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Abstract The “Day” diagram (Day et al., 1977, https://doi.org/10.1016/0031-9201(77)90108-X) is used

widely to make inferences about the domain state of magnetic mineral assemblages. Based on theoretical

and empirical arguments, the Day diagram is demarcated into stable “single domain” (SD), “pseudo single

domain” (“PSD”), and “multidomain” (MD) zones. It is straightforward to make the necessary measurements

for a sample and to plot results within the “domain state” framework based on the boundaries defined by Day

et al. (1977, https://doi.org/10.1016/0031-9201(77)90108-X). We discuss 10 issues that limit Day diagram

interpretation, including (1) magnetic mineralogy, (2) the associated magnetocrystalline anisotropy type, (3)

mineral stoichiometry, (4) stress state, (5) surface oxidation, (6) magnetostatic interactions, (7) particle shape,

(8) thermal relaxation, (9) magnetic particle mixtures, and (10) definitional/measurement issues. In most

studies, these variables are unknowns and cannot be controlled for, so that hysteresis parameters for single

bulk samples are nonunique and any data point in a Day diagram could result from infinite combinations of

relevant variables. From this critical appraisal, we argue that the Day diagram is fundamentally ambiguous

for domain state diagnosis. Widespread use of the Day diagram has also contributed significantly to prevalent

but questionable views, including underrecognition of the importance of stable SD particles in the geological

record and reinforcement of the unhelpful PSD concept and of its geological importance. Adoption of

approaches that enable correct domain state diagnosis should be an urgent priority for component-specific

understanding of magnetic mineral assemblages and for quantitative rock magnetic interpretation.

1. Introduction

The paper by Day et al. (1977) is a landmark publication in rockmagnetism. Throughmeasurement of a simple

set of magnetic hysteresis parameters, Day et al. (1977) proposed a plot now known as the “Day diagram” that

is used extensively to make inferences about the magnetic domain state of magnetic mineral assemblages.

The parameters used to construct the Day diagram had previous use in rock magnetism (e.g., Néel, 1955;

Wasilewski, 1973); Day et al. (1977) presented them graphically to produce what we refer to as the Day dia-

gram. The coordinates of a Day diagram are the ratios of the saturation remanent magnetization to saturation

magnetization (Mrs/Ms) and the coercivity of remanence to coercivity (Bcr/Bc), as determined from amajor hys-

teresis loop (Figure 1a) and a backfield demagnetization curve (Figure 1b).Ms is a material constant for a mag-

netic mineral, whereas Mrs provides a measure of the maximum remanence value a magnetic particle can

carry. For populations of ideal stable single domain (SD) particles, Mrs has relatively high values with respect

to an applied field direction, whereas Mrs is low for multidomain (MD) particles because significant internal

cancelation of magnetic moments occurs due to development of domain structures. Thus,Mrs/Ms is sensitive

tomagnetic domain state variations (e.g., Dunlop, 1986; Dunlop & Argyle, 1997; Dunlop &Özdemir, 1997; Hunt

et al., 1995; Néel, 1955) (Figure 2a). As discussed below,Mrs is also sensitive to other factors such as the mag-

netic anisotropy type, including magnetocrystalline and shape anisotropy, and thermal fluctuations.

The domain state dependence of magnetic properties is not a result of any intrinsic particle size control.

Rather, the magnetic domain state depends strongly on Ms so that when particle volume increases, the

demagnetization energy increases proportionally to M2, and a lower energy state is achieved by subdividing

the internal magnetization structure of a particle into domains, which lowersMrs. Both Bc and Bcr are also sen-

sitive to domain state variations when particles are larger (or smaller) than the stable SD threshold size

(Figures 2b and 2c) (e.g., Dunlop & Özdemir, 1997; Heider et al., 1996; Hunt et al., 1995; Maher, 1988;

Nagata, 1961). Thus, in plots of Mrs/Ms versus Bcr/Bc (Figure 1c), data trends are interpreted in terms of mag-

netic domain state variations (Day et al., 1977). With increased availability of instruments that can measure

hysteresis loops and backfield demagnetization curves rapidly (e.g., Flanders, 1991; Foner, 1959), the Day dia-

gram has become a routine part of paleomagnetic, rock magnetic, and environmental magnetic studies over
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the last 25 years and is generally interpreted not just in terms of magnetic domain state but also in terms of

magnetic granulometry. A key aspect of reliable hysteresis parameter determination is that saturating fields

must be applied at identical peak fields for hysteresis loops and backfield demagnetization curves (Figure 1),

and high-field slope correction of hysteresis loops must be done appropriately, as discussed in detail in

section 2.10.2 of this paper.

Importantly, Day et al. (1977) pointed out that geological samples contain magnetic minerals with particle

size distributions and that it is important to establish the effects of mixing of coarse and fine magnetic par-

ticles. They reported that for samples with variable concentrations of coexisting hard and soft magnetic frac-

tions, hysteresis parameters can be influenced differentially, so that the effects of mixtures cannot be ignored

in studies of the domain state dependence of hysteresis properties. Likewise, they pointed to the importance

of minimizing magnetostatic interactions when analyzing synthetic magnetic particle assemblages and to

understanding mineral stoichiometry when interpreting results in terms of magnetic domain state. Thus,

key limitations of the Day diagram were known from the outset.

In addition to issues indicated by Day et al. (1977), several other factors complicate interpretation of the Day

diagram. We argue in this paper that the extent of these deficiencies is likely to be so significant as to inva-

lidate use of the Day diagram for domain state diagnosis without detailed additional information concerning

mineralogy, the magnetic anisotropy type of constituent magnetic minerals, mineral stoichiometry, state of

internal stress, surface oxidation, magnetostatic interactions, magnetic particle shape, and the number (and

magnetic properties) of magnetic mineral components mixed within a sample. In this paper, we document

evidence in relation to these factors of relevance to Day diagram interpretation and urge users to consider

themwhen interpreting the Day diagram to assess whether associated uncertainties are sufficiently well con-

strained to allow the intended use. Additionally, as is already the case in the discussion so far, consideration of

the Day diagram usually mixes concepts associated with particle size and domain state variations, where this

might not be valid. For example, two particles with identical size but different stoichiometry could have dif-

ferent domain states. This ambiguity is fundamental to the Day diagram and is in addition to the issues men-

tioned above. Such ambiguities should be borne in mind when considering the issues discussed below.

2. Factors That Affect Data Distributions in a Day Diagram

2.1. Magnetic Mineralogy

A key aspect of the Day diagram that is often ignored is that it was defined for one of only twomonomineralic

magnetic particle systems (magnetite or titanomagnetite). Magnetic domain state transitions occur at

Figure 1. Definitions of hysteresis parameters and the Day diagram. (a) A major hysteresis loop with magnetization,M, nor-
malized to the saturation magnetization, Ms. Definitions are shown graphically for the saturation remanent magneti-
zation (Mrs) and coercivity (Bc). (b) Backfield demagnetization curve in which the remanent magnetization (Mr) is
measured from saturation (Mrs), where it is demagnetized to zero at the coercivity of remanence (Bcr), and continues to negative
saturation at –Mrs. (c) The original “Day” diagram reproduced from Day et al. (1977), with coordinates of Mrs/Ms and Bcr/Bc.
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different particle sizes for different magnetic minerals. The principal

controls on domain state threshold size are Ms and particle shape

(e.g., Butler & Banerjee, 1975; Evans & McElhinny, 1969; Fabian et al.,

1996; Muxworthy & Williams, 2009). The particle sizes at which the

superparamagnetic (SP) to stable SD, stable SD to pseudo single

domain (“PSD”) (or flower then vortex states; Schabes & Bertram,

1988), and PSD to MD transitions occur vary considerably from mineral

to mineral. For example, at room temperature the size range over

which the stable SD state occurs in equant noninteracting particles var-

ies from ~28 to ~75 nm in stoichiometric magnetite (Muxworthy &

Williams, 2009), from ~46 to ~107 nm in greigite (Muxworthy et al.,

2013), from 28 nm to 15 μm (Banerjee, 1971) or even 100 μm

(Kletetschka & Wasilewski, 2002) in hematite, up to 1.5–3 μm in mono-

clinic pyrrhotite (Clark, 1984; Dekkers, 1988; Soffel, 1977), and up to 0.5–

0.7 μm in titanomagnetite (Fe3-xTixO4) for x = 0.632–0.72 (Soffel &

Appel, 1982), whereas in iron the SD state is not stable in equant parti-

cles at room temperature so that there is a direct transition from the SP

to the single vortex state (Butler & Banerjee, 1975; Muxworthy &

Williams, 2015). As a result, domain state variations for two co-

occurring magnetic minerals within a single sample will be associated

with different particle size ranges for each mineral. Comparing data

for more than a single magnetic mineral in a Day diagram, therefore,

comes with significant complications. This is illustrated further below.

