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Abstract 

 Substantial progress in our understanding of interfacial structure and dynamics has 

stemmed from the recent development of algorithms that allow for an intrinsic analysis of fluid 

interfaces. These work by identifying the instantaneous location of the interface, at the atomic 

level, for each molecular configuration and then computing properties relative to this location. 

Such a procedure eliminates the broadening of the interface caused by capillary waves and 

reveals the underlying features of the system. However, a precise definition of which molecules 

actually belong to the interfacial layer is difficult to achieve in practice. Furthermore, it is not 

known if the different intrinsic analysis methods are consistent with each other and yield similar 

results for the interfacial properties. In this paper, we carry out a systematic and detailed 

comparison of the available methods for intrinsic analysis of fluid interfaces, based on a 

molecular dynamics simulation of the interface between liquid water and carbon tetrachloride. 

We critically assess the advantages and shortcomings of each method, based on reliability, 

robustness and speed of computation, and establish consistent criteria for determining which 

molecules belong to the surface layer. We believe this will significantly contribute to make 

intrinsic analysis methods widely and routinely applicable to interfacial systems. 

Key words: Water/organic interfaces, Intrinsic surface, Statistical Mechanics, Molecular 

Simulation. 

1. Introduction 

 Interfaces involving fluid phases (be it between a liquid and a gas or between two 

immiscible liquids) have fascinated scientists for centuries [1]. They are ubiquitous in nature 

and assume a critical role in a wide variety of chemical, physical, biological and environmental 

processes [2]. In recent years, our knowledge of the molecular-level structure and properties of 

liquid interfaces has progressed dramatically. This is due to remarkable developments in 

experimental techniques, like non-linear spectroscopic methods [1] or X-ray scattering [3], but 
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also due to advances in theoretical methods, particularly molecular simulation [2]. Despite such 

advances, the analysis of liquid interfaces is still complicated by the fact that they are inherently 

rough, i.e., the surface of a given fluid is corrugated by thermal fluctuations, or capillary waves 

[4]. In fact, the observed (or “global”) average profile of a given property (say, density) is 

normally sampled on the basis of the average cross-section of the system, 

 

 ( )
10

1
( )

N

G i
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z z z
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ρ δ
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= −∑ ,       (1) 

 

where N is the number of molecules, zi is their coordinate along the axis perpendicular to the 

interface, and A0 is the nominal cross-sectional area. Due to the effect of capillary waves, the 

global profile will be smoothed by the instantaneous fluctuations of the position of the interface 

itself. In fact, one can consider the existence of an intrinsic profile upon which the effect of 

thermal fluctuations is felt, leading to the observed global profile – this is, in fact, one of the 

cornerstones of capillary wave theory (CWT) [5]. Such an intrinsic profile is given by 
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where ξ is the instantaneous position of the surface, and xi and yi are the molecular coordinates 

in the plane parallel to the interface. 

 In the majority of theoretical treatments of liquid interfaces, the intrinsic profile was 

assumed to take a specific functional form, which may range from a simple step function, as in 

the original theory [5], to a density functional description of the fluid [6]. An interesting 

alternative, however, is to extract the intrinsic density profile directly from simulations of 

interfacial systems. This would naturally require a protocol for identifying the instantaneous 

position of the surface in each molecular configuration, relative to which the profile would be 

averaged, following (2). The first attempt at such a protocol for a liquid-vapor system is due to 
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Stillinger [7], and is based on defining interfacial molecules as those that are in direct contact 

with a percolating volume of empty space representing the vapor phase. Such a definition, 

however, turns out to be extremely difficult to implement in practice, and it took more than 

twenty years until the first computationally tractable definition of the surface layer appeared, in 

the form of the Intrinsic Sampling Method (ISM) of Chacón and Tarazona [8]. Other methods 

have later appeared [9-12] allowing one to obtain unprecedented detailed information about the 

intrinsic structure, density profiles, hydrogen bond network, molecular orientations, diffusivity, 

as well as other properties of fluid interfaces. 

 One aspect of intrinsic analyses that generates a wide consensus is that it is difficult to 

conclusively establish which molecules actually belong to the surface layer, which is mainly 

due to the inherently fluid nature of the phases under consideration. It should be noted that a 

recent method proposes a way to obtain the location of the intrinsic surface without requiring 

the identification of a set of interfacial molecules [12]. Nevertheless, most intrinsic analysis 

methods [8-11] rely on identifying the interfacial molecules and then constructing a 

mathematical surface based on their positions, to enable the computation of intrinsic profiles 

from (2). Naturally, there are many alternative ways to achieve this. In this context, it is of the 

utmost importance to establish if each method indeed provides an intrinsic view of the interface, 

and if the results obtained using different methods are consistent with each other – this is the 

task we propose to accomplish. In this paper, we present results of a comparison of four 

different methods for identifying the set of surface molecules from simulation data. We have 

chosen as a prototype system the liquid/liquid interface between water and carbon tetrachloride 

(simulation details are given in section 2), because it is a realistic system but simple enough to 

ensure computational tractability. Each method is first studied individually in detail (sections 

3.1 to 3.4) in terms of their validity, advantages and disadvantages, leading, in several cases, to 

improvements in their respective protocols. We then critically compare all methods, based on 

reliability, robustness and speed of computation, in section 3.5 of the paper. Section 4 presents 

the main conclusions of our study. 
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2. Simulation Details 

 Molecular dynamics simulation of the water/CCl4 liquid-liquid interface has been 

performed in the canonical (N,V,T) ensemble at the temperature of 298 K. The system consisted 

of 4000 water and 2000 CCl4 molecules. The x, y and z edges of the basic box were 5.0, 5.0 and 

17.9 nm long, respectively, z being the surface normal axis. Standard periodic boundary 

conditions have been applied. The water and CCl4 molecules were described by the rigid, four 

site TIP4P model [13] and a rigid five-site model of McDonald et al., [14] respectively. Thus, 

the total potential energy of the system has been calculated as the sum of the interaction 

energies of the molecule pairs, the latter being the sum of a Lennard-Jones and a charge-charge 

Coulomb term. All interactions have been truncated to zero beyond the molecule center-based 

cut-off distance of 14.0 Å. 

