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Abstract. Structured demographic models are among the most common and useful tools
in population biology. However, the introduction of integral projection models (IPMs) has
caused a profound shift in the way many demographic models are conceptualized. Some
researchers have argued that IPMs, by explicitly representing demographic processes as contin-
uous functions of state variables such as size, are more statistically efficient, biologically realis-
tic, and accurate than classic matrix projection models, calling into question the usefulness of
the many studies based on matrix models. Here, we evaluate how IPMs and matrix models dif-
fer, as well as the extent to which these differences matter for estimation of key model outputs,
including population growth rates, sensitivity patterns, and life spans. First, we detail the steps
in constructing and using each type of model. Second, we present a review of published demo-
graphic models, concentrating on size-based studies, which shows significant overlap in the
way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of var-
ious modeling decisions on demographic predictions, we ran a series of simulations based on
size-based demographic data sets for five biologically diverse species. We found little evidence
that discrete vital rate estimation is less accurate than continuous functions across a wide range
of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs
quickly converged with modest class numbers (≥10), regardless of most other modeling deci-
sions. Another surprising result was that the most commonly used method to discretize growth
rates for IPM analyses can introduce substantial error into model outputs. Finally, we show
that empirical sample sizes generally matter more than modeling approach for the accuracy of
demographic outputs. Based on these results, we provide specific recommendations to those
constructing and evaluating structured population models. Both our literature review and sim-
ulations question the treatment of IPMs as a clearly distinct modeling approach or one that is
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inherently more accurate than classic matrix models. Importantly, this suggests that matrix
models, representing the vast majority of past demographic analyses available for comparative
and conservation work, continue to be useful and important sources of demographic informa-
tion.

Key words: demography; elasticity; integral projection model; IPM; lambda; life span; matrix projection
model; structured population.

INTRODUCTION

Demographic models have yielded profound insights in

many areas of ecology and evolution, including life-his-

tory theory, population dynamics, resource management,

and conservation biology. Studies using demographic

approaches include some of the most influential papers in

ecology (e.g., Cole 1954, Gillespie 1977, Shaffer 1981,

Lande 1982, Pulliam 1988). Primary reasons for this

influence are the ability of demographic models to link

short term individual performance to both lifetime fitness

and population growth. In addition, these models facili-

tate broad comparisons that can highlight trade-offs and

limitations that structure diverse life-history patterns

(Stearns 1992). Standardized metrics from demographic

models have spurred the development of general classifi-

cation frameworks, such as the fast-slow continuum or

the survival-growth-fecundity triangle (Silvertown et al.

1993, Franco and Silvertown 1996, Sæther and Bakke

2000, Gamelon et al. 2014, Salguero-G�omez et al. 2016b).

Demographic modeling has also transformed approaches

to conservation by allowing more quantitative assess-

ments of population risk and potential management

strategies (Schemske et al. 1994, Carroll et al. 1996, Biek

et al. 2002, Morris and Doak 2002, Jongejans et al. 2008,

Doak et al. 2015). Some of the most influential manage-

ment plans for threatened, invasive, or economically

important species have used demographic models to tar-

get specific life-history stages (Crouse et al. 1987, McEvoy

and Coombs 1999) or to quantify the risk of extinction

(Shaffer 1983, Lande 1988). Thus, demographic models

are a cornerstone of both population biology and conser-

vation management (Shea 1998, Caswell 2001, Morris

and Doak 2002, Bakker and Doak 2009).

While demographic analyses need not involve distinc-

tions between different types of individuals, the majority

of such studies, even of annual species, fall within the

realm of “structured” population models. These models

are structured in the sense that individuals are classified

by one or more “state variables,” traits that are used to

distinguish between individuals that are believed to have

different demographic fates. State variables typically

include age or size, but can also include many other pre-

dictors of fate, including life-history stage, sex, micro-

habitat, or even symbiotic relationships or pathogen

load (e.g., Palmer et al. 2010, Wilber et al. 2017).

While the underlying approach of demographic mod-

eling has remained largely the same since the work of

Leslie (1945) and Lefkovitch (1965), over the last two

decades there has been a slow revolution in how many

demographic models are conceptualized, symbolically

presented, fit, and, to a lesser extent, interpreted. This is

particularly true when species are described by one or

more continuously varying state variables, many of

which are descriptors of individual size. In these cases,

integral projection models (IPMs), which describe popu-

lations according to a continuous state variable (Easter-

ling et al. 2000), have begun to replace classic matrix

models that begin by explicitly dividing populations into

discrete categories corresponding to ranges of state vari-

able values (Caswell 2001). Acknowledgement and

understanding that discretizing continuous measures of

size or other descriptors of state is a simplifying assump-

tion of convenience goes back to the first uses of size-

based demography in ecology (Vandermeer 1978, Molo-

ney 1986), but the IPM literature has revived discussion

of this simplification and suggested it can be of para-

mount importance. The development and widespread

adoption of IPMs has been motivated in part by argu-

ments that a continuous approach is more biologically

realistic and statistically efficient, particularly when

applied to limited data sets (Easterling et al. 2000, Ellner

and Rees 2006, Zuidema et al. 2010, Ozgul et al. 2012).

Correspondingly, matrix models have been increasingly

criticized as artificial, statistically inefficient, and prone

to bias (Ramula et al. 2009, Salguero-G�omez and Plot-

kin 2010, Picard and Liang 2014).

In the last few years, several reviews have emphasized

the superiority of IPMs (Merow et al. 2014, Rees et al.

2014); these claims have not, however, been critically or

thoroughly evaluated. Previous tests of the relative accu-

racy of IPMs have been limited to comparisons that have

ignored the multiple aspects of model estimation and

development that can be used to formulate demographic

models, and have also compared IPMs only with matrix

models built with extremely few classes (Ramula et al.

2009). Further, most claims for the superior representa-

tion of the biology of species, due to the avoidance of

artificial stage classes, ignore that in their actual imple-

mentation virtually all IPMs are analyzed as moderate-

to high-dimension matrix models (Ellner and Rees 2006,

Merow et al. 2014a). This means that their structure dif-

fers more quantitatively than qualitatively from tradi-

tional matrix models. Finally, there are potentially

important biological simplifications inherent in the IPM

approach that have not been carefully examined in the

ecological literature, in particular the limitations

imposed by representing vital rates as fairly simple con-

tinuous functions of the state variable.

An important consequence of the discussion sur-

rounding the accuracy of IPMs and classic matrix

Article e01447; page 2 DANIEL F. DOAK ETAL. Ecological Monographs
Vol. 91, No. 2



models is that past studies using older methods could be

perceived as providing little to no useful demographic

information. Traditionally, fit matrix models represent

the vast majority of demographic data available for com-

parative studies (e.g., those in the COMPADRE and

COMADRE databases; Salguero-G�omez et al. 2015,

2016a) or with which to assess the viability and manage-

ment of species of conservation concern. Indeed, even as

the accuracy of matrix models has been questioned,

many synthetic reviews that reanalyze matrix models

have recently appeared in the literature (Katz 2016,

Csergo et al. 2017, Yokomizo et al. 2017). Thus, it is

important to more carefully evaluate whether and when

matrix models accurately capture population dynamics,

and under what circumstances IPMs may do so with less

bias and more precision. Finally, some of us (D. F.