2.2. Magnetocrystalline Anisotropy Type

A further parameter that depends on mineralogy is the type of mag-

netic anisotropy that controls the magnetization of the mineral. The

maximum possible Mrs value depends on the number and orientation

of magnetic easy axes (i.e., anisotropy) with respect to the applied field

direction as well as on particle size. In rock magnetism, it is generally

assumed that there are so many magnetic particles in a sample that

their easy axes are distributed randomly with respect to the applied

field direction. It is necessary to average the response of such randomly

oriented easy axes with respect to the applied field. For example, if the

magnetic easy axes of a population of uniaxial SD particles are all par-

allel to the applied field, the net saturation remanence will equal the

saturation magnetization; if the easy axes are always perpendicular to

the applied field, the net saturation remanence will be zero (Stoner &

Wohlfarth, 1948). The two opposite directions along an easy axis in

uniaxial particles are equivalent, so the magnetization can be aligned

in either direction. Thus, for randomly oriented SD particles with uniax-

ial anisotropy over a hemisphere in a three-dimensional system,

Mrs = 0.5Ms (Stoner & Wohlfarth, 1948). This provides the theoretical

basis for designating the SD/PSD threshold at Mrs/Ms = 0.5 (Day et al.,

1977). In stable SD particles with cubic anisotropy and first anisotropy

constant K1 > 0, the easy direction is aligned along the <100> crystallographic axis and the magnetization

will lie along one of the three <100> directions. Averaging for a random distribution of easy axes within a

sample gives Mrs = 0.831Ms for cubic crystals (Chikazumi, 1997; Joffe & Heuberger, 1974). For K1 < 0 and

an easy direction aligned along <111> in cubic crystals, Mrs = 0.866Ms (Chikazumi, 1997; Joffe &

Heuberger, 1974). Hematite has its magnetization confined within its basal plane with triaxial anisotropy;

for randomly oriented hematite particles, Mrs/Ms = 0.75 (Dunlop, 1971). Thus, the maximum possible

Mrs/Ms value depends on the type of anisotropy, where, for example, magnetite with elongation >~1.3 has

a shape-dominated uniaxial anisotropy, while greigite has cubic anisotropy (Roberts et al., 2011), and hema-

tite and monoclinic pyrrhotite have triaxial anisotropy within their basal planes (e.g., Martín-Hernández et al.,

Figure 2. Illustration of the particle size dependence of hysteresis parameters
for magnetite produced by different methods. Variations are shown for (a) Mrs/
Ms, (b) Bc, and (c) Bcr. Red circles denote particles that were crushed (C) from
larger magnetite grains and sieved to the specified size, blue circles denote
magnetite produced by the glass ceramic (GC) method, and black circles denote
magnetite grown from hydrothermal (H) solution. Data were compiled by Tauxe
et al. (2010) from Hunt et al. (1995).
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2008; Özdemir & Dunlop, 2014). Magnetism in titanomagnetite is controlled by internal stress, which has

usually been considered to be uniaxial. Gee and Kent (1995) argued from hysteresis data with Mrs/Ms > 0.5

that titanomagnetite has cubic anisotropy, which was later revised to multiaxial rather than strict cubic

anisotropy because of the large observed coercivities that are not consistent with cubic anisotropy and

that are hidden in the Day diagram by normalization of Bcr by Bc (Tauxe et al., 2002). The magnetic

anisotropy type is important, therefore, because it controls the allowable range of values in the parameter

space represented by a Day diagram. The assumption of uniaxial anisotropy can be invalid because

multiaxial anisotropy may be more common in nature than has generally been assumed (e.g., Mitra

et al., 2011).

For most magnetic mineral assemblages dominated by (titano)magnetite, data fall within the PSD region

regardless of whether SP, SD, flower, vortex, or MD particles are present (Figure 3) because contributions from

all particles in a sample average to fall within this intermediate region of the Day diagram. This produces a

strong contrast whenmagnetite co-occurs with minerals such as monoclinic pyrrhotite (Figure 4), which have

different magnetic anisotropy types and generally contrasting Mrs/Ms values (Rochette et al., 1990). In this

situation, it is principally the anisotropy difference that gives rise to the marked contrast in data distributions

in a Day diagram rather than intrinsic particle size differences. Magnetic particles at the “fine” end of the Day

diagram could even be coarser than the magnetite that lies in the PSD region. This is evident from first-order

reversal curve (FORC) diagrams (Pike et al., 1999; Roberts et al., 2000), which enable clearer diagnosis of

domain state for both magnetic components illustrated in Figure 4 than the accompanying Day diagram. In

Figure 4, the magnetite end-member has Mrs/Ms = 0.2–0.3, yet a significant SD particle assemblage is indi-

cated clearly by the closed FORC contours for these samples. The reason that data for these samples plot

at Mrs/Ms = 0.2–0.3 is because part of the magnetic mineral assemblage contains particles with lower Mrs/

Ms values. These examples demonstrate how overreliance on a Day diagram can bias against recognition

of SD particles. As discussed above, SD magnetite has finer sizes than co-occurring SD pyrrhotite, so the

Day diagram (Figure 4) gives misleading absolute granulometric information and provides more information

about the difference in anisotropy type in the co-occurring magnetic minerals.

A further example of the effect of anisotropy type on interpretation of hysteresis data involves mid-ocean

ridge basalts (MORBs). Mrs/Ms values >0.5 and up to 0.67 have been reported in MORBs (Day et al., 1978;

Gee & Kent, 1995), which led Gee and Kent (1995) to suggest that cubic anisotropy must be important in tita-

nomagnetite. This interpretation was revised to refer to “multiaxial” anisotropy instead of cubic anisotropy

because more complicated particle shapes are required to explain the observed high coercivities that are

not expected for cubic anisotropy (Tauxe et al., 2002). Fabian (2006) questioned the origin of the reported

Mrs/Ms values>0.5, but the interpretation of multiaxial anisotropy was later supported by additional evidence

(Lanci, 2010; Mitra et al., 2011; see the comment and reply by Fabian, 2012; Mitra et al., 2012).

Titanomagnetite is the main magnetic mineral in MORB, which covers 65% of Earth’s surface (Moores &

Twiss, 1995) and occurs commonly in other igneous and derivative sedimentary rocks. Thus, the potential

for complications in Day diagrams due to contrasting magnetic anisotropy types in different constituent

magnetic minerals is significant, particularly when considering mixed magnetic particle assemblages (see

section 2.9).

2.3. Mineral Stoichiometry

Day et al. (1977) presented hysteresis data for magnetite and titanomagnetite assemblages with variable par-

ticle sizes and Ti contents (i.e., the x value in Fe3-xTixO4). In their original Day diagram, all data were grouped

regardless of particle size and x value, as reproduced in our Figure 1c. The representation in Figure 1c masks a

key dependence of hysteresis parameters on titanomagnetite stoichiometry, which becomes obvious when

plotting the tabulated data of Day et al. (1977) for four sets of samples with particle sizes that vary from

0.8 μm to >100 μm, with compositions that vary from x = 0 to 0.6 (Figure 5a). With varying x, samples with

a nominal “0.8 μm” particle size have Mrs/Ms values that range from 0.47 to 0.13 (i.e., from almost the SD

region to the MD region for identical particle sizes). Likewise, for coarse samples with nominal sizes

>100 μm, Mrs/Ms is almost constant, but Bcr/Bc varies from 3.80 to 5.47 with the highest of these values for

a sample that is nominally ~30 μm smaller than for the lowest value. Ti content in titanomagnetite is, there-

fore, an important determinant for interpretation of the Day diagram. Day et al. (1977) stated that this com-

positional dependence of hysteresis parameters reduces the usefulness of the eponymous Day diagram if the
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Figure 3. Illustration of Day diagrams for >3,300 sediment and igneous rock samples with magnetic properties dominated by Fe-Ti oxides. (a) Biogenic-dominated
marine sediments from the Southern Ocean (summarized by Roberts et al., 2012), (b) mixed biogenic-terrigenous marine sediments from the Mediterranean Sea
(Dinarès-Turell et al., 2003), (c) glaci-marine sediment from Victoria Land Basin, Ross Sea, Antarctica (summarized by Roberts, Sagnotti, et al., 2013), (d) terri-
genous marine sediments from the North Pacific Ocean (Roberts et al., 1995), and (e) various lake sediments from the Great Basin, western USA (summarized by
Roberts et al., 2012). (f) Hysteresis results for igneous rocks, including submarine basaltic glass (Tauxe et al., 1996) and basalts from the Azores (Di Chiara et al.,
2014) and from Mt St. Helens, USA, Mt Vesuvius, Italy, and Volcan Láscar, Chile (Paterson et al., 2010).
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magnetic mineral composition is unknown. The composition of titanomagnetite particles in natural samples

is rarely reported alongside published Day diagrams, and the caveat of Day et al. (1977) is rarely noted. Thus,

the role of (titano) magnetite stoichiometry is a significant unknown in typical applications of Day diagrams.

2.4. Stress State

Magnetite is the most commonly occurring and most extensively studied terrestrial rock-forming magnetic

mineral, and various compilations have been published of its magnetic hysteresis properties (e.g., Dunlop,

1986; Dunlop & Argyle, 1997; Dunlop & Özdemir, 1997; Heider et al., 1996; Hunt et al., 1995; Maher, 1988).

In addition to a particle size dependence of hysteresis parameters, there is a profound dependence on the

mode by which magnetite particles are produced (Figure 2). Three main magnetite sources are used in such

studies: natural crystals that have been crushed (C) and sieved into specified grain size ranges, crystals that

were grown with a glass ceramic (GC) technique, and crystals grown from hydrothermal (H) solution.

Crushed particles generally have higher coercivities and remanence ratios than grown crystals (Figure 2), pre-

sumably because they contain larger numbers of lattice dislocations that stabilize domain walls. The high

values observed for crushed particles largely disappear after high temperature annealing, which allows dis-

locations to “relax” away (Dunlop & Özdemir, 1997). This is illustrated in a Day diagram in Figure 5b for

crushed magnetite samples that were measured before and after annealing (from Dunlop, 2002a).

Hysteresis data for the annealed samples are indicative of “coarser” magnetite compared to the stressed,

unannealed samples.

Internal stress controls domain state in titanomagnetite (Appel, 1987; Appel & Soffel, 1984, 1985; Halgedahl,

1987). Appel (1987) estimated the average internal stress in variably oxidized titanomagnetite (x ≈ 0.6) to be

between 27 and 63 MPa, with a mean of 48 MPa. Lattice distortions due to low-temperature oxidation could

be a key contributor to internal stress (Appel, 1987; Petersen & Vali, 1987), as discussed in section 2.5. Özdemir

Figure 4. Illustration of the effect of mixing of minerals with different anisotropy types in Day diagrams. Mixture of strongly
interacting SD pyrrhotite (multiaxial anisotropy) and noninteracting SP, SD, and coarser magnetite (uniaxial anisotropy)
plotted on a Day diagram for Miocene mudstones from Sakhalin, Russia. Solid triangles: pyrrhotite-bearing samples; open
circles: magnetite-bearing samples; and solid diamonds: mixed pyrrhotite- andmagnetite-bearing samples. FORC diagrams
provide information about the underlying domain state and interaction field distributions in the respective samples.
Reproduced from Roberts et al. (2014) with results fromWeaver et al. (2002). The smoothing factor (Roberts et al., 2000) is 5
for both FORC diagrams.
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and Dunlop (1997) observed bowing of domain walls in magnetite and interpreted it as tangible evidence of

the effect of internal stresses on domain structure and calculated internal stress values of 7–34 MPa. These

internal stress levels are similar to those encountered at moderate geological burial depths, where

lithostatic pressures of 25 and 100 MPa are equivalent to burial at 1 and 4 km, respectively. Gilder (2007)

summarized the considerable effects of pressure on magnetic properties, including demagnetization and

hardening of coercivity, which are pertinent to hysteresis parameter interpretation.

