connection-

oriented Bluetooth nature, network formation and main-

tenance algorithms are optimized with the adoption of

scatternet [163], [164].

These modules offer high data rates which enables them to

offer high speed data links. While there are many traditional
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TABLE VIII: Technical Specifications of Selected Motes [167], [168], [169], [170], [171]

Mote Platform Micro-Processor RAM Flash EEPROM Bus Clock

TelosB/Tmote Sky TI MSP430F1611 10K 48K 1M 16-bit 4-8MHz

MicaZ/Mica2 Atmel Atmega 128L 4K 128K 512K 8-bit 8MHz

FLECK 3B Atmel ATmega 128L 8K 128K - 8-bit 8MHz

IRIS Atmel ATmega 128L 8K 640K 4K 8-bit 8MHz

Sun SPOT Atmel AT91RM9200 512K 4M none 32-bit 180MHz

EZ-RF2480 TI MSP430F22741 1K 32K none 16-bit 16MHz

JN5139 JN5139 96K 192K - 32-bit 16MHz

RCM4510W ZB Rabbit 4000 512K 512K - 8-bit 29.49MHz

PAPER Atmel Atmega 128L 132K 128K - 8-bit 8 MHz

TABLE IX: Radio Specifications of Selected Motes [172], [173], [174], [175]

Mote Platform Radio Module Sleep Idle/Rx Tx(mA) Frequency (MHz) Data Rate (Kbps)

Mica2 TI CC1000 0.2 µA < 7.4 mA 10.4 900 40

TelosB/Tmote TI CC2420 0.02-426 µA 18.8 mA 17.4 2400-2483.5 250

SunSPOT/MicaZ/SHIMMER

EZ-RF2480 TI CC2480 0.3-190 µA 26.7 mA 26.9 2400 250

IRIS Atmel AT86RF230 20 nA 15.5 mA 16.5 (3 dBm) 2405-2480 250

RCM4510W MaxStream XBee 2 <20 µA 150 mA 150 2400 250

FLECK 3B Nordic RF 905 33 µA 12.5mA 30 433/868/915 50

JN5139 Custom RF board 2.6 µA <37mA 37 2400 250

PAPER MaxStream 9XCite 100 µA <77mA 77 902/928 40

applications of these modules, the common industrial applica-

tions where these modules can be seen, include, supervisory

control, high speed data bridging, monitoring, vibration and

chemical sensing.

5) Waspmote (M): While not particularly designed for only

industrial industrial automation, waspmote has certain features

which make the waspMote more appealing for the industrial

environments. Use of Waspmote for smart water sensing and

air quality monitoring are specifically the applications of

interest [165], [166]. The demonstration of smart water sensor

using Waspmote uses the peripheral sensors to measure water

quality parameters, like dissolved ion content, oxygen levels,

conductivity and pH [165]. New generation of Waspmotes

launched by Libelium, provides open source platform for wire-

less sensor which now integrates 60 different sensor probes to

facilitate the gas quality monitoring and evaluation of NO2,

CO2, CO and other harmful gases levels in different industrial

environments [166]. The modular approach used in Waspmote

also offers a number of radio technologies including, WiFi,

Zigbee, 802.15.4, Bluetooth, NFC and 3G, to choose from

for extended applications and improved operability [166]. The

new generation also supports OTAP for flexible and remote

operations.

6) Some significant secondary research motes and WS-

N/IWSN platforms: Apart from the motes listed above, there

is a wide variety of wireless motes available in the market

or developed by the researchers for diverse applications. All

these solutions offer suitable variety to meet a wide range of

applications including home automation, research and develop-

ment, smart cities, lighting control etc. Some of the prominent

motes with technical specifications and radio details [16], [56]

are listed in Table VIII and Table IX respectively. Whereas a

generalized architecture of WSNs/IWSNs Hardware Platform

is presented in Fig. 10. It is also worth noticing that the hard-

ware attributes of WSNs and IWSNs are quite similar since

the physical layer, radio specifications, processing, storage and

hardware features are almost the same however, some of the

application specific attributes of IWSN motes are listed as

follows.

1) TDMA/guaranteed channel access/time synchronization/

packet scheduling/link heterogeneity

2) Priority based channel access for emergency and regu-

latory control

3) Data integrity check/ Encryption, symmetric key cryp-

tography (AES-128, key management, frame protection)

4) QoS assurance/ Multi-hop network support/Fault toler-

ance

5) Explicit congestion notification

6) upstream/downstream reliability/ loss recovery

7) Implicit and explicit congestion notification

Apart from these, motes are designed to withstand harsh indus-

trial environments where the operation under high temperature

or pressure may be required.

B. Field-trials

IWSN is emerging as a cost efficient and effective net-

working solution for industrial automation. A number of

cases have been presented where compliance with international

standards is ensured using IWSNs. Some of such field-trials

for industrial automation are presented as follows.

1) Polibol: Smart Factory solution in Zaragoza, Spain:

Polibol is a manufacturing company which produces alumini-

um laminated plastics and printed coils for food products
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TABLE X: Companies Offering Services in IWSNs [176], [177], [178], [179], [180], [181], [182], [183], [184], [185]

Sr. Companies Country Scope/Services

1. Emerson US Automotive, Beverage, Food, Metals, Oil and Gas, Packaging, Pulp and Paper, Solar, Wind

2. GE Energy US Critical Power Services, Drives Services, Emergency Services, Engineering Services, Hydro

Services, Inspection Services, Mechanical Services

3. Honeywell US Energy, Safety, Security

4. ABB Switzerland Control Products and Systems, Industries and Utilities, Measurement Products

5. Endress+Hauser Switzerland Energy Solutions, Analytical Solutions, Field Network Engineering, Plant Asset

Management

6. Siemens Germany Automation, Building Technologies, Energy, Healthcare

7. Yokogawa Japan Chemical, Food and Beverage, Iron and Steel, LNG Supply Chain, Oil and Gas, Power,

Refining, Renewable Energy, Concentrated Solar Power, Wind Power

8. Yamatake Japan Sensors, Process Controls, Harsh Environment

9. Invensys UK Production Optimization, Real-Time Performance Management, Industrial Manufacturing

Facilities Performance, Control Excellence, Industrial Power Management, Net Oil and Gas

Solution, Environment and Safety Excellence, Environmental Monitoring System

10. Mitsubishi Japan Industrial solutions, Energy

and consumer industry. It operates several production lines

that incur automation of critical processes including control

of air temperature, gas monitoring and ensuring authorized

gas concentration levels. Since, Polibol manufactures flexible

food packaging, it must follow demanding health legislation

and food hygiene [448]. To ensure the compliance with

international standards and FDA regulations, a high level of

quality control must be established throughout the production.

Recently, Polibol has introduced Libelium's Waspmote and

Meshlium based IWSN solution to ensure high level of au-

tomation in one of the production facilities in Zaragoza, Spain.

Libelium's Waspmote based sensor network is used to monitor

the air temperature in pipes and around the printing machines,

and carbon dioxide concentration in working areas in real-

time [449]. Whereas Meshlium serves as an IoT gateway

that connects Libelium wireless network to Microsoft Azure

cloud [450], [451]. Libelium's Waspmote and Meshlium based

IWSN ensures real-time data communication. IWSN based

real-time process control not only improves quality of the

products but also reduces the maintenance costs.

2) Honeywell: Nucor Steel in Tuscaloosa, Alabama: Hon-

eywell is one of the leading services provider in automation

and process control industry. The use of IWSNs in the automa-

tion, monitoring and feedback control systems, has resulted

in several economic benefits along with improved safety.

Implementation of wireless transmitters to monitor the furnace

temperature at Nucor Steel in Tuscaloosa (Nucor Corporation

is largest steel manufacturer in US) is one such project which

resulted in increasing production by 15 percent [452].

Primary objective was to improve the process operations by

effectively establishing instantaneous temperature feedback

from one of the furnace, previously not being monitored.

The wireless solution was provided by Honeywell using the

wireless nodes mounted on the cooling circuits protected by

specially built cases to withstand temperature of up to 1000◦

centigrade [453].

3) OneWireless EHM case study: Loch Rannoch: Loch

Rannoch is a double-hull oil tanker, capable of transporting

130,000 tons. It is used for transporting oil from storage

vessel to an oil processing terminal in the North Sea [453].

Due to the large size of Loch Rannoch, manual monitoring

is not a viable option. Further, to this, the purpose of the

monitoring system was to ensure safety of the employees,

protection of the on-board assets, improvement in tankers

capacity and proactive management of maintenance schedules.

The listed objectives were achieved using OneWireless [454]

based wireless network solution where a highly redundant

network was formed to overcome the poor channel conditions

on the tanker. The implementation of WSN in Loch Rannoch

resulted in increased uptime, time efficiency and reduced cost

[453].

4) Dust Networks, wafer manufacturing in California, USA:

Semi-conductor wafer manufacturing units use delicate pro-

cesses for the production of high quality wafers. On the same

time, to maximize uptime, and overall yield of the processes,

uninterrupted supply must be ensured.

At Linear technologies Silicon Valley fabrication unit, over one

hundred and seventy-five gas cylinders are used in the wafer

manufacturing process [455]. In this facility, an unplanned

interruption in the gas supply can cause significant financial

loss and an unplanned delay in the supply to the customers.

Use of wired networks was not possible due to the presence

of concrete walls and lack of AC sockets. Wi-Fi was also

not a suitable option due to the channel distortion and high

interference [455].

To ensure the uninterrupted operation of the wafer manufac-

turing plant, IWSN based automation and feedback control

system is adopted. Linear Technology used a SmartMesh

IP WSN to streamline manufacturing operations, monitoring

gas cylinder levels to proactively schedule replenishment and

ensure uninterrupted supply. SmartMesh IP embedded wireless

mesh networks worked effectively with a reported data relia-

bility of up to 99.99999% along with ultra-low power power

requirements [455], [456].
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C. Network Simulators

The researchers and industries widely use network simula-

tors to evaluate the performance of developed scenarios with

certain level of accuracy. Use of simulators in WSNs, cuts

down the initial cost and give viable insight on performance

of wireless ad-hoc networks before the actual deployment.

Various network simulators are currently available. Some of

the prominent network simulation and evaluation tools are

discussed as follows.
1) NS2/NS3: Network simulator, NS2 is a discrete event

simulator which offers OTcl script and C++ based tool to

evaluate performance of wired and wireless networks. NS2 of-

fers suitable support to develop new and customizable libraries

and include extensive features in the existing package [457].