Doak, W. F. Morris, M. B. Garcia, personal observation)

have seen an increasing tendency of reviewers and edi-

tors to dichotomize these two approaches, considering

matrix models as out of fashion and failing to recognize

the considerable gray zone between the two model types

as well as some of the subtler advantages and disadvan-

tages of each.

Our goals in this paper are to (1) explain the ways that

matrix models and IPMs do and do not differ in their

implementation, (2) articulate the potential pitfalls and

advantages of each approach, and (3) use simulations

based on real data sets to critically assess which model-

fitting decisions do and do not matter for common

demographic outputs. To accomplish these ends, we start

with an outline of the main steps in fitting matrix models

and IPMs, highlighting the similarities and differences

between these two approaches. Second, we review the

demographic literature to document how population

biologists fit these different models in practice, with the

goal of evaluating how distinct they really are. Third, we

present results from an extensive set of simulations based

on five real demographic data sets. We use these simula-

tions to compare the relative accuracy of matrix models

and IPMs across a range of sample sizes, model-fitting

strategies, and matrix dimensions that reflect the diverse

approaches used by biologists. We conclude with a dis-

cussion of the merits and potential limitations of differ-

ent demographic modeling strategies and

recommendations for future demographic work.

TWOAPPROACHES TO FITTING DEMOGRAPHIC MODELS

Both matrix models and IPMs seek to represent

demographic heterogeneity within a population due to

variation in individual state variables, such as age or size,

that influence performance. Matrix models have tradi-

tionally been approached with the assumption that indi-

viduals can reasonably be divided into classes (also

called categories, stages, or bins; we use “classes” in the

subsequent text). These classes are based on subdivisions

of the state variable, even when there is clear under-

standing that the underlying state variable is continuous

(Hartshorn 1975, Vandermeer 1978, Moloney 1986). In

contrast, IPMs explicitly seek to treat state variables as

continuous.

In this section, we describe the four steps in formulat-

ing either kind of model: (1) characterizing individual

states, (2) estimating fates, (3) assembling these estimates

of fates into a full demographic model, and (4) generat-

ing outputs from these models to assess individual fit-

ness or population behavior. In Fig. 1, we diagram these

basic model-fitting procedures for “classic” matrix mod-

els and IPMs, illustrating the steps they share and those

that differ between these approaches. We also use this

diagram and discussion to highlight differences in the

terminology used in both modeling strategies, as well as

the similarities that can be disguised by these notational

differences. Following sections on the four steps in

demographic analysis, we discuss in more detail some of

the features that most separate IPM and matrix models,

and also some of the less obvious issues with using either

approach.

Characterizing individual states

Both methods require the same basic demographic

data: individual-level survival, growth, and reproduction

rates, recruitment data, along with measurements of one

or more state variables that capture heterogeneity in

these rates; these are called demographic or vital rates

(Caswell 2001, Morris and Doak 2002, Franco and Sil-

vertown 2004; note that some authors use vital rates to

refer only to survival and reproduction). State variables

may be chosen a priori based on feasibility or natural

history, or selected from multiple variables by comparing

regressions of vital rates on alternative state variables to

find the ones with the highest predictive power (Morris

and Doak 2002). In a matrix model, a state variable is

either already discrete (e.g., age classes for a sharply sea-

sonally breeding species or the discrete life-history stages

of many arthropods) or is divided into discrete cate-

gories of a continuous state variable (e.g., size classes).

In the latter case, there are several algorithms for choos-

ing the number and boundaries of classes (Vandermeer

1978, Moloney 1986), although in practice, the structure

of most matrix models has been decided based on natu-

ral history and data exploration (e.g., looking for sharp

changes in vital rates; Caswell 2001, Ramula et al. 2020).

In an IPM, the primary state variable is regarded as con-

tinuous, although additional discrete state variables such

as age, sex, seedling state, dormancy state, breeding sta-

tus, or others can also be included (Ellner and Rees

2006, Rees et al. 2006, Williams 2009, Jacquemyn et al.

2010). We note that age is commonly treated both as

continuous and discrete in demographic models. This

depends on data availability and whether reproduction

occurs during well-defined time periods, generating dis-

crete cohorts (i.e., birth-pulse), or offspring are produced

more continuously throughout the year. However, state

variables that reflect some aspect of size are most often
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used in IPMs (Fig. 5) and can give rise to the largest dif-

ferences in IPM and matrix-model treatments, so we

concentrate on these throughout the rest of the paper.

Characterizing individual fates

Both matrix models and IPMs use state variables to

capture variation in vital rates: the fates of individuals,

based on their state. While there are many ways to make

such estimates, all fall into two general approaches. The

first is used in the construction of many matrix models,

where a separate estimate of each vital rate is required

for each discrete class. These estimates come from sepa-

rately analyzing the subset of data falling within that

class to calculate, for example, mean survival or mean

reproductive output. In other words, the vital rate for a

given class is estimated independently of the rates for

other classes. This includes approaches that take the

observed transition frequencies for a given class as well

as methods that fit statistical models that treat class as a

categorical variable (e.g., some mark–recapture analy-

ses). The central problem facing parameterization under

this strategy is that more, narrower classes reduce the

amount of data available for estimating each vital rate,

whereas fewer, broader classes pool together individuals

that may have very different fates. This trade-off has

long been recognized (Vandermeer 1978, Moloney 1986,

Ramula and Lehtil€a 2005), and can mean that multiple

iterations are needed to find a model structure that bal-

ances sampling and estimation error.

The second approach to estimating fates is used in the

construction of some matrix models based on continu-

ous state variables, as well as all IPMs. In this approach,

demographers use continuous regression models of vital

1. Demographic data

Vital rates (e.g., individual growth, survival, and reproduction) 

One or more state variables (e.g., size, age, life history stage)

M3. Divide continuous state 

variables into discrete classes

- Natural history (age to reproduction) 

- Algorithms (Vandermeer 1978; Moloney 1986)  

- Data exploration, natural breaks in vital rates 

I2. Fit demographic functions 

of continuous state variable

- Established functional forms (logistic, normal) 

or complex nonlinear functions (splines, GAMs) 

- Model selection to test for covariates 

(e.g., age, sex) and/or nonlinearity in vital rates 

M4. Estimate transition rates 

among classes

- Observed frequencies within a class 

(less data per estimate with more classes) 

- Discretize functions of an originally continuous 

state variable to estimate rates within classes 

I3. Combine functions into a 

projection kernel

- Projects the number and state of individuals 

across a time step

- Includes a survival/growth kernel and a 

fecundity kernel 

I4. Discretize projection kernel 

into bins

- State variable divided into many narrow bins

 within a biologically plausible range

- Kernel integration to estimate transition rates

 among bins (midpoint rule, median) 

M2. Choose state variables & 

create life-cycle graph

- Can combine discrete and continuous state 

variables (e.g. seeds, seedlings, plant size)  

5. Matrix analysis
- IPMs are analyzed as large matrix models  

- Population growth rate, sensitivities, elasticities, etc. 