 The simulation was started from a configuration generated in a previous study. [15] The 

simulation was performed with the GROMACS program package. [16] The geometry of the 

individual CCl4 and water molecules was kept unchanged using the SHAKE [17] and SETTLE 

[18] algorithms, respectively. The temperature of the system was controlled by means of the 

Berendsen thermostat. [19] The long range-part of the Coulomb interactions was accounted for 

using the Particle Mesh Ewald (PME) method. [20] The equations of motion were integrated in 

time steps of 2 fs, and the system was equilibrated for 1 ns. Then 2000 sample configurations, 

separated from each other by 0.5 ps long trajectories each, were saved for the analyses. These 

sampled configurations were translated along the interface normal axis z in such a way that the 

position of the center-of-mass of the water molecules was moved to the origin of the coordinate 

axes. All results were averaged over the 2000 sampled configurations. 

 

3. Results and Discussion 

3.1 The Intrinsic Sampling Method of Chacón and Tarazona 

 The Intrinsic Sampling Method (ISM) was originally developed by Chacón and 

Tarazona [8,21,22] for the analysis of liquid/vapor interfaces of simple model fluids (such as the 

Lennard-Jones or the soft-alkali models). It was subsequently applied to the water surface [23] 
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and recently adapted for the characterization of liquid/liquid interfaces [24,25]. The underlying 

idea is to define the intrinsic interface as the minimal area surface that goes through a set of 

pivot sites, which are essentially the atomic sites located at the interface. If the coordinates of 

those surface sites are defined by ( ) ( ), , ,i i i i iz x y z=R , then a smooth mathematical function 

passing through all the coordinates of the pivot sites can be constructed in terms of a sum of 

Fourier components, as follows: 

 

 ( ) ( ) ( )
22 20

ˆ,
m M

i

m q

q n

q e a f x f y
ν 
 ν

 ν

ξ ξ
≤ ≤ + ≤

= =∑ ∑qR

q

R ,    (3) 

 

where q is the wavevector, with maximum wavevector cutoff qm. The second expression is a 

more useful representation in terms of sines/cosines, with ( )0 0f x = , ( ) ( )cos 2 xf x x L
 π
= , 

and ( ) ( )sin 2 xf x x L
 π
− =  for 
>0, where a
ν are real coefficients with indices running 

from –nM to nM. In Chacón and Tarazona’s papers [8,21-25], nM is always set to xL σ≈ , where 

σ is a characteristic atomic diameter, such that all possible wavevectors down to atomic 

resolution are used. 

 Subject to the minimal area requirement, the intrinsic surface is obtained by minimizing 

the function [24] 
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where NS is the total number of surface sites, and φ is a parameter that sets a maximum 

threshold distance between the surface and the coordinates of the pivot sites. The optimal value 

of φ = 10-8 suggested by the authors [24] represents a compromise between good numerical 

precision and physical realism. Combining equations (3) and (4), we obtain a set of linear 

equations with respect to the coefficients a
ν: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
' ' ' '

' ' 1 1

4
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i i i i i i i

i i

f x f y f x f y a a z f x f y
 ν 
 ν 
 ν 
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 ν

 ν

π δ 
 ν
= =

 
+ + = 

 
∑ ∑ ∑ . (5) 

 

In this paper, equation (5) was solved using an efficient LU decomposition algorithm [26]. Once 

the coefficients are computed, the intrinsic surface follows directly from equation (3). 

 Using the above definition of the intrinsic surface, the ISM method focuses on finding 

the set of surface pivot sites in a self-consistent way. To obtain a first estimate of the pivot sites, 

the (x,y) plane is divided into a grid of N0×N0 squares, thus building a mesh of rectangular 

prisms with transverse size Lx/N0. The atomic sites with the most external positions in each of 

these prisms, i.e., the sites that are closest to the opposite phase in a liquid/liquid system, are 

chosen as the initial pivot sites. Equation (5) is then solved to obtain the minimal area surface 

that passes through these pivot sites, and an iterative procedure follows to increase the number 

of interfacial atoms. In the original method [8,21], this was achieved by successively adding as 

pivots all sites that were closer to the surface than a predefined threshold distance. In a later 

paper [22], Chacón and Tarazona proposed an alternative criterion for deciding whether or not 

to incorporate new sites in the set of pivots. The authors observed that some configurations 

(particularly at higher temperatures and for anisotropic fluids like water) required values of the 

threshold distance that were unreasonably small, and suggested that using the surface layer 

density (defined in a dimensionless form by 22
S S xn N Lσ= ) as a control parameter produced 

more robust results. Thus, the closest site to the surface is added in each iteration until the 

surface density reaches a predefined value. In the present paper, we employ this modified 

version of the ISM method. 

 We have applied the ISM method to analyze the water/CCl4 interface. This analysis was 

carried out on a molecular basis, i.e., each molecule was considered as a whole, with water 

centered at the oxygen atom and CCl4 centered at the carbon atom. As characteristic site 

diameters, we take the Lennard-Jones diameters of the water oxygen and of the CCl4 carbon. 
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Figure 1 shows the resulting number density distributions of interfacial molecules for several 

values of the control parameter, nS. It can be seen that the increase in the density of surface 

molecules as nS increases is mostly felt on the inner side of the interface for both components – 

the first interfacial molecules are those that are closest to the opposite phase, and then the 

interfacial layer grows by incorporating molecules that are progressively farther away from the 

opposite phase. For all studied values of nS, the distributions of the positions of water molecules 

at the surface show an approximately Gaussian shape. However, the same cannot be said of the 

CCl4 distributions. They deviate from a Gaussian shape at low density, when insufficient 

molecules have been incorporated, and at high density, when molecules that belong to the 

second layer are counted as interfacial. The latter effect is clearly seen in the pronounced 

shoulder in the CCl4 distribution for nS = 1.185. In fact, the same effect is observed for water, 

although it can only be visually discerned for higher densities than those shown in Figure 1. 

 

 

Figure 1 – Number density distributions of interfacial molecules for water (left curves and left 

axis) and CCl4 (right curves and right axis) obtained from the ISM with increasing values of the 

dimensionless surface layer density, from bottom to top: water – 0.895, 1.018, 1.082, 1.130, 
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1.193, 1.392; CCl4 – 0.423, 0.508, 0.576, 0.660, 0.719, 1.185. The thick red lines are fits to a 

Gaussian distribution for selected curves (water – 1.082; CCl4 – 0.660), which are shown as 

dashed lines. The curves for CCl4 are shifted by 0.6 nm to the right for clarity. 

 

 In order to more quantitatively assess the above effects, we have fitted the interfacial 

density distributions to a Gaussian function. Two of those fits are depicted as thick red lines in 

Figure 1, and the values of the correlation coefficients are plotted in Figure 2 as a function of nS. 

