
Genome Biology 2008, 9:S2

Open Access2008Peña-Castilloet al.Volume 9, Suppl 1, Article S2Research

A critical assessment of Mus musculus gene function prediction using 
integrated genomic evidence
Lourdes Peña-Castillo1, Murat Taşan2, Chad L Myers3, Hyunju Lee4, 
Trupti Joshi5, Chao Zhang5, Yuanfang Guan3, Michele Leone6, 
Andrea Pagnani6, Wan Kyu Kim7, Chase Krumpelman8, Weidong Tian2, 
Guillaume Obozinski9, Yanjun Qi10, Sara Mostafavi11, Guan Ning Lin5, 
Gabriel F Berriz2, Francis D Gibbons2, Gert Lanckriet12, Jian Qiu13, 
Charles Grant13, Zafer Barutcuoglu14, David P Hill15, David Warde-Farley11, 
Chris Grouios1, Debajyoti Ray16, Judith A Blake15, Minghua Deng17, 
Michael I Jordan18, William S Noble19, Quaid Morris1,11,20, Judith Klein-
Seetharaman21, Ziv Bar-Joseph10, Ting Chen22, Fengzhu Sun22, 
Olga G Troyanskaya3, Edward M Marcotte7, Dong Xu5, 
Timothy R Hughes1,20 and Frederick P Roth2,23

Addresses: 1Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada. 2Department of 
Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 3Lewis-Sigler Institute for Integrative 
Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. 4Department of Information and 
Communications, Gwangju Institute of Science and Technology, Gwangju, 500-712 Republic of Korea. 5Digital Biology Laboratory, Computer 
Science Department and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. 6ISI Foundation, Torino, 
10133, Italy. 7Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 
78712, USA. 8Department of Electrical and Computer Engineering, Institute for Cellular and Molecular Biology, University of Texas at Austin, 
Austin, TX 78712, USA. 9Department of Statistics, UC Berkeley, Berkeley, CA 94720-3860, USA. 10School of Computer Science, Carnegie Mellon 
University, Pittsburgh, PA 15213, USA. 11Department of Computer Science, University of Toronto, Toronto, ON M5S3G4, Canada. 12Department 
of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093-0407, USA. 13Department of Genome Sciences, University of 
Washington, Seattle, WA 98195-5065, USA. 14Department of Computer Science, Princeton University, Princeton, NJ 08544, USA. 
15Bioinformatics and Computational Biology, The Jackson Laboratory, Bar Harbor, ME 04609, USA. 16Gatsby Computational Neuroscience 
Unit, London, WC1N 3AR, UK. 17School of Mathematical Sciences and Center for Theoretical Biology, Peking University, Beijing 100871, PRC. 
18Department of Electrical Engineering and Computer Science, and Department of Statistics, UC Berkeley, Berkeley, CA 94720-1776, USA. 
19Department of Genome Sciences, and Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA. 
20Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada. 21Department of Structural Biology, 
University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA. 22Molecular and Computational Biology Program, Department of 
Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. 23Center for Cancer Systems Biology, Dana-Farber Cancer 
Institute, Boston, MA 02115, USA. 

Correspondence: Timothy R Hughes. Email: t.hughes@utoronto.ca. Frederick P Roth. Email: fritz_roth@hms.harvard.edu

© 2008 Peña-Castillo et al; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published: 27 June 2008

Genome Biology 2008, 9:S2

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2008/9/S1/S2

http://genomebiology.com/2008/9/S1/S2
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Genome Biology 2008, 9:S2

http://genomebiology.com/2008/9/S1/S2 Genome Biology 2008,     Volume 9, Suppl 1, Article S2       Peña-Castillo et al. S2.2

Abstract

Background: Several years after sequencing the human genome and the mouse genome, much

remains to be discovered about the functions of most human and mouse genes. Computational

prediction of gene function promises to help focus limited experimental resources on the most

likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in

model organisms; however, the performance of such approaches in mammals has not yet been

evaluated.

Results: In this study, a standardized collection of mouse functional genomic data was assembled;

nine bioinformatics teams used this data set to independently train classifiers and generate

predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the

best performing submissions were combined in a single set of predictions. We identified strengths

and weaknesses of current functional genomic data sets and compared the performance of function

prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000

currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41%

precision, with 26% of GO terms achieving a precision better than 90%.

Conclusion: We performed a systematic evaluation of diverse, independently developed

computational approaches for predicting gene function from heterogeneous data sources in

mammals. The results show that currently available data for mammals allows predictions with both

breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse

genes that remain uncharacterized.

Background
Determination of gene function is a central goal of modern

biology, and is a starting point for detailed mechanistic stud-

ies. Computational approaches can provide predictions of

gene function based on the integration of heterogeneous data

sources [1-10]. These predictions can serve as a principled

method of 'triage', focusing experimental resources on the

hypotheses (predictions) that are more likely to be true.

Moreover, predictions that are associated with measures of

confidence allow experimental biologists to adjust the

number of predictions they are willing to consider based on

the trade-off between false positive rate, the importance of

the biological question, and the cost of follow-up experi-

ments. For example, mouse researchers have been faced for

years with the problem of deciding which genes to mutate in

reverse-genetic studies, and the problem of deciding which

physiological and molecular phenotypes to assay for each

mutant strain. Today, there are thousands of Gene Trap alle-

les [11], and within a few years investigators will have access

to a virtually complete collection of engineered knockouts

[12]. Issues of both expense and ethics that are associated

with model organism experiments motivate the thoughtful

justification of planned experiments.

Several algorithms have been applied to heterogeneous data

sources to predict gene function [1-10,13], with the integra-

tion of these sources clearly improving prediction perform-

ance [14,15]. However, these studies have been primarily

focused on the yeast Saccharomyces cerevisiae and other

non-mammalian model organisms [16-18], and it has not

been clear how well such algorithms will scale to the large

genomes and networks of mammals, despite the basic

genetic, biochemical and cellular organizational principles

that are shared across the eukaryotic kingdom [19-21]. More-

over, it is unclear whether accurate function predictions can

be made given the amount and quality of genomic and func-

tion annotation data available for mammals. (Although genes

with even a single annotation are often referred to as genes of

'known function', only a minority has been exhaustively stud-

ied. Therefore, most 'known function' genes are still incom-

pletely annotated.) Although comparisons using

standardized data sets and performance criteria are the best

way to assess the strengths and weaknesses of the algorithms

employed [22-24], our ability to predict gene function using

integrated genomic data has not been systematically com-

pared in this way across multiple bioinformatics groups in

any organism.