Matrix 

model  

Integral projection 

    model (IPM) 

Iterate to balance sampling

    & estimation error  

Iterate to stabilize estimates 

     & avoid eviction
Parameter 

estimation  

Matrix 

dimension 

 Key steps

FIG. 1. Diagram of the key steps and considerations in fitting either a matrix model or Integral Projection Model (IPM). Both
approaches begin and end with the same steps (yellow boxes) but may differ in their methods of parameter estimation (blue boxes)
and resulting matrix dimensions (green boxes).
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rates, fit to the entire data set, to estimate stage-depen-

dent vital rate functions. Researchers generally use

established functional forms for each vital rate: general-

ized linear models with binomial errors are often used

for vital rates that inherently represent probabilities (i.e.,

survival, dormancy, or flowering) while those with Pois-

son or negative binomial errors have frequently been

used for offspring numbers; general linear models have

typically been used for growth rates. In some cases,

splines or generalized additive models have been used to

represent more complex relationships between vital rates

and state variables (Dahlgren et al. 2011). Functions

may be chosen a priori, or model selection methods,

such as the Akaike information criterion (AIC), may be

used to select from among several candidate models

(e.g., linear vs. quadratic functions of state). One key dif-

ference between this strategy and the direct use of dis-

cretized data for vital rate estimation is the elegant way

that size changes are treated (Easterling et al. 2000).

First, a model is chosen to characterize the mean size at

the end of a time interval, given a starting size. Next, the

squared residuals from this relationship are predicted in

a second model and then used to predict the variance in

ending sizes (although both the mean and variance can

be fit simultaneously as well; Ellner and Rees 2006, Ell-

ner et al. 2016).

Assembling a projection model

When building matrix models, the matrix elements are

constructed from the best vital rate values for each class,

either using the discrete vital rate estimates or an esti-

mate for each size class taken from a continuous vital

rate function (Batista et al. 1998, Morris and Doak

2002, Gross et al. 2005). This is straightforward if the

vital rate estimates are made discretely for each class. If

continuous functions have been estimated, different rules

can be used to estimate the average value of a vital rate

that is applied to a size class. Most commonly, the vital

rate estimate corresponding to the midpoint size in the

class is used, but other approaches, such as the vital rate

of the mean or median size of individuals falling within

a class, can also be employed (Morris and Doak 2002).

In either case, the growth, survival, and reproductive

rates estimated for each class are combined to form the

elements of the matrix, aij, which represent the average

number of individuals in class i at time t + 1 that result

from an individual of class j at time t.

In IPMs, most vital rates are estimated by fitting con-

tinuous functions of one or more state variables. When

building an IPM, these fitted functions are then com-

bined into density kernels. These are usually a sur-

vival/growth kernel that describes the distribution of an

individual’s state in the next time step, given survival

and growth, and a reproduction kernel that describes the

number and state distribution of an individual’s off-

spring. These kernels are then combined into an overall

kernel that projects the number and distribution of

individuals’ states across a time step. In this kernel, kij is

identical in interpretation to the matrix element aij,

except that the i and j states are assumed to apply to size

classes for the matrix model and to point values of the

state variable for IPMs. Proponents of IPMs emphasize

that this regression-based approach avoids artificial bin-

ning together of individuals with differing states and, by

including all individuals in the model-fitting step, allows

more efficient use of scarce data (Easterling et al. 2000,

Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al.

2010, Merow et al. 2014b).

Beyond these common ways of building either type of

model, several other complexities and complications can

arise. Most commonly, additional state variables (e.g.,

sex, age class, widowing status; Miller and Inouye 2011,

Bakker et al. 2018) or other covariates (e.g., climate, soil

chemistry; Dahlgren and Ehrl�en 2009, Doak and Morris

2010, Hunter et al. 2010, Diez et al. 2014, Merow et al.

2014b) may have important effects on individual fates

and can be included in either discrete or continuous

approaches to vital rate estimation (e.g., through addi-

tional or combined classes, or by inclusion in continuous

vital rate functions). In addition, both matrix models

and IPMs can be either deterministic or stochastic,

including the influence of demographic and environmen-

tal stochasticity on vital rates to estimate effects on fit-

ness, growth rates, or extinction risk. There are also

increasingly sophisticated methods to incorporate model

and parameter uncertainty into the predictions of these

models, which is an especially important topic when

models are being used to address applied questions

(Bakker et al. 2009, Elderd and Miller 2016). Finally, it

is worth noting that there are many other subtle and

not-so-subtle decisions that must be made when formu-

lating either a matrix model or an IPM (detailed in Cas-

well 2001, Morris and Doak 2002, and Ellner et al.

2016), and numerous mistakes are commonly made in

model construction. A recent review by Kendall et al.

(2019) found that a substantial fraction of matrix models

constructed for animals contained at least one common

error in model structure. Among the most common of

these mistakes are failing to include survival in repro-

ductive rates, introducing incorrect delays into the life

history, and incorrectly calculating transition rates from

stages with known duration (Kendall et al 2019).

Analysis of demographic models

Once constructed, matrix models are used to compute

multiple biologically important outputs. Most com-

monly, these include one of several measures of popula-

tion growth rate, including asymptotic or transient

measures of deterministic or stochastic population

growth (Caswell 2001). Additional outputs include the

stable stage distribution, damping ratio, life span mea-

sures, and the sensitivity and elasticity of population

growth or of other outputs (e.g., stable stage distribu-

tions; Caswell 2001, Morris and Doak 2002, Haridas
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and Tuljapurkar 2005) to either matrix elements or vital

rates. If models are built with continuous vital rate func-

tions, sensitivities can also be estimated for responses to

changes in parameters of vital rate functions (e.g., the

intercept or slope of reproduction as a function of size)

rather than to discrete class-specific values (Griffith

2017). Caswell (2001) provides a thorough review of the

many outputs of matrix models, and multiple computing

packages facilitate these analyses (e.g., popbio in R;

Stubben and Milligan 2007).