For the organic component, the effect described above is very pronounced, and there is only a 

narrow region of nS values for which the distribution is truly Gaussian (between about 0.6 and 

0.7), corresponding to a maximum in the correlation coefficient (at nS=0.66). For water, the 

maximum (located at nS=1.13) is much shallower, presumably because water is a smaller 

molecule for which the distinction between different molecular layers is more difficult to 

establish. Nevertheless, it is clear that there is an optimal range of surface densities, between 

about 1.0 and 1.2. 
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Figure 2 – Correlation coefficients obtained by fitting the interfacial density distributions 

obtained from the ISM to a Gaussian expression, as a function of the dimensionless surface 

layer density. The inset shows the skewness of the water distribution as a function of the 

dimensionless surface layer density. 

 The criterion for choosing the optimal surface density based on the best fit to a Gaussian 

distribution assumes that the density distribution of surface molecules obeys Gaussian statistics, 

which is supported by a recent theoretical study [27]. However, we consider the possibility that 

this may not always be the case. A more reasonable assumption could be to say that the 

interfacial distribution should be as symmetric as possible (but not necessarily Gaussian). With 

this idea in mind, we calculated the skewness of each distribution of water surface molecules as 

a function of the surface density, and the results are shown in the inset of Figure 2. As we can 

see, when the density is too low, the innermost surface molecules are excluded and the 

distribution is skewed to the right. On the other hand, when the density is too high, molecules 

from the second layer are added and the distribution becomes skewed to the left (see also Figure 

1). The optimal point, with a skewness close to zero, is reached for nS=1.13, which precisely 

matches the value obtained from the Gaussian fits. 

 It would be very useful to have another criterion for choosing the optimal value of nS 

that is not based on an analysis of the shape of the interfacial distributions. As we have 

mentioned previously, in the improved version of the ISM method [22] successive molecules 

are incorporated into the interfacial layer based on their proximity to the surface function, until 

nS reaches the predefined value. For the highest values of nS considered here, we have plotted 

the distance to the surface of each molecule that is iteratively added to the list (τ), averaged over 

all configurations of the trajectory. Such plots are shown in Figure 3 for both components, 

starting from the initial estimates of surface sites, i.e. the ones closest to the opposite phase. 

Each point of the curve corresponds to one iteration, and represents the distance between the 

new pivot site and the surface function calculated in the previous step of the method, as a 

function of the surface density nS at the instant of adding the new pivot site to the list. As 

expected, the distance to the surface increases monotonically as the surface density increases. 
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However, some interesting insight can be obtained by analyzing the curvature of the plots. The 

first (convex) part of the curves shown in Figure 3 simply reflects the successive addition of 

molecules that are already very close to this first estimate of the surface. As nS increases further, 

τ increases gradually, but now with a negative curvature. At a certain stage, however, the 

curvature changes once more, until it levels off in a plateau for high values of nS. This behavior 

reflects the layering structure of each phase. As successive molecules that truly belong to the 

interfacial layer are incorporated, τ becomes increasingly larger (concave shape) due to the 

addition of molecules that are at the inner edge of this layer. Then, molecules that belong to the 

outer edge of the second layer start to be added, and the plot becomes convex. The plateau 

corresponds to the addition of molecules that are near the center of the second layer, and whose 

addition already has little effect on the shape of the surface function. 

 

 

Figure 3 – Average distance between molecules successively incorporated into the interfacial 

layer during each ISM iteration and the surface function from the previous step, for water 

(circles and full lines) and CCl4 (diamonds and dashed lines). The thick lines (left axis) are fits 
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of the data points (marked by symbols) to a polynomial of degree 7, and the thin lines (right 

axis) are obtained by differentiating the fitted polynomial. 

 

 Based on this analysis, it is reasonable to associate the change in slope with a separation 

between the interfacial layer and the second layer. To identify this point more precisely, we 

have fitted the data of Figure 3 to polynomial expressions (a polynomial of degree 7 was 

sufficient for an adequate description of the entire data set). The fits are shown as thick lines in 

Figure 3, while the derivatives of the fitted functions are shown as thin lines. Looking at the 

derivative, it is possible to clearly identify the inflection point for both water and CCl4 (the 

second maximum in the curve for CCl4 is merely an artifact of the statistical noise in the data at 

high surface density). The inflection points, marked with arrows in Figure 3, yield surface layer 

densities of 0.66 for CCl4 and 1.08 for water, which are both well within the optimal ranges 

found by analyzing the shape of the interfacial distributions (see Figure 2). As was observed in 

the analysis of the shape of the interfacial distributions, the inflection point is much sharper for 

the large organic molecules than for the small water molecules, for the reasons discussed above. 
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Figure 4 – Average fluctuations of the distance between molecules successively incorporated 

into the interfacial layer during each ISM iteration and the surface function from the previous 

step for water (circles). The thick line is a linear fit to the data points between 0.2 and 1.1. The 

arrow marks the point of departure from linear behavior. 

 

 The molecular layering at the interface manifests itself also in the fluctuations of the 

variable τ. In Figure 4 we plot the quantity ( )2
τ τ−  as a function of the surface layer 

density for the water surface (for the organic surface, the statistics are poor and it becomes 

difficult to discern a meaningful trend). After addition of the first few molecules, the 

fluctuations in τ increase linearly but then show a sharp increase at higher densities. This sharp 

increase arises from the fact that molecules from the second layer are being included as 

interfacial molecules, causing pronounced oscillations in the surface Fourier function and 

inducing strong fluctuations in τ. The point at which the fluctuations show a strong increase is 

observed at approximately nS=1.14, which agrees very closely with the optimal surface density 

obtained from the above analysis. 

 Our choice of optimal surface density based on the shape of the interfacial density 

distribution agrees very well with our analysis of τ, shown in Figures 3 and 4. Furthermore, our 

result for the water layer agrees very nicely with the values of 1.1 [23] and 1.15 [24] proposed 

by Tarazona and co-workers for the water/vapor interface on the basis of the shape of the 

intrinsic density profile, which further emphasizes the self-consistency of the ISM method. 

While this paper was being prepared, we became aware of a recent study by Chacón et al. [28] 

in which the authors propose alternative methods of determining the optimal surface layer 

density, based on the exchange rate of surface molecules or on the decay time of the 

autocorrelation function for the Fourier components of the intrinsic surface. The consistent 

results obtained by Chacón et al. using all the different methods are corroborated by our present 

analysis. 
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 Apart from nS, there are a few parameters in the ISM that can be adjusted, and that may 

have an effect on the accuracy and efficiency of the method. We have performed a detailed 

analysis of N0 and nM, which is presented in Supporting Information, in order to optimize the 

performance of the method. It is possible to reduce the computational requirements by 

increasing the value of N0 up to 7 without sacrificing the accuracy of the method (Figure S1). 