We assembled a large collection of Mus musculus data, inde-

pendently developed nine different computational methods

using these data to predict gene functions, and compared the

predictive performance of each submission using held-out

genes, a prospective evaluation, and a focused literature-

based assessment of the top novel predictions. We have pro-

vided confidence scores and estimates of prediction accuracy

(precision) at different levels of sensitivity (recall), and com-

bined the best submissions in a single set of predictions. We

report thousands of predicted functions for mouse genes that

are supported by multiple data types and algorithms, and

share the results via a web resource that facilitates searching
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and browsing in the context of the underlying supporting evi-

dence.

This community effort has suggested new function assign-

ments or refinements of previous annotations for the major-

ity of mouse genes. Based on a prospective evaluation of

entirely novel predictions, including many for uncharacter-

ized (without any function annotations) genes, we expect that

predictions provided here will productively guide further

experimentation towards more likely hypotheses.

Results
Organization of a community function prediction 

comparison

The overall structure of our study was to provide groups of

investigators (participants) with a collection of data sets in

which the gene identifiers were standardized and associated

with known functional annotations. The participants then

used their algorithms to assign a score reflecting confidence

in whether each gene had each function. To enable evaluation

of the results, and to calibrate confidence scores for novel pre-

dictions within each category, a subset of genes with known

functions was 'held out' (that is, function annotations were

not given to the participants).

We therefore began by assembling an extensive collection of

M. musculus data, including gene expression across multiple

tissues, protein sequence pattern annotations, protein-pro-

tein interactions, phenotype annotations, disease associa-

tions (of human orthologs), gene function annotations, and

phylogenetic profiles from a variety of publicly available

sources. (Table 1 summarizes the data sources; for a full

description of the data see the references cited in Table 1.)

These data sets were chosen because they encompass many

genes, and have been shown to contain information reflecting

gene function [7,21,25-27]. Protein interaction data include

'interologs' transferred from other organisms via orthology

[28,29]. To avoid circularity, the data collection did not

directly include protein or DNA sequences, since homology

was employed in establishing many of the annotations, but

allowed sequenced-based inference indirectly via phyloge-

netic profiles and matches to protein sequence patterns. The

complete data collection is available from the MouseFunc I

website [30].

To integrate these diverse data sets and associate them with

functional annotations, we mapped the gene (or gene prod-

uct) identifiers used in each data set to a common set of

Mouse Genome Informatics (MGI) gene identifiers (as

defined 21 February 2006), which are, in turn, associated

with Gene Ontology (GO) terms curated by MGI [31,32].

Thus, annotations for each gene were the union of annota-

tions made to the set of the gene products for that gene. We

excluded GO annotations based solely on the 'inferred from

electronic annotation' (IEA) evidence code, since many of

these annotations are themselves computational predictions

that have not been reviewed by a curator [33]. We also

excluded GO terms with too few training examples, that is,

those annotated to fewer than three genes in the training set,

expecting that it would be extremely difficult for current clas-

sifiers to deal with such a limited number of positive training

examples. To focus on predictions most likely to suggest spe-

cific follow-up experiments, we considered only GO terms

associated with 300 or fewer mouse genes in the training set.

(This threshold was chosen by manually examining GO terms

ranked in descending order by the number of genes currently

annotated to each term, and subjectively assessing whether

predictions of that GO term would immediately suggest a fol-

low-up validation experiment.) The final data collection con-

tained information on 21,603 MGI genes, of which 8,506

were associated with at least one of the 2,815 individual GO

terms we considered.

An invitation to participate in this assessment was circulated

among research groups known to work in gene function pre-

diction. Nine groups ultimately participated by submitting

predictions. (For a brief description of the methods used by

each, see Table 2; for more details see Additional data files 20

and 21.) The data and annotations were distributed in a form

intended to prevent participants from using additional data

sources, and to enable cross-validation. First, data were dis-

tributed to participants in an 'anonymized' form, with each

MGI gene identifier replaced with a randomly generated

identifier and presented to participants in permuted order.

Thus, participants made predictions without knowing the

gene identities or any gene information outside the training

data. Second, annotations were omitted for a randomly

selected 10% of genes (the 'held-out set').

Each group developed and implemented their prediction

methodology independently. Each submission was required,

for each gene-GO term combination, to include a score (rang-

ing from 0 to 1) reflecting prediction confidence. The data col-

lection was released in July 2006 (with GO annotations

obtained from the GO website on 17 February 2006; version

1.612). Initial prediction results were submitted in October

2006, with seven groups submitting complete prediction sets.

After viewing performance measures (but not gene identities

or information on the veracity of any specific prediction), it

was noted that some groups did not provide a complete set of

predictions; also, one group withdrew their predictions upon

discovering a coding error. In an effort to increase the

number and quality of submitted predictions, all groups were

given the opportunity to alter their methods and submit new

predictions for a second December 2006 deadline, and five

groups did so.

Performance evaluation

To evaluate each set of predictions, we first used the set of

held-out genes. GO annotations are an evolving target (anno-

tations are continuously added, deleted, and modified),
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which enabled us also to perform a prospective evaluation.

For this purpose, we also identified the set of genes that had

newly acquired an association to a GO term during the eight

months since downloading of the version of MGI GO annota-

tion used in training. The GO annotations used for prospec-

tive evaluation were obtained from the GO website on 20

October 2006 (version 1.641). To obtain a baseline perform-

ance against which to compare predictions from each

approach, we employed a naïve Bayes 'straw man' approach.

To train this 'straw man' classifier, we used the six sets of

binary gene features that are natively in the (gene, property)

form, and did not use feature selection (Additional data file

21). We assessed success for each GO term using area under

the receiver operating characteristic (ROC) curve (AUC) [34];

precision was assessed at several fixed recall values (all meas-

ures used are defined in Materials and methods). For evalua-

tion purposes, we grouped GO terms in twelve evaluation

categories corresponding to all combinations of the three GO

branches - Biological process, Molecular function, or Cellular

component - with four ranges of 'specificity', that is, the

number of genes in the training set with which each term is

annotated ({3-10}, {11-30}, {31-100}, and {101-300}).