How does one get comparable predictions from an

IPM, which is not a matrix, but a density kernel? IPMs

are actually analyzed in the same way as matrix models,

using discretized matrices, although IPM nomenclature

often obscures this fact. In practice, numerical integra-

tion methods are used to approximate an IPM kernel as

a transition matrix, most often based on discrete “mesh

points,” which are starting and ending values of the state

variable. This analysis method divides the state variable

into many classes, centered on the mesh points, within a

biologically plausible range and then uses the values of

each of the different vital rate functions at each mesh

point to estimate the transition rate from each class to

each other class. The result is a moderately sized to large

matrix with many narrow, discrete classes and transition

rates estimated from the vital rate functions underlying

the IPM kernel. It would be possible to analyze IPMs

without discretization, but it would be a far more for-

midable analytical challenge for arbitrarily defined ker-

nels (Ellner et al. 2016), while the methods of linear

algebra make the analysis of the approximating matrix

straightforward.

Both modeling approaches result in large to very large

numbers of certain outputs, such as sensitivities and

elasticities of population growth to size specific vital

rates or matrix elements. To deal with these sometimes

daunting numbers of values and to provide more suc-

cinct and biologically informative results, for both types

of models practitioners frequently condense results into

mean or summed values for fewer categories (e.g., Silver-

town et al 1993, Zuidema et al. 2010).

Comparing the two approaches

The IPM literature has emphasized two shortcomings

of matrix models: (1) the statistical inefficiency of sepa-

rately estimating vital rates for each class and (2) the use

of a small number of classes to represent inherently con-

tinuous state variation, a situation that can lead to mis-

characterization of the true values of individual fates.

IPMs solve these problems by using all individuals to

estimate continuous vital rate functions and then by

using many classes of small width in the final analysis

phase. However, there are reasons to question whether

matrix models and IPMs are truly as different as they

are usually portrayed. First, as noted above, demogra-

phers have used continuous vital rate functions to char-

acterize patterns in vital rates and then parameterize

matrix models, even well before IPMs were developed

(e.g., Siler 1977, Eberhardt 1985, Barlow and Boveng

1991, Batista et al. 1998, Bernal 1998, Zuidema 2000,

Morris and Doak 2002, Matsuda and Nichimori 2003,

Gross et al. 2005, Rogers-Bennett and Rogers 2006,

Chien et al. 2008). Second, in practice IPMs are ana-

lyzed by discretizing the underlying kernel to parameter-

ize a matrix model, although that matrix is usually

moderately to very large (typically many dozens to hun-

dreds of classes). Thus, rather than describing matrix

models and IPMs as completely distinct methods, it is

more accurate to view structured population models as

varying along at least two axes: the method of parameter

estimation (categorical vs. continuous functions, blue

boxes in Fig. 1) and the dimensionality of the resulting

matrix (number of classes or mesh points, green boxes in

Fig. 1). Whether these two frameworks are distinct or

not, the problems that have been identified with discrete

parameterization and with modeling continuous state

variables with few classes can potentially have serious

effects on model predictions. In the rest of this section,

we briefly review important considerations arising from

these two aspects of model-fitting, as well as several

other potential issues.

Class number.—IPM practitioners seek to reduce the

effects of discretization by using many narrow classes

(Merow et al. 2014a). However, many classes make for

larger matrices and reduce computational efficiency,

especially when there are multiple state variables (Ellner

et al. 2016). There is also little information about the

number of classes necessary to adequately approximate a

continuous demographic process for real life histories.

Several iterations may be required to determine the num-

ber and range of classes needed to yield stable estimates

(Ellner and Rees 2006, Zuidema et al. 2010) and avoid

eviction (the removal of individuals from the range of

model sizes due to estimates of growth or shrinkage out-

side this range; Williams et al. 2012). The fact that most

matrix models have far fewer classes than the large

matrices used by IPMs has been viewed as a key advan-

tage of IPMs (Ramula et al. 2009, Zuidema et al. 2010,

Merow et al. 2014a). However, in the few studies of

which we are aware that test for class number effects on

demographic outputs, increasing classes beyond 10–20

has little effect on model results (e.g., Jacquemyn et al.

2010, Shriver et al. 2012, Dibner et al. 2019).

One factor that is likely to influence the number of

classes needed for accurate or stable predictions is the

way that continuous vital rate functions are discretized.

The most common approach in IPMs is to use the “mid-

point rule” to evaluate the vital rate functions across

mesh points, each representing the midpoint of a class of

the state variable, to obtain point estimates of the sur-

vival and fecundity rates that contribute to the kij values

in the discretized kernel. There are two important varia-

tions on this method that directly relate to the number

of mesh points (or, analogously, classes) necessary for a
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reasonable approximation. First, it has been suggested

that it may be more accurate to characterize the vital

rates of a class by using either the median or mean state

value (Morris and Doak 2002) of the individuals in a

data set falling within a class, rather than the midpoint.

A similar approach is to estimate an empirical density

function for individual states to estimate mean or med-

ian values, which can provide estimates even for classes

in which few or no individuals were censused (Gross

et al. 2005).

A second issue is the way that the transition probabili-

ties between state values (e.g., growth and shrinkage

probabilities for a size-based model) are discretized

(Fig. 2). The most commonly used approach in the IPM

literature (Ellner and Rees 2006, Metcalf et al. 2013,

Merow et al. 2014a, Elderd and Miller 2016) approxi-

mates the probability density function (PDF) describing

state at the next time step, conditional on starting state,

by evaluating the probability density at each mesh point

and then multiplying this value by the class width

(Fig. 2b). A more accurate method, but one that is not

featured in most descriptions of IPMs or in the software

to run these models (e.g., IPMpack; Metcalf et al. 2013)

is to use the cumulative density function (CDF) to inte-

grate the probability density across the entire class

(Fig. 2c). Although these two methods will converge

with infinitely many classes (Fig. 2d), the first may

require many more classes to produce stable estimates,

particularly if the variance in size is small relative to the

width of the classes for at least some starting sizes

(Fig. 2e; Ellner et al. 2016). Although the second

method has been used, including by the authors (e.g.,

Louthan et al. 2018, Montero-Serra et al. 2018), in both

matrix and IPM models, the method of discretizing indi-

vidual changes in state (e.g., growth) is virtually never

reported in the methods of published studies (M. L.

Peterson, personal observation). We thus have no quanti-

tative estimate of the relative frequency of these two

approaches, despite their potential to influence the accu-

racy of model predictions. We also note that there is a

third option to discretize size transition data, the “bin-

to-bin” method (Ellner et al. 2016: section 6.8), which

uses the integral over both the starting and ending sizes

included in a transition to estimate total transition prob-

ability.

Vital rate estimation.—We next consider other aspects of

using continuous vital rate (CVR) functions vs. discrete

vital rate (DVR) estimates that may be less obvious, but

are important in generating accurate models. The statis-

tical advantages of fitting continuous functions are clear:

using all individuals to fit a single function is more effi-

cient than separately estimating vital rates based on a

subset of individuals within each of many classes. In par-

ticular, it has been argued that this approach is more

accurate than using discretely estimated rates in matrix

models, given small data sets (Ramula et al. 2009). Dis-

crete estimation also means that outliers or other quirks

in the finite data used may have undue influence on the

model structure and predictions (e.g., estimating zero or

perfect survival for some classes).