However, we adopt the conservative value of N0 = 5 throughout the remainder of this paper. As 

for nM, we have observed (Figure S2) that it cannot be reduced significantly below the guideline 

of M xn L σ≈  proposed by Tarazona and Chacón [21] – we have used the slightly lower values 

of 15 for water and 10 for CCl4. As pointed out by the authors themselves [21,28], a further 

reduction causes unphysical artifacts in the minimization procedure due to an overfitting effect, 

and consistent results are only obtained when the wavelength cutoff is fine-tuned at the site 

diameter. 

 

3.2 The Grid-based Intrinsic Profile method of Jorge and Cordeiro 

 Since early molecular simulation studies of liquid/liquid interfaces [29,30], the 

roughness of the interface, measured in terms of its average width and position, has been 

characterized using a grid-based method. Essentially, the plane parallel to the interface was 

divided into a grid of NG×NG squares. The local position and width of the interface were 

separately measured in each of the resulting rectangular prisms of transverse size Lx/NG, and 

then averaged over all prisms. The variation of the shape of the position and width distributions 

with increasing grid resolution (set by the parameter NG) was used to conclude that the interface 

is locally sharp but corrugated by thermal fluctuations, or capillary waves [30]. In fact, the idea 

of dividing the interfacial plane into a grid can be traced back to a theoretical paper by Weeks 

[31], which attempted to reconcile CWT with a density-functional theory description of the 

interface. In Weeks’ paper [31], the resolution of the grid was only increased up to the value of 

the bulk correlation length, beyond which CWT loses physical meaning and is no longer 

applicable. 
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 The idea of using such a grid-based method to obtain density profiles that better reveal 

the underlying structure of liquid/liquid interfaces was pioneered by Fernandes et al. [32]. The 

resulting density profiles showed pronounced oscillations near the interface, but, because the 

restriction that the grid resolution should not go beyond the bulk correlation length was still 

imposed, it was not clear whether the method did indeed yield the true intrinsic profile. Recently, 

Jorge and Cordeiro [9,33] extended this method and were able to obtain intrinsic density 

profiles that showed good agreement with profiles obtained independently by another group 

[11]. The key aspect consisted of increasing the grid resolution well beyond the bulk correlation 

length, down to atomic sizes. This is consistent with the analysis of Tarazona and co-workers 

[8,22], who unequivocally established the need to go beyond the range of validity of CWT in 

order to obtain true intrinsic density profiles. The optimum grid resolution was found to be 

approximately given by G xN L σ≈ , where σ was the diameter of the largest atomic site in 

each liquid [9,33]. Hereafter, we will call this method the Grid-based Intrinsic Profile (GIP) 

method. 

 Although the GIP method was not specifically designed to identify the complete set of 

interfacial molecules, it is interesting to analyze to which extent it is able to do so. For this 

purpose, we identify the interfacial molecules based on the limits of each phase, determined 

using the grid-based method – in each prism, the atomic site closest to the opposite phase was 

found, and the molecule to which that site belongs was labeled as interfacial. The GIP method 

was applied in this way to the water/CCl4 interface and the resulting number density 

distributions of interfacial molecules are shown in Figure 5 for several values of the control 

parameter NG. As expected, the average surface density increases with NG, since the method 

incorporates molecules that are further within each phase when the grid resolution increases. As 

observed above for the ISM, the distributions have an approximately Gaussian shape, except at 

very low resolution, when insufficient molecules are incorporated, and at high resolutions, 

where significant deviations are observed. For water, we can clearly see that the distributions 

develop a long tail extending further into the bulk phase as the resolution increases, while for 
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CCl4 the effect is even more evident, in the form of a pronounced shoulder. As for the ISM, this 

effect is due to the incorrect consideration of molecules that actually belong to the second 

molecular layer as interfacial molecules.  

 

 

Figure 5 – Number density distributions of interfacial molecules for water (left curves and left 

axis) and CCl4 (right curves and right axis) obtained from the GIP method with increasing 

values of the grid resolution – NG increases from 1 to 20 in increments of 1 from bottom to top. 

The thick red lines are fits to a Gaussian distribution for selected curves (water – 15; CCl4 – 9), 

which are shown as dashed lines. The curves for CCl4 are shifted by 0.6 nm to the right for 

clarity. 

 

 In analogy with the optimal surface density, nS, in the ISM, we expect there to exist an 

optimal value of NG that gives the best possible representation of the interfacial layer. Based on 

a previous analysis of the density profiles for other interfaces, Jorge and Cordeiro [9,33] 

concluded that the optimal value of NG should be given approximately by G xN L σ≈ . Using 

this rule for our system yields NG ≈ 16 for water and NG ≈ 11 for CCl4 (rounding to the nearest 
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integer in both cases). By integrating the respective interfacial density distributions we obtain 

the following values for the dimensionless surface density: nS = 1.02 for water and nS = 0.64 for 

CCl4. The latter result is close to the value obtained using the ISM procedure (0.66), but the 

result for water is somewhat lower than the ISM value (1.13). 

 Alternatively, one may consider that the optimal value of NG should afford the 

maximum possible resolution provided the distributions do not deviate significantly from a 

Gaussian shape. To help us find this value, we have fitted the density distributions of Figure 5 to 

a Gaussian expression, and have plotted the correlation coefficient of those fits as a function of 

NG in Figure 6. In this figure, it is easier to quantify the deviations from Gaussian shape both at 

low and at high resolutions. Applying the above criterion (points marked with arrows in Figure 

6), we see that the distributions for CCl4 indeed start to deviate significantly from a Gaussian 

shape at the value of NG ≈ 11. For water, this point is observed at NG ≈ 15, which is lower than 

the value of 16 determined above – for NG = 16 the deviations are already quite pronounced. 

This hints at a possible limitation of the GIP method, as we will discuss in more detail below 

when we directly compare the results obtained with different methods. 
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Figure 6 – Correlation coefficients obtained by fitting the interfacial density distributions 

obtained from the GIP method to a Gaussian expression, as a function of the grid resolution. 

 

 Another criterion one can use to find the optimal value of the grid resolution is to check 

the amount of overlap between the GIP distributions and the optimal ISM distributions (used 

here as a reference case). In other words, we compare the list of interfacial molecules computed 

using both methods for each configuration, and calculate the fraction of molecules that belong 

to both distributions simultaneously. The results of this procedure are shown in Figure 7 for the 

GIP distributions obtained using different values of NG. As we can see, the maximum overlap 

with the ISM distribution is reached for the organic phase with NG = 11 and for water with NG = 

16, which is in excellent agreement with the other criteria mentioned above. The percentage of 

overlap for CCl4 (about 90%) is reasonable, but it is rather low for water (about 78%). Once 

more, this is due to a limitation of the GIP method, as we will discuss below. 
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Figure 7 – Fraction of overlap between the optimal surface density distributions from the ISM 

method and the distributions obtained with the GIP method using different values of the grid 

resolution. 