The customizable nature of NS2 makes it suitable for net-

work performance evaluation in WSNs. The NS2 framework

allows definition of new packet headers and packet tracers

for improved debugging. Third party extensions in NS2 can

also be easily incorporated ns2miracle. Over the years various

WSN standards and protocols have been implemented and

evaluated using NS2 [459]. However, the use of OTcl causes

large overhead, resulting from the OTcl interfacing with C++

and OTcl interpreter. To improve the overall efficiency of NS2,

and to overcome its limitations, NS3 was introduced, however,

the lack of back compatibility in NS3 restricts the integration

of the WSN based framework and libraries already developed

for NS2 [460].
2) OMNeT++: OMNeT++ is a C++ based framework used

for developing network simulators. With the use of OMNeT

simulation library, many network simulation packages have

been developed [461]. The evaluation of WSN based network

is supported by some of the extension packages developed

using OMNeT++. Some examples of OMNeT based WSN

supported extension packages include Mobility Framework

(MF), Castalia [462] and MiXiM.

Castalia is widely used in the research community for simu-

lation of general purpose WSN, Body Area Networks (BAN)

and low power networks [463]. Use of Castalia in WSNs

is limited to generally static networks where the mobile-

element based network preferably use MF or MiXiM. Castalia

provides support for wide range of platforms and allows to

evaluate their performance under various circumstances. The

performance of the network can be evaluated based on several

parameters using interactive simulation.

MF and MiXiM , are simulators for wireless and mobile

networks, developed using OMNeT++ simulation engine. Mix-

im itself was a merger of four simulator including MF, Mac

Simulator, Positif Framework and ChSim. Many other models

and projects have also been integrated in MiXiM. As the

MiXiM inherited all the features of MF and other mobile net-

working frameworks, therefore, it provides substantial support

in formulation and evaluation of various wireless and mobile

network scenarios [464].
3) OPNET: Optimized Network Engineering Tool (OP-

NET) is currently a part of Riverbed, an end to end solution

provider for application, infrastructure and network monitoring

[465]. OPNET is a network simulation tool capable of simulat-

ing heterogeneous networks while running various simulation

protocols simultaneously. OPNET also provides support for

WSNs and allows network customization and scalability. zig-

bee based networks are supported in this simulator along with

customization options for zigbee coordinator, zigbee router

and zigbee end devices [466]. Furthermore, mobile device can

be included in the network and several network parameters can

be evaluated at global, network or node level.

4) QualNet: QualNet communications simulation platform

offers a testing, and training package which allows implemen-

tion of real-world networking scenario. It mimics real com-

munication network and offers authentic and reliable network

behaviour. The software provides a graphical design for the

effective network formation with click and drag facilities and

stack customization options [467]. Simulator also provides

statistical graphing tools which is used to formulate reports and

produce customized graphs using the simulation data received

from the network analyzer [467]. Support for wireless ad-hoc

sensor networks is included where global parameters can be set

to IEEE802.15.4 radio and IEEE802.15.4 MAC for the entire

network [468]. Network parameters are customizable and

performance of the network can be visualized and evaluated

using simulators 3D visualizer and network analyzer [468].

D. Industrial services providers

Due to the high cabling deployment and maintenance cost,

it is expected that the IWSNs will see a great boost in the near

future [33], [34]. It is the primary reason, why many leading

industrial process control and automation service providers

have started investing in IWSN based industrial solutions. With

the prediction of IWSNs market soaring as high as $3.795 Bil-

lion by end of year 2017 [34], many new wireless solutions for

industrial automation and process control have been launched.

This trend, adopting IWSNs for industrial solutions, can be

observed in several renowned companies offering services

in the automation and process control. A significant number

of such companies have started offering industrial wireless

networks based solutions to establish communication links

between the central control unit and the industrial equipment.

Table X presents a list of key companies offering services in

industrial monitoring and control systems using IWSNs.

VIII. MAC LAYER OPTIMIZATION AND MAC SCHEMES

Over the years many solutions for IWSNs were also pro-

posed by the research community. These proposed schemes

involved improvements in reliability, real-time operability, net-

work life enhancement and deterministic network formation.

Most of these researches focused on MAC layer optimization,

primarily because MAC layer handles two most important

tasks, controlling nodes access to the wireless medium and

managing the use of radio. Efficient channel access improves

both reliability and real-time data delivery and offers better

congestion control, whereas efficient use of radio improves

network lifetime [36]. In this section, a detailed review of

MAC protocols is presented to offer insight of current research

trends in MAC optimization for IWSNs.
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A. Classification of MAC Protocols and IWSN MAC Develop-

ments

During the last few years the design objectives of MAC

protocols have experienced a significant change [187]. Earlier

researches sacrificed throughput and reliability for extended

network lifetime [44], [186]. However, for IWSNs, the energy

efficiency in MAC protocols has become a secondary objec-

tive, where the network can no longer rely on best effort data

delivery services [38].

To label the MAC layer developments according to

industrial application requirements, an extended taxonomy of

MAC protocols is created. The taxonomy labels noteworthy

MAC developments according to their suitable application

area in industry. The taxonomy of MAC protocols is presented

in Fig. 11, which categorizes MAC based developments with

respect to channel access scheme, target application area,

latency, reliability bounds and single channel and multichannel

attributes. Furthermore, a classification of MAC protocols is

also represented in Table XI which classifies notable MAC

protocols based on communication priority, latency and area

of application.

Over the time a large number of MAC protocols are being

presented and one can find an exhaustive list of such protocols

in [36], [38], [41], [45], [188], [189]. In [189] MAC protocols

are classified in four categories. The classification is based

on the medium access methods, hence categorizing MAC

protocols in to random, periodic, slotted and hybrid access

schemes. In [36] the MAC protocols are also classified in

four categories namely asynchronous, synchronous, slotted

and multi-channel. Each of these categories has their own

significance and offer unique benefits. Asynchronous protocols

can run on very low duty cycle, a desirable trait for longer

lifetime but the efficient communication between the nodes

and congestion control are major challenges. Communication

challenges present in asynchronous MAC protocols are suit-

ably resolved in synchronous protocols but in these protocols

channel congestion and collision avoidance remains an issue.

Slotted schemes resolve the issue of channel congestion but

channel utilization in such cases is relatively low. The Mul-

tichannel schemes take benefit of full potential of wireless

motes by implementing both TDMA and Frequency Division

Multiple Access (FDMA) to improve the channel capacity.

Apart from these classifications, there are many protocols that

target MAC layer optimization in both TDMA based and

CSMA/CA based channel access schemes.

In our classification, the MAC protocols are distributed

in: Contention (CSMA/CA) based schemes, TDMA based

schemes, multi-channel schemes and priority enabled schemes.

Each of these is listed as follows.

1) Contention based MAC protocols: CSMA/CA based

medium access protocols fail to offer deterministic behavior

which compromises their effectiveness in critical industrial

applications [190]. Hence, industrial applications with less

stringent deadlines can only be suitable for CSMA/CA based

medium access protocols. In [191], Markov chains are used to

model relations of packet transmission, packet delay, and en-

ergy consumption. Using this model, a distributed adaptive al-

gorithm is derived to minimize power consumption along with

improving packet reception probability and delay constraints.

In [210] authors present a predictive wakeup mechanism in

asynchronous duty cycling to reserve energy. In [209], authors

present a sparse topology and energy management technique

which wakes the radio from deep sleep state without the use

of low power radio. Some other contention based schemes

include [192], [193], [194], [195], [196].

Furthermore, to provide an extensive classification of the MAC

protocols, in the MAC taxonomy presented in Fig. 11, the

contention based schemes are classified in six categories name-

ly: A) low duty cycle with extended lifetime, B) contention

based low latency schemes, C) periodic contention based

sustainable networks, D) contention based bounded deadtime

communication, K) Throughput enhancement using contention

based multichannel access and L) delay sensitive multichannel

emergency access. The labels A, B, C, D, K and L are same as

used in the taxonomy to maintain symmetry. The contention

based MAC protocols falling in any of these categories are

presented in Table XI along with other attributes of these

protocols.

a) Summary and insights: In IWSNs, contention based

channel access schemes has very limited use in the pro-

cess control due to the non-deterministic nature. However,

the CSMA/CA allows the nodes, freedom to communicate

whenever needed and hence serves as a suitable mechanism

to offer improved network lifetime in non-critical monitoring

and data accumulation applications. Over the years plenty of

CSMA/CA based MAC protocols have been introduced. The

primary target as observed was to extend the network lifetime

by introducing suitable sleep mechanism. Since this commu-

nication offered nodes to wake-up only when transmission

was necessary so the protocols like STEM, STEM-B [204],

PW-MAC [205] offered a suitable solution for monitoring

applications.

Another and less frequently used attribute of CSMA/CA based

MAC protocols was suitable reduction in the communication

delay in the less congested networks. Some MAC Schemes

like schemes like SIFT [220], Q-MAC [225], D-MAC [222],

T-MAC [223] exploited this attribute to offer low latency

in communication delay. Nonetheless, due to the contention

based access, the deterministic behaviour can still not be

ensured. To incorporate deterministic behaviour, slotted (B-

MAC [207]) and scheduled (CC-MAC [206]) CSMA were also

proposed.

2) TDMA based MAC protocols: TDMA based MAC pro-

tocols serve more efficiently in ensuring reliability and latency

bounds. It is for the same reason, TDMA based MAC proto-

cols are considered more suitable for industrial applications.

However, TDMA based schemes do require time synchroniza-

tion and optimal TDMA scheduling is a NP-hard problem

[102], [197]. In [197], authors have proposed two heuristic

algorithms to solve the schedule minimization problem and

ensured packet delivery. Authors have also evaluated upper

bounds for these schedules as a function of total packets

generated in the network. In [198], [199], authors further

improved the results in [197] and showed how their work



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, JULY 2017 34

outperforms [197]. In [198], authors considered harsh dynamic

environment but failed to offer guaranteed data reliability.

In [199], authors improved reliability in harsh control en-

vironments and formed hypergraph to increase scheduling

flexibility. Moreover, two schemes were also presented in

this paper namely dedicated scheduling and shared scheduling

and were applied to wireless sensor and control networks

for performance evaluation. Another TDMA based scheme,

ShedEx is introduced in [102]. This paper extends the con-

cept of reliability improvement by repeating most rewarding

slots along with a scheduling algorithm to guarantee certain

specified reliability.

With respect to the taxonomy presented in Fig. 11, the TDMA

based schemes are further divided in five subcategories (la-

belled E, F, G, M and N) depending on suitability for specific

area of application. The TDMA based protocols classified in

these subcategories are listed in Table XI.

a) Summary and insights: The implementation of TD-

MA based communication was introduced to ensure guaran-

teed channel access, hence eliminating the uncertainty intro-

duced by CSMA/CA based channel access schemes. One such

examples is the modification of IEEE802.15.4 for industrial

applications in the form of IEEE802.15.4e which introduces

TDMA based communication. Since the incorporation of TD-

MA reduces the uncertainty in WSNs, it can be used for the

control application which require periodic feedback. It is worth

noticing that IEEE802.15.4e LLDN [20] offers a suitable

solution for regulatory and supervisory control applications.