On the other hand, there is also a potential cost of

continuous vital rate function estimation that has

received less attention. The functions used to explain

vital rate variation are often quite simple, usually lin-

ear or perhaps quadratic functions of a single state

variable (Merow et al. 2014), and thus can easily over-

simplify or misrepresent how vital rates vary as a func-

tion of the state variable. In contrast, matrix models

that separately estimate vital rates within each cate-

gory make no such distributional assumptions (Shi-

matani et al. 2007). For example, a matrix model can

estimate sharp discontinuities in survival probabilities

between size classes or survival rates that asymptote

well below 1, whereas IPMs usually model survival as

a smooth logistic function of size with an asymptote

of 1 (see Yau et al. 2014). Simple transformations of

size variables, such as logging, may solve some, but

not all, of these issues. For these reasons, some have

advocated using non-parametric methods (Ellner et al.

2016: section 10.1.5) or fitting more complex func-

tions, such as splines. However, these approaches can

also be influenced by outliers and/or low sample sizes

at extreme state variable values (Shimatani et al. 2007,

Dahlgren et al. 2011, Rees et al. 2014). A related issue

when using either approach is how best to account for

estimation uncertainty and thus isolate process vari-

ance in vital rates.

Another issue with vital rate estimation is the nearly

ubiquitous assumption in IPMs of normally dis-

tributed growth rates on the scale of the state variable

(Peterson et al. 2019). This assumption means that

growth is modeled as symmetric around an average

size transition, whereas, for many species, the distribu-

tion of growth is skewed. For example, high shrinkage

may be more likely than high growth due to dieback,

breakage, or starvation (reviewed in Peterson et al.

2019); the opposite pattern may occur in woody spe-

cies measured using diameter at breast height (Need-

ham et al. 2018). More generally, the use of growth

models with infinite tails, like normal distributions,

will predict some chance of growth and shrinkage to

sizes well outside the range of reality, resulting in the

problem of eviction (Williams et al. 2012) as well as

unrealistic changes in state even within the bounds of

otherwise realistic sizes.

There are multiple statistical methods to account for

any of the complexities just discussed, but very few

empirical demographic studies employ these. In addi-

tion, it is important to note that the goal of model devel-

opment is not to represent every nuance of reality, but

instead to get the important aspects right enough to

yield useful representations of the patterns and dynamics

of interest. But, as this perspective emphasizes, neither

matrix model nor IPM approaches are a priori more

compelling than the other. Both make some
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simplifications and smooth over some patterns in the

data, though they do so in different ways. It is not clear

whether and under what circumstances continuous func-

tions will produce more accurate vital rate estimates

compared to separately estimating vital rates within dis-

crete classes, nor is it clear when and why the use of

many narrow classes will fundamentally change model

predictions. With this in mind, we next turn to how the

two modeling approaches have actually been used in

recent demographic studies.

HOWARE IPMS AND MATRIX MODELS USED IN PRACTICE?

As we argue above, IPMs and matrix models are not

sharply distinct. Here we document the range of meth-

ods used to fit these models in the literature, including

different parameter estimation approaches and matrix

dimensions. We conducted a literature search on 23

October 2018 of studies included on Web of Science

using the search terms “demograph*” and “matrix” and

either “ecology” or “conservation” for the period 2002–

FIG. 2. Comparison of methods used to calculate probabilities of growing from a given starting size into a given size bin (x). (a)
The probability density of size at time t + 1 can be discretized into classes (defined by black lines) with midpoint sizes (circles). (b)
The probability of growing into a particular class is most often approximated by the midpoint method, by evaluating the probability
density at the midpoint and multiplying by the class width (h). (c) Alternatively, the probability of growing into a class is given exactly
by the difference in the cumulative probability function (CDF) values at the bin edges. The approximation in panel b is accurate with
many narrow bins relative to the variance in growth (d), but can be poor if classes are wide relative to the variance in growth (e). The
actual growth probabilities based on differences in the cumulative density function or CDF (red dots) sum to 1, whereas the approxi-
mated growth probabilities based on point estimates from the PDF (blue dots) may be less than or greater than 1.
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2018. We believe that these search terms capture the vast

majority of matrix models used for ecological or life-his-

tory analyses. We also included Web of Science results

that had cited any of the papers originally developing

the IPM approach, including Easterling et al. (2000),

Ellner and Rees (2006), and Rees and Ellner (2009);

because terminology, and hence key words, are less uni-

form for IPMs, we felt that using citations of these

founding articles would capture studies that might other-

wise be missed. The starting year for our review is some-

what arbitrary, but was chosen to include virtually the

entire period during which IPMs have been conducted.

We only included papers that fit new models to demo-

graphic data, excluding strictly theoretical papers or

reviews that relied on previously published models. For

each paper, we determined the state variable (age, size,

stage, or other [including size 9 age models]), method

of parameter estimation (categorical, continuous, or a

combination), the type of model as it was identified by

the authors (matrix vs. IPM, stochastic vs. determinis-

tic), and the dimension of the resulting matrix (number

of classes, bins, or mesh points used to construct the

matrix or discretized IPM kernels). For papers with mul-

tiple species, we identified these criteria for each species

separately. Ambiguous papers were reviewed by at least

two people. We identified 794 publications and 1,271

demographic models across a range of taxonomic groups

(Table 1) that fit all of our criteria. Most of the demo-

graphic studies in our database examined plants and

other autotrophs (N = 698), followed by vertebrates

(N = 486) and invertebrates (N = 87). The full results of

this literature review are available in Data S1: Literature

Review.

Matrix models represent the majority (~79%) of

demographic models published between 2002 and 2018

(Table 1). Over this period, 57% of all studies were

deterministic matrix models, followed by stochastic

matrix models at 22%. 21% of demographic models were

identified by the authors as IPMs (16% deterministic

IPMs, 5% stochastic IPMs). Although IPMs are a smal-

ler fraction of published demographic models, this pro-

portion has increased over time (Fig. 3a; logistic

regression of proportion of models: year coeffi-

cient = 0.31, Z = 12.81, P < 0.001). This increase can

be attributed to the publication of several reviews of the

method (Ellner and Rees 2006, Rees and Ellner 2009,

Rees et al. 2014, Merow et al. 2014a) as well as the devel-

opment of IPMpack, an R package for constructing

IPMs (Metcalf et al. 2013, R Core Development Team

2015).

Almost all IPMs are built for size-based models. A

total of 67% are only structured by size and an addi-

tional 29% use size in conjunction with one or more

other state variables (e.g., birth date, age, growth rate,

dormancy, developmental stage, etc.); 26% of IPMs use

age as one state variable, while only 2% use something

other than age or size as the primary state variable (e.g.,

infection load; Wilber et al. 2017). In contrast to IPMs,

matrix models are commonly used for stage and age-

based analyses as well as size-based models; 20% use a

size-based state variable, 28% use age, and 52% use a

measure of stage (Appendix S1: Fig. S1A,B). In addi-

tion, the great majority of published IPMs have been for

perennial plant studies, while a wider range of taxa and

life histories have been the subjects of matrix models

(Appendix S1: Fig. S1C,D). Given these differences, in

the rest of our review we concentrate on comparisons

between matrix models and IPMs that are based on size.