The state of stress of constituent magnetic minerals is almost always unknown in bulk geological samples.

Also, different magnetic particle fractions in a sample could have different states of internal stress. For exam-

ple, titanomagnetite forms in igneous bodies under variable temperatures and pressures. Materials from

Figure 5. Illustration of the effects of titanomagnetite stoichiometry, stress, and oxidation on data distributions in a Day
diagram. (a) Illustration of the effect of titanomagnetite stoichiometry for the same Day diagram as shown in Figure 1c,
but with different symbols used to denote different Ti contents (x) in the four titanomagnetite sample series analyzed by
Day et al. (1977). Particles with 0.8 μm size span almost the entire data range from SD toMD for x = 0–0.6, and a ~30 μm size
range has similar Mrs/Ms values for variable x values. (b) Illustration of the effect of stress on data distributions in Day
diagrams for crushed natural magnetite samples before (black circles) and after (open circles) annealing (from Dunlop,
2002a). (c, d) Illustration of the effect of magnetite oxidation on data distributions in Day diagrams for: (c) natural magnetite
samples before (black circles) and after (open circles) low-temperature oxidation, where pairs of data are joined by
arrows (from Cui et al., 1994; Özdemir & Dunlop, 2010), and (d) surface sediments from Ontong-Java Plateau above and
below the diagenetic Fe-reduction front (from Tarduno et al., 1998; Smirnov & Tarduno, 2000). See text for details.
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deep sources are likely to have been subjected to decompression with uplift to the surface; after being liber-

ated from the host rock titanomagnetite will experience abrasion during erosion and transportation, and

subsequent pressurization during postdepositional burial. Regardless of their history and journey, it would

be surprising for such particles to be stress free. Even if stress is avoided during these processes, exposure

of (titano) magnetite to the atmosphere for prolonged time periods will cause surface oxidation, which will

produce intraparticle stress, as discussed below. Biogenic and pedogenic magnetite, in contrast, form via

organically controlled or inorganic mineralization from ions in solution in natural environments and are

not expected to be highly stressed. Maher (1988) argued that her pure synthetic stoichiometric magnetite

samples are structurally unstressed and represent close analogs of those found in soils and sediments.

Thus, incorporation of detrital and biogenic or pedogenic magnetic particles is likely to involve a combination

of stressed and unstressed particles with the respective stresses affecting each component differently (cf.

Figure 5b). This situation represents a significant unknown in use of hysteresis parameters for

granulometric purposes.

2.5. Surface Oxidation

Magnetite is a mixed valence iron oxide (Fe2+Fe3+2 O4) that is thermodynamically unstable in oxidizing envir-

onments. In such environments, oxygen diffuses in and Fe2+ migrates out of the spinel lattice to create site

vacancies. The resulting core-shell mismatch, where surficial maghemite has a smaller crystal lattice size than

the magnetite core (Housden & O’Reilly, 1990; Petersen & Vali, 1987), produces irregular, curved shrinkage

cracks on the outer parts of the resulting composite particles (Nowaczyk, 2011; Petersen & Vali, 1987).

It is straightforward to reduce partially oxidizedmagnetite via heating in a reducing atmosphere, or to oxidize

fresh stoichiometric magnetite rapidly via heating in an oxidizing atmosphere (e.g., Özdemir & Dunlop, 2010).

This makes it experimentally simple to compare hysteresis results for partially oxidized magnetite compared

to reduced stoichiometric magnetite. Despite this, few relevant measurements have been published (e.g., Cui

et al., 1994; Özdemir & Dunlop, 2010), as shown in Figure 5c. Data points for fresh stoichiometric magnetite

are shown as solid circles, while results for the same partially oxidized material are shown as open circles.

Lines with arrows in Figure 5c indicate the respective pairs of data points. The effect of oxidation is large, with

Mrs/Ms increasing and coercivity becoming significantly harder. With stretching of the partly oxidized maghe-

mite shell over the magnetite core, stress increases due to increased magnetostriction, which increases the

coercivity (e.g., Appel, 1987; Beske-Diehl & Soroka, 1984; Housden & O’Reilly, 1990; Knowles, 1981; Smith,

1987). Ms decreases with oxidation, and Mrs has been assumed to follow the same trend (e.g., Smith, 1987),

although in Figure 5c, Ms has decreased more in proportion to Mrs so that Mrs/Ms is larger after oxidation.

Overall, oxidation causes a significant shift in the position of data for such samples in a Day diagram

(Figure 5c).

Tarduno et al. (1998) and Smirnov and Tarduno (2000) provide a natural example of surface oxidation effects

on hysteresis parameters for magnetite in marine sediments. SD biogenic magnetite formed within these

sediments at shallow depths between the diagenetic Mn- and Fe-reduction fronts (Tarduno & Wilkison,

1996) and was then oxidized surficially as oxygen diffused into the sediment (Smirnov & Tarduno, 2000).

As the particles were buried through the Fe-reduction front, their maghemitized surfaces were then dissolved

reductively to produce a more stoichiometric magnetite. The coercivity decreased after this surface dissolu-

tion, which is consistent with loss of the more highly stressed oxidized surface material. Burial of sediments

through the Fe-reduction front produces a marked effect on the measured hysteresis parameters and their

distribution on a Day diagram (Figure 5d), which illustrates how oxidation can cause significant changes in

hysteresis parameters with respect to stoichiometric magnetite.

Partial oxidation of magnetite is reported commonly in terrestrial eolian deposits (e.g., Liu et al., 2007), in oxic

deep-sea sediments (e.g., Chang et al., 2013; Henshaw & Merrill, 1980; Kawamura et al., 2007, 2012; Passier &

Dekkers, 2002; Smirnov & Tarduno, 2000; Torii, 1997; Yamazaki et al., 2003), and during incipient weathering

of subaerially exposed marine sediments (van Velzen & Zijderveld, 1995). Therefore, it is reasonable to expect

that when (titano)magnetite is present in geological samples, it will have at least partially oxidized surfaces.

As indicated in Figures 5c and 5d, this can have a substantial effect on hysteresis parameters. But the extent,

and any variation in extent, of surface oxidation are likely to remain undetected and represent a significant

unknown in typical applications involving Day diagrams. To make matters more complicated, particle

size thresholds for different domain states change substantially with low-temperature titanomagnetite
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oxidation (Moskowitz, 1980). This makes domain state diagnosis from

hysteresis measurements precarious when details of mineral oxidation

are unknown.

2.6. Magnetostatic Interactions

Day et al. (1977) pointed out that their studied samples were

affected by magnetostatic clustering that made it difficult to measure

particle size distributions precisely and that affected hysteresis results.

They reported no effect of concentration on hysteresis properties for

high-Ti titanomagnetite, but increasing magnetite concentrations

lowered Bc, Bcr, and Mrs/Ms. They, therefore, used magnetite concentra-

tions of 1% by weight for their reported experiments. Few

studies have quantified magnetostatic interaction effects, which are

notoriously difficult to assess and have complicated effects. For

example, the compilation in Figure 2 involves different studies and

types of samples with variable and unknown contributions from

magnetostatic interactions.

We show results for one relevant data set and one set of calculations

in Figure 6 to illustrate complexities associated with magnetostatic

interactions. Initial hysteresis results for synthetic Al-substituted mag-

netites of Jiang et al. (2016) were made on nondiluted samples with

no attempt to reduce magnetostatic interactions (solid symbols in

Figure 6a). Later efforts to disperse the Al-magnetite particles and

embed them in paramagnetic CaF2 cement were partially effective

in reducing interactions and produced a greater data spread in a

Day diagram (open symbols in Figure 6a). FORC diagrams are useful

for quantifying interactions and were measured for both sets of

samples. Unsurprisingly, efforts to physically dilute the samples were

only partially successful. Magnetostatic interactions are extremely

difficult to avoid for synthetic powder samples because magnetic

attractions will always cause clumping so that separating particles at

the nanometer scale is challenging. Magnetostatic interactions

clearly have significant effects on data distributions in Day diagrams

(Figure 6a).

Production of regular grids of magnetic particles with controlled

stoichiometry, size, and spacing using electron beam lithography

(EBL) is a potentially powerful means to resolve these issues and

to assess quantitatively the effects of magnetostatic interactions.

However, relatively few nonideal samples have been produced (King

et al., 1996; Krása et al., 2009), where the samples are often affected

by induced stress related to the sample/thin-film-substrate interface. The number of available samples

remains too small, and the quality of the samples is too limited to be able to draw firm conclusions.

Nevertheless, the ability to produce improved samples in future via EBL should be a significant boon to

improving our understanding of the effects of interactions.