TDMA-MAC [200] is another protocol which ensures low

latency using TDMA based communication to support feed-

back control systems. However, some other protocols using

TDMA might not be suitable for control applications due to

the introduction of long delay among two communications of

an individual node. Therefore, protocols like LMAC [201],

LEACH [202] and LEACH-C [202], although using TDMA,

are only suitable for monitoring applications. Multi-channel

TDMA schemes like ALERT [203] and T-Opt coverage [204]

offer suitable reliability and latency assurance to meet the

requirements of open loop control applications. Furthermore,

these two schemes (ALERT and T-Opt)where work in single

channel, can also benefit from the multichannel, which can

be exploited to communicate to a larger number of nodes in a

given time. The other TDMA based protocols which introduce

priority based communication are discussed in detail in Section

VIII-A(4) due to the overlapping nature of these schemes.

3) Multi-channel MAC: Use of multichannel in TDMA

based MAC protocols enables improved medium utilization

and offer extended features in IWSNs. In last couple of years

a notable trend in multichannel MAC solutions can be seen.

In [204], authors present multichannel, TDMA based source

aware scheduling scheme for static networks. The algorithm

benefits from multiple channels but fails to guarantee reli-

ability. In [205], authors extended the ShedEx scheme to

multichannel scenario by introducing scalable integration in

existing scheme. Authors also claim to cut latencies around

20% in TDMA schedules from ShedEx. In [206], authors

propose a Regret Matching based Channel Assignment algo-

rithm (RMCA), to reduce multichannel overhead. In this paper

authors investigated multichannel transmissions and used sim-

ulations and hardware implementation to demonstrate perfor-

mance improvements and complexity reductions respectively.

An analytic approach to model and analyze multiple channels

is presented in [207]. The affirmation of model accuracy is

established from numerical and simulation results. Moreover,

multi-level priority for packet transmission sequence is also

established.

Other multichannel schemes categorized from K to P, in MAC

taxonomy, Fig. 11, are listed in Table XI along with the salient

features of these protocols.

a) Summary and insights: Use of multiple channels in

IWSNs offer notable benefits including diversity, throughput

enhancement, network scalability, optimized scheduling, on

demand channel access and improved network control infor-

mation. Since, in an industrial process, multiple applications

can co-exist, the use of multiple-channels can introduce ap-

propriate control in handling diverse data using parallel data

streams. Apart from this, hybrid schemes with both TDMA

and CSMA/CA based channel access, to support diverse

traffic types, can be facilitated in parallel without introducing

conflicts. RL-MMAC [244] and DSME [20] are two hybrid

schemes which benefit from multiple channels to facilitate

diverse traffic types. Both schemes facilitate both periodic

and on-demand communication. DSME particularly focuses

on improving the data rates and hence often compromises the

delay constraints. RL-MMAC on the other hand offers low

latency. MMSN [220], Y-MAC [222], DMC [242] are some

of the CSMA/CA based multiple channel schemes which due

to the presence of longer delay between the consecutive trans-

missions limits their scope for low latency process control.

Whereas Hy-MAC [223], T-opt [204], ALERT [203] and some

others introduce TDMA based channel access for collision free

communication for more sensitive traffic.

4) Priority Enabled MAC protocols: In most of the indus-

trial processes, generated information in some cases is more

critical than the rest hence should be prioritized above the

rest of the communication. The priority based communica-

tion in IWSNs facilitates the communication of high priority

traffic by providing adaptive channel access. Some of the

proposed work in this domain includes [30], [54], [55], [207],

[208]. In [207], authors presented a priority enabled MAC

to prioritize messages with high information content. The

protocol supports deadline requirements for feedback control

systems but assumes full duplex communication which is

not true in IWSNs. A priority enhanced MAC protocol for

critical industrial applications is presented in [55]. In this

protocol the traffic in an industrial communication network

is divided in four groups and the protocols allows the high

priority traffic to overtake the low priority traffic bandwidth.

The paper presents performance analysis and evaluation of

the protocol through experimental implementation. In [30], a

priority enabled MAC is defined in which priority is assigned

on the basis of arbitration frequency allocated to individual

users. The protocol is evaluated using discrete time Markov

chain model and guaranteed access of the highest priority user

is assured.

A classification of certain other priority enabled MAC pro-
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tocols is also presented in Table XI, where the priority

mechanism along with the salient features of these protocols

is listed.

a) Summary and insights: The diverse nature of indus-

trial applications introduces a wide variety of sensory data to

be accumulated at the control centre. Since various industrial

processes run simultaneously in an industrial environment

and cannot be distributed geographically. Therefore, it is

much more obvious that communication link must relay data

from regulatory control, supervisory control, open-loop control

alerting and monitoring applications through the same wireless

link. Under such circumstances, the priority based communi-

cation offers a significant improvement in network efficiency

by communicating the traffic according to sensitivity levels.

However, in IWSNs, the priority based communication is not

thoroughly evaluated and very few protocols offer priority

based communication. Nonetheless, the significance of the

priority based communication cannot be undermined. Prior-

ity based communication also increases the diversity of the

network by allowing sensory data from different applications

to be communicated to the control centre without affecting the

critical processes thus improving the efficiency of the entire

network.

B. Extended Classification of MAC Protocols

The taxonomy presented in Fig. 11, provides a much wider

and in-depth view of possible MAC layer developments, and

allows to classify different schemes presented over the years

into one of the sixteen possible categories. The taxonomy is

developed to assist in the evaluation of the basic requirements

of a protocol and its much accurate characterization into

one of various application areas in industrial environments.

Furthermore, MAC protocols presented in research literature

over time are also characterized into the categories specified

by the MAC taxonomy. The classification of notable MAC

protocols based on the presented taxonomy are listed in

Table XI. Although, the classification of various protocols is

discussed earlier on case to case basis, in general, the presented

classification can be broadly distributed in single channel and

multi-channel schemes, with further distribution of contention

based, slotted and hybrid access schemes. Further subdivision

in contention based, slotted and hybrid schemes maps to a

particular application domain, dealing with one of the six

industrial systems, discussed in II-(A). The MAC taxonomy

also lists the objectives of WSNs and IWSNs and defines the

bounds on key parameters.

The protocols listed in Table XI, are classified using the pre-

sented MAC taxonomy to evaluate their suitability in IWSNs.

For instance, MAC protocols including STEM [209], PW-

MAC [210], CC-MAC [211], B-MAC [212], SyncWUF [213],

TrawMAC [214], TICER [214], S-MAC [55], DS-MAC [217]

and few others can be used in the monitoring applications.

However, out of the above listed protocols, STEM, STEM-

B and PW-MAC are more suitable for the applications with

asynchronous communication requirements whereas almost all

of the rest are suitable for periodic monitoring applications.

Similarly, LAMA [218], PriorityMAC [55] and EQ-MAC

[219] offer prioritized access which make these protocols

suitable for the applications where the industrial system is

handling more than one type of traffic. Usually these protocols

are suitable for the systems dealing with supervisory control

and alerting systems, where, depending on the traffic type

the priority is assigned. To diversify the monitoring, control,

and emergency communication in IWSNs, multi-channel MAC

schemes were also presented over the years. The multi-channel

schemes like MMSN [220], TMCP [365] and Y-MAC [222]

can be used in the asynchronous monitoring applications with

relatively larger networks. Whereas schemes like HyMAC

[223] and FDP-MAC [224] can be put in use for time sensitive

applications. A detailed list of various multi-channel schemes,

along with the protocol characteristics and latency details are

listed in Table XI.

IX. NETWORK LAYER DEVELOPMENTS

Network layer plays an important role in real-time and

reliable communication of information in IWSNs. A large

number of protocols have been proposed to meet routing

requirements in diverse applications in conventional and in-

dustrial WSNs. Over the years, routing protocols are proposed

to improve certain key attributes of a network. Some of the

key performance metrics and network attributes optimized by

routing include network lifetime, latency, throughput, reliabili-

ty, energy efficiency, robustness Packet Reception Rate (PRR),

scalability and algorithm complexity [380], [382]. Extensive

list of routing protocols addressing one or more of the listed

performance metrics can be found in [378], [379], [381], [382],

[284], [376], [377].

Routing protocols due to significant variations in the underlay

architecture and applications of IWSNs, can be classified in

multitude of ways. A few attempts have been made to classify

routing protocols based on significant features and some of

these classifications can be found in [376], [377], [382], [381],

[380]. In this section, an extended classification of routing

protocols is presented where the significance of various classes

of routing protocols is discussed.

The extended classification of routing protocols is presented

in Fig. 12. The overall classification of the routing protocols is

divided in six sub-categories, where each of these categories

is discussed in detail. The created taxonomy of the routing

where distributes the protocols into multiple categories, it also

labels each subcategory with respect to performance metrics to

highlight the focus of the created category and its suitability

for different applications. In Fig. 12, colour coding is used

to label the routing subcategories in accordance with the

performance optimization parameters listed in the figure. Three

performance optimization parameters are considered latency,

energy efficiency and scalability. Based on these performance

metrics and the potential of the routing subcategories each

routing subcategory is appropriately labelled.

A. Flat

In flat routing protocols, all nodes are assigned with e-

qual role and functionality which reduces the overhead and

offers simplistic rules to manage entire networks [377]. The
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TABLE XI: Salient Features of Selected MAC Protocols

Protocols Channel Access

Scheme

Frequency

channels

Application

as per Fig.