The time trends of just these studies are similar to those

of all demographic models (Fig. 3).

In general, size-based IPMs used higher dimension

matrices in their final analyses than matrix models

TABLE 1. Summary of studies included in the literature review.

Taxon No. models No. species

Deterministic proportion Stochastic proportion

Matrix IPM Matrix IPM

Annual forbs 24 24 0.75 0.0 0.25 0

Perennial forbs 314 236 0.46 0.18 0.27 0.08

Woody plants 255 222 0.45 0.28 0.19 0.08

Algae, lichen, and mosses 13 12 0.31 0 0.69 0

Other non-woody plants† 92 64 0.39 0.40 0.12 0.09

Total autotrophs 698 558 0.46 0.24 0.22 0.08

Amphibians 20 19 0.55 0.15 0.30 0.0

Reptiles 29 24 0.69 0.03 0.24 0.03

Fishes 63 45 0.62 0.22 0.13 0.03

Birds 134 108 0.68 <0.01 0.31 <0.01

Mammals 240 175 0.78 0.03 0.18 0.01

Total vertebrates 486 371 0.71 0.06 0.22 0.01

Invertebrates 87 72 0.69 0.10 0.15 0.06

Total 1271 1001 0.57 0.16 0.22 0.05

†Including ferns, graminoids, and Cactaceae.
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(Fig. 4; linear model of class number: t = 10.65,

P < 0.001). However, IPM papers reported using an

astonishingly wide range of classes, from 39 to 2,400, to

discretize their projection kernel (mean = 242.5,

median = 200, SD = 308.3, N = 83) whereas size-based

matrix models varied from 2 to 67 classes (mean = 7.3,

median = 5.5, SD = 6.7, N = 194). However, only 43%

of IPM studies reported the number of classes or mesh

points used for the discretization of the kernel. This may

reflect the philosophical view that IPMs should be con-

ceptualized as continuous, despite their ultimate dis-

cretization, or may simply be viewed as an unimportant

detail by those publishing results of these models.

Regardless, we could not determine the number of

classes for over half of published IPMs, although we

note that the R package IPMpack uses 50 classes as the

default setting (Metcalf et al. 2013) and 10.3% of IPMs

reviewed that did not report the number of classes used

IPMpack. We were further unable to determine the

method used to discretize the IPM kernel for over one-

third (36%) of published IPMs. Of those that reported

the discretization method, 96% used the midpoint rule

and only 4% used an alternative integration method

(e.g., Simpson’s Rule, Gauss-Legendre quadrature;

Ureta et al. 2012, White et al. 2016, Molowny-Horas

et al. 2017). Given that the lack of discretization is fre-

quently discussed as an advantage of IPMs, but that

models are in fact analyzed with discretization, we urge

that discretization information should be included in the

description of any IPM analysis, since this is a key analy-

sis step for these models.

Population biologists followed a variety of workflow

paths from data to final matrix analysis (Fig. 5). Most

demographic models used information on individuals’

stages to estimate vital rates categorically and construct

deterministic matrix models (Fig. 5). However, 7% of all

matrix models, and 25% that used size as their state vari-

able, estimated at least one vital rate using a continuous

function of state. Interestingly, the proportion of matrix

models using continuous vital rate estimation appears to

have peaked and then declined over time (Fig. 3b; logis-

tic regression of proportion of models: year coeffi-

cient = 141.89, z = 3.69, P < 0.001, year2

coefficient = �0.035, z = �3.69, P < 0.001). This could

reflect an increased awareness of continuous approaches

to vital rate estimation following examples in Morris

and Doak (2002) and the initial development of IPM

methods (Easterling et al. 2000, Ellner and Rees 2006),

with a later decline as IPMs were increasingly adopted

to model data sets suitable for continuous vital rate esti-

mation. When comparing size-based matrix models, we

found that models tended to use more classes when at

least one vital rate was estimated using a continuous

function (mean = 11.0, median = 7, range = 3–67,

N = 48) relative to models with discrete vital rate estima-

tion (mean = 6.1, median = 5, range = 2–27, N = 146;

linear model of class number: t = 4.65, P < 0.001).

However, we found no relationship between class num-

ber and minimum sample size for discrete size-based

matrix models (r = 0.17, P = 0.16, N = 67;

Appendix S1: Fig. S2). Of all demographic models using

continuous vital rate estimation, 22% were matrix mod-

els. Thus, any advantages of continuous vital rate esti-

mation have not been limited to IPMs in the

demographic literature.

ASSESSING THE CONSEQUENCES OF DIFFERENT MODEL-

MAKING DECISIONS

Two key characteristics of structured population mod-

els, the number of classes into which the state variable is

divided and the method of parameter estimation (con-

tinuous vital rate functions [CVRs] vs. discrete vital rate

estimates [DVRs]), are often assumed to covary between

“pure” matrix vs. “pure” IPM approaches. But as we

show in our literature review, they are not necessarily

logically connected and many published models combine

relatively small class numbers with CVR functions.

There are also three other decisions that require care-

ful thought when turning data into a structured demo-

graphic model, but are rarely discussed. First is the exact

way that class boundaries are delineated. For most

IPMs, class boundaries are set at regular intervals, while
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FIG. 3. Changes in published demographic models over
time. Circles are the proportion of (a) models that are described
as IPMs vs. matrix models, and (b) matrix models that use con-
tinuous vital rate (CVR) estimation published between 2002
and 2018, with fitted relationships over time. Proportions are
shown for all models (open circles, dashed lines) or only size-
based models (filled circles, solid lines). Circle size is propor-
tional to the total number of models.
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for matrix models, there are often decisions made

regarding sample size issues and where size breaks make

the most biological sense. A second decision is how best

to characterize the average vital rate value for a given

class or, using IPM terminology, how to define the mesh

points used to evaluate the CVRs to create a discretized

matrix. Mesh points are most often chosen as the mid-

point of a class, but alternative approaches could use the

mean, median, or the distribution of state values

observed in each class. The third consideration, if using

continuous functions, is how the transition probabilities

between states conditioned on survival (e.g., growth) are

discretized. This is distinct from the discretization of

other vital rates, such as survival or fecundity, because

an individual will have a distribution of possible states at

the next time step (vs. a point estimate of survival proba-

bility or offspring number), and it is this continuous

probability density that must be discretized (Fig. 2a).

One approach is to use the point estimate of the proba-

bility density evaluated at each mesh point, multiplied

by the class width (Fig. 2c). Alternatively, the probabil-

ity density can be integrated across the entire range of

states within each class, by taking the difference between

cumulative distribution function (CDF) values at the

upper- and lower-class boundaries (Fig. 2a and b).