 

3.3 The Identification of Truly Interfacial Molecules of Pártay et al. 

 At the same time as the work of Jorge and Cordeiro was published, Pártay et al. [10] 

developed a method for identifying the set of interfacial molecules of the water/vapor interface. 

The so-called Identification of Truly Interfacial Molecules (ITIM) method, later extended to 

liquid/liquid interfaces [15], is based on constructing a grid of test lines that run perpendicularly 

to the interface. This is achieved by dividing the interfacial plane into a grid of Ntl×Ntl squares, 

much in the same way as in the GIP method. The main difference lies in the criterion for 

identifying the interfacial molecules – whereas in the GIP method the outermost site in each 

rectangular prism is selected, in the ITIM method interfacial sites are detected based on the 

intersection with a probe sphere of a predetermined radius (RP) whose center lies on each test 

line. In practice, for each test line a probe sphere is moved from the bulk of phase i to the bulk 
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of phase j and is stopped as soon as it overlaps with an atomic site belonging to phase j. The site 

with which it overlapped is considered to belong to an interfacial molecule, and the procedure is 

then repeated for all the test lines. 

 As we will discuss in more detail in Section 3.5, the ITIM method has an important 

advantage over the GIP method – whereas in the latter decreasing the grid spacing below the 

characteristic site diameter is not physically reasonable, in the ITIM method the resolution of 

the grid can be increased indefinitely (within reason), provided the probe sphere radius retains a 

value of the order of the atomic size. However, this comes with the disadvantage of having two 

free parameters that can be adjusted (Ntl and RP). It is thus important to examine how the results 

are affected by changes in those parameters. In Figure 8, we plot the dimensionless surface layer 

density obtained with a probe sphere radius of 0.2 nm (the value recommended by Pártay et al. 

[10] in their analysis) for increasing values of Ntl. Initially, nS increases proportionally to Ntl
2 

because the grid spacing is large and each test line detects a different interfacial molecule. 

However, the curves quickly level off to a plateau at high Ntl. In this regime, very few additional 

interfacial molecules are detected by introducing new test lines, which suggests the existence of 

a limiting value of nS for a given probe sphere radius. Although this limiting value can only 

strictly be reached with an infinite number of test lines, in practice a reasonable approximation 

can be obtained with a relatively small value of Ntl. To find the necessary number of test lines, 

we have fitted the data in Figure 8 to an expression of the type: 

 

 
2

0
2

1

tl
S

tl

A N
n

A N
=

+
,        (6) 

 

where A0 and A1 are fitting parameters. Equation (6) provides an excellent fit to the data, as can 

be seen in Figure 8. From the above expression and the values of the fitting parameters, one can 

estimate the number of test lines that are necessary to obtain a surface layer density that is 

within a given tolerance (tol) of the limiting value. Using this criterion, the required value of Ntl 

is given by: 
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 1

1
tl

tol
N A

tol

−
= .        (7) 

 

For a tolerance of 2% and a probe sphere radius of 0.2 nm, we require 91 test lines for water and 

48 for CCl4. For smaller probe spheres, the required number of test lines increased only slightly, 

and was never above 100 for water. Thus, we can confidently use Ntl = 100 for water and Ntl = 

50 for CCl4. In the remainder of our analysis, however, we have adopted the conservative 

approach of using Ntl = 100 for both components. It is worth noticing that this value is twice the 

value used by Pártay et al. [10,15] – their value of Ntl = 50 corresponds to a deviation of ≈ 6% 

from the limiting density for water. 

 

 

Figure 8 – Dimensionless surface layer density obtained with the ITIM method using a probe 

sphere radius of 0.2 nm and an increasing number of test lines. The lines are fits to the data 

using equation (6). 
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 Now that Ntl has been fixed, we can analyze the effect of the probe sphere radius on the 

interfacial density distributions. These are shown in Figure 9 for several values of RP. Similar to 

what was observed in the ISM and the GIP methods, the curves have an approximately 

Gaussian shape, and deviate from this shape at both very small and very large values of RP. For 

large values of the probe sphere radius, only the outermost molecules are considered as 

interfacial, and the surface layer density is too low. When RP is too small, however, it can 

penetrate through small gaps in the interfacial layer and reach molecules that belong to the 

second molecular layer. When this happens, the distributions deviate from a Gaussian shape, 

and may even exhibit a shoulder in the direction of the bulk phase (see data for CCl4 in Figure 

9). Analogously to the control parameters in the above methods (nS in the ISM and NG in the 

GIP), an optimal value of RP, providing the best possible description of the interfacial layer, is 

expected to exist. Intuitively, as discussed by Pártay et al. [10], this value should be of the same 

order as the characteristic site diameter in each phase. 
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Figure 9 – Number density distributions of interfacial molecules for water (left curves and left 

axis) and CCl4 (right curves and right axis) obtained from the ITIM method with decreasing 

values of the probe sphere radius, from bottom to top: RP = 0.5, 0.4, 0.35, 0.3, 0.275, 0.25, 0.225, 

0.2, 0.175, 0.15, 0.137, 0.125, 0.1, 0.05 nm. The thick red lines are fits to a Gaussian 

distribution for selected curves (water – 0.137 nm; CCl4 – 0.2 nm), which are shown as dashed 

lines. The curves for CCl4 are shifted by 0.6 nm to the right for clarity. 

 

 As before, the deviations from a Gaussian shape can be more easily quantified by fitting 

the interfacial density distributions of Figure 9 to a Gaussian expression, and plotting the 

correlation coefficients as a function of the control parameter (RP in this case). The results of 

this analysis are shown in Figure 10, where we can confirm the existence of an optimal range of 

probe sphere radii where the distributions have a truly Gaussian shape. Following the same 

reasoning as in section 2, one can consider that the optimal probe sphere radius will be the 

smallest possible value of RP that still yields a Gaussian distribution (in other words, the radius 

that captures as many molecules belonging to the interfacial layer as possible, without capturing 

a significant number of molecules from the second layer). From Figure 10, we can see that this 

criterion is satisfied by RP ≈ 0.125 nm for water and RP ≈ 0.2 nm for CCl4 (points marked with 

arrows in Figure 10). 
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Figure 10 – Correlation coefficients obtained by fitting the interfacial density distributions 

obtained from the ITIM method to a Gaussian expression, as a function of the probe sphere 

radius. 