11

Latency Priority

STEM [209], PW-MAC [210] Contention based Single A High No

STEM-B [209]
Contention based
with synchronized
paging

Single A High No

SIFT [225], STEM-T [226],
D-MAC [227], T-MAC (FRT-
S) [228], ADCA MAC [229],
Q-MAC [230], D-S Adap-
t [231]

Contention based Single B Medium to low No

CCMAC [211] Scheduled CSMA Single C High No

B-MAC [212] Slotted contention ac-
cess

Single C High No

SyncWUF [213], TrawMAC
[214], TICER [215], RICER
[215], S-MAC [216], DSMAC
[217] , MS-MAC [232], Op-
timized MAC [233], PMAC
[234]

Contention based Single C High No

SchedEx [102]
CSMA/CA contention
based scheduling

Single D Low No

DW-MAC [235] contention based Single D Low No

LLDN [20], TDMA-MAC
[200]

TDMA Single E Low No

LMAC [201], LEACH [202],
LEACH-C [202]

TDMA Single F High No

LAMA [218] TDMA Single G Low (selected data) Q

NAMA [218] TDMA Single G Low (selected data) R

PAMA [218] TDMA Single G Low (selected data) S

EQ-MAC(CMAC) [219] TDMA Single G Medium to low (selected data) T

PriorityMAC [55] TDMA Single G Low (selected nodes) U

Wise MAC [236] Hybrid Single H High No

TRAMA [237] Hybrid Single H Medium to High No

FSC [10], SSA [10] Hybrid Single H Low No

WirArb [30] Hybrid Single I Low (selected nodes) V

Z-MAC [238] Hybrid Single J Medium to low No

PARMAC [239] Hybrid Single J
Low to medium (Intragrid)
High (Intergrid)

No

HMAC [240], EQMAC (CA-
MAC) [219]

Hybrid Single J Low No

GANGS [241] Hybrid Single J Medium No

MMSN [220], Y-MAC [222] CSMA/CA Multi-channel K Medium No

TMCP [365] CSMA/CA Multi-channel K High No

DMC-Allocation [242] CSMA/CA Multi-channel L Low No

ALERT [203], T-opt Coverage
[204]

TDMA Multi-channel M Medium to low No

HyMAC [223], FDP-MAC
[224]

TDMA Multi-channel M Low No

SchedEx (M-C) [205], DMP
[243]

TDMA Multi-channel N Medium to low No

RL-MMAC [244] Hybrid Multi-channel P Medium to low No

DSME [20] Hybrid Multi-channel P Medium (12xhigh data rates [245]) No

Q: Priority evaluation in two hop neighbourhood, with link activation access provided to priority node

R: Self and neighbour Priority evaluation by sensor nodes to determine the priority of access to the slot

S: Prioritized link activation to destination nodes

T: The scheme classifies the gathered data in to queues based on the importance and the high priority queue gets the privileged access to the
channel

U: Four level Priority is established with high priority node given the access to highjack the timeslot of the low priority node

V: An arbitration decision period is run and Frequency polling is used where each node is pre-assigned a frequency based on its priority. Based
on the frequency polling in arbitration phase node with highest priority gets access to first time slot in arbitration execution period and so on
where nodes with lower priorities have to wait till all the higher priority nodes have communicated
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complexity of such protocols is relatively low and they are

suitable for the data gathering applications. The flat architec-

ture reduces the network complexity, however, it also adds

longer delay in larger networks. Some of the flagship routing

protocols in this category include WRP [383], TBRPF [384],

TORA [385], Flooding [386], Gossiping [387] and ZRP [388].

B. Hierarchical

Hierarchical routing protocols benefit from the versatility

of nodes in the network. The use of special purpose nodes in

the networks reduces the added delay in flat routing protocols

[378], [381]. Due to the hierarchical attributes of the network,

a fairly optimized low latency 2-hop communication can be

established in the network, where the sensing nodes relays

information to cluster-head (a special purpose node capable

of communicating directly to sink) which then communicates

this information to sink. Hierarchical routing protocols due

to their unique attributes, offer reduced delay, hence offering

a suitable solution for time critical industrial applications. A

classification of hierarchical routing protocols can be found

in [378], [381] whereas some of the examples of hierarchical

protocols are: LEACH [389], TEEN [390], PEGASIS [391],

APTEEN [431], MIMO [393], HPAR [394], NHRPA [395]

and DHAC [396].

C. Geographic

Geographic or location based routing protocols use geo-

graphical placement of nodes to evaluate optimum path for

routing. Usually these protocols rely on the built-in posi-

tioning systems embedded in the nodes. With the knowledge

of accurate location of nodes geographical routing protocols

formulate optimal path from source to destination, however,

the use of positioning systems in nodes adds to the cost and

also limits the use of such protocols in covered locations.

Some of the location based routing protocols include TTDD

[397], COUGAR [398], GEM [399], GEAR [400], IGF [401],

SELAR [402] and OGF [403].

D. Gradient

Gradient based routing protocols use gradient cost field

establishment to route data from farther ends of the networks

to the sink. The concept of gradient cost field establishment

is taken from a natural phenomenon where water flows from

higher grounds to the valley. Similarly, in gradient based

routing protocols data propagates in a direction where it finds

minimum cost. Each node maintains a routing table with at

least the information of one least cost neighbour. The cost

field at each sensor node can be defined in terms of hop

count, energy consumption, delay, link quality, node energy

etc. Any one or a combination of above described parameters

can be used to establish Gradient cost model. In gradient based

routing, the cost field can be established as a function of any of

the QoS attributes which can optimize the network for desired

quality metric. Selection of right quality metric can lead to

an application specific and optimized routing solution. Some

of the flagship gradient based routing protocols include GBR

[405], GRAB [118], GRACE [404], PC-GRACE [106], SGF

[406] and RRP [407].

E. Cluster based routing

In cluster based routing protocols the network is divided into

clusters. Each cluster formulates a small network, where one

of the nodes in the cluster acts as a cluster-head/coordinator.

This node is responsible for ensuring the affiliation of nodes

in the cluster, accumulation of data from these nodes and

onward communication of the accumulated information to

the sink[377]. Due to the distributed solution, cluster-based

approaches offer delay minimization, redundancy reduction,

robustness and efficient intra-cluster and inter-cluster com-

munications among nodes. Some of the cluster-based routing

protocols include LEACH [389], TEEN [390], PEGASIS

[391], Re-cluster-LEACH [408], SOP [409], CHR [410], and

IDSQ [411].

F. Mobility aware routing

Mobility aware routing considers the time to time change in

the position of the sink or certain mobile nodes and updates

the routing paths accordingly. It is always hard to ensure

reliability, energy efficiency and communication overhead

minimization within the mobile networks. While some routing

protocols consider the scenario of mobile sink, others do allow

the mobile nodes to be part of the network. For mobile sink

based protocols although the sensors have to update the routing

path however if sink movement is strategically planned, it

resolves sink hole problem (heavy use of sensors located

around static sink) [378]. Some of the proposed protocols to

handle mobility in the networks include MIP [412], IEMF

[413], Joint mobility and routing [414], DataMULEs [415],

SEAD [416] and proxy tree-based data dissemination [417].

G. Multipath routing

Multipath routing allows multiple streams of information

from source to sink. Multipath routing protocols exploit the

existing multi-paths in the network to offer improved reliabil-

ity of the data. Although multipath routing protocols are less

energy efficient and multiple copies of same data can cause

network congestion, however, accurate data reception and

reliability of the data significantly increased by implementing

multipath routing. The path selection in multipath routing

is quite similar to single path routing where instead of the

selection of single most suitable path, multiple paths in order

of their suitability are selected for routing of data. Some of

the multipath routing protocols include GRAB [418], TBRPF

[384], TORA [385], TTDD [397], MIMO [393] and HMRP

[419].

H. Proactive

In proactive routing protocols, each node is aware of the

data flow path to the sink hence route discovery delay in such

protocols is eliminated. This allows proactive protocols to offer

improved latency in data communication and can be used for

real-time data delivery. The basic requirements of low latency

in such protocols urges dissemination of periodic updates. The

periodic update messages disseminated throughout the network

allows the path reestablishment in case of change in topology
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[382]. Since frequent updates are required in proactive routing

protocols, the communication overhead is relatively much

higher. Some of the examples of proactive routing protocols

include 2-Tier data dissemination [420], SDG [421], SPIN

[422], CRP [423], Leach [389] and SOP [409].

I. Reactive

Reactive protocols in opposition to proactive protocols,

establish on-demand communication and require very little

information about the route at individual node level. Since

the intermediate nodes do not have to make routing deci-

sions therefore, there is no need to keep routing tables and

information of the neighbouring nodes [382]. Furthermore,

the overall efficiency of reactive protocols is relatively higher

due to less communication overhead. However, the lack of

information of routing path and on-demand path establishment

adds additional delay to the communication of data. This delay

is usually referred as path acquisition delay [382], [427]. Some

of the traditional reactive routing protocols include TEEN

[390], COUGAR [398], CADR [424], EAR [425] and RR

[426].

J. Hybrid

Hybrid schemes benefit from both the features of proactive

and reactive routing protocols. The communication region

influences the use of proactive and reactive routing. Most of

the hybrid protocols use proactive routing locally and reactive

routing inter-locally [382]. Due to the optimal selection of the

routing, the hybrid protocols offer reduced latency, overhead

reduction and scalability within the network. Some of the

hybrid protocols include GBR [405], PEGASIS [391], SPEED

[428], MSRP [429], JARA [430] and APTEEN [431].

K. Query based

In query based routing protocols the communication be-

tween the source and destination is initiated by a query

request circulated by the destination node. The destination

node (sink) if needed circulates a request for a specific data

(based on location or specific attributes of the sensed data).

Any node having the data of interest responds to the request

with appropriate sensory data. The query based data routing

algorithms minimize the unnecessary data communication thus

avoiding flooding of data in the network resulting in extended

network lifetime [377]. The query based algorithms are more

suitable for delay tolerant applications due to the added

delay from query request to delivery of data. The delay is

further increased in reactive query based algorithms. Some

of the query-based routing protocols include RR [426], DD

[432],COUGAR [398], ACQUIRE [433], SPIN-PP [434] and

EQSR [435].

L. Data centric

In data-centric routing protocols, when a sensory data is

forwarded from the source node, the intermediate nodes can

perform the data aggregation in the original data packet.

This allows efficient aggregation of data and reduces the

communication overhead. However, due to the manipulation in

the source packets, the identifiers can be altered due to which

the received information cannot be individually identified with

respect to the sources. Some of the representative protocols in

this category include SPIN [422], COUGAR [398], RR [426],

ACQUIRE [433], DD [432] and EAR [425].

M. Address centric

Address-centric protocols differ from data-centric with re-

spect to data delivery mechanism. In address-centric routing

protocols data is transmitted individually from source to

sink. The information from each sensor node is transmitted

independently to keep the identity of originating entity intact.

Unlike data-centric, this type of protocols gives relatively

higher importance to locality of the originating data. Some of

the address-centric protocols include dream [436], LAR [437],

GRACE [404] and GRAB [418].

N. Negotiation based

Negotiation based routing protocols use meta-data nego-

tiations to reduce the redundant transmissions [382]. These

protocols focus on energy efficiency and hence communication

is limited only to the occasions when requested. Negotia-

tion based protocols usually follow a three-stage cycle for

information communication. In case of an event, sensor node

advertises event based sensory information in first stage where

advertisement packet is broadcasted. Seeing the advertisement

packet, if any nodes requires the advertised data, it will

send a request packet indicating its interest in the data. In

the third stage the data is transmitted from the sensor node

to interested node completing three stage-cycle: ADV-REQ-

DATA [382]. Negotiation based protocols prioritize operational

efficiency and energy conservation at the cost of added delay

and therefore can be used in monitoring applications. Some of

the selected negotiation based routing protocols include SPIN

[422], SPIN-PP, SPIN-RL [434], DD [432], VGA [438] and

SAR [439].