Figure 1 shows some performance measures of the first round

of submissions. Note that team I submitted partial results and

was, therefore, not assessed for overall performance in each

evaluation category. Team E's results for the prospective eval-

uation were based on a partial implementation of their algo-

rithm (see details in Additional data file 20, Box 5). Figure

1a,b shows the mean AUC of GO terms within each evaluation

category, evaluated using the held-out and newly annotated

genes, respectively. Figure 1c,d shows for each submission

how often its AUC value was significantly better (or worse)

than the AUC value of another submission. We assessed sig-

nificance of difference in AUC between two submissions for

each GO term (α = 0.05) using a Z-test [34].

In this analysis, most submissions beat the 'straw man' in all

categories (both by mean AUC and by number of wins and

losses); however, the overall differences among groups were

not dramatic. (See Additional data file 1 for a summary of the

number of significant wins and losses per evaluation cate-

gory.) The complete set of performance measures evaluated

with the held-out gene set may be found in Additional data

file 7 (initial predictions) and Additional data file 9 (revised

predictions), while the corresponding prospective evaluation

results may be found in Additional data files 8 and 10. Per-

formance measures reported here are conservative in the

sense that false positive predictions (genes predicted as hav-

ing a GO term that were not currently annotated with that GO

term) may actually be correct but not yet annotated as such.

In contrast to AUC, the precision at fixed recall values was

dramatically higher for all submissions than for the 'straw

man'; Figure 1e,f shows the proportion of GO annotations

reaching various precision values at 20% recall (a threshold

Table 1

Data collection description: summary of the data sources

Data type Description Representation

Gene expression Expression data from oligonucleotide arrays for 13,566 genes 
across 55 mouse tissues (Zhang et al. [21])

Median-subtracted, arcsinh intensity measurements

Expression data from Affymetrix arrays for 18,208 genes 
across 61 mouse tissues (Su et al. [44])

gcRMA-condensed intensity measurements

Tag counts at quality 0.99 cut-off from 139 SAGE libraries for 
16,726 genes [45]

Average and total tag counts

Sequence patterns Protein sequence pattern annotations from Pfam-A (release 
19) for 15,569 genes with 3,133 protein families [46]

Binary annotation patterns

Protein sequence pattern annotations from InterPro (release 
12.1) for 16,965 genes with 5,404 sequence patterns [47]

Binary annotation patterns

Protein interactions Protein-protein interactions from OPHID for 7,125 genes 
[28] (downloaded on 20 April 2006)

Binary interaction patterns and shortest path between genes

Phenotypes Phenotype annotations from MGI for 3,439 genes with 33 
phenotypes [48] (downloaded on 21 February 2006 from 
[49])

Binary annotation patterns

Conservation profile Conservation pattern from Ensembl (v38) for 15,939 genes 
across 18 species [50]

Binary conservation patterns and conservation scores

Conservation pattern from Inparanoid (v4.0) for 15,703 genes 
across 21 species [51]

Binary conservation patterns and Inparanoid scores

Disease associations Disease associations from OMIM for 1,938 genes to 2,488 
diseases/phenotypes [52,53] (downloaded on 6 June 2006 
from [54])

Binary annotation patterns

gcRMA, robust multi-array analysis with background adjustment for GC content of probes; OMIM, Online Mendelian Inheritance in Man; OPHID, 
Online Predicted Human Interaction Database; SAGE, serial analysis of gene expression.
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selected as 'midrange' for display). Additional data file 2

shows the mean precision at 20% recall for GO terms within

each evaluation category, evaluated using both held-out and

newly annotated genes. Due to the small number of positives

(genes carrying a given annotation) relative to negatives

(genes that do not carry the annotation), this characteristic

would usually be reflected only in the very left part of the

ROC, and is not generally captured by the more commonly

used AUC measure. However, precision is a more relevant

measure to many end users, since it reflects the proportion of

validation experiments for top-scoring predictions that would

prove successful.

Performance of all submissions differed markedly depending

on whether evaluation was on the held-out genes or on newly

annotated genes (Figure 1a,c,e compared with Figure 1b,d,f),

suggesting that emerging annotations are qualitatively differ-

ent from a random sample of previously existing annotations

- a variable that is only rarely considered in large-scale pre-

dictions of gene function.

In fact, the main type of evidence supporting the annotations

differs between the new and the held-out annotations; while

50% and 2.5% of newly acquired annotations were derived

from sequence or structural similarity (ISS) and reviewed

computational analysis (RCA), respectively, the correspond-

ing proportions for held-out annotations were 9% and 31%

(Additional data file 3).

Figure 2 shows the performance of the second round of sub-

missions (Additional data file 2). In most cases, revised pre-

dictions slightly outperform the original ones. All subsequent

Table 2

Brief description of function prediction methods used

Submission
identifier

Approach Name Author initials

A Compute several kernel matrices (SVM) for each data 
matrix, train one GO term specific SVM per kernel, and 
map SVMs' discriminants to probabilities using logistic 
regression

Calibrated ensembles of SVMs GO, GL, JQ, CG, MJ, and WSN

B Four different kernels are used per data set. Integration of 
best kernels and data sources is done using the kernel 
logistic regression model

Kernel logistic regression [55] HL, MD, TC, and FS

C Construct similarity kernels, assign a weight to each kernel 
using linear regression, combine the weighted kernels, and 
use a graph based algorithm to obtain the score vector

geneMANIA SM, DW-F, CG, DR, and QM

D Train SVM classifiers on each GO term and individual data 
sets, construct several Bayesian networks that incorporate 
diverse data sources and hierarchical relationships, and 
chose for each GO term the Bayes net or the SVM 
yielding the highest AUC

Multi-label hierarchical classification 
[56] and Bayesian integration

YG, CLM, ZB, and OGT

E Combination of an ensemble of classifiers (naïve Bayes, 
decision tree, and boosted tree) with guilt-by-association 
in a functional linkage network, choosing the maximum 
score

Combination of classifier ensemble and 
gene network

WKK, CK, and EMM

F Code the relationship between functional similarity and 
the data into a functional linkage graph and predict gene 
functions using Boltzmann machine and simulated 
annealing

GeneFAS (gene function annotation 
system) [2,3]

TJ, CZ, GNL, and DX

G Two methods with scores combined by logistic regression: 
guilt-by-association using a weighted functional linkage 
graph generated by probabilistic decision trees; and 
random forests trained on all binary gene attributes