Limitations in our ability to quantify the effects of magnetostatic interactions experimentally can be over-

come by numerical simulations. Sprowl (1990) made analytical calculations of the effects of increased pack-

ing of interacting Stoner and Wohlfarth (1948) particles, Muxworthy et al. (2003) used 3-D micromagnetic

simulations to calculate the effects of interactions among magnetic particles with different sizes and aniso-

tropy types, and Harrison and Lascu (2014) calculated the effects of interactions among magnetic particles

with different sizes and anisotropy types using a simplified micromagnetic approximation with interacting

Stoner and Wohlfarth (1948) particles. Simulated effects of increasing packing density on hysteresis para-

meters for stable SD particles with either cubic or uniaxial anisotropy from Harrison and Lascu (2014) are illu-

strated in Figure 6b, where the packing fraction, p, is given by p ¼ 1
L3
ΣN
i¼1V i . L is the dimension of the cubic

Figure 6. Illustration of magnetostatic interaction effects on data distributions in
Day diagrams. Day diagrams for: (a) undiluted and diluted Al-magnetite particles
(unpublished results from Jiang et al., 2016) where magnetostatic particle
clustering prevented successful sample dilution; and (b) calculated effects of
progressively increased interactions represented by the packing fraction p of
magnetic particles with either cubic (solid circles) or uniaxial (open circles) ani-
sotropy (from Harrison & Lascu, 2014). See text for details.
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space in which the particles are packed randomly, and V is the volume

for each particle i from 1 to N. Hysteresis values are as expected for low

p but move away from the expected values and toward MD-like values

with moderate increases in p (Figure 6b). Bacterial magnetite chain col-

lapse also decreasesMrs/Ms (Harrison & Lascu, 2014) to values like those

for magnetite magnetofossil-bearing samples in Figure 3a. Such simu-

lations are important because magnetofossil-bearing samples are likely

to contain a mixture of intact and collapsed chains (Egli et al., 2010). In

these simulations, magnetostatic interactions cause SD particles to

appear more MD like and provide another source of bias that causes

the PSD state to be overrepresented (e.g., Egli & Winklhofer, 2014) with

respect to the stable SD state.

Notwithstanding the clarity of the results shown in Figure 6b, under-

standing magnetostatic interaction effects in magnetic particle assem-

blages is challenging because they are determined by the interplay

between nonlinear, short- and long-range interactions, and thermal

fluctuations (Muxworthy, 2013). Numerical simulations reveal nonintui-

tive complexities (Muxworthy et al., 2003; Muxworthy &Williams, 2005),

where interacting SD grains can become more MD-like in character, as

illustrated above, and interacting particles in the magnetic vortex state

can become more SD like in character by forming supervortex struc-

tures. Also, magnetofossil chain collapse can cause flux linking to pro-

duce supervortex structures even though individual magnetic

particles are in the SD state (Egli & Winklhofer, 2014; Harrison &

Lascu, 2014). FORC diagrams are a powerful tool for assessing magne-

tostatic interactions (Pike et al., 1999; Roberts et al., 2000), but they

cannot discriminate between interparticle interactions and intraparti-

cle interactions associated with domain walls. Likewise, they cannot

discriminate between vortex states within particles or the supervortex

states that can occur when adjacent particles interact magnetically

(cf. Egli & Winklhofer, 2014; Harrison et al., 2002). Thus, combined

approaches are needed that combine numerical simulations

(Muxworthy et al., 2004), magnetic measurements, and electron

microscopy or electron holography where mineralogical and/or mag-

netic structures can be imaged to understand the interactions and

how they affect magnetic results. For example, the magnetostatically

interacting samples illustrated with FORC diagrams in Figure 4 are

explained by the presence of interlocking pyrrhotite plates (Weaver

et al., 2002). Overall, magnetostatic interactions have major effects on

data distributions in Day diagrams and are a significant source of

interpretive uncertainty.

2.7. Particle Shape

As soon as SD particles become slightly nonequant, shape anisotropy overshadows magnetocrystalline ani-

sotropy in controlling the magnetic behavior of strongly magnetic materials such as magnetite, maghe-

mite, and iron (Dunlop & Özdemir, 1997; Tauxe et al., 2002, 2010). Particle shape, therefore, exerts a

critical control on domain state threshold sizes. For example, in early domain state phase diagrams

produced from analytical calculations (Butler & Banerjee, 1975; Evans & McElhinny, 1969), there was no

stable SD state at room temperature in equant magnetite particles. In 3-D micromagnetic simulations

(Muxworthy & Williams, 2009; Nagy et al., 2017), the SD state exists for equant magnetite particles at room

temperature, but its size range is much smaller than for more elongated particles (Figure 7a). Thus,

textbook illustrations of Néel (1949, 1955) theory for stable SD particles in rock magnetism and paleomag-

netism usually involve calculations for elongated magnetite particles (e.g., Tauxe et al., 2010, used a 1.3: 1

length: width ratio).

Figure 7. Illustration of the relationship between magnetic particle shape and
domain state for magnetite and greigite. For example, elongated 1-μm parti-
cles are in the SD state, whereas equant particles with the same length are in the
MD state. Domain state phase diagrams for (a) magnetite and (b) greigite are
adapted from Muxworthy and Williams (2009) and Muxworthy et al. (2013),
respectively. Shaded rectangular data distributions for bacterial magnetosomes
in (a) are from Kopp and Kirschvink (2008) and data points are from Larrasoaña
et al. (2012). Data distributions for multicellular magnetotactic prokaryotes in
(b) are from Pósfai et al. (2001).
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It is difficult to illustrate the effects of shape variations on magnetic properties while holding particle

size/volume constant because natural materials rarely meet this condition and we cannot produce synthetic

samples with sufficiently controlled particle size or shape or volume. In natural examples such as the Tiva

Canyon Tuff, where grain size varies over a narrow range and particle shape is important, hysteresis results

are still controlled dominantly by grain size variations (e.g., Till et al., 2011). In contrast, magnetotactic bacteria

produce magnetic particles naturally via intracellular biomineralization with variable shape, but with

size/shape distributions that lie consistently in the stable SD size range (e.g., Kopp & Kirschvink, 2008).

Such magnetosome particles have equidimensional cubo-octahedral, elongate hexaoctahedral prismoidal,

and irregular and elongate tooth, bullet (Thornhill et al., 1994), and arrowhead (Bazylinski et al., 1995)

morphologies. Particles with these variable morphologies typically co-occur, which makes it difficult to disen-

tangle how any single morphology affects the distribution of parameters on a Day diagram with respect to

co-occurring magnetosomes with different morphologies. However, it is possible to compare magnetosome

sizes and shapes from transmission electron microscope (TEM) observations with micromagnetic calculations

of domain state threshold sizes for particles with varying aspect ratios (Figure 7) for magnetite (Muxworthy &

Williams, 2009) and greigite (Muxworthy et al., 2013). Magnetosome morphologies for magnetite have been

grouped into cuboidal, elongate prismatic, and elongate irregular categories (Kopp & Kirschvink, 2008), and

their data ranges are plotted along with individual data from Larrasoaña et al. (2012) in Figure 7a. Likewise,

data distributions for greigite-producing multicellular magnetotactic prokaryotes (Pósfai et al., 2001) are

plotted alongside calculated domain state ranges in Figure 7b. From such comparisons of magnetosome

shape and micromagnetic calculations, considerable shape variations clearly occur within the SD state.

Variable particle morphology is highly probable in natural samples, whether or not they contain fossil mag-

netosomes. Thus, use of the Day diagram for absolute granulometry is precluded and relative granulometry is

complicated by unknown magnetic particle shape variations.

2.8. Thermal Relaxation

The theoreticalMrs/Ms value of 0.5 for uniaxial SD particles (Stoner &Wohlfarth, 1948) is based on the assump-

tion that each particle has a constant absolute magnetic moment where the moment rotates coherently with

changing applied field. This assumption only holds rigorously at 0 K where thermal energy is zero. At ambient

temperatures, thermal fluctuations can causemagnetic moments to relax and follow an ambient field, so that

the magnetization decays to approach a thermodynamic equilibrium over time (Brown Jr, 1959, 1963; Néel,

1949, 1955). Such thermally relaxed SP particles do not have a stable remanent magnetization, and Mrs, Bc,

and Bcr of assemblages of such particles are zero. Thus, when part of a SD magnetic mineral assemblage

undergoes thermal relaxation, hysteresis values will move away from the SD region of a Day diagram.

SD/SP mixtures can cause distorted hysteresis loops, where SP particles lower Bc and Mrs to produce lower

Mrs/Ms values and higher Bcr/Bc values (e.g., Jackson, 1990; Nagata & Carleton, 1987; Parry, 1982; Roberts

et al., 1995; Tauxe et al., 1996). The effects of thermal relaxation on Day diagram data distributions have been

calculated in various ways. Tauxe et al. (1996) used a Langevin function to simulate mixtures of various SP

particle sizes with thermally stable SD particles to explain patterns observed in Day diagrams for natural sam-

ples. Dunlop (2002a) calculated hysteresis parameters for mixtures of thermally stable SD and SP magnetite

end-members, where the SP particles have a single fixed size (rather than representing a size distribution)

ranging from 10 to 30 nm to produce the now-famous SD + SP mixing lines discussed in section 2.9. Such

singular particle sizes are unlikely to occur in nature but have been invoked to explain features observed

in remagnetized Paleozoic limestones (Jackson, 1990; McCabe & Channell, 1994), as discussed below. The

SD + SP mixing lines of Dunlop (2002a) lie in the top right-hand region of the Day diagram. If SP particles

always have such sizes, they would draw any trend on a Day diagram down and to the right and would

not cause serious interpretive ambiguity. Such patterns result directly from the use of a single SP particle size

in the mixing model. Rather than treating SD and SP particles as separate end-members, Lanci and Kent

(2003) built thermal activation at 300 K into the Stoner and Wohlfarth (1948) model to represent relaxation

of part of the magnetic particle assemblage, which provides a more realistic treatment of natural particle size

distributions. Using a particle assemblage with a distribution of anisotropies, they produced data trends in a

Day diagram that track through the middle of the PSD region (Figure 8) and, therefore, produce considerably

greater interpretive ambiguity than the approach of Dunlop (2002a). Heslop (2005) simulated thermal activa-

tion in magnetic particles with identical size. While this approach is not geologically realistic, it enables deter-

mination of the effects of thermal activation alone without the effects of anisotropy variations. In this case,
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increased thermal activation causes data to move from the stable SD

region into the PSD region of a Day diagram following similar trends

to the SD + MD mixing lines of Dunlop (2002a). This conclusion is sup-

ported by experimental results for mixed stable SD (magnetotactic bac-

teria) and SP (ferrofluid) particles, where an increased SP component

produces a mixing line that passes through the PSD region (Kumari

et al., 2015).