O. Homogeneous

The routing protocols are sometimes divided based on

the nodes in the network. If all the nodes in the network

are same with respect to the hardware, size, battery, energy

supply, energy harvesting, radio and transmission powers,

the nodes are considered as homogeneous nodes [377]. The

routing approaches used for homogeneous sensing networks

are referred as homogeneous routing protocols. Due to the

similar attributes of the nodes, homogeneous routing protocols

treat all nodes equally. Some of the homogeneous routing

protocols include PEGASIS [391], TEEN [390], LEACH

[389], COUGAR [398], SPIN [422], DD [432] and SPEED

[428].

P. Heterogeneous

Unlike homogeneous routing protocols, heterogeneous rout-

ing protocols are capable of handling more diverse networks.

Heterogeneous routing protocols takes in to consideration the
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Fig. 12: Classification of Routing Protocols

versatility of the networks and are more suitable for networks

with heterogeneous sensing nodes [377]. The heterogeneous

routing benefits from the special features of the nodes in

the network, where the nodes with extended battery, range,

bandwidth can work as coordinator, cluster-head or aggregator

to facilitate network management and efficient communication

of information from primitive nodes. Some of the example

of heterogeneous routing protocols include SOP [409], CHR

[410], IDSQ [411] and CADR [424].

Q. Coherent and non-coherent routing

In coherent data processing based routing protocols, the

sensor nodes transmit the data with minimum processing. This

type of routing poses minimum processing load on the sensor

nodes. The sensor nodes use primitive algorithms for time s-

tamping and redundancy reduction cite napantazis. This allows

nodes with low processing specifications to work effectively

without overburdening them. In Non-coherent routing, the

senor nodes locally process the data and then it is forwarded

to aggregators for onward processing. Data processing in non-

coherent routing goes through three phases [382].

• Target detection, data collection and pre-processing

• Membership declaration

• Central node election

In first phase the detection of an event, collection of events

sensory data and pre-processing of data is completed. In the

second phase, the node selects to participate in the cooperative

function and informs the neighbouring nodes. In last phase, a

node is elected to perform further processing on the sensory

information and apply more extensive compression, encryp-

tion, and aggregation on the received information [382], [377].

It is observed that the localized processing in non-coherent

processing based routing protocols offer better scalability and

reduced delay compared to coherent processing based routing.

Examples of coherent and non-coherent processing based

routing include SWE and MWE [440], [441].

X. ENERGY SOURCES AND ENERGY HARVESTING IN

IWSNS

The current industrial equipment is developed to last for

months, even year(s) without a replacement or maintenance.

This advancement in technology allowed to cut down regular

maintenance costs in industries. However, the network lifetime

of IWSNs must also be improved in order to allow smooth

operation of the plant by avoiding battery replacements and

redeployment of nodes, until the regular maintenance of the e-

quipment is called. Due to the extended lifetime requirements,

energy harvesting in IWSNs has gained much importance.

Many schemes are proposed that can add up in the lifetime of

the network by harvesting energy from the available sources in

the dynamic industrial environment. A number of techniques

can be used to capture energy. Photovoltaic (PV), wind, ther-

mal, biochemical, vibrational, pressure, nuclear, microwave,

magnetic resonances, and Radio Frequency (RF) are some of

the options for energy harvesting techniques [39], [248], [249],

[250], [251]. The details of these energy harvesting techniques

and energy sources are listed as follows.

A. Radiant Energy

Radiant energy plays a significant role in energy harvesters

and is one of the most widely used energy sources. Radiant

energy harvesting can be divided into solar, RF and infrared.
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Fig. 13: Energy harvesting techniques in IWSNs

1) Solar: A wide variety of applications use PV for out-

door/indoor energy harvesting. Energy harvested by PV varies

significantly, depending on the indoor and outdoor environ-

ment and lighting conditions.

The use of solar/illumination for outdoor/indoor applications

in IWSNs has been used for variety of applications [46],

[39], [252], [253]. Since the overall energy requirements are

relatively low in case of IWSNs, relatively small size PVs

can be used to meet the purpose. In some cases, for outdoor

applications the hybrid photovoltaic/temperature (PV/T) cells

are also used to offer improved efficiency. For outdoor envi-

ronments, the solar energy is termed as an infinite source of

energy, but the energy harvested on different days on different

times with different weather conditions can vary tremendously

[47], [254]. Hence, the energy harvested from the solar cells

is termed as uncontrollable and less predictable due to the

randomness in its behaviour. The indoor light harvesting,

however, is usually more predictable as the sources of illumi-

nation work during certain predefined hours. Furthermore, in

industrial environments certain luminous levels are maintained

to ensure effective work environments. A careful survey of

lighting conditions in different regions in the indoor industry

floors and points of interest can give a better estimate of energy

harvesting potential in such environments [255], [256]. Indoor,

although predictable, yet is less effective, as the efficiency of

the indoor PV harvesters is reported to be reduced to one third

[47]. The graphical representation of solar energy harvesters is

presented in Fig. 13, whereas the details of energy harvesting

potential of solar harvesters are presented in Table XII.

2) RF: The RF based energy harvesting has gained much

attention in the last decade [48], [257]. With the exponential

increase in the wireless communications, and countless sources

transmitting electromagnetic radiations, RF energy harvesting

has become a definitive source for energy. Presently, the Wi-Fi

access points, cellular base stations, WiMAX communications,

TV broadcasts, and radios are emitting large amount of energy

in the atmosphere.

The RF energy sources can be divided in two areas: near-field

and far-field harvesting. The near-field wireless energy har-

vesting targets the applications where the transmitter is placed

in close vicinity of the RF energy harvester, which harvests

energy from the close range known transmitter. Since, in such

cases, a predefined distance is maintained which makes such

cases predictable and much more reliable. In the near-field

energy harvesting, the efficiency is reported to be up to 80%

[258]. In the far field, the energy is harvested from the different

wireless communications and broadcasts taking place in the

vicinity [48]. The energy is harvested from the RF/microwave

radiations using a wide band antenna or array of antennas.

This received energy is then rectified and transformed into

power [49], [259]. It is considered as a relatively consistent

and sufficient source of energy in the urban areas, however,

its density per square cm reduces significantly in the suburbs

[47].

3) Infrared energy: Infrared energy harvesting targets next

generation of the PVs to harness energy from the infrared

radiations emitted by the hot bodies. All hot bodies, as a power

dissipation mechanism, emit infrared radiations which carry a

notable amount of energy. Harvesting energy from the infrared
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radiations offers an alternate to the solar power during night.

Furthermore, in the industrial environments, a lot of energy

is wasted in the form of infrared radiations which can be

effectively transformed in to an untapped energy source.
4) Summary and insights: The primary objective of energy

harvesting in IWSNs is self-sustainability. Therefore, selection

of an energy harvesting scheme is essentially motivated by

the energy requirements of the sensor nodes. The energy

consumption of nodes even with same hardware specifications,

can change significantly depending on the frequency of com-

munication, sleep scheduling and passive listening duration.

Therefore, there are no clear boundaries for suitability of

application areas of a specific energy harvesting technique

and can be used in diverse applications. Nonetheless, based

on the potential of various radiant energy sources and their

suitability to certain application areas some recommendations

are provided as follows.

Solar is one of the readily available and most frequently

used energy harvesting schemes in IWSNs. Due to the abun-

dance of this resource, applications requiring more frequent

transmissions including regulatory and supervisory control

can easily be powered up using PV based energy harvesting.

Motes using solar based energy harvesting are equipped with

a primary rechargeable battery and follow the harvest-store-

use model. It is also noted that the outdoor nature of solar

energy harvesting nodes encourages larger separation between

the nodes which requires more powerful radios. Some of the

solar powered energy harvesting nodes include Heliomote,

Prometheus, Ambimax and sunflower [39]. Although solar en-

ergy harvesting in IWSNs is widely used and is highly suitable

for outdoor applications, yet the uncertainty and dependence

on the weather conditions make the source unpredictable.

RF based energy harvesting can serve a potential source of

energy in near field region and can provide low cost long life

energy harvesting. However, RF energy harvesting produces

much lower power levels in the order of microwatts even in

the close vicinity of the cellular towers (15m-100m) hence, the

RF based energy harvesters are only suitable near transmission

towers and wireless access points in industrial environments.

Infrared energy harvesting due to its dependence of low energy

wave emissions by hot bodies is more suited for industrial

environments with plenty of hot bodies. Boilers, incinerators,

furnaces, engines, and hot bodies can serve as source of energy

for the infrared based energy harvesting. Since the infrared

based energy harvesting offers limited energy therefore, it

is suitable for applications with less frequent transmission

requirements. For such energy harvesting sources, it is also

desirable to incorporate efficient power management schemes.

B. Heat Energy

Heat energy is one of the sources that is available in abun-

dance in the industrial environments and is therefore, termed as

a significant contributor in energy harvesting systems. The heat

based energy harvesting relies on the heat energy produced

from the mechanical equipment, structures, friction, heating

chambers, heating losses, even from the electrical equipment

[35]. The thermal energy harvesting systems rely on thermo-

electric effect [260], where electrical energy is produced due to

the temperature difference achieved between the two surfaces

of different materials [261]. The principle of transforming

temperature difference between two surfaces into voltage is

also referred as Seebeck effect [249], [251]. Although the

energy efficiency of the thermoelectric devices is relatively low

but such devices offer a relatively long lifetime. Furthermore,

thermoelectric energy harvesting is termed as a reliable energy

source with relatively low maintenance.

1) Summary and insights: The miniature size of the thermal

system allows nodes to use heat energy harvesting in wide

variety of industrial applications. The use of heat based energy

harvesting nodes are commonly used in the radiators and

heated surfaces in industrial environments [39]. The use of

thermoelectric charge is also common in the temperature

control applications where the thermoelectric energy har-

vesting powers the feedback communication of the nodes.

Furthermore, the use of heat energy harvesting nodes is also

introduced in automotive industry where the engine heat and

exhaust waste are used to produce thermoelectric charge [35].

While the infrared energy harvesting nodes are not bounded by

the time of the day and sunshine like solar PVs and can work

during the night time as well, yet the source is very limited

and only serves for low duty cycle nodes with extended sleep

duration.

C. Vibration Energy

Mechanical forces, found in abundance in industrial envi-

ronments, are great sources of energy and are widely accepted

in the industrial environments. Whether it is achieved through

electrostatic, piezoelectric, or electromagnetic, [262], [263]

this energy resource can greatly impact the lifetime of the

IWSNs. The electrostatic, electromagnetic, and piezoelectric

devices transform the mechanical energy into electrical energy.

The working principle of these devices is listed as under.