Funckenstein WT, MT, FDG, and FPR

H Pairwise similarity features for gene pairs were derived 
from the available data. A Random Forest classifier was 
trained using pairs of genes for each GO term. Predictions 
are based on similarity between the query gene and the 
positive examples for that GO term

Function prediction through query 
retrieval

YQ, JK, and ZB

I Construct an interaction network per data set, merge data 
set graphs into a single graph, and apply a belief 
propagation algorithm to compute the probability for each 
protein to have a specific function given the functions 
assigned to the proteins in the rest of the graph

Function prediction with message 
passing algorithms [57]

ML and AP

AUC, area under the receiver operating characteristic curve; GO, Gene Ontology.
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Measures of performance for the initial round of GO term predictionsFigure 1

Measures of performance for the initial round of GO term predictions. (a)  Mean area under the receiver operating characteristic curve (AUC) within 
each evaluation category, evaluated using the held-out genes. Gene Ontology Biological process (GO-BP), Cellular component (GO-CC), and Molecular 
function (GO-MF) branches are indicated on the x-axis, grouped by specificity (indicated by the minimum number of genes in the training set associated 
with each GO term in a given category). Upper case letters associated with the color code correspond to submission identifier. (b) Mean AUC  within 
each evaluation category, evaluated prospectively using newly annotated genes. (c) For each pair of submissions X and Y, we test for difference in AUC 
value for every GO term (evaluated using held-out genes). Color bars indicate fraction of pairwise comparisons for which X's AUC is significantly higher 
(blue), not significantly different (beige), and significantly lower (maroon). (d) As (c), except evaluated using the newly annotated genes. (e) The fraction of 
GO terms exceeding the indicated precision at 20% recall (P20R) value, evaluated using held-out genes. The black line corresponds to the fraction of GO 
terms for which the 'straw man' approach achieved the indicated precision. (f) As (e), except with P20R values derived prospectively from newly 
annotated genes.
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Measures of performance for the second round of GO term predictionsFigure 2

Measures of performance for the second round of GO term predictions. (a, b) As described in Figure 1a, b, except that the gray color area indicates 
performance in the first set of submissions. (c-f) As described in Figure 1c-f, except that asterisks in (c) and (d) indicate second-round submissions and 
dashed lines in (e) and (f) indicate the performance of an earlier submission by the same group. GO, Gene Ontology.



Genome Biology 2008, 9:S2

http://genomebiology.com/2008/9/S1/S2 Genome Biology 2008,     Volume 9, Suppl 1, Article S2       Peña-Castillo et al. S2.8

analyses described here used only one submission per group,

choosing the most recent where there were two submissions.

The complete evaluation results are available from the

MouseFunc I website [30].

Factors affecting prediction performance

To ask whether some data sets were more useful than others,

and how their value might vary among evaluation categories,

we applied a simple guilt-by-association approach similar to

a previously described method [35]. The confidence score for

gene X and GO term Y is simply the number of 'neighbors' of

X that are currently annotated with Y (see Materials and

methods). We evaluated performance after applying this

method to only one data set at a time. Figure 3a shows preci-

sion at 20% recall (P20R) values obtained by each submission

on every GO term, and by using each one of the data types as

input to the guilt-by-association approach. A striking obser-

vation is that protein sequence pattern annotations are the

most predictive data type overall and are especially useful for

predicting Molecular function GO terms. Expression data,

and phenotype and disease associations are important con-

tributors for more general Cellular component and Biological

process GO terms. Moreover, interaction data comprise a

remarkably useful evidence source, considering that only a

small proportion of protein interactions in mammals is

known. Figure 3a also indicates that hard to learn GO terms

are the ones where there is absence of predictive power in all

data types. This is especially clear in the specificity range {3-

10} in all GO branches. We also examined maximum coverage

(number of genes present in a given data set with at least one

annotated 'neighbor' when using the simple guilt-by-associa-

tion method), noting that this coverage allowed functional

associations for at most 30% of the 21,603 genes to be pre-

dicted given any single data set (Figure 3b).

Analysis of variance (ANOVA; Additional data file 11) verified

what is clear from Figures 1a,b, 2a,b and 3a; the branch of the

ontology is the main factor to explain variance in perform-

ance as shown in Figure 3c,d. Biological process GO terms,

which reflect what biologists would typically consider to be

physiological function of genes and most related to pheno-

types, are apparently more difficult to predict than Molecular

function or Cellular component terms. As expected, more

specific GO terms in each evaluation category were more dif-

ficult to predict.

To explore whether there were commonalities in pattern of

performance among the submissions, we examined the corre-

lations among P20R values and grouped the submissions

using hierarchical clustering (Additional data file 4). We

identified three pairs of submissions that were grouped

together by several correlation measures (data not shown).

These pairs of submissions were ('F', 'G'), ('A', 'B'), and ('C',

'D'). Submissions 'F' and 'G' both employ functional linkage,

while submissions 'A' and 'B' are mainly kernel-based meth-

ods. (Despite the fact that submissions 'E' and 'I' also used

functional linkage, their results were uncorrelated with 'F'

and 'G'.) Submissions 'A', 'B', 'C', and 'D' each used weighted

combinations of diverse data sets, but neither 'A' nor 'B' gave

highly correlated results with 'C' or 'D'. Since all participant

methods combine several algorithms, require the use of mul-

tiple parameters, and vary the procedure for feature design

and selection, it is not surprising that differences in results

cannot be simply attributed to any one algorithmic choice.

To assess the stability of the prediction performance, we

measured the performance variability in five randomly cho-

sen subsets of the training data and measured the standard

deviations of AUC and P20R performance measures within

each evaluation category. The median standard deviations of

AUC and P20R across all evaluation categories were 0.01 and

0.02, respectively, suggesting that our performance measures

were robustly determined (Additional data file 12).

One of the major challenges in training a classifier is overfit-

ting, that is, generating models that precisely fit the idiosyn-

crasies of training data at the expense of their accuracy when

applied to new data. We assessed overfitting using a standard

approach - examining the extent to which performance esti-

mates are exaggerated when one calculates them based on the

training data rather than on the held-out test set (Additional

data file 12). For example, Biological process GO terms with

specificity {31-100} had a mean P20R value that was

increased by a factor of 1.3 (averaged over all submissions)

when it was calculated based on the training data rather than

the held-out gene set.