Overall, SP particles are normally thought to move data distributions

toward the top right-hand side of a Day diagram, but this is not the only

way that thermal activation can affect data distributions. The calcula-

tions of Lanci and Kent (2003) and Heslop (2005), and the experimental

data of Kumari et al. (2015), indicate that interpretive ambiguity in the

Day diagram can be produced both by mixing distinct SP and SD end-

members and by part of a single particle size distribution undergoing

thermal relaxation.

2.9. Mixing of Magnetic Particles With Different Sizes

Day et al. (1977) stated that it is important to establish the effects ofmix-

ing of coarse and finemagnetic particles because hysteresis parameters

can be influenced differentially by variable concentrations of coexisting

hard and soft magnetic fractions. With the ensuing increased use of Day

diagrams, it was recognized that natural samples rarely contain a single

magnetic component and that mixing is routinely important. Dunlop

(2002a), therefore, calculatedmixing lines for SD +MD and SD + SPmix-

tures to constrain interpretation of Day diagrams with illustrated exam-

ples from experimental data sets (Dunlop, 2002b). These mixing lines

(Figure 9a) are now used so extensively that the Day diagram is often

referred to as the Day-Dunlop diagram. We now discuss several issues

that affect diagnosis of mixtures in the Day diagram.

2.9.1. Definition of End-Members for Component Mixtures

An important issue to consider in relation to the binary mixing lines of Dunlop (2002a) concerns the para-

meter values used to define the respective end-members. The trends of SD + MD and SD + SP mixing lines

are controlled by the Mrs/Ms and Bcr/Bc values of the end-members. Dunlop (2002a) fixed the MD end-

member at Mrs/Ms = 0.02 and Bcr/Bc = 5, and the SD end-member at Mrs/Ms = 0.5 and Bcr/Bc = 1.25. Dunlop

and Carter-Stiglitz (2006) later revised these end-member values to Bcr/Bc = 1.14 and 4.7 for SD and MD

assemblages, respectively. These values have not been adopted widely. As discussed in section 2.10.1, these

values are based on theoretical and empirical arguments that do not always define the end-members in a

sample. In such cases, data diverge from mixing lines and it becomes more useful to understand why the

divergence occurs. Heslop and Roberts (2012a) proposed a solution to this issue where a binary mixing line

is calculated by optimizing its fit to measured data. An example of this approach is shown in Figure 9b in rela-

tion to linear mixing of SD + SP greigite, where data diverge substantially from mixing lines for magnetite

because greigite has cubic anisotropy (Roberts et al., 2011). Many data sets diverge from these mixing lines,

which outlines the value of using measured data to define trends in a Day diagram (Heslop & Roberts, 2012a).

Nevertheless, deeper issues remain with mixing of magnetic particle populations as discussed below.

2.9.2. Binary Mixing

The effects of mixtures on hysteresis parameters and the Day diagram have been discussed widely (e.g.,

Carter-Stiglitz et al., 2001; Jackson, 1990; Parry, 1982; Roberts et al., 1995; Tauxe et al., 1996). A key issue for

such considerations is whether the magnetic properties of respective components are linearly additive; mag-

netostatic interactions can violate this assumption (e.g., Carter-Stiglitz et al., 2001; Roberts et al., 1995;

Yamazaki & Ioka, 1997). Carter-Stiglitz et al. (2001) considered this issue by analyzing mixed samples in var-

ious proportions and concluded that magnetization parameters depend linearly on the mixing ratio, but that

coercivity does not. Furthermore, they obtained different lines when mixing different end-members. Dunlop

(2002a) used theoretical considerations to develop linear and nonlinear mixing equations for binary SD + MD

and SD + SP mixtures and assessed them against data from natural and synthetic samples (Dunlop, 2002a,

Figure 8. Illustration of thermal relaxation in SD particle systems in a Day dia-
gram. Results are for a thermally activated Stoner and Wohlfarth (1948) model
at 300 K for magnetite (Lanci & Kent, 2003), where particle size distributions are
approximated by lognormally distributed uniaxial anisotropy constants Ku,
where μ is the central point of the distribution and σ is the dispersion (analogous
to the Gaussian mean and standard deviation; μ is shown as exp(μ), i.e., the
actual mean). Bcr is from simulated hysteresis loops following Tauxe et al. (1996).
Numbers beside data points indicate equivalent particle sizes (in μm) for cubic
particles.
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2002b). Dunlop and Carter-Stiglitz (2006) then mixed three SD samples with one MD end-member (synthetic

Wright magnetite) to test predictions from these equations. In one case (Tiva Canyon Tuff SD end-member),

linear mixing theory gave a near-perfect fit to the data. In a second case (glass ceramic SD end-member),

linear mixing gave an “unacceptable” fit, and a better but imperfect fit was achieved with a nonlinear

mixing equation. In a third case (biogenic SD magnetite end-member), both linear and nonlinear mixing

equations failed to fit the data. Dunlop and Carter-Stiglitz (2006), therefore, asked the question “Given the

mixed success of our modelling, why use parameter mixing theory at all?” They then pointed to some of

the many variables that affect hysteresis parameters, as mentioned above. Their comments are consistent

with the thesis of this paper: that there is too much inherent ambiguity in the Day diagram with respect to

natural samples to make it diagnostic of domain state in most cases.

Heslop and Roberts (2012b) developed a method to unmix magnetic hysteresis loops. From analysis of many

sedimentary sample sets, they found that binary mixing is rare (e.g., Figure 9b; Heslop & Roberts, 2012a) and

that most natural sedimentary samples contain multicomponent mixtures with three or more components.

An example of failure of binary mixing from Heslop and Roberts (2012a) is given in Figure 9c, where opti-

mized line fits to measured data result in bootstrapped trend lines that diverge substantially from the mixing

lines of Dunlop (2002a). These trends have a form that is inconsistent with binary mixing. Such samples are

better treated with hysteresis loop unmixing following Heslop and Roberts (2012b), which enables identifica-

tion of constituent magnetic components (Figure 9d). Given that binary mixing appears to be relatively rare

in sedimentary settings, we now consider higher-order mixing.

2.9.3. Higher-Order Mixing

As indicated by Heslop and Roberts (2012b), binary mixing is rare in natural sedimentary samples, which

makes it important to consider ternary and higher-order mixing. For ternary mixing, the Day diagram

becomes much more ambiguous. We illustrate a distribution of calculated data points for a three end-

member scenario (SD + SP + MD) in Figure 9e, where the 100% value for each end-member is color coded.

As is the case with the mixing lines of Dunlop (2002a), the positions of end-members in the Day diagram

depend on the values chosen. We use the same values as Dunlop (2002a) for the SD and MD end-members

and a 10 nm SP component, noting that the 100% point for the SP component is not defined in a Day dia-

gram because Mrs, Bc, and Bcr are zero, so that the trend on the right-hand side of the diagram asymptotes

toward zero Mrs/Ms and undefined Bcr/Bc. Regardless of this mathematical necessity for the SP component,

the overall pattern is clear. As expected, ternary mixing fills the space between the respective vertices for

each end-member in the Day diagram. This three-component mixture has a wide range of magnetic proper-

ties and spans a large region of the Day diagram, while other mixtures will have less variation and could even

fall on an apparent linear trend (e.g., two SD components mixed with a MD component). This demonstrates

that ternary and higher-order mixing produces fundamentally ambiguous data distributions in the Day dia-

gram. Given that binary mixing is rare in sedimentary samples and that ternary and higher-order mixing is

common, discerning the meaning of data distributions in Day diagrams becomes even more problematical.

We illustrate higher-order mixing with two examples: one from sediments and one from igneous rocks

(Figures 9f and 9g). We identify four magnetic components routinely in pelagic carbonates (Roberts,

Florindo, et al., 2013) (detrital magnetite, detrital hematite, and the biogenic hard and soft magnetite compo-

nents of Egli, 2004). These sediments are often almost pure white and weakly magnetic. Three of these com-

ponents have SD properties (two biogenic magnetite components and hematite), and the detrital magnetite

component is coarser grained, so that data lie on a trend that looks like a binary mixing line in a Day diagram

(solid black circles in Figure 9f) that lies between the SD + MD and SD + SP mixing lines of Dunlop (2002a). In

addition to these data from dominantly biogenic marine sediments (Figure 3a), data from mixed biogenic-

terrigenous marine sediments (Figure 3b) and from dominantly terrigenous marine sediments (Figure 3d) fall

on a similar trend (Figure 9f). Hysteresis data from basalts (Di Chiara et al., 2014) fall on the same trend

(Figure 9g). Intriguingly, this trend for sedimentary and volcanic data falls on a line calculated here for mix-

tures of MD magnetite and SD particles with cubic anisotropy (for parameters, see Table 1), or the multiaxial

anisotropy proposed by Tauxe et al. (2002), rather than on the lines of Dunlop (2002a). Given our comments

above about the limitations of mixing lines, we refrain from further comment on the correspondence

between measured data and our mixing lines for cubic anisotropy. Data for submarine basaltic glass

diverge from the cubic SD + MD trend and toward the region for fine SP particle admixtures, as expected

for materials with substantial SP concentrations (Tauxe et al., 1996). These examples illustrate the magnetic
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Figure 9. Binary and ternary mixing effects in a Day diagram. (a) Day diagramwith binary mixing lines of Dunlop (2002a). (b) Illustration of the method of Heslop and
Roberts (2012a) for fitting a data-defined binary mixing line for a SD+SP greigite mixture (black circles: data) (Roberts et al., 2005). The best fit is represented by the
black line obtained from 100 bootstrap estimates (gray lines). The data-defined mixing line matches the SD+SP mixing line (dashed) for greigite (Roberts
et al., 2011) more closely than for magnetite (Dunlop, 2002a). Data for greigite are offset from the line for magnetite because of the cubic anisotropy of
greigite (Roberts et al., 2011). Inset: distribution of the proportional variance of each bootstrap line. (c) Illustration from Heslop and Roberts (2012a) of a data-
defined best fit trend for lake sediments (Roberts et al., 1996), which is better fitted with three components (Heslop & Roberts, 2012b). Other features are as in (b).
(d) Example of hysteresis unmixing (Heslop & Roberts, 2012b) for pelagic carbonates with concentrations of each identified component in samples from four
sequences (Roberts, Florindo, et al., 2013). One of the three end-members is also a mixture (biogenic hard and detrital hematite). (e) Ternary mixing (left) and the
respective mixing space in a Day diagram (right) for a SP+SD+MD mixture calculated here. Data distributions for (f) sedimentary and (g) igneous samples (from
Figure 3) with SD+MD and SD+SP mixing lines of Dunlop (2002a), and the SD+MD mixing lines calculated here for cubic anisotropy (Table 1).
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complexity of geological samples and the lack of diagnostic power pro-

vided by binary mixing lines for understanding data distributions in

Day diagrams.