1) Piezoelectric: The piezoelectric effect based devices use

piezoelectric material which under the influence of stress or

strain, are capable of producing electric charge. The produced

charge is regulated to achieve a steady output. The piezo-

electric systems offer advantages of high output voltages and

capacitances but are relatively expensive and the coupling

coefficient is also material dependent [260].

2) Electrostatic: The electrostatic energy harvesters use the

relative motion between the plates of the variable capacitors

to generate the electric current. In this method, the mechanical

motion is used to cause the distance change between the

electrodes of the capacitor. Hence resulting in voltage varia-

tion, thus, generating electric current in the connected circuit.

Electrostatic systems offer high output voltages, adjustable

coupling coefficients, low capacitances and cost effectiveness

[260]. On the down side, these devices are relatively small and

needs handling of micrometer dimensions.

3) Electromagnetic: The electromagnetic energy harvesting

is one of the most widely used power generation mechanism,

commonly used on the larger scales where the relative motion

in electromagnets and the windings induces electric current in

the windings. The synchronous generators, induction genera-

tors, permanent magnet generators are some of the examples
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TABLE XII: Primary Battery sources and Energy harvesting techniques in IWSNs [16], [32], [35], [270], [271], [272], [273]

Sr. Energy Sources Possible Variations Power

1. Primary Batteries

a) Alkaline AA (E91) [274] 1.5V, upto 3080mAh@40C

b) Lithium AA (L91) [275] 1.5V, upto 3400mAh@40C

c) Lithium-Manganese Dioxide
(Li/MnO2) (LA522) [276]

9V, upto 850mAh

2. Super Capacitors

a) Maxwell BCAP0350 2.5V, 350F, 5.73Wh/L with
500,000 life cycles [35]

b) Maxwell PC10 2.5V, 10F, 1.4Wh/kg with
500,000 life cycles [35]

c) Green-cap EDLC(DB) 2.7V, 50F, 4.4Wh/L with
over 100,000 life cycles [35]

d) NEC TokinFT0H105Z 5V, 1F, 1000 life cycles [35]

3. Rechargeable Batteries

a) NiMH 1.2V, upto 2500mAh@40C
[35]

b) Li-ion 3.7V, upto 730mAh@40C
[35]

c) Li-polymer 3.7V, upto 930mAh@40C
[35]

4. Energy Harvesting Techniques

Light
a) Indoor 10 to 100W/cm2 [16], [32],

[46]

b) Outdoor 0.15 to 15mW/cm2 [32],
[46]

Temperature - - 15 W to 60mW/ cm2 [32]

Vibration

a) Electrostatic 50 to 100W/cm3 [32], [47]

b) Electromagnetic 0.2 W to 1mW/cm3 [32],
[46], [47]

c) Piezoelectric [16] 10 to100W/cm3

Wind/Airflow - - 0.1 to 100mW/cm3 (wind
speed 2m/s to 9m/s) [47]

Thermal - - 15 to 60W/cm3 [16]
Nuclear diode
junction

- - 500n to W/cm3 [268]

where electromagnetic induction is used for electrical power

generation. In electromagnetic induction, the rotational motion

achieved from wind, hydropower, gas and petrol engine is

converted in the electric power. However, these structures are

relatively large and are used to produce electrical energy in

hundreds of megawatts. For IWSNs, the electromagnetic en-

ergy harvesting has great significance as in industries magnetic

flux, rotational motion and magnetic fields are found in abun-

dance, which can easily be transformed in small scale self-

sustaining electromagnetic energy sources. Furthermore, the

electromagnetic energy harvesting sources offer high output

currents, robustness, and long lifetime. However, due the small

size of these harvesters the energy efficiency is relatively low

[260].

In general, vibration/motion energy produced from different

uncontrollable/partially controllable processes, (wind, liquid

flow, stress, strain, vibrate etc.) can result in diverse energy

resources [264], [265]. The graphical representation of vibra-

tion energy harvesting is presented in Fig. 13, whereas the

details of energy harvesting potential of these harvesters are

presented in Table XII.

4) Summary and insights: Industrial environments are filled

with the vibrations generated by a wide variety of oper-

ations including rotation, drilling, pressure, kinetic energy

and biomotion. The use of energy harvesting techniques to

scavenge energy from these sources is a common practice. De-

pending on the application and the node energy requirements,

a decision can be made on the possible energy harvesting

scheme.

The selection of the viable energy harvesting scheme depends

on its suitability in a given application . For instance, eval-

uation of rotational speed, magnetic flux and generated heat

in motors and generators require precise sensory feedback.

For such cases, sensor nodes are usually placed on the rotor

for accurate measurements. Since the sensor node is going

through the rotational motion, hence the use of electromag-

netic energy harvesters is more suitable. The electromagnetic

energy harvesting nodes produce notable energy and can be

used in a wide variety of applications. However,the use of

permanent magnets in the electromagnetic energy harvesters

lose magnetic properties over time and can cause reduction

magnetic flux in turn reducing energy production capabilities

with the passage of time.
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In the pressurized environments, use of piezoelectric energy

harvesting appears to be a more viable option. The piezoelec-

tric harvesting nodes although harvest plenty of power yet the

material used in piezoelectric energy harvesters is relatively

expensive.

Since the vibrational energy harvesting nodes are capable of

fulfilling required energy needs, there are no limitations on

applications and communication of vibration based energy

harvesting nodes if a suitable vibrational energy harvesting

source is available.

D. Hybrid Energy Resources

In order to improve the performance of the energy

harvesting sources, primarily relying on single energy source,

hybrid schemes are implemented. In certain cases, the certain

energy sources are intrinsically linked and can be efficiently

utilized. The use of solar PVs along with thermal power

harvesting offers one such scenario where the photons as well

as the heat of the sun is transformed in to electrical energy.

It results in the improved efficiency per unit area. To employ

multi-source harvesting, multiple harvesting modules are

integrated in a system [35]. A hybrid system using maximum

power point solar PVs and wind is presented in [266]. The

design of the hybrid energy harvesters is presented in [267].

Some other example of hybrid energy harvesters is presented

in [264].

The nuclear diode junction battery with long lasting ability

can also serve as an alternate. The battery offers long life but

relatively low power [268], [269].

Table XII lists some of the energy harvesting techniques

used and their expected potential contribution along with

conventional primary battery specifications, supercapacitor

details and rechargeable batteries. All these techniques add

additional lifetime to IWSNs fulfilling the basic requirements

of the extended lifetime. Apart from the energy harvesters, a

suitable electronic circuit with regulators, DC-DC converters

and filtering is needed to feed the rechargeable batteries.

Though in some cases battery-less operation is also opted

for IWSNs, where the energy-harvester serves as the primary

source of energy yet it limits the coverage of the sensor

nodes.

1) Summary and insights: Use of the hybrid energy

harvesting nodes is relatively rare in industrial environments.

One of the primary reasons is the additional cost factor

added to an individual node affecting the cost of the network

significantly, especially in case of larger networks. However,

in some cases where more frequent communications are

required from the wireless sensor nodes deployed in remote

or inaccessible area, hybrid schemes may be adopted. In

the literature, some of the hybrid schemes are demonstrated

over the years including thermal-PV, PV-wind, biochemical-

biomechanical [35], [46].

The use of the primary batteries, rechargeable batteries and

supercapacitors can be found in almost all the applications in

IWSNs due to the non-suitability of battery less nodes (green

nodes) for industrial automation and process control. Due to

the unique attributes of each of these battery sources, the

preference of the individual battery type can vary depending

on the system requirements. The rechargeable batteries

are often used in combination with the energy harvesting

techniques to offer longer network lifetime. The notable

capacity of rechargeable batteries allows the use of less

predictable energy harvesting techniques like solar so that the

nodes can survive few days without recharge. However, one

of the possible problems of the rechargeable batteries is the

effect on battery lifetime with frequent recharges.

Super capacitors on the other hand, offer much higher

recharge cycles without significantly wearing out. However,

lower energy capacity limits the use of supercapacitors

only in combination with the predictable energy harvesting

techniques. The predictable attributes of the energy harvesting

schemes ensure a constant source of energy hence allowing

the nodes to mostly operate based on the energy harvested.

However, to assist in the occasional variations in the energy

harvested and anomalies in harvesting systems are addressed

with use of supercapacitors. More frequent energy harvesting

schemes used in combination with supercapacitors include

vibrations and indoor solar harvesters.

The permanent batteries are used in non-accessible and remote

wireless networks. The use of under-water sensor nodes in

dams for evaluation of water pH, impurities sediments water

flow-in dissolved oxygen and temperature sensors serve as

one such cases where the node lifetime lasts until the battery

dies out. Furthermore, in some applications where the energy

harvesting is not an option the permanent batteries are also

used. In such cases the nodes are easily accessible and a

regular battery replacement cycles are scheduled to run the

processes smoothly.

XI. GOOD PRACTICES AND DESIGN SOLUTIONS IN

IWSNS

In IWSNs, continuous research has provided much wanted

improvements in past few years. It is because of the efforts

of many individuals and some joint ventures that IWSNs have

recently witnessed much wider acceptability in all sorts of

industrial applications. Due to the broader scope of the po-

tential applications of IWSNs, it is becoming difficult to cope

with the rising challenges. In this section, to resolve prominent

challenges in IWSNs, certain practices are listed. Wherever

appropriate, existing research is discussed to overcome these

challenges, otherwise new directions for possible solutions are

explored.

A. Dynamic Priority Scheduling

The communication in Industrial processes is not usual-

ly limited to one particular class or industrial system. For

instance, an industrial process can be communicating emer-

gency traffic, regulatory control traffic, alerting traffic and

monitoring traffic. In such processes, the multilevel prioritized

communication offers a better chance at effective communica-

tion optimization. Some of the priority based communication

protocols are listed in Section VIII-A(4) and main strengths
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and weaknesses of these protocols are highlighted. However,

a commonly observed trend is the use of pre-defined priorities

for each industrial traffic type. Doing so, limits the response

of communication protocol only to predefined states, and

hence, its suitability to handle dynamic processes. Since the

priority of traffic in industrial networks can change on runtime,

depending on variations in sensor readings, the use of pre-

defined traffic priority may not be a suitable solution. Hence,

the widely-proposed priority based MAC protocols for IWSNs

are inefficient in scenarios where certain variation in the

existing priority can occur. The examples of such cases include

Alerting systems, where violation in certain critical thresholds,

in runtime, may result in instability in plant’s operation. Under

such circumstances the alerting system’s traffic priority should

be increased due to its current critical nature. Similarly real-

time variation in supervisory control feedback also changes

the priority of the affiliated traffic and more regular feedback

may be desired.

Therefore, a more effective way to deal with processes like

these is by establishing dynamic priority, which could pri-

oritize in real-time. The concept behind dynamic priority

scheduling is to form adaptive and evidence based decision

of which information is more critical and must be delivered

on priority. Inclusion of dynamic priority scheduling meets

the challenges of time constraint and information priority

scheduling by efficiently sacrificing the bandwidth of low

priority data sources.