 

 Analogously to the above analysis of the GIP method, we can use the criterion of 

maximum overlap between the ITIM distributions and the reference ISM distribution to 

determine the optimal value of RP. A plot of the overlap fractions is shown in Figure 11. Once 

again, there is a clear maximum in the overlap fraction for each phase, which is observed at the 

values of RP ≈ 0.125 nm for water and RP ≈ 0.2 nm for CCl4. These values are in excellent 

agreement with the above analysis based on the shape of the interfacial density distribution, 

which confirms the consistency of the ITIM method. It is also worth noticing that the maximum 

overlap percentages (88% for water and 95% for CCl4) are significantly higher than the 

corresponding values for the GIP method, which indicates that the ITIM is doing a better job 

than the latter at finding the molecules that actually belong to the surface layer. 
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Figure 11 – Fraction of overlap between the optimal surface density distributions from the ISM 

method and the distributions obtained with the ITIM method using different values of the probe 

sphere radius. 

 

 It is worth noticing that the optimal probe sphere radius for water is somewhat below 

the value of 0.2 nm suggested by Pártay et al. [10]. Although in their later study of liquid/liquid 

interfaces [15] the authors suggested using the same probe sphere radius for both phases, our 

analysis clearly shows that a more accurate description of the system is obtained by using a 

different value of RP for each phase. This is physically reasonable, since the roughness of the 

interfacial layer is expected to depend on the molecular size and shape of the actual phase being 

analyzed. In our system, a smaller probe sphere is necessary to detect the smaller water 

molecules, while a larger probe sphere should be used for the larger CCl4 molecules. 

Interestingly, for both phases the optimal value of the probe diameter (twice the value of RP) is 

about 80% of the respective characteristic diameter, and is close to the position of the first peak 

of the respective bulk radial distribution functions (RDFs) for water oxygens (peak located at 
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0.27 nm) and for the Cl atoms of CCl4 (peak at 0.38 nm). Although this agreement may be 

fortuitous, it nevertheless corroborates the physical meaning of the probe sphere radius in the 

ITIM method, and can perhaps be used as a guideline for finding the optimal RP without 

performing an exhaustive analysis, as done here. Finally, it is important to note that the values 

of the dimensionless surface density obtained with the ITIM method using the optimal probe 

sphere radii (nS = 1.13 for water and nS = 0.66 for CCl4) are in excellent agreement with the 

results obtained using the self-consistent ISM in Section 3.1. 

 

3.4 The Surface Layer Identification of Chowdhary and Ladanyi 

 The last method we consider in this paper is the Surface Layer Identification (SLI) 

technique, proposed by Chowdhary and Ladanyi [11] for the analysis of water/alkane interfaces. 

It is based on the notion that the surface layer of a given phase must include molecules of that 

liquid that are closest to the opposite phase. Thus, the core of the SLI method is a simple search 

over all pairs of atoms belonging to the two different phases – the site of phase i that is closest 

to a given site of phase j is considered as an interfacial site, and running over all sites of phase j 

builds the surface layer of phase i. This procedure does indeed identify a set of the outermost 

molecules belonging to each phase, with the advantage, relative to the other methods, of not 

requiring the tuning of a control parameter. We will argue below, however, that such a control 

parameter is in fact necessary, due to the intrinsically fluid nature of the interface. 

 After searching for the sites with closest proximity to the opposite phase, the SLI 

method adds some more sites to the interfacial layer. For the organic phase, if a given molecule 

has a site that is considered to belong to the interface, all other sites on the same molecule that 

are closer to any water surface site were added to the list of organic interfacial sites. Here, 

instead, we consider all sites belonging to that molecule as interfacial (essentially, this is the 

same as considering the interfacial layer on a molecular basis, as was done above for the other 

methods). For the water phase, a slightly more complicated criterion is used: i) first, from all 

water molecules that are not yet part of the surface layer, those that are within a distance of 0.35 

nm (we define this variable as the overlap distance, DO) from a given surface site of the organic 
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phase are chosen; ii) for each of these water molecules, a sphere with the corresponding 

molecular diameter is projected onto the (x,y) plane; iii) if the projection of one of those water 

molecules overlaps with the corresponding projection of the organic site, then that water 

molecule is added to the interfacial layer. It should be noted here that the description of this part 

of the algorithm in the original paper [11] contains a typo – in the left column of page 15444, 

lines 7-10, where it reads “By projecting all water molecules i within 3.5 Å of each water 

surface molecule j onto the (x,z) and (y,z) plane, if i and j overlap, molecule i is added to the list 

of surface water molecules”, it should read “By projecting all water molecules i within 3.5 Å of 

each organic surface molecule j onto the (x,y) plane, if i and j overlap, molecule i is added to the 

list of surface water molecules”. We have used here the correct implementation, as described 

above, following a personal communication by one of the authors [34]. 

 The interfacial density distributions obtained using the SLI method are shown as thick 

dashed lines in Figure 12. For the organic component, the distribution is similar to the ones 

obtained using the previous methods, although the average surface density is somewhat lower 

(nS = 0.59 for CCl4). For the water phase, however, only a very small number of molecules are 

included in the second step of the SLI method (compare distributions for DO = 0 and DO = 0.35 

nm in Figure 12), and the average surface density (nS = 0.64 for water) is much lower than with 

the other methods. These differences are due to the fact that the SLI method only considers as 

interfacial molecules those that are in direct contact with the opposite phase. In the case of water, 

this procedure ignores many molecules that are not in direct contact but that still belong to the 

interfacial layer. 
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Figure 12 – Number density distributions of interfacial molecules for water (left curves and left 

axis) and CCl4 (right curves and right axis) obtained from the “extended” SLI method. The 

distributions are calculated for increasing values of the overlap distance, from bottom to top: DO 

= 0.0, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7 and (for CCl4 only) 0.9 nm. The thick dashed lines 

correspond to the original version of the SLI method. The thick red lines are fits to a Gaussian 

distribution for selected curves (water – 0.5 nm; CCl4 – 0.45 nm). The curves for CCl4 are 

shifted by 0.6 nm to the right for clarity. 