2.10. Other Issues That Can Affect Data Distributions in

Day Diagrams

2.10.1. Definition of Domain State Regions in the Day Diagram

A widely underappreciated issue that is pertinent to the intended aim

of diagnosing domain state with Day diagrams relates to definition of

the limits of regions attributed to SD, PSD, and MD behavior. These lim-

its (Figure 10a) are defined based on theoretical, empirical, and practi-

cal arguments. The SD/PSD boundary atMrs/Ms = 0.5 is based on Stoner

and Wohlfarth (1948) theory for uniaxial SD particles. However, the Bcr/

Bc limit for the SD/PSD boundary was set arbitrarily by Day et al. (1977)

at 1.5 rather than at 1.09 as in Wohlfarth (1958) to allow for the fact that

magnetic mineral assemblages in geological samples have distributed

particle sizes (Dunlop, 2002a). Based on various theoretical and empiri-

cal arguments, Dunlop (2002a) used boundary values of Mrs/Ms = 0.5

and Bcr/Bc = 2 for the SD/PSD boundary and values of Mrs/Ms = 0.5

and Bcr/Bc = 1.25 for the SD end-member in mixing lines. Dunlop and

Carter-Stiglitz (2006) then revised the end-member Bcr/Bc values for

SD and MD assemblages to 1.14 and 4.7, respectively. As discussed in

section 2.2, theMrs/Ms = 0.5 limit is only valid if SD particles are uniaxial.

This approach ignores the fact that multiaxial anisotropy controls the

magnetization of an important range of minerals. There is strong justi-

fication for a dominant multiaxial anisotropy in MORB (Gee & Kent,

1995, 1999; Mitra et al., 2011), which is a globally important rock type.

The results of Mitra et al. (2011) might indicate that multiaxial aniso-

tropy is dominant in igneous rocks, although this remains to be demon-

strated widely. For example, Lanci (2010) concluded that both uniaxial

and multiaxial anisotropies exist in igneous rocks. FORC diagrams can

be used to identify multiaxial anisotropy (Harrison & Lascu, 2014),

which explains features observed for hematite (Brownlee et al., 2011; Carvallo et al., 2006; Jovane et al.,

2011; Muxworthy et al., 2005), monoclinic pyrrhotite (Larrasoaña et al., 2007; Roberts et al., 2010; Weaver

et al., 2002; Wehland et al., 2005), and monoclinic magnetite below the Verwey transition temperature at

low applied fields (Smirnov, 2007). Variable magnetocrystalline anisotropy type means that the limits for dif-

ferent domain states will vary in the Day diagram. While it is true that the Day diagramwas not designed with

other minerals in mind, it was designed for titanomagnetite for which the evidence suggests that multiaxial

anisotropy is dominant (Gee & Kent, 1995; Mitra et al., 2011).

There is much debate as to where “PSD” behavior stops and true MD behavior begins (e.g., Dunlop &

Özdemir, 1997; Heider et al., 1996) even though it is acknowledged to correspond to the point at which

the magnetization is controlled by the response of domains and domain walls to the internal demagnetizing

field –NM, where N is the demagnetizing factor (Dunlop, 2002a; Néel, 1955). Expected Mrs/Ms values for MD

particles are calculated from Mrs = Bc/N (Dunlop, 2002a; Néel, 1955). Different minerals have different values

of Bc andMs, so the MD limit will vary frommineral to mineral, and with stoichiometry. For magnetite, Dunlop

(2002a) determined values of Mrs/Ms = 0.02 and Bcr/Bc = 5 for the PSD to MD boundary compared to the

values of Mrs/Ms = 0.1 and Bcr/Bc = 4 used by Day et al. (1977). The lack of a firm basis for defining the para-

meter limits for different domain states (Figure 10a), and their variation with mineralogy and stoichiometry,

adds further uncertainty to use of the Day diagram for domain state diagnosis.

2.10.2. Approach to Saturation

An important factor that can affect experimental estimates of Mrs, Ms, and Bc, and, therefore, the position of

data on a Day diagram, relates to high-field slope correction of hysteresis loops and the so-called approach to

saturation. For example, the approach to saturation has been a significant factor in the debate about whether

MORB has uniaxial or multiaxial anisotropy (e.g., Fabian, 2006, 2012; Gee & Kent, 1995, 1999; Mitra et al., 2011,

Table 1

SD+MD Mixing Lines for Cubic Anisotropy

SD end-member: K1 > 0; Mrs/Ms = 0.831; Bcr/Bc = 1.04

fSD Bcr/Bc Mrs/Ms

0.0 5.000 0.020
0.1 3.317 0.101
0.2 2.554 0.182
0.3 2.103 0.263
0.4 1.801 0.344
0.5 1.586 0.426
0.6 1.423 0.507
0.7 1.296 0.588
0.8 1.194 0.669
0.9 1.110 0.750
1.0 1.040 0.831

SD end-member: K1 < 0; Mrs/Ms = 0.866; Bcr/Bc = 1.08

fSD Bcr/Bc Mrs/Ms

0.0 5.000 0.020
0.1 3.440 0.105
0.2 2.661 0.189
0.3 2.191 0.274
0.4 1.876 0.358
0.5 1.650 0.443
0.6 1.480 0.528
0.7 1.347 0.612
0.8 1.240 0.697
0.9 1.153 0.781
1.0 1.080 0.866

Note. Parameters for SD particles with cubic anisotropy are from Joffe and
Heuberger (1974). Parameters for the MD end-member are from Dunlop
(2002a). fSD is the fraction of the SD component. Mixing lines were calculated
using the equations of Dunlop (2002a).
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Figure 10. Illustration of other (definitional/experimental) issues that affect data distributions in Day diagrams. (a) Various definitions of regions that demarcate
domain states in the Day diagram. Different colors are used to indicate the SD, “PSD,” and MD regions defined by Day et al. (1977), Dunlop (2002a), and Dunlop
and Carter-Stiglitz (2006), and the SD/“PSD” limits for uniaxial anisotropy from Stoner and Wohlfarth (1948) and Wohlfarth (1958) and for cubic anisotropy from Joffe
and Heuberger (1974). (b) Illustration of the effects of variable hysteresis slope correction on Day diagram data distributions. Results from Roberts (1995) (open
circles) are for high-field slope corrections from 700mT to 1 T comparedwith approach to saturation fits (black circles). Conventional corrections based onM at 70–100%
of the maximum applied field gives lower Mrs/Ms values than the approach to saturation estimation. (c, d) Comparison for remagnetized Paleozoic carbonates with
(c) conventional slope correction (Jackson, 1990), and (d) approach to saturation corrections (Jackson & Swanson-Hysell, 2012). (e) Illustration of the effects on a Day
diagram of three Bcr estimates obtained directly from hysteresis loops for Monte Carlo simulations of progressive thermal relaxation in SD particle systems (Heslop,
2005).BΔMcr is obtained from the difference between ascending and descending hysteresis loop branches, where the δΔM/δBmaximum is used to represent Bcr (Tauxe
et al., 1996). Brh is the median destructive field of the remanent magnetization of the hysteresis loopMrh:Mrh Bð Þ ¼ Mþ Bð Þ�M� Bð Þ

2 , whereM+(B) andM
–(B) are the upper

and lower hysteresis loop branches. Brh is consistently higher than Bcr from backfield curves (Fabian & von Dobeneck, 1997). If a sample is saturated at +Bsat, the
field can be reduced to zero and then swept back to +Bsat to produce a saturation initial magnetization curve Msi. Bcr is then estimated by comparing the Msi curve
with M

–(B) and Mrs so that Msi(Bcr) = M
�(Bcr) + Mrs (Fabian & von Dobeneck, 1997). These issues can be avoided by direct Bcr measurement from backfield

demagnetization curves. In this paper, results are shown for direct Bcr determination, except for Figure 9d where only hysteresis loops are considered and Brh is used.
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2012). Hysteresis loops consist of two parts. In the irreversible part, the upper and lower branches are

separated (at lower fields), and in the reversible part (at higher fields) both branches coincide. In the

reversible part, the magnetization continues to increase due to rotation of magnetic moments parallel to

the applied field, which is resisted by the anisotropy of the material. This reversible region is referred to as

the approach to saturation. Various mathematical formulations exist for the law of approach to saturation

(e.g., Bertotti, 1998; Chikazumi, 1997); Fabian (2006) used the following expression: M(B) = Ms + χB + αBβ,

where M is the magnetization, B is the field, χ is the susceptibility of all diamagnetic and paramagnetic

components, and the final term represents an individual approach to saturation law where both α and β

must be negative so that the approach is from below and vanishes for B→ ∞. Use of the law of approach

to saturation for geological materials is not straightforward because α and β vary from material to material

and must be approximated (e.g., Fabian, 2006; von Dobeneck, 1996). Determination of these parameters is

problematical for samples with mixed magnetic components, and robust estimation of approach to

saturation is difficult (Jackson & Solheid, 2010). Hysteresis loops can be fitted and extrapolated to high

fields to estimate the approach to saturation using hyperbolic functions (Jackson & Solheid, 2010; von

Dobeneck, 1996). This method contrasts with the routine correction of hysteresis loops using linear slopes

at 70–100% of the maximum applied field, the validity of which depends on whether the magnetization is

saturated at 70% of the maximum applied field. We compare the effects of linear slope correction at

70–100% of the maximum applied field (1 T) with estimates from approach to saturation fitting for greigite

samples in Figure 10b. In all cases, the conventional slope correction overestimates Mrs/Ms compared to

the approach to saturation estimation. A similar assessment for remagnetized Paleozoic carbonates by

Jackson and Swanson-Hysell (2012) found that results of published hysteresis slope corrections were

affected by undersaturation (which affects Bc and Mrs/Ms determinations; Figures 10c and 10d). Previous

measurements of Jackson (1990) were made to maximum fields of 1 T, 500 mT, or even 300 mT. Such

maximum fields are used relatively commonly, which suggests that hysteresis loop undersaturation is

likely to be widespread in rock magnetic studies and that inadequate slope correction probably causes an

additional large uncertainty for data distributions in the Day diagram.