Other approaches, including the Ellner et al. (2016) “bin-

to-bin” method or direct parameterization of discretized

growth probabilities (Shriver et al. 2019) can also be

used, but none of these alternatives have been commonly

employed to date. All of these decisions have the poten-

tial to interact with the number of classes and methods

of estimating vital rates to shape model outputs.

To test how these different aspects of demographic

modeling influence model predictions we used large

demographic data sets from five diverse organisms: a

long-lived subtidal Mediterranean gorgonian coral

(Paramuricea clavata, Plexauridae), a long-lived rupi-

colous plant (Borderea chouardii, Dioscoreaceae), a

moderately long-lived arctic/alpine geophytic plant

(Polygonum viviparum, Polygonaceae), a relatively short-

lived epiphytic lichen (Vulpicida pinastri, Parmeliaceae),

and a short-lived fish, the Trinidadian guppy (Poecilia

reticulata, Poeciliidae). While these species do not span

the entire range of life histories seen in plants, animals,

and fungi, they do represent a broad array of key life-

history patterns. In all these data sets, organism size is

used to structure the populations, but the species differ

in multiple aspects of their ecology and capture a range

of population size distributions (Fig. 6).

In our analyses, we varied five aspects of model con-

struction. Most fundamentally, we varied the method
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used to estimate vital rates (blue boxes, Fig. 1) and the

class number of the resulting matrix (green boxes,

Fig. 1). Previous comparisons of matrix dimension and

parameterization methods have only included matrix

models with a few classes (four to six) and discrete

parameter estimation, and compared them to IPMs

using continuous functions discretized into large matri-

ces (100 classes; Ramula et al. 2009). In contrast, we var-

ied parameter estimation method independently from

class number to ask how each affects model accuracy. In

addition, we tested the effects of the three other model-

ing decisions just mentioned: (1) use of midpoint or esti-

mated median individual sizes for CVR estimation of

average vital rates per class; (2) even or sample-size-ad-

justed class boundaries; and (3) the ways in which dis-

cretized growth probabilities were estimated from CVR

models (Fig. 2). While other issues also influence model

structure and results (see Two Approaches to Fitting

Demographic Models), here we concentrate on this short

list of issues that will influence virtually all models.

We tested the effects of these decisions on three com-

mon demographic outputs: deterministic individual fit-

ness or population growth (lambda, k), individual

longevity (age at which 1% of individuals starting in the

smallest class are still alive), and damping ratio (the

ratio of the magnitudes of the dominant and subdomi-

nant eigenvalues), a measure of the strength and dura-

tion of transient dynamics for populations not at a

stable stage distribution (Caswell 2001). While multiple

other measures of longevity and also of the strength and

length of transient dynamics exist, the measures we

employee have been widely used in the ecological
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literature. We also present a more limited comparison of

how sensitivities and elasticities of k vary as a result of

different modeling approaches. Finally, we test how data

quantity interact with these alternative modeling deci-

sions, in particular asking if some modeling approaches

are more robust when data are scarce.

Study species and data sets

We compiled data used in published studies for each

of our study species, supplemented with some unpub-

lished information needed to employ flexible and auto-

mated model-fitting routines; all data were collected by

the authors. While all of the original studies of our spe-

cies included effects of temporal and/or spatial variation

in demography, in our simulations we used all transition

data at once to construct single deterministic models.

This simplification allowed us to use large numbers of

observations to construct single models, as well as to rar-

ify our data sets over a wide range of sample sizes to

check the effects of data quantity on the relative merits

of different modeling strategies.

We briefly outline the most relevant information about

each species’ life history and details about the data and

modeling protocols used here:

Polygonum viviparum, the alpine bistort (hereafter, bis-

tort), is an arctic/alpine perennial plant for which demo-

graphic data were collected annually from 2001–2011 at

four populations on Niwot Ridge in Colorado, USA

(Doak and Morris 2010), for a total of 11,882 plant-

transitions of data. Size, reproduction, and survival data

were recorded for all plants (see methods in Doak and

Morris 2010). Size is measured as the square root of esti-

mated leaf area in square millimeters; on an untrans-

formed scale, sizes in the main data set (not including

recruit sizes) range from 4.39 to 3,600, after truncating

five large values that created a long sparse tail that cre-

ated problems for some of our analyses (similar trunca-

tion was done for all data sets besides Borderea).

Reproduction is exclusively via asexual bulbils that are

produced on inflorescences, and our measure of repro-

duction is the size-dependent product of the probability

of producing one or more inflorescences and the esti-

mated number of bulbils produced if reproducing

(derived from a continuous measurement of the length

of the inflorescence-bearing bulbils). We pooled data

across all years and sites to yield one estimate of the

number of new recruits (bulblings) seen a year later per

bulbil produced (0.00676). Bulbling sizes were also

pooled and used to characterize the size distribution of

bulblings as normally distributed with a single mean

(4.00) and SD (0.886) for CVR models, and were directly

used to get frequencies of sizes for DVR models.

Paramuricea clavata, the Mediterranean red gor-

gonian (henceforth, gorgonian), is a slow-growing, long-

lived arborescent octocoral that typically occurs from 15

to 60 m depth. Demographic data for individual colo-

nies (the unit of demographic analysis) were collected

annually at three Mediterranean sites for 2–4 yr each

from 1999–2004 (Linares et al. 2007, Linares and Doak

2010), for a total of 4,877 colony-transitions of data.

Size is quantified as colony height; sizes in the main data

set range from 0.2 to 74.9 cm. Size-dependent reproduc-

tion was estimated as the production of oocytes per col-

ony, estimated from the relationship between gonad

number and size derived from data in Coma et al. (1995:

Table 5) and the estimated average oocyte number result-

ing from a gonad (2.77774 9 10�6). We estimated a

common first year survival of new recruits across all

years and sites as 0.667, the mean of colony survival in

the smallest size class from Linares et al. (2007). Surviv-

ing recruits were assumed to have a uniform size distri-

bution ranging between 0.3 and 3.0 mm height.

Vulpicida pinastri (henceforth, Vulpicida), is a rela-

tively short-lived epiphytic lichen that grows on several

species of trees and shrubs. Data on individual thalli

were collected annually from 2004 to 2009 in the Kenni-

cott Valley in Alaska, USA on individuals growing on

Alnus stems in a mixed spruce–alder forest, for a total of

1,621 individual transitions of data. Size and survival

data were collected in each thallus, with the square root

of thallus area in square centimeters used as the measure

of size (see Shriver et al. [2012] for methods); on an

untransformed scale sizes in the data set range from 0.15

to 47.61. Reproduction was estimated as proportional to

the circumference of a thallus, which bears the majority

of asexual propagules. The number of recruits per mm of

circumference necessary to achieve a stable population

was estimated as 0.047 in the original study of this spe-

cies (Shriver et al. 2012), and we used this estimate as a

fixed value in our models. New thalli sizes were esti-

mated to have a uniform distribution ranging between

0.124 and 0.50, which reflect the range of smallest thal-

lus sizes encountered in the field.