 

 In the other three methods studied here, one is able to adjust a control parameter so that 

all molecules that belong to the interfacial layer are detected, at the same time minimizing the 

inclusion of molecules belonging to the second layer. In the ISM (Section 3.1), this is achieved 

by selecting the optimal surface layer density, nS; for the GIP method (Section 3.2), the grid 

resolution can be tuned by manipulating NG; for the ITIM procedure (Section 3.3), the control 

parameter is the probe sphere radius, RP. This strongly suggests that a control parameter is in 

fact necessary to adequately cope with the fluid nature of liquid/liquid interfaces – without it, 

one cannot guarantee that all (and not more than) the interfacial molecules are detected. Thus, 
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we have attempted to extend the SLI method by including a control parameter. The simplest 

choice is the overlap distance used for including additional water molecules in the second step 

of the original method. So, in our “extended” version of SLI (SLIx) the first step is identical to 

the original method, while the second step (applied now to both water and CCl4) adds molecules 

that are within a distance DO (where DO is now allowed to vary) from any surface site of the 

opposite phase determined in the first step, provided their projections onto the (x,y) plane 

overlap. 

 The resulting distributions from the SLIx method are shown in Figure 12 for several 

values of DO. As the overlap distance increases, more molecules are added to the interfacial list, 

and the surface density increases. Interestingly, we observed that this increase was practically 

linear for both components. In analogy with the other methods, one might expect the existence 

of an optimal value of DO that gives the best possible representation of the interfacial layer. To 

find out if this is the case, we have fitted the distributions of Figure 12 to a Gaussian expression, 

and have plotted the corresponding correlation coefficients in Figure 13. It can be seen that the 

distributions start off very close to a Gaussian shape (recall that here the first distribution, for 

DO = 0 nm, already corresponds to a relatively high surface density) but deviate from this shape 

for large values of the overlap distance. As before, we consider as an optimal choice the value 

of the control parameter right before a significant decrease is observed in the correlation 

coefficient. The corresponding values, marked with arrows in Figure 13, are DO = 0.52 nm for 

water and DO = 0.42 nm for CCl4, which correspond to average surface layer densities of nS = 

1.14 for water and nS = 0.64 for CCl4. These results are now significantly closer to those 

obtained using the other methods. 

 

Page 29 of 41

ACS Paragon Plus Environment

Submitted to The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 

Figure 13 – Correlation coefficients obtained by fitting the interfacial density distributions 

obtained with the SLIx method to a Gaussian expression, as a function of the overlap distance. 

 

 The determination of the optimal value of the control parameter DO based on the shape 

of the interfacial density distribution, as shown in Figure 13, is less clear than for the other 

methods studied here. A clearer criterion is to choose the value of DO that maximizes the 

overlap with the reference ISM distribution. The degree of overlap for each phase, as a function 

of DO is plotted in Figure 14. As for the other methods, there exists a clear maximum in the 

overlap fraction. The optimal values thus obtained are DO = 0.52 nm for water and DO = 0.45 

nm for CCl4, which agree well with the values determined from the Gaussian fits. The 

maximum overlap percentages for the SLIx are identical to those obtained with the ITIM 

method (Figure 11). 
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Figure 14 – Fraction of overlap between the optimal surface density distribution from the ISM 

method and the distributions obtained with the SLIx method using different values of DO. 

 

3.5 Comparison between all methods. 

 After finding the optimal values of the control parameters for each method, as well as 

optimizing their protocols, we are now in an ideal position to directly compare the results 

obtained from the four different approaches. In Figure 15 we plot the interfacial density 

distributions for both components calculated with the optimal values of control parameters for 

each method. In line with the discussion above, it is clear that the ISM, the ITIM and the SLIx 

methods all yield distributions that are in excellent agreement with each other. Quantitatively, 

the degree of overlap between these three methods is quite significant (95% for CCl4 and almost 

90% for water). The GIP method, however, gives results that are only slightly off for CCl4, but 

are in significant disagreement with the other methods for water (the agreement is not improved 

by using NG = 15 instead of 16). This is due to the limitation that the grid spacing in the GIP 

method cannot be increased beyond the order of atomic size. If this happens, the cross-sectional 
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area of each prism is small enough to penetrate between gaps in the interfacial layer, and reach 

molecules that belong to the second layer, introducing a systematic error into the results. This 

effect is, of course, much more pronounced for water, due to its small size. 

 

 

Figure 15 – Number density distributions of interfacial molecules for water (left curves and left 

axis) and CCl4 (right curves and right axis) obtained from the four methods studied here: ISM – 

thick red line; GIP – dashed-dotted green line; ITIM – thin black line; SLIx – dashed blue line. 

 

 In the individual analysis of each method, we assessed the deviations of the interfacial 

density distributions from a Gaussian shape by plotting the correlation coefficients of the fits as 

a function of the control parameter of each method. However, it is also possible to plot all the 

data together by using the dimensionless surface layer density as a free variable (for the ISM 

method, nS itself is the control parameter). The results are shown in Figure 16 separately for the 

two components. As we can see, there is a good overlap between the ISM, the ITIM and the 

SLIx methods in the region of interest, and the optimal density corresponds, in all three cases, to 

the highest value before the curves start to deviate significantly from a Gaussian shape. For the 
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GIP method, however, deviations from a Gaussian shape are already significant well before the 

optimal surface layer density is reached. Once again, the effect is much more pronounced in the 

case of the water surface. 
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Figure 16 – Correlation coefficients obtained by fitting the interfacial density distributions 

obtained with the four methods studied here to a Gaussian expression, as a function of the 

dimensionless surface layer density, for: a) water; b) CCl4. 

 

 Finally, we can quantitatively assess the precision of the different methods in obtaining 

the correct surface layer densities for each phase, as well as their efficiency in terms of 

computational time (see Table 1). The densities obtained using the ISM method are taken as 

reference values, since this method was shown to be the most self-consistent procedure. Indeed, 

it permits direct and precise control of the surface layer density, and allows for a seemingly 

unambiguous way to determine the optimal value of the control parameter nS, either using the 

techniques proposed in this paper (see Figures 2-4) or in the recent study by Chacón et al. [28]. 

Unfortunately, it is extremely computationally intensive (slower than the other methods by 

about two orders of magnitude) mostly because the set of equations (5) has to be solved at each 

step of the iteration. We have shown that it is possible to speed up the computation by using 

fewer wavevectors in the sum over Fourier components (although not much fewer than the 

value recommended by Chacón and Tarazona [21]) and starting from an initial estimate of the 

surface sites that is closer to the final result (within limits). However, even with this 

optimization, the method is still much more intensive than the others (the value shown in Table 

1 corresponds to a run with nM = 15 for water, nM = 10 for CCl4, and N0 = 7). 