2.10.3. Bcr Estimation

Three of the parameters used in Day diagrams are estimated directly from a hysteresis loop (Mrs, Ms, and Bc),

while the fourth (Bcr) is estimated from a backfield demagnetization curve (Figures 1a and 1b). Fabian and

von Dobeneck (1997) summarized three alternative approaches to determine Bcr directly from a hysteresis

loop. These alternatives give similar but not identical values to Bcr. In this paper, we use Bcr determinations

from backfield curves measured along with hysteresis loops on the same system (Princeton Measurements

Corporation Micromag systems in all cases). We consider this approach to be the simplest way to determine

Bcr because it complies directly with the definition for this parameter and the measurement is made directly

with the same instrument settings (although usually with a higher sensitivity setting for remanence com-

pared to in-field measurements). Nevertheless, other approaches for determining Bcr exist and will produce

different data distributions in a Day diagram. Heslop (2005) calculated such differences from numerical simu-

lations of thermally relaxing magnetic particle systems (Figure 10e). The differences among Bcr estimations

are significant, which adds uncertainty to Day diagram interpretation. This uncertainty can be avoided by

ensuring that Bcr is measured directly and consistently from backfield demagnetization curves rather than

being estimated from hysteresis loops. As indicated in Figure 2, Bcr and Bc both vary with particle size, so that

Bcr/Bcmasks important coercivity information. This led Tauxe et al. (2002) to prefer plots ofMrs/Ms versus Bc as

used by Néel (1955). This avoids the need to determine Bcr and removes ambiguities associated with the fact

that both Bc and Bcr have particle size dependence (Figure 2). Space prevents us from expanding on the rela-

tive merits of the Day and Néel diagrams.

3. Discussion

3.1. Is the Day Diagram Useful?

Our synthesis of experimental results, numerical simulations, and definitional/technical issues indicates that

each of the 10 factors discussed above can cause major variations in the position of data on a Day diagram.

Most of these factors are unknowns in studies of geological materials. This fundamental ambiguity under-

mines use of the Day diagram as a tool for diagnosing domain state, particle size, or mineralogy. We urge

users of the Day diagram to consider whether their data are sufficiently constrained to enable its
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defensible use. We argue that, without considerable additional data, the ambiguities outlined in this paper

are usually so debilitating that the Day diagram does not provide the desired domain state diagnosis.

3.2. In What Situations Is a Day Diagram Useful?

If the Day diagram is so ambiguous, it is reasonable to ask “Are there situations in which the Day diagram is

useful?” Surely the Day diagram would not be used so widely if it provides no diagnostically useful informa-

tion? We have used the Day diagram extensively, so we illustrate these questions mainly with our own

published examples.

The main benefits of the Day diagram are generally considered to be in assessing relative granulometric

variations and paleomagnetic recording efficiency. Concerning relative granulometry, data frommarine sedi-

ment core LC07 in Figure 3b appear to fall on a mixing line between relatively fine and coarse end-members.

Dinarès-Turell et al. (2003) compared these results to δ18O data from the same core and undertook TEM

observations of magnetic mineral extracts to constrain their interpretations. They interpreted data from

“coarser” regions in the Day diagram to be caused by increased eolian dust concentrations during glacials

and those in “finer” regions to increased SD magnetite magnetofossil concentrations during interglacials.

The data fall on a similar trend to those for other sediments (Figure 9f) and not on the SD + MD mixing lines

of Dunlop (2002a). Such trends can give the appearance of binary mixing in a Day diagram even though they

commonly result from four components (e.g., Roberts, Florindo, et al., 2013). Dinarès-Turell et al. (2003)

emphasized two components, but they documented a significant additional hematite component and did

not distinguish between the biogenic hard and soft components of Egli (2004). Thus, their data do not repre-

sent a binary mixing system. Nevertheless, the overall interpretation of glacial-interglacial magnetic varia-

tions in core LC07, which are observed in a range of other magnetic parameters, is robust. Dinarès-Turell

et al. (2003) avoided overinterpretation of fine-scale changes in granulometric terms and emphasized relative

variations in component mixing. Importantly, the Day diagram was one of several tools used by Dinarès-

Turell et al. (2003) to understand environmental controls on magnetic mineralogical trends in core LC07.

Concerning assessment of relative paleomagnetic recording efficiency, it would generally be argued from the

trend in Figure 3b, for example, that a sample withMrs/Ms = 0.4 will be amore efficient recorder than a sample

with Mrs/Ms = 0.2. The high Mrs/Ms value for the former sample would almost certainly be taken to indicate a

significant SD particle concentration. Literal interpretation of such a sample as containing dominantly PSD

particles would be incorrect, and this pitfall would be avoided by most researchers. In the illustrated case,

though, the sample with Mrs/Ms = 0.4 is not a better recorder; it simply contains a greater concentration of

SD magnetite magnetofossils than the sample withMrs/Ms = 0.2. Based on analysis of stepwise demagnetiza-

tion data from this sediment core, virtually all samples (apart from those through polarity transitions) have

near-perfect linear demagnetization trajectories (Dinarès-Turell et al., 2002). Thus, it appears that relative con-

centration differences of coarse and SD components in core LC07 are insufficient to cause differential paleo-

magnetic directional recording quality. Despite the excellent directional recording, the relative paleointensity

signal extracted from this core does not agree well with global stacks (e.g., Valet et al., 2005; Ziegler et al.,

2011) through the time period analyzed by Dinarès-Turell et al. (2002). This could be due to differential effi-

ciency of relative paleointensity recording by biogenic and detrital magnetic particles (Roberts et al., 2012), as

documented by Ouyang et al. (2014) and Chen et al. (2017). In summary, meaningful information can be

extracted from a Day diagram if sufficient additional constraints are obtained and effort is expended to

understand the origin of the signals. However, interpretation of the Day diagram in Figure 3b in terms of

expected relative paleomagnetic recording would be incorrect.

One of the apparent triumphs of the Day diagram has been in distinguishing between remagnetized lime-

stones and those that retain a primary magnetization (e.g., Channell & McCabe, 1994; Jackson, 1990;

McCabe & Channell, 1994). Data distributions for remagnetized carbonates fall largely in a region of the

Day diagram that is distinct from those for other geological materials, including carbonates with primary

magnetizations (Figure 11a) (see review by Jackson & Swanson-Hysell, 2012). In these remagnetized samples

SP particles often contribute ~75% of the total magnetite content (Jackson & Swanson-Hysell, 2012) and

give rise to wasp-waisted hysteresis loops that are due in this case to the strongly contrasting coercivities

of SP and SD particles (Jackson, 1990; Roberts et al., 1995; Tauxe et al., 1996). These properties are

responsible for the distribution of data points on the top right-hand side of the Day diagram. Jackson and

Swanson-Hysell (2012) urged caution in using such data distributions in Day diagrams to diagnose
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remagnetization because of the potential for false positives and false negatives and because it would be

surprising for a rock magnetic signature for remagnetization to be generally applicable. They could not

cite any cases of false positives (where the Day diagram signature occurs in nonremagnetized carbonates);

false negatives are more common but are infrequent (where remagnetized carbonates have signatures

typical of nonremagnetized carbonates). Thus, while the Day diagram is an apparent triumph for

diagnosing carbonate remagnetization, Jackson and Swanson-Hysell (2012) urge caution in using it for

this purpose.

Figure 11. Examples where Day diagrams have proven to be useful. (a) Illustration of contrasting magnetic properties between remagnetized carbonates (open
symbols) and those with primary magnetizations (solid symbols). Results are from Jackson (1990), Channell and McCabe (1994), McCabe and Channell (1994),
Tarduno and Myers (1994), Xu et al. (1998), Elmore et al. (2006), Ménabréaz et al. (2010), Roberts et al. (2012), and Swanson-Hysell et al. (2012). See Jackson and
Swanson-Hysell (2012) for details. (b) Illustration of progressiveMrs/Ms increase with decreasing age in Victoria Land Basin, Antarctica (Roberts, Sagnotti, et al., 2013).
The overall trend is evident in both weakly and strongly magnetized samples; we show data forMrs> 10�7 Am2, where the % of total data represents a subset of the
total data set. (c) Illustration of the effects of down-core reductive diagenesis in shallow marine sediments (Rowan et al., 2009). See text for discussion.
Counterclockwise looping trends in hysteresis data have been observed in sediments from the Oman and northern California margins (Rowan et al., 2009), Korea
Strait (Liu et al., 2004), Ontong-Java Plateau (Tarduno, 1994, 1995), Niger Fan (Dillon & Bleil, 2006), Oregonmargin (Karlin, 1990), Japan Sea (Yamazaki et al., 2003), and
Argentine margin (Garming et al., 2005).
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In a study of long-term variations of glacial and volcaniclastic detritus delivered to the Ross Sea, Antarctica,

Roberts, Sagnotti, et al. (2013) analyzed hysteresis data for >2,000 samples through a 2.6 km stratigraphic

sequence that spans 17 million years (Figure 3c). These data almost all fall in the PSD region of the Day dia-

gram and are distributed widely in the region between the SD + MD and SD + SP mixing lines of Dunlop

(2002a). The data fall within a relatively narrow Bcr/Bc range, while Mrs/Ms increases with decreasing age

(the analyzed cores progress from older to younger in the order: CIROS-1 (lower), CRP-3, CRP-2/2A, CRP-1).