We note that submissions 'C', 'D' and 'G' are among the top

performers on most evaluation categories by various meas-

ures. The performance of submission 'C' was particularly

strong with respect to AUC. Submission 'D' performs stably

across the range of the number of genes annotated to each GO

term and its performance was especially good for prospective

predictions. Submission 'G' has a strong performance in pre-

cision across a range of recalls (Additional data files 5 and 6).

Submission 'E' and 'H' perform better for the most specific

evaluation categories. Thus, different methods had different

strengths and no prediction method was clearly superior by

every criterion.

Integration of submissions in a single set of predictions

To simplify subsequent analyses for ourselves and other

investigators, we derived a single set of prediction scores from

the set of submitted scores. We unified the independent sub-

missions for each evaluation category by adopting the scores

from the submission with the best P20R value for that evalu-

ation category (evaluated using held-out genes). The com-

bined predictions averaged 41% precision at 20% recall with

26% of GO terms having a P20R value greater than 90%. Fig-

ure 4 indicates the proportion of GO terms at different preci-

sion and recall values. (Also see Additional data file 19;

Additional data file 13 lists the precision achieved by the uni-
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Factors affecting prediction performanceFigure 3

Factors affecting prediction performance. (a) Precision at 20% recall (P20R) values evaluated using held-out annotations on all Gene Ontology (GO) terms 
(vertical axis) within each of the 12 evaluation categories for each submission (left panel) and for a simple guilt-by association using each data set in turn as 
its sole evidence source (right panel). The number of genes in each evaluation category is shown in parentheses. GO-BP, GO Biological process; GO-CC, 
GO Cellular component; GO-MF, GO Molecular function; NB, naïve Bayes. Data sets are described in Table 1. (b) Fraction of the 21,603 genes in the data 
collection with at least one annotated neighbor per data set. (c) Analysis of variance (ANOVA), exploring the effects of various factors on P20R values. 
(d) Fraction of total variance in P20R values that is explained by each effect. Asterisks in (c, d) indicate interaction between two factors.
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Distribution of GO terms at several precision/recall performance pointsFigure 4

Distribution of GO terms at several precision/recall performance points. Proportion of Gene Ontology (GO) terms per evaluation category with a 
precision/recall performance point that is both above and to the right of a given precision/recall point in the contour plots. GO-BP, GO Biological process; 
GO-CC, GO Cellular component; GO-MF, GO Molecular function.
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fied predictions at several recall values for each GO term.) To

put this prediction performance into perspective, random

predictions for a GO term with 30 genes left to be identified

would be expected to yield a P20R value of 0.15%. In addition,

these precision estimates are conservative since many predic-

tions may ultimately prove correct despite not being currently

annotated.

Impact of predictions among GO terms for which 

precision can be well estimated

To gain insight into the potential impact of predictions on the

current state of gene function annotation, we more closely

examined a subset of GO terms in the unified set of predic-

tions. For each GO term, we established the lowest score at

which a precision of 30% or better was achieved while recov-

ering at least 10 true positives within the held-out test set

(allowing precision to be well estimated). There were 71 GO

terms with predictions meeting this criterion (tending to be

the less specific GO terms due to the number of required pos-

itive genes in the training set). Figure 5 shows the number of

currently annotated and predicted genes for each GO term,

including 9,429, 2,087, and 19,849 predictions in the Biolog-

ical process, Cellular component, and Molecular function

branches, respectively. (The maximum number of predictions

displayed was limited to 1,000.) This figure illustrates the

potential future impact of these predictions on the state of

function annotation should the expected 30% or more of

these predictions prove true.

While Figure 5 shows the impact for more general GO terms,

we note that performance for more specific GO terms was also

quite good. For example, the mean P20R from the best-per-

forming submission for the most specific {3-10} versus least

specific {101-300} category was 21% versus 37%, 38% versus

50%, and 51% versus 53% for Biological process, Cellular

component, and Molecular function branches, respectively.

Thus, predictions for more specific GO terms offer a similarly

high impact on current function annotation (and there are

many more specific GO terms than general GO terms).

Predictions have varying degrees of novelty, ranging from 're-

predictions' and 'refinement predictions' to 'highly novel'. Re-

predictions are cases in which the gene is currently annotated

with that GO term based solely on IEA evidence; these are

often unverified predictions made previously by others.

Refinement predictions are cases in which the gene is cur-

rently annotated with an ancestor of the predicted GO term.

We describe all other predictions as 'highly novel'. Among the

number of predictions displayed in Figure 5, the percentages

of refinements are 18%, 21%, and 17% for Biological process,

Cellular component, and Molecular function branches,

respectively, while the percentages of re-predictions are 43%,

37%, and 32%. Thus, 3,677 (39%), 877 (42%), and 10,123

(51%) predictions for Biological process, Cellular component,

and Molecular function branches, respectively, were highly

novel.

Literature evaluation for top-scoring predictions with a 

high degree of novelty

To gain intuition into the quality of those predictions with the

highest degree of novelty, we performed a focused literature

analysis on highly novel top-scoring predictions. For this, we

identified the top three predictions from each of the twelve

evaluation categories, excluding re-predictions and refine-

ment predictions.

To avoid over-weighting particular GO terms or genes, we

also allowed only one prediction per evaluation category for

any given gene or GO term. Investigators with extensive expe-

rience with literature curation and knowledge of mouse gene

function (DPH and JAB) examined published literature relat-

ing to these 36 high-scoring highly novel predictions, and

scored each prediction according to the nature of published

evidence. Additional data file 14 contains the list of highly

novel predictions investigated.

Out of the 36 high-scoring predictions examined, 21 (58%)

were found to be true or likely to be true based on experimen-

tal data reported in the literature. Since six other cases could

neither be confirmed nor refuted by current literature, we

estimate that the true precision for top novel high-scoring

predictions lies between 58% and 75%. Of the 21 found to be

true, 9 (43%) were strongly supported but were not annotated

simply because the literature had not yet been curated. For

example, annotation of the gene encoding Slfn8 (schlafen 8)

with the GO term 'negative regulation of cell proliferation' is

supported [36], with evidence corresponding to the inferred

from direct assay (IDA) evidence code [33]. This gene cur-

rently does not have any functional annotation in the MGI

system, and thus exemplifies the novel assignment of func-

tion to unannotated genes.