 The GIP method yields surface layer densities that are somewhat below the ISM values, 

particularly for water, due to the limitations discussed above. Furthermore, it has the 

disadvantage of requiring an integer control parameter (e.g., it is impractical to divide the 

interfacial plane into a grid of, say, 15.3×15.3 squares). However, it is by far the fastest of all 

methods studied. Indeed, it was designed to yield a fast procedure to discretize the interface, so 

that intrinsic profiles could be easily calculated. The limitations of the method, however, 

introduce a systematic error when it is used to identify the true set of interfacial molecules. This 

happens because the GIP method searches for the outermost atomic centers located in each 

rectangular prism arising from the division of the interfacial plane into a grid. When the cross-
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section of the prism is smaller than the average spacing between two neighboring interfacial 

molecules (i.e., when the grid spacing goes below the characteristic atomic size), it becomes 

likely that a given prism does not “find” the center of an interfacial site, even if parts of the 

exclusion sphere of that site are indeed located within the prism. In this case, the search stops 

most often at the atomic center of a site belonging to the second layer beneath the interface. One 

possibility to circumvent this limitation is to introduce a criterion of overlap with the exclusion 

sphere of atomic sites in each prism, rather than searching only for the atomic centers. If the 

most efficient criterion, based on the overlap between two spheres, is used, the GIP method 

becomes conceptually identical to the ITIM. 

 The ITIM method gives results that are in remarkable agreement with the ISM, and is 

faster than the latter by a factor of ≈ 200. This makes it the ideal choice for identifying the true 

set of interfacial molecules in a liquid/liquid system (and probably also in a liquid/vapor 

system). Finally, the SLI method yielded only a distribution of molecules that are in direct 

contact with the opposite phase, missing several molecules that do not obey this criterion but are 

nevertheless part of the interfacial layer. Modifying this method by introducing a control 

parameter (the overlap distance), we were able to obtain results in good agreement with the ISM 

values. However, the optimal value of DO is more difficult to identify than in the other methods, 

and we are unsure whether some well-defined physical meaning can be ascribed to it. Other 

choices of control parameter are obviously possible, but we did not pursue this avenue here. 

Furthermore, because interfacial molecules are chosen based on proximity to surface molecules 

of the opposite phase, a correlation between the two surfaces is introduced. Such a correlation is 

most likely unphysical, as has been demonstrated in a recent study by Hantal et al. [35]. The 

SLI method also has the important disadvantage of being inapplicable (in its present form) to 

liquid/vapor interfaces – it is not easy to determine which water molecules are in closest 

proximity to the vapor phase. In terms of efficiency, the SLIx method is about 1.5 times slower 

than the ITIM method, for a slightly lower precision. 
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Table 1 – Comparison of the precision and computational efficiency of the different methods 

for finding the interfacial molecules. 

Method Control Parameter nS Water nS CCl4 Timea (s) 

ISM nS 1.13 0.66 360.6 

GIP NG 1.02 0.64 0.046 

ITIM RP 1.13 0.65 1.751 

SLI -- 0.64 0.59 2.631 

SLIx DO 1.14 0.64 2.642 

a – Time taken to find the distribution of interfacial molecules in a single configuration. 

 

4. Conclusions 

 In this paper we have presented a detailed comparison between several methods for 

intrinsic analysis of liquid interfaces, using as a prototype the water/CCl4 interface, and focusing 

on their ability to consistently identify the set of molecules located at the surface of each phase. 

An important conclusion that arises from the application of these methods is the existence of a 

degree of molecular layering in the vicinity of the interface. Thus, a key aspect that controls the 

effectiveness of each method is a correct discrimination between molecules that belong to the 

first molecular layer (or interfacial layer) and those that are already part of the second molecular 

layer beneath the surface. We have shown that such discrimination requires the existence of a 

control parameter that can be fine-tuned to yield physically reasonable results. In the case of the 

ISM method, the control parameter is the surface layer density, and a recent study by Chacón et 

al. [28] demonstrates the self-consistency of different alternatives for determining the optimal 

value of this parameter. Here, we corroborate the conclusions of those authors, propose an 

additional alternative for finding the optimal surface density, and suggest possible ways to 

improve the computational efficiency of the method. 

 The ISM, however, suffers from the disadvantage of being highly computationally 

intensive, which emphasizes the need for more efficient methods that are able to accurately 

identify the true set of interfacial molecules. The ITIM method emerges from the present study 
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as the most promising alternative to the ISM, since it is able to yield very similar results for the 

interfacial distributions but at a much lower computational cost. Nevertheless, we have shown 

here that care must be taken to ensure a sufficiently large density of test lines in the procedure, 

and to choose values of the probe sphere diameter (the ITIM control parameter) that are 

adequate for each phase. The optimal values of RP were seen to have a physical meaning, being 

about half of the position of the first peak of the characteristic bulk RDF for each fluid. The GIP 

method is even faster than the ITIM (by more than an order of magnitude), but suffers from a 

severe limitation: because it searches only for molecular centers in each position of the grid, the 

grid resolution cannot be increased beyond a characteristic atomic site, which introduces a 

systematic error in the identification of interfacial molecules. The ITIM method can be thought 

of as an extension of the GIP method using a criterion based on overlap between exclusion 

spheres, and is thus able to overcome the limitations of the latter. Finally, we have proposed an 

extension to the SLI method by introducing as a control parameter the overlap distance between 

atoms on opposite phases – the original SLI method possessed no control parameter and was 

thus able to identify only a subset of the interfacial molecules. This SLIx method does indeed 

yield results that are consistent with the ISM and the ITIM, but it is somewhat slower than the 

latter. More importantly, its application is currently restricted to liquid/liquid interfaces because 

it relies on a criterion that depends on proximity to molecules of the opposite phase, while the 

other three methods can be applied to liquid/vapor interfaces as well. 

 We should emphasize that the present paper only aims to compare the ability of the 

different methods for identifying the true set of interfacial molecules, and calculating the correct 

surface layer densities. In that sense, it should be expected that the methods that perform best 

(the ISM and the ITIM) were those that were designed with this objective in mind, and that is 

indeed the case. However, we say nothing about the ability of each method for computing 

intrinsic profiles. It is possible, for example, that the systematic error introduced by the GIP 

method in the detection of interfacial molecules becomes negligible when the profiles are 

computed. This issue assumes an even bigger importance if we consider that the main drawback 

of the ITIM method is that it currently proposes no procedure for the calculation of intrinsic 
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profiles. We propose to analyze these aspects, related to the computation of intrinsic density 

profiles, in a subsequent publication. 
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TOC GRAPHIC 

 

 

Number density distributions of interfacial molecules for water (left-hand side) and CCl4 (right-

hand side) obtained from the Grid-based Intrinsic Profile method with increasing grid resolution. 

There is an optimal resolution that yields the best possible description of the surface layer. 
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