Roberts, Sagnotti, et al. (2013) used data from the most strongly magnetized samples from each core and

contoured their respective distributions in a Day diagram, which demonstrates a progressiveMrs/Ms increase

with decreasing age (Figure 11b). They interpreted this trend, with assistance from other data types, as reflec-

tive of upward fining of the overall magnetic particle assemblage due to increased glacial grinding of source

rocks and a greater contribution of volcanic glass from younger McMurdo Volcanic group rocks. In this exam-

ple, hysteresis data provide useful information despite the data set being large and scattered. Nevertheless, it

is a complex, multicomponent data set and it would be risky to undertake deeper analysis of data trends in

such a Day diagram without substantial additional constraints. While these data appear to reveal relative par-

ticle size variations, they do not reveal whether the magnetic particle assemblages are in the PSD state or the

type of component mixing involved.

Finally, we illustrate use of the Day diagram to assess down-core diagenetic changes in marine sediments.

Rowan et al. (2009) identified systematic trends in Day diagrams in a sediment core from the Oman margin

and from around the world during progressive diagenetic change (Figure 11c). Unaltered detrital magnetic

mineral assemblages in surface sediments are subjected to progressive down-core reductive dissolution

where the finest particles dissolve to leave a coarser assemblage. With ongoing sulfidization, SP greigite

nucleates and its particle size distribution grows progressively into the stable SD size range. This data pro-

gression produces a counterclockwise looping trend in Day diagrams (Figure 11c). The trend results from

magnetic property contrasts between coarse detrital magnetite, and authigenic SP and SD greigite. Data

trends in such Day diagrams are illustrative of processes of interest, although this example has little to do with

PSD magnetic behavior even though most of the data fall in the PSD region, and the type of mixing involved

does not correspond to that in the mixing lines of Dunlop (2002a).

The cases from Rowan et al. (2009) and Roberts, Sagnotti, et al. (2013) both involve significant SP concentra-

tions that cause data to overlap into the region associated with remagnetized carbonates (compare

Figures 3c, 11a, and 11c), although neither case involves carbonates. This observation is consistent with

the statement of Jackson and Swanson-Hysell (2012) that it would be surprising for a rock magnetic signature

associated with remagnetization to be generally applicable.

3.3. Do Most Magnetic Particles Occur in the PSD State?

The key supposed virtue of the Day diagram is its utility for magnetic domain state diagnosis. As illustrated in

Figure 3 for thousands of sedimentary and igneous samples (n > 3,300), most data fall in the PSD region of

the Day diagram. Although it is recognized widely that such designations should not be accepted at face

value, a direct result of the dominance of the Day diagram for domain state diagnosis in rock magnetism

is that the PSD state is considered widely to be the dominant domain state and that SD particles are relatively

rare in geological materials. It is important to ask whether these interpretations are correct.

In this paper, we use the same language as Day et al. (1977) in referring to the SD, PSD, and MD states. We use

inverted commas in reference to the PSD state because we consider the term PSD to be a misnomer because

it does not represent SD-like behavior (Roberts et al., 2017; Tauxe et al., 2002). PSD behavior is better

explained by phenomena associated with single and multiple magnetic vortices, antivortices, and domain

walls (Roberts et al., 2017). Tauxe et al. (2010) argued that pseudo multidomain is a better term to describe

the PSD state.

Despite this nomenclatural issue, a key observation is that when stable SD particles co-occur with significant

quantities of SP, PSD, or MD particles, the Mrs/Ms value will decrease, which makes it difficult for an assem-

blage of magnetite particles to have Mrs/Ms values close to 0.5. Data representations in Day diagrams have

probably biased against recognition of SD particles and have overemphasized the importance of the PSD

state in the paleomagnetic record (Roberts et al., 2012; Tauxe et al., 2002, 2010). An exception involves sedi-

ments in which the magnetic properties can be dominated by biogenic SD magnetite, including pelagic
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carbonates (e.g., Roberts, Florindo, et al., 2013), which often have Mrs/Ms values close to 0.5 (Figure 3a).

Overall, representation of hysteresis parameters from bulk samples in a Day diagram mitigates against iden-

tification of the true domain states in a sample. If this is the case, it raises significant questions—regardless of

the perceived value of the Day diagram—as to why such a tool should be used so widely.

3.4. Is There a Suitable Replacement for the Day Diagram?

The popularity and influence of the Day diagram is evident in the fact that Day et al. (1977) has been cited

>2,300 times at the time of writing (Google Scholar). This makes it among the most exceptionally cited

papers in rock magnetism. Thus, it will only be replaced if users are convinced, based on evidence such as

that presented above, that the Day diagram is misleading, incorrect, or counterproductively ambiguous. It

is also unlikely to be superseded unless a suitable alternative exists. This makes it worth asking what qualities

a replacement must have to be accepted widely. At minimum, a replacement must provide diagnostic infor-

mation about domain state. If domain state can be diagnosed, many of the factors discussed above become

less important (e.g., stress, surface oxidation, and particle shape) because it is the domain state that is being

identified rather than the ambiguity created by these variables. A major weakness of the Day diagram is that

it is a biplot of two sets of parameters. The four parameters used in a Day diagram represent only part of the

information provided by a hysteresis loop and backfield demagnetization curve. If these parameters capture

domain state-specific information, they will be suitable for magnetic granulometry. However, as indicated

above, the Day diagram is fundamentally ambiguous. Tauxe et al. (2002) proposed the Néel (1955) diagram

(Mrs/Ms versus Bc) as an alternative. The Néel (1955) diagram involves fewer parameters than the Day diagram,

so it still has limited diagnostic capacity for bulk geological samples that contain mixedmagnetic particle sys-

tems. Realistically, biplots for bulk samples are unlikely to enable component-by-component discrimination

of domain state. In recognition of the weakness of biplots, three-dimensional plots have been proposed in

which the axes are Mrs/Ms, Bc, and Bcr (Borradaile & Hamilton, 2003; Borradaile & Lagroix, 2000). In the near

future, we plan to present an assessment of leading contenders that may be suitable alternatives to the

Day diagram for accurate domain state diagnosis. Use of constraints from physically realistic three-

dimensional micromagnetic models can augment such approaches to illuminate responses for different

domain states. Without prolonging the present paper, we simply suggest that unmixing of FORC diagrams,

as proposed by Lascu et al. (2015), and determination of remanent and transient FORC diagrams (Zhao

et al., 2017) are likely to emerge as suitable candidates for diagnosing domain state on a component-by-

component basis within geological samples that typically contain mixtures of magnetic mineral components.

4. Conclusions

The Day diagram has been used widely in rock magnetism for domain state diagnosis. While many ambigu-

ities have long been recognized with respect to the Day diagram, these issues have been largely ignored

because of its perceived value for assessing hysteresis behavior in relation to magnetic recording capability

and relative granulometry. We have outlined 10 sets of issues that make interpretation of the Day diagram

ambiguous for domain state diagnosis. These issues include variations in (1) magnetic mineralogy and (2)

the associated magnetocrystalline anisotropy type, (3) mineral stoichiometry, (4) internal stress, (5) surface

oxidation, (6) magnetostatic interactions, (7) particle shape, (8) thermal relaxation, (9) mixing, and (10)

definitional/measurement issues. In most studies, these variables are unknowns and cannot be controlled

for, so that hysteresis parameters for single bulk samples are nonunique and any data point in a Day diagram

could result from infinite combinations of relevant variables. Therefore, the Day diagram is fundamentally

ambiguous for domain state diagnosis.

The Day diagram has also contributed significantly to other prevailing views that we question. For example,

the popularity of the Day diagram for magnetic domain state diagnosis has led to the prevalent interpreta-

tion that SD particles are comparatively rare in the geological record and that PSD particles dominate the

magnetization of geological materials. However, a range of factors such as mixing with SP, PSD, or MD par-

ticles, thermal relaxation, and magnetostatic interactions cause data to fall outside the SD region of a Day

diagram, and, therefore, biases against recognition of SD behavior when using the Day diagram. Use of

FORC diagrams demonstrates that SD particles are far more common than was previously recognized in

the geological record (e.g., Roberts et al., 2012). We argue elsewhere that the PSD state should be referred

to as the vortex state (Tauxe et al., 2002), which spans a range of magnetic behaviors associated with single
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and multiple vortices, antivortices, and domain walls (Roberts et al., 2017), and unstable “hard-aligned” and

stable “easy-aligned” single vortex states (Nagy et al., 2017). While Day et al. (1977) used the prevailing PSD

terminology coined by Stacey (1961), and probably had no intention of becoming a key reinforcer of the

PSD concept, this is what has happened. The diverse processes that act on magnetic particle assemblages

to cause data to fall in the PSD region in a Day diagram have contributed to overemphasis of the impor-

tance of the PSD state in rock magnetism. Prevalent use of the Day diagram has also worked against diag-

nosis of the domain states in magnetic mineral assemblages. Calculation of mixing lines by Dunlop (2002a)

has further reinforced use of the Day diagram. From analysis of thousands of samples, binary mixing as

envisioned by Dunlop (2002a) appears to be rare in geological materials and ternary and higher order

mixing is more common (Heslop & Roberts, 2012a, 2012b). This contributes further ambiguity to the

Day diagram.

Based on the issues discussed in this paper, we urge users of Day diagrams to consider whether their data are

sufficiently constrained to enable its defensible use. While the Day diagram has been used to valuable effect,

in most cases the ambiguities outlined in this paper are so debilitating that it is not useful for domain state

diagnosis. There is an urgent need to develop and adopt robust domain state diagnostic tools in rock mag-

netism to avoid the many pitfalls outlined here in relation to the popular Day diagram.
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