Other reasonable annotations identified in this set of 36

examples include 12 cases where the genes are members of

characterized gene families. It is likely that the genes play at

least a similar role as predicted, although the evidence is not

strong enough to support the annotation using GO Consor-

tium annotation policy. An example of this is the mouse gene

4930430D24Rik, which is predicted to be involved in biolog-

ical process 'protein amino acid methylation'. This gene is

defined solely by cDNA clone data and has no experimental

information associated with it. However, it has sequence sim-

ilarity with the gene encoding Btg1, which has been docu-

mented as interacting with protein methyl transferases.

Another 6 cases (17%) of the 36 examined could be neither

confirmed nor refuted by current literature. For example, the

gene Klhl12 (encoding Kelch-like 12) was associated with the

cellular component term 'stress fiber'. This gene is homolo-

gous to members of the kelch family of genes found in Dro-

sophila. The Drosophila gene products are found in a variety

of cellular locations. Although some members of this family

regulate stress fiber formation through the Ras pathway,
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Number of high-precision predictions among GO terms for which precision can be confidently estimatedFigure 5

Number of high-precision predictions among GO terms for which precision can be confidently estimated. Number of currently annotated (green) versus 
predicted genes (orange, predictions expected to be correct; gray, predictions expected to be incorrect) for a subset of Gene Ontology (GO) terms for 
which 30% precision on held-out annotations was achieved while recovering at least 10 positives in the held-out set. The number of predicted genes 
displayed was limited to 1,000. GO terms were ordered according to similarity of prediction/annotation patterns. Terminal digits of GO term identifiers 
are shown in parentheses. GO-BP, GO Biological process; GO-CC, GO Cellular component; GO-MF, GO Molecular function.
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there is evidence that the human ortholog binds proteins in a

variety of locations and that this protein functions in the con-

text of the ubiquitin E3 ligase complex. As a result, we cur-

rently cannot infer cellular location of this gene product and

thereby judge the prediction.

The remaining 9 (25%) of the 36 predictions examined were

considered to be incorrect based on current literature (see

Additional data file 14 for the list of predictions investigated).

For example, the gene Grm4 (encoding the metabotropic

glutamate receptor 4) is predicted to have the molecular func-

tion 'calcium channel regulator activity'. However, although

other G protein coupled receptors regulate calcium levels,

there is no current evidence that this gene functions in this

way.

Taken together, these results suggest that high-scoring pre-

dictions based on large-scale data integration comprise a

promising resource to guide both curators and experimental-

ists to correct hypotheses about gene function in mammals.

A resource for browsing predictions and underlying 

evidence

So that researchers may browse predictions and gain intui-

tion about evidence that underlies predicted annotations, an

online resource allowing browsing by GO term or gene is

available [37]. To facilitate follow-up experimental study, this

resource contains links to existing Gene Trap alleles available

as heterozygous mouse embryonic stem cell lines.

Illustration of the evidence underlying predictions for 

two GO terms

To gain insight into the prediction process and the nature of

supporting evidence, we examined predictions for two spe-

cific GO terms in greater detail. Genes currently annotated

with 'Cell adhesion' (Figure 6) and 'Mitochondrial part' (Fig-

ure 7) are shown together with genes newly predicted to have

these GO terms, in the context of supporting evidence. These

GO terms were chosen to illustrate different facets of biology

and the utility of multiple data types. Based on the predictive

power of each data source in isolation, protein sequence pat-

tern annotations are the most useful source to predict genes

involved in cell adhesion, while gene expression data are

more relevant for predictions of mitochondrial part. (The

value of each data set is based on precision of predictions at

20% recall based solely on that data set, considering genes

present in each data set.)

To further validate mitochondrial part predictions, we asked

if mitochondrially localized proteins (according to [38]) were

enriched among mitochondrial part predictions. Indeed, out

of 108 mitochondrial part predictions with available data

[38], 83 were mitochondrially localized (P = 2.3 × 10-7; cumu-

lative hypergeometric test). Additional data file 15 contains

mitochondrial part predictions with available mitochondrial

localization data [38].

Figures 6 and 7 illustrate that, as intuitively expected, the pat-

terns of expression and other data types among genes anno-

tated and predicted in these categories are quite similar. In

addition, the graph formed by protein interactions among

annotated and predicted genes contains a connected compo-

nent (that is, a subset of nodes that are mutually connected by

some path) that is larger than expected by chance (P <

0.0001; based on a permutation test of 10,000 random net-

works). Collectively, this figure illustrates the origin of predic-

tions within diverse genomic and proteomic evidence (see

Additional data files 16 and 17 for the data underlying Figures

6 and 7).

Discussion
Prediction confidence scores fall along a continuum from 0

(predicted not to be true) to 1 (predicted to be true). Whether

a score between 0 and 1 should be treated as a prediction for

or against the annotation (or as a non-prediction) depends on

the user's application-dependent trade-off between precision

and recall, and an expert biologist may wish to filter the list

further based on their knowledge and intuition before pro-

ceeding to carry out experiments. Users performing medium-

scale genomic experiments may favor recall over precision

and select predictions using a higher recall threshold where

the search space (and costs) will be reduced without losing

recall. Alternatively, users requiring higher precision can take

only the top few predictions.

The performance differences among the methods examined

here could have a substantial practical impact. For example,

suppose a user plans to order ten mouse mutant strains at a

cost of $10,000 each to assay a physiological phenotype

caused by 20 unidentified genes. Since the combined predic-

tions averaged 41% precision at 20% recall, the user may

expect to see four mutants showing the expected phenotype at

a cost of $25,000 per successful experiment; on the other

hand, if a simple guilt-by-association approach having only

one source of evidence as input (with average precision at

20% recall of 10%) is used to select the genes to assay, the user

may expect to see only one mutant with the desired pheno-

type at a cost of $100,000 per successful experiment.

Annotation efforts such as FANTOM [39] have populated a

high-quality reference database of function assignments in

which each annotation is highly likely to be true. This encyclo-

pedic approach is valuable, but necessarily discards partial

information, or 'medium-confidence' predictions. A full spec-

trum of confidence measures can serve as a form of principled

triage, in which experimentalists are guided towards those

hypotheses that are more likely to prove true but which have

not yet been proven. Furthermore, quantitative function pre-

diction should also prove useful as a resource to assist more

qualitative encyclopedic efforts.
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Variation in performance between submissions is more sub-

stantial when the evaluation criterion is precision at a given

recall, rather than AUC, as shown in Figure 3. The variation

in performance between groups and between first and second

submissions from the same group indicates that, as a commu-

nity, we have not yet converged on an asymptotic limit to per-

formance. Also, ANOVA results indicate that GO branch is a

greater contributor to variation in performance than the pre-

diction method used. The difficulty of predicting GO terms is

highest in the Biological process branch followed by the Cel-

lular component and then Molecular function branches. Also,

the difficulty decreases as the number of genes currently

annotated to that GO term increases.