B. Variable Sampling Rates and Heterogeneous Sensing

The information generated in a plant is usually of critical

nature but its significance rises even more when it violates

critical thresholds. At such instances, it is imperative to

observe status of such information more frequently. To do

so, the design cannot rely on the static sampling rates rather

it must adopt with the changing statistics of the information

from different sections of the plant. Hence, the incorporation

of variable sampling based on critical nature of information

is imperative for better industrial solution. In literature, no

significant contributions can be found in this aspect. However,

the use of variable sampling rates, to compensate network

loads and to trade-off between the frequently desired and

less frequently desired information, can significantly improve

the reliability of the network communication by effectively

managing bandwidth fluctuations and resource constraints.

Heterogeneous sensing, is usually referred in similar mean-

ings as variable sampling. However, to establish a difference

between the two, the heterogeneous sensing is used in sense

of quantization information and number of bits assigned to

the sensed information. As in IWSNs, it is of paramount

importance that the information from different sources is dealt

according to the nature of information, not only in sense of

priority but also in terms of sampling rates and affordable

quantization error of the sensed information. Therefore, het-

erogeneous sensing, though rarely used, can make a significant

difference in reducing the load of stressed out networks by

down scaling the number of bits used to represent an analog

sensor value. The decision on when to reduce the precision

of the sensed information is question of how significant the

sensed information is and will it affect the process outcome

or not.

This compels the researchers to optimize the information

preferences and allocate the resources accordingly in order to

get the desired results. Thus, merging heterogeneous signals

and the allocation of non-uniform resources must primarily be

considered in design.

C. Data Fusion and Localized Processing

Data fusion is an important aspect of IWSNs and can be

greatly beneficial in harsh industrial applications. Localized

processing with efficient data fusion can greatly help in

transforming massive data into compressed critical informa-

tion. The localized processing also reduces the time delays

between reading sensor values to controlling the actuators. If

efficiently implemented, this process can help in eliminating

some crucial constraints in IWSNs including data redundancy,

time constraint, network lifetime and even BER.

D. Efficient Information Scheduling

Information scheduling plays a very important role in het-

erogeneous industrial networks. In a system with differen-

t processes integrated together, the sensed data originating

from different sources may have very diverse time deadlines,

sampling rates, priority levels and failure consequences. Some

of the existing scheduling schemes presented over the years

are discussed in Section VIII-A(2). Apart from this, the

IEEE802.15.4e discussed in Section VI-B(2) also offers a

base platform which can be further enhanced to optimize

scheduling. However, there is much more potential for im-

provement where an efficient scheduling of information can

resolve many intrinsic problems of Synchronization, Sleep

Scheduling, Contention free medium access, Coexistence, re-

liability, interference and BER. Thus, where a good scheduler

design is of principal importance in TDMA based industrial

communication standard, a poor scheduler may lead to viola-

tion of time constraints in harsh industrial environments.

E. Long Lifetime Assurance

A long network lifetime has much importance in IWSNs e-

specially in automation and process control applications. With

the improving technologies, a great extension in the lifetime

of the industrial equipment has been witnessed. To cope with

this, energy harvesting techniques must be considered to offer

extended lifetime of IWSN nodes, in comparison to that of the

industry equipment. A detailed discussion is being provided

on various energy harvesting schemes, capacity of the batteries

and supercapacitors in Section X, yet, the practical evaluation

of these schemes in industrial environments can lead to a more

accurate time and capacity information of various schemes

discussed. Another interesting evaluation would be to link the

energy harvesting schemes with the power consumption of

various motes available in the market along with the use of

low latency, reliable and energy efficient algorithms [275],

[276]. A thorough research in this domain may lead to a

better estimate of the lifetime expectancy of IWSN motes with

different energy harvesting techniques.
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F. Data Reliability, Time Synchronization and Retransmission

Scheduling

Reliable data communication has great significance in I-

WSNs and accuracy of each transmission is very important.

It is for the same reasons, retransmission is considered to be

very important to achieve the desired levels of QoS. In this

aspect, IEEE802.15.4e can serve as a good example as it offers

interference free channel access. It also implements Time

Synchronized Channel Hopping (TSCH) for better reliability.

However, the desired Packet Reception Rate (PRR) could

be a challenge due to some significant interference sources,

intrinsic to the industrial environments. This is where the

desired QoS is compromised. However, to ensure a particular

QoS at all times for certain communication types in IWSNs,

the retransmission scheduling can be used. The shared slots

provided in IEEE802.15.4e can be used for this purpose, but

the default retransmission uses a CSMA/CA based channel

access during the shared slots which makes the reliability and

timely delivery of already delayed information questionable. In

this aspect, very limited research can be found. The available

research includes works in [10] and [55]. In [10], authors

try to improve the retransmission efficiency in TDMA based

multihop IWSNs, using efficiently scheduling the shared slots.

In [55], a priority mechanism is defined which attempts to

improve the QoS of high priority communication, by allowing

it to retransmit the failed communications of high significance

over the time slots assigned to lower priority communications,

hence offering better reliability. Further improvements are also

expected in this domain however it requires more investigation

and research for optimized solutions.

G. Application Specific and Resource Efficient Design

Careful observation of the parameters in a plant can give

insight of the suitable solutions for the selected applications. A

prime solution in the field of IWSNs that can perfectly fit every

application is a myth. Therefore, one cannot deny the need

for an application specific design in IWSNs [16]. Apart from

this, if the wireless nodes are used to develop a generalized

solution which can work in a wide variety of applications,

it might need a lot of resources. For instance, if the nodes

are developed to be compatible with Zigbee, WirelessHART

and 6LowPAN standards at once, it will require multiple

radios and secondary processing units. Keeping in view the

maintenance, modifications, deployment packaging, servicing,

and unit costs, the solutions becomes unfeasible. Therefore,

most of the applications tend to offer compatibility with a

single communication protocol where few special nodes can

work as a gateway to interconnect with other technologies.

An application specific design offers more promise of fulfilling

the desired objectives with minimum resources and lowest cost

possible. In Section VII-A, a detailed discussion on motes and

radios available in the market can be considered to identify

suitable motes for required applications. Furthermore, some

other key elements need to be opted, based of application

requirements are listed in Section IV-D. With all the basic

objectives covered, one may look further to optimize efficiency

of the design by incorporating transmission power control,

sleep scheduling and energy harvesting for network lifetime

improvement, distributed processing, linearization, effective

memory mapping and code optimization for resource efficient

design and modular approach, clustering, and hierarchical

design for scalable solutions [277].

However, to propose a solution suitable for the application as

well as to offer possible potential for future developments is a

challenging task. Apart from this an industrial solution based

on WSNs is expected to be efficient and scalable. The IWSNs

not only have to adjust with the existing field-bus and Ethernet

legacy solutions but also have to deal with the changing and

ever expanding industrial structure. In such cases, modular

approach and hierarchical based solution is recommended for

the scalable architectures. Furthermore, it is recommended to

efficiently utilize the resources from implementing efficient

memory allocation algorithms to the sophisticated techniques

to prolong the network lifetime.

XII. FUTURE RESEARCH DIRECTIONS

IWSNs offer a suitable alternate for the industrial mon-

itoring, automation and process control and it is expected

that the future investments in IWSNs will further increase.

Apart from many appealing benefits, primary cause of market

boost in IWSNs is the significant price differences in wireless

and wired networks. However, there are still some concerns

from control and automation industry and experts of the

field, highlighting the QoS relate problems of the wireless

technology. It is, therefore, foreseen that certain critical areas

will receive significant amounts of attention in the future to

cope with the QoS offered by the typical wired networks.

It is therefore predictable that the future research will try to

compensate the lag in IWSNs to offer reliable communication

in industrial applications with comparable quality metric val-

ues (BER, RSSI, data rate etc.) to that of the wired networks.

Moreover, to meet the high data rate requirements in higher

hierarchy of IWSNs, other technologies like Visible Light

Communication (VLC) [278], [279], Cognitive Radios (CR)

[280], [281] and IoT [282] will play an important role. Main

research streams in IWSNs to cope with the industrial demands

are listed as under.

A. Deterministic Network Formation

Since IWSNs are not yet considered as a mature technology

in industrial automation and control, ensuring deterministic

behavior in IWSNs will be receiving great significance in

the next few years. It is very important to offer deterministic

behavior of IWSNs to assure proper working in harsh envi-

ronments and industrial processes. Despite a lot of work in

Physical, MAC and Network layer optimizations, still most of

it needs to converge on a single platform to offer consolidated

solution in the formation of deterministic networks where

one could predict the operation with certainty. Moreover, the

reliability assurance in IWSNs will always be compared to

the existing wired solutions irrespective of the cost difference.

It is, therefore, needed to conduct dedicated research in this

sensitive area. Though with the inclusion of TDMA, channel

access reliability is certainly improved, yet the added delay
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needs to be carefully handled without sacrificing the de-

terministic network architecture. Certain reliability, real-time

delivery, scheduling and priority optimization protocols [30],

[36], [38], [41], [53], [54], [55], [62], [66], [97], [108], [109],

[193], [207], [275], [276], [283], [284] (Section VI, VIII and

IX provide sufficient information on the listed optimization

protocols) are also defined. However, for most of the cases

static network architectures were investigated while most

of the practical applications demand dynamic and scalable

network architecture for durable design.

B. Durable and Long Life IWSNs

The extension in the lifetime of industrial equipment has

forced the need for the energy harvesting techniques in

IWSNs. Moreover, some hard-to-access deployment points

(turbines, internal machinery/generators sensors etc.) urge

the extensive lifetime of the wireless sensor nodes. By far,

literature lacks a thorough evaluation of energy harvesting

techniques specifically targeting industrial environment, its

energy generation potentials and presentation of application

specific energy harvesting techniques for industrial environ-

ments. A thorough evaluation of potential of energy harvesting

techniques with suitable blend of variety to cover the wide

scope of industrial applications is very important. Such effort

will encourage further investigation in this area to unleash the

full potential of IWSNs in industries. Apart from this, research

on hybrid energy sources is very limited and if properly

investigated can unlock infinite potential for future IWSNs.

C. Interoperability in IWSNs

Interoperability and transformation of existing structure to

wireless with minimal variation in the existing setup will great-

ly help the transformation. Moreover, the need for wireless

solutions with more flexibility and ability to embed in the

existing wired networks is missed and is strongly desirable for

potential improvements. Although some industrial protocols

offer interoperability in IEEE802.15.4 and TCP/IP operated

devices, yet it only accounts for the Ethernet based wired

networks. Also the need for translation from full duplex

(wired setup) to half duplex (wireless setup) is much needed.

Apart from these, many wireless technologies are predicted

to collaborate in industrial automation and process control.

Unfortunately, scarcity of the radio band would demand oper-

ation of various wireless technologies in overlapping spatio-

temporal regions which demand expansion of IWSNs to other

technologies to assist in future industrial automation and

process control.

D. Industrial IoT

Industrial Internet of Things (IIoT) is a specific branch

of IoT which addresses the communication and connectivity

issues in industrial environments and offers suitable solution-

s. IIoT can improve interconnectivity, flexibility, scalability,

time efficiency, cost effectiveness, security, productivity and

operational efficiency in the industries. IoT can also serve as

a platform to establish intelligent network of devices [285]

which can interrelate data and processes to effectively estab-

lish feedback control systems for industrial automation. The

research in use of IoT in industrial environments is increasing

exponentially with IIoT emerging as a main contender in

the field of wireless industrial automation [286]. Apart from

the contributions of research community in improving the

operability of IoT in the industries, many dedicated hardware

modules and platforms are also introduced to support the IoT

based developments in the industrial environments. A list of

various practical modules optimized for IoT are discussed in

Section VII-A.

The developments in IIoT aim at offering an accomplished

technology capable of integrating heterogeneous sensors and

systems. To maximize the operational efficiency and to offer

extended benefits, use of multi-layer Service Oriented Archi-

tecture (SOA), with some variations, is proposed [287], [286].

Energy consumption, latency, extensibility, modularity, scala-

bility, topology, throughput, security and safety are some of

the key considerations shaping SOA [288]. For process control

and automation applications, sensors and actuators need to

interact with the environment more frequently and may have

real-time communication and response requirements, hence

an adaptive architecture is needed to dynamically interact

with the environment. Furthermore, the architecture should

also support the heterogeneous and decentralized operation of

IoT. Therefore, SOA is considered an appropriate approach to

achieve interoperability between heterogeneous devices in a

multitude of way [286], [289], [290].

Some initiatives from the research community and standards

organizations have facilitated the adaptation of IoT in indus-

trial environments. 6LoWPAN is one such development which

targeted, IPv6 implementation over Low-power WPAN, details

of which can be found in Section VI-C(4). Details of some

other developments and initiatives are listed as follows.

1) OpenWSN: OpenWSN is an open-source project which

facilitates the implementation of IoT in time and reliability

sensitive resource constrained networks. The free and open-

source implementation of the IoT oriented protocol stack and

development of debugging, support and integration tools in

OpenWSN encourages rapid development in IoT centered

low power mesh networks [291], [292]. OpenWSN imple-

ments standards based protocol stack for IEEE802.15.4e Time

Synchronized Channel Hopping (TSCH) based resource con-

strained networks coupled with IoT standards like 6LowPAN

(the IPv6 protocol adaptation layer to IEEE802.15.4 networks

[293]), RPL (routing protocol for Low-Power Lossy Networks

(LLN) [294]) and CoAP (a light-weight HTTP-alike appli-

cation protocol [295]) to aid ultra-low power and reliable

mesh networking in internet enabled WSN [291]. Use of

IEEE802.15.4e TSCH MAC ensures suitability of OpenWSN

for time and reliability constrained industrial networks.

The developments in OpenWSN can be categorized in two

sub-projects, firmware and software. The firmware is written

in standard C99 and GCC is used as a default compiler which

enables compatibility of the firmware with AVR, ARM cortex

and MSP processor architectures[292]. OpenVisualizer, the

software sub-project, developed using Python, serves as an

internet gateway and is responsible for IPv6 compression,
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network topology, routing, statistics and essential packet met-

rics. In OpenWSN the flexibility is added using command

line options which allow the users to combine toolchains,

kernals applications and board with single command line

[292]. Furthermore, the continuous integration servers provide

open IIoT service which allows end-users to build applications

online.

2) 6lo WG: IPv6 over Networks of Resource-constrained

Nodes (6lo) Working Group replaces 6LoWPAN WG to

extend the IoT enabled and IPv6 supported protocol stack for

wider range of radio technologies. It is an initiative by Internet

Engineering Task Force (IETF) where 6 lo WG is intended

to provide suitable support for IoT and IPv6 to resolve

interconnectivity issues in primitive radio technologies. The

primary objectives of 6lo is to facilitate IPv6 connectivity over

resource constrained networks with following characteristics

[296].

• Low power, processing and memory resources

• Strict upper bounds on state, code space and processing

cycles

• Optimization of energy and network bandwidth usage

• Lack of some layer 2 services like complete device

connectivity and broadcast/multicast

The developments in 6lo aim at several radio technologies

where the main areas of interest include [297]

• Transmission of IPv6 packets over Digital Enhanced

Cordless Telecommunications (DECT) Ultra Low Energy

(ULE)

• Transmission of IPv6 packets over Master-Slave/Token-

Passing (MS/TP) Networks

• Transmission of IPv6 packets over Near Field Commu-

nication (NFC)

• Transmission of IPv6 packets over BLUETOOTH(R)

Low Energy (BLE)

• Transmission of IPv6 packets IPv6 Packets over DECT

Ultra Low Energy

• Transmission of IPv6 packets IPv6 over Low-Power

Wireless Personal Area Networks (6LoWPANs)

• Transmission of IPv6 over MS/TP Networks

• Transmission of IPv6 packets over ITU-T G.9959 Net-

works

E. IWSNs and VLC

In industrial applications, Ethernet based standards offer

significant data rates in multiples of tens of megabits per

second to handle high speed traffic. To handle large amounts

of data in higher hierarchies of the IWSNs, the IEEE 802.15.4

based industrial standards may not be able to offer sufficient

bandwidth and may need a different technology which could

support high data rates. For such cases, VLC technology

can serve as a suitable replacement to the existing high

speed Ethernet [298], [299], [300]. Some other benefits of the

technology include the non-existence of interference among

VLC and radio frequency based IWSNs as well as relatively

higher security compared to traditional technologies.

F. Cognitive Sensor Networks for Industrial Applications

IWSNs use Industrial, Scientific and Medical (ISM) band,

a frequency spectrum utilized by many other technologies as

well. The continuous increase in the use of wireless technolo-

gies in various applications are and will be soon leading to

overlapping wireless spectrum access where the opportunistic

spectrum access would be inevitable [280]. Examples of such

cases can be seen in Wi-Fi, Zigbee, Bluetooth and Wi-MAX,

where all of these use overlapping spectrum [301], [302],

[303]. To avoid the interference under similar circumstances,

use of cognitive sensor networks for opportunistic spectrum

access may be the only solution. Moreover, CR also offer a

scope of bandwidth extension and multichannel utilization by

opportunistic tapping in unused spectrum which is otherwise

not usable in traditional IWSNs [281], [304]. Cognitive Radio

Sensor Networks (CRSNs) are suitable for handling non-

linearly distributed sensors for reliable data delivery QoS

under unfavorable propagation conditions [305].

Industrial and factory automation, process control and dis-

tributed control systems are appealing more and more wireless

technologies [306], [307]. Although with the use of TDMA

based channel access the channel congestion and collisions

are greatly reduced, but the scheme is not very successful

in guaranteed channel access if multiple technologies are

working in same vicinity. CR, under such circumstances can

assist in optimizing communication reliability along with the

provision of interoperability among different technologies.

Apart from this, channel bonding in CRSNs should also

be considered for improved reliability and delay parameters.

A survey of channel bonding CRSN is presented in [308].

There are also many protocols which have been refined over

the years for Cognitive radios and can be transformed for

CRSNs. Cognitive radio protocols involving spectrum sensing,

spectrum allocation and spectrum handoff can be optimized

for sensor networks to offer better efficiency [309]. Apart

from this, the cognitive radio power control mechanism offers

extended network lifetime along with reduced interference

[310]. Some of the existing architectures (Spectrum pooling,

CORVUS, IEEE802.22, DIMSUMnet, DRiVE, OverDRive,

Nautilus [311], [312]) can also be utilized to signify the

benefits of cognitive sensor networks over traditional sensor

networks.

All these benefits vouch for the cognitive sensor networks as

a potential technology in industrial automation and process

control. Opportunistic spectrum access in cognitive radios

has been thoroughly evaluated and offers sufficient and well

evaluated works in literature. All these developments can

easily be translated in IWSNs to offer improved performance

in industrial automation and process control applications

by assuring superior communication reliability and collision

avoidance. However, use of cognitive sensor networks in

industrial automation and process control is still in infancy

and need to be further explored for analysis of this potential

technology in industrial applications. The security assurance

in CRSN is also a main issue and still several challenges

and open research issues are remaining [313]. Some of the

work in this particular aspect, as discussed earlier, [280],
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[306], [307], [314], [315], [316], [317], [318], can serve as

a baseline for developing the next generation CRSNs for

monitoring applications, emergency responses, process control

and automation.

XIII. CONCLUSION

IWSNs have shown great potential in improving the pro-

cesses and cost efficiency in industrial applications. However,

many challenging factors still limit the performance of IWSNs

in extreme industrial environments. At present, the potential

of IWSNs is limited by many factors. It is therefore necessary

to target the key limiting areas to exploit the full potential of

IWSNs. The research in past few years has pushed IWSNs to

the verge of wide acceptability in industrial automation and

process control. Yet there is a need of further improvement in

the areas including, reliability, real-time data delivery, lifetime

enhancement, security, localized processing, efficient route

selection, scalability, modular design, information aggregation,

data compression, interoperability and deterministic network

design. Any improvement in these areas would promote I-

WSNs towards industrial applications, which could affect the

process control and automation industry on broader scales by

providing low cost information from the entire plant, adding

to efficiency of the processes and introducing significant cost

reduction in the information collection and process control.

IWSNs introduce efficient means to communicate information

within the industrial processes and have foreseeable future

in industrial monitoring, process control and automation. But

applications of IWSNs are not limited to information com-

munication. Rather, the technology enables IWSNs to embed

intelligence in the industrial processes. With the ability to

offer localized processing and decision making, each node,

individually, and each network, collectively, can serve as

an evolutionary technology for industries. Still IWSNs are

far from reaching the stated potential and need continuous

improvements as well as collaborative progress to reach po-

tentially promising future.

In this review, an effort is made to present the IWSNs from

a different perspective. The paper offers a thorough survey on

IWSNs, and attempts to encompass sufficient and significant

work in this field including the mote designs, radios, protocols

and standards, research contributions, developments in energy

harvesting and batteries, main industry contributors and prima-

ry industry requirements. The paper also evaluates the gaps

in technology and the industrial requirements, which could

challenge the performance of IWSNs, and offers possible way

out to exploit full potential of IWSNs. It also gives an insight

of future technologies and the trends that could be observed in

coexistence with IWSNs in future in automation and process

industries.
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