Our assessment indicates that many submissions were more

successful in predicting for held-out genes than for the newly

annotated set of genes. This suggests the problem of predict-

ing novel annotations may be qualitatively different from the

problem of predicting previously known but held-out annota-

tions. Approximately 50% of new annotations were annotated

on the basis of sequence or structural similarity (evidence

code ISS; Additional data file 3), as opposed to 9% for held-

Illustration of evidence underlying predictions for the GO term 'Cell adhesion'Figure 6

Illustration of evidence underlying predictions for the GO term 'Cell adhesion'. As an assessment of predictive usefulness, the precision at 20% recall 
(P20R) value based on each single data source is shown in parentheses. (a) Expression levels of annotated genes (dark green) and predictions (orange), 
grouped by Pearson correlation and complete-linkage hierarchical clustering. (b) Protein domains in common among predictions and annotated genes. (c) 

Largest protein-protein interaction network among predictions and annotated genes. OPHID, Online Predicted Human Interaction Database. (d) Disease 
and (e) phenotype annotations in common between predictions and annotated genes. Terminal digits of identifiers are shown in parentheses. OMIM, 
Online Mendelian Inheritance in Man.



http://genomebiology.com/2008/9/S1/S2 Genome Biology 2008,     Volume 9, Suppl 1, Article S2       Peña-Castillo et al. S2.15

Genome Biology 2008, 9:S2

out annotations. This indicates that a greater proportion of

recent annotations has been made by transfer of annotation

from other species via homology.

Although we considered homology to proteins in other spe-

cies through phylogenetic profiling and use of protein domain

matches, we did not allow transfer of functions from other

species via orthology for several reasons. First, function

transfer by orthology is the most mature method for function

prediction and we consider that the need is greatest to

improve methods that integrate and analyze newer large-

scale experimental data types. Second, use of GO annotation

from other species would have rendered our cross-validation

performance estimates uninterpretable by allowing circular

predictions. For example, a held-out mouse GO annotation

that had previously been transferred by homology from a

mouse gene to a human gene might then be transferred back

to mouse as a 'prediction'. Third, a function determined in a

single organism can quickly spread via orthology to many

organisms so that a single piece of evidence might be over-

counted as an independent fact in multiple organisms. The

second and third issues might be circumvented by only con-

sidering annotation from other species based on experiments

carried out in that organism. While some evidence codes in

GO annotations indicate within-organism support (for exam-

ple, IDA, IMP [inferred from mutant phenotype], IEP

[inferred from expression pattern], IPI [inferred from physi-

cal interaction]), other evidence codes such as TAS [traceable

author statement], NAS [non-traceable author statement],

ISS, and RCA are ambiguous [33]. Careful curation of the

Illustration of evidence underlying predictions for the GO term 'Mitochondrial part'Figure 7

Illustration of evidence underlying predictions for the GO term 'Mitochondrial part'. (a-e) As described in Figure 6a-e. GO, Gene Ontology.
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organism from which function annotation evidence has been

derived would greatly facilitate the use of orthology-based

function transfer in future integrative studies.

We found that submissions from every group were subject to

overfitting in most GO categories. While the presence of over-

fitting is not surprising given the paucity of available training

data, it does suggest that future performance gains will come

from classifier training methodology that further limits over-

fitting. Another future improvement to predictions might be

a unified score based on all submissions, via an ensemble or

'combination of experts' method [40]. In addition, to facili-

tate interpretation, scores might be transformed to accurately

reflect the probability that a prediction is correct. Another

possible improvement would be the use of a more refined

subset of GO terms as gold standard. For example, predic-

tions could be judged according to a reduced subset of GO

terms that are relatively independent of one another and each

specific enough to suggest a follow-up experiment [24]. Fur-

thermore, to improve prediction accuracy in future function

prediction efforts, data sources containing additional evolu-

tionary, structural, enzymatic and sequence similarity infor-

mation might be integrated. It would also be interesting to

perform a factorial analysis on variations of the classifiers

that performed best here, in order to obtain biological intui-

tion or insight into why these classifiers performed well. Our

prediction effort was focused on identifying 'errors of omis-

sion' in GO annotation. It would also be worthwhile to explore

whether low prediction scores for current annotations

(apparently 'false negatives') could be useful in recognizing

erroneous functional annotations ('errors of commission').

A major implication of our analysis is that protein sequence

patterns from Pfam and InterPro are extremely useful evi-

dence sources not only for Molecular function GO terms (as

expected, since these primarily reflect biochemical activities)

but also for inference of Cellular component and Biological

process terms. This trend may be due, in part, to the incorpo-

ration of biochemical terms in the Biological process ontology

(for example, 'protein amino acid phosphorylation' is listed as

a Biological process, and its known members overlap with

'protein kinase activity', which is a Molecular function) as well

as the fact that protein sequence patterns do relate to sub-

strates associated with specific physiological processes and

cellular compartments (for example, DNA-binding proteins

are primarily found in the nucleus). Nevertheless, we note

that the proportion of genes with protein sequence pattern

annotations is much lower in the 8,851 unannotated genes

(62%; this includes genes with annotations based solely on

IEA evidence) than it is among the 12,752 annotated mouse

genes (90%) in the data collection. This indicates that

sequence features may be less useful in future predictions of

function for currently uncharacterized genes. This is particu-

larly true of Biological process terms, which are the least pre-

dictable using sequence features alone, and conceptually

most closely related to phenotype. In future, it will be valua-

ble to predict phenotypes as well as functions. Phenotype pre-

dictions are immediately testable, and phenotype data in

mammalian organisms and cell culture models have a rapid

rate of emergence that will permit prospective evaluation of

predictions.

Conclusion
We performed a systematic evaluation of diverse, independ-

ently developed computational approaches for predicting

gene function from heterogeneous data sources in mammals.

The results show that currently available data for mammals

allow predictions with both breadth and accuracy. At a recall

rate of 20%, a unified set of predictions averaged 41% preci-

sion, with 26% of GO terms achieving a precision better than

90%. Predictions with comparable precision have been suc-

cessfully used in yeast [41]. A striking finding is that predic-

tions for GO terms in the most specific evaluation category

(ten or fewer annotated genes) have a precision comparable

to that obtained in the more general evaluation categories.

For Biological process GO terms, we achieved a mean preci-

sion at 20% recall for blinded predictions ranging from 28%

to 46%, depending on evaluation category specificity. Corre-

sponding performance for Cellular component and Molecular

function terms was even higher, ranging from 38% to 58%

and from 56% to 64%, respectively. Importantly, many highly

novel function predictions emerge for the 38% of mouse

genes that remain uncharacterized.

Materials and methods
Performance statistics

To assess performance of function predictions by each

method, we obtained the ROC curve and the AUC for each GO

term using the trapezoidal rule [42]. (The AUC corresponds

to the probability that a random positive instance will be

scored higher than a random negative instance.) For this

assessment, GO annotations were up-propagated. That is, if a

gene is associated with a GO term, then this gene is also asso-

ciated with all the ancestor GO terms of that GO term. During

evaluation, refinement predictions are considered false posi-

tives.

We assessed whether observed differences in AUC between

submissions X and Y were statistically significant [34] and

computed the precision at various recall rates as previously

described [43]. Precision is defined as the number of genes

correctly classified as having a given GO term divided by the

total number of genes classified as having that GO term

. Recall is defined as the percentage of genes anno-

tated with a given GO term that were classified as having that

GO term . Other performance measures included

the AUC up to the first 50 false positives, and the recall

TP
TP FP+( )

TP
TP FN+( )
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obtained at 1% false positive rate. False positive rate is

defined as the fraction of genes not annotated with a given GO

term that were classified as having that GO term .

Tables with the median, mean and standard deviation of all

performance measures over the GO terms in each evaluation

category are provided for each submission (Additional data

files 7 to 10).

Assessing the predictive value of each data type

To determine the value of each data type in predicting func-

tion, we used the following simple guilt-by-association

method; for protein-protein interaction data, we counted the

number of times each GO term is annotated among direct

interaction partners ('neighbors'). For data sets composed of

binary gene features, we considered the neighbors of gene X

to be those genes annotated to have the same specific feature,

for example, a specific phenotype, disease association, or pro-

tein sequence pattern annotation. In the case of non-binary

data, for example, expression or phylogenetic profile, neigh-

bors are genes that correlate with X (Pearson correlation coef-

ficient > 0.5). After determining the neighbors of each gene,

we sum for each GO term, based on the type of data, either the

correlation coefficients, or the number of shared features per

neighbor, or the number of the neighbors annotated with GO

term X. This value is then used as a score of the function pre-

diction. The contribution of each data set is then assessed

considering genes with at least one annotated neighbor in the

data set. Tables with the median, mean, and standard devia-

tion of the performance measures over GO terms in each eval-

uation category per data set are provided in Additional data

file 18.

Score transformation

Since scores were not necessarily calibrated across GO terms,

we developed a monotonic transformation to make scores for

different GO terms more comparable. Letting n be the total

number of genes considered, t be the number of existing pos-

itive annotations for the current GO term, and si be the un-

calibrated score for the ith gene, the calibrated score for the ith

gene  is defined as:  where L is the free (non-

negative) parameter chosen such that . L is found

separately for each GO term via a MATLAB optimization rou-

tine. After this transformation, the average score for each GO

term is equal to the fraction of genes currently annotated with

that GO term.

Generating a list of high scoring novel predictions for 

manual investigation

To evaluate the quality of top-scoring predictions more

closely, we identified the set of submitted predictions that

performed best within each of the 12 evaluation categories

(according to the P20R measure on held-out genes). Within

each of the 12 evaluation categories, gene/term pairs were

pooled and ranked by calibrated scores (described above). All

currently annotated gene/term pairs were removed, resulting

in a ranked list of predictions that are considered classifica-

tion errors according to current GO annotations, but may in

fact be correct. To focus on the highly novel predictions, we

also excluded re-predictions and refinement predictions from

the list.
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bar graphs of pairwise comparisons of AUC within each eval-

uation category. Additional data file 2 is a figure showing bar

graphs of mean P20R values within each evaluation category.

Additional data file 3 is a figure showing bar graphs compar-

ing properties of GO annotations in the held-out gene set, in

the newly annotated gene set, and in the training set. Addi-

tional data file 4 is a figure showing a clustergram indicating

Pearson correlation coefficients of the P20R performance

measure among different submissions. Additional data file 5

is a figure showing heatmaps of precision at several recall val-

ues evaluated using held-out annotations on all GO terms

within each of the 12 evaluation categories for each submis-

sion. Additional data file 6 is a figure showing a heatmap of

median precision at several recall values evaluated using

held-out annotations within each of the 12 evaluation catego-

ries per submission. Additional data file 7 is a table listing

performance measures for the initial round of GO term pre-

dictions within each evaluation category evaluated using

held-out genes. Additional data file 8 is a table listing per-

formance measures for the initial round of GO term predic-

tions within each evaluation category evaluated using the

newly annotated genes (prospective evaluation). Additional

data file 9 is a table listing performance measures for the sec-

ond round of GO term predictions within each evaluation cat-

egory evaluated using held-out genes. Additional data file 10

is a table listing performance measures for the second round

of GO term predictions within each evaluation category eval-

uated using the newly annotated genes (prospective evalua-

tion). Additional data file 11 is a table listing the results of the

analysis of variance in prediction performance. Additional

data file 12 is a table listing performance and variance on five

subsets of the training data. Additional data file 13 is a table

listing performance measures of the unified predictions for

each GO term. Additional data file 14 is a table listing high-

scoring predictions evaluated against existing literature.

Additional data file 15 is a table listing mitochondrial part

predictions with data from a previous study [38]. Additional

data file 16 is a table listing data underlying Figure 6. Addi-

tional data file 17 is a table listing data underlying Figure 7.

Additional data file 18 is a table listing performance measures

for various individual evidence sources within each evalua-

tion category evaluated using held-out genes. Additional data

file 19 is a Flash animation showing a fraction of GO terms

with higher precision and recall than a given precision/recall

point for the unified predictions. Additional data file 20 con-

tains a 300 word description of the function prediction

method used in each submission. Additional data file 21

describes in detail the submission methods and the straw

man classifier (57 pages in total).
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