Borderea chouardii (henceforth Borderea) is a rare,

extremely long-lived, rupicolous plant that naturally

inhabits a single population in Spain, where it grows in

shaded crevices of north-facing limestone walls and

overhangs. Data were collected on individual plants

from 1995 to 2002 at two sites in the Spanish Pyrenees,

for a total of 2,682 plant-transitions of data. Size is mea-

sured as the length of the largest leaf in millimeters; sizes

in the main data set range from 2 to 10.8 mm. Reproduc-

tion is quantified as the number of seeds produced per

female plant. While the species is dioecious, we use the

mean seeds per plant of a given size, averaged across the

sexes, as our measure of reproduction (see Garcia 2003

for more details of sampling and life history). Reproduc-

tion was quantified as the size-dependent product of the

probability of producing one or more inflorescences and

the estimated number of seeds produced if reproducing.

For CVR models, observed seedling sizes were used to

estimate a mean (4.66) and SD (0.46) and sizes were

assumed to be normally distributed, while the set of

observed sizes were directly used to get frequencies of

sizes for DVR models.
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Poecilia reticulata (henceforth, guppy) is a short-lived

freshwater fish native to streams and rivers in Trinidad.

We used capture–mark–recapture data from monthly

sampling of a site on the Caigual River that spanned

January 2009 to June 2011, for a total of 4,880 unique

individuals over the entire study. At each sampling inter-

val, a comprehensive capture of all fish within the stream

reach was attempted, with size (g wet mass) and sex

recorded for all individuals. Sizes in the data set range

from 0.042 to 0.904. While recapture rates are extremely

high (Fitzpatrick et al. 2016), they are not perfect. To

produce a simplified data set for our analyses, we there-

fore considered a fish dead at the first census it was not

captured, if it was not captured for at least one subse-

quent sampling period (thus, we did not include data

from the final two sampling intervals). We also linearly

interpolated size for fish that were not sampled in a

month, but were sampled in the months bracketing the

missing capture. We built a model for females only.

Reproduction was quantified as the size-dependent pro-

duct of the probability of producing any offspring times

the number of daughters produced if there was repro-

duction. Offspring number was estimated from genetic

data and is the estimated number of female offspring

produced that survived until the second census following

birth (newborns were not large enough to reliably catch

until approximately 1–2 months of age; Fitzpatrick et al

2020). New offspring sizes were pooled and used to char-

acterize an empirical distribution function for use in

CVR models, and were directly used to get frequencies

of sizes for DVR models. The survival rate of fish in each

of their first two months was estimated as the mean sur-

vival estimated for newly observed fish, based on a logis-

tic regression of monthly survival vs. size fit to all fish.

We do not include in our analyses data on the genetic

origin or hybrid status of the fish (see Fitzpatrick et al.

2016 and Fitzpatrick et al. 2020 for more details of the

study). As the data set only allowed estimates of repro-

duction from months 5–14 of the study, we used demo-

graphic data only from these months, for a total of nine

individual transitions of data and 2,366 individual

monthly transitions. In keeping with the data collection

and also the limited life span of the species, and unlike

the annual time steps used in the models for all other

focal species, all data analysis and modeling for guppies

was done using a monthly time step.

Methods

We fit demographic models to the data from each spe-

cies using combinations of the following alternative

approaches:

(1) Discrete vital rate estimation for each class vs. contin-

uous functions for vital rate estimation. When esti-

mating continuous vital rate functions (CVRs), we

fit separate size-dependent models for survival,

mean growth, variance in growth, and reproductive

rates for each species (see Appendix S1: Table S1).

For each vital rate, we fit two or three models with

alternative size-dependent functions and used the

Akaike information criterion corrected for sample

size (AICc) to choose the best model. Specifically,

we fit models with linear vs. quadratic size effects for

all vital rates, and for mean growth we also fit a

power function, to potentially better capture differ-

ent shapes of non-quadratic, but nonlinear shifts in

growth with size. These functions are all commonly

used in analyses employing CVRs.

(2) Number of classes for model construction. For dis-

crete vital rate estimation, the number of classes

directly influences the parameter estimation, while

for continuous vital rate functions, it only influences

the final construction of the matrix for analysis. We

made models with class numbers that ranged from 3

to 100 classes for most analyses, using 3, 4, 5, 6, 8,

10, 15, 25, 35, . . .100 classes. With discrete vital rate

estimation, at the upper end of this range we rapidly

reached class numbers that resulted in low samples

for at least one class; we did not make models if the

smallest class-specific sample size was <3. While this

is a very lenient standard (we do not advocate mak-

ing models based on such low sample sizes per

class), we used a low threshold in order to make

DVR models with the largest possible range of class

numbers given the data we had. In our rarefaction

tests, described below, we also directly tested the

effects of having very low class-specific samples on

DVR model outputs. Statistics on per class sample

sizes for each species are given in Appendix S1:

Figs. S13-S17.

(3) Proportional vs. even size-class delineation. We

employed two approaches to defining boundaries of

size classes, which characterize two extreme

approaches seen in demographic studies. With even

class divisions, all classes were the same width on

the scale of the size metric (see above for definition

of the size scale used for each species). For propor-

tional class divisions, we used the classes function in

R package binr (Sergei 2015) to create class divisions

that had as nearly equal numbers of starting individ-

uals as possible. This approach has the general effect

of creating many narrow classes of smaller or mid-

sized individuals and fewer wide classes for the lar-

ger and in some cases also small individuals,

depending on the size distribution of the data (see

Fig. 6). While in many matrix models, class bound-

aries are, and should be, made with more attention

to biological breakpoints, to automate the process

of choosing class boundaries, we used only these

two approaches.

(4) Discretizing CVRs. For most vital rates, a single

point estimate is required for each size class (e.g.,

survival probability, number of offspring/parent).

We used one of two approaches to estimate the rep-

resentative vital rate value for each size class when
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using the CVR approach. First, and most simply, we

used the midpoint size within a class (the mean of

the two bounding values for the class). This method

is by far the most common one used when making

large matrices to numerically integrate IPM models,

and is also used in many matrix models employing

CVRs. However, two of us have argued that it is

more representative to use a size that reflects the

average individual within a class, not the midpoint

of the class boundaries (Morris and Doak 2002).

This estimation can be accomplished in several ways.

Most simply, an estimate can come by taking a sim-

ple median or mean starting value of all individuals

within a class, or, when data are scarce in some size

ranges, by fitting an empirical density function to all

individuals in the population and then using this

function to create a weighted median size for each

class; we used this latter approach in our simula-

tions. We refer to these two approaches as midpoint-

or median-based CVRs, respectively.

(5) Discretizing continuous growth distributions. Lastly,

we compared two approaches to discretizing contin-

uous distributions that summarize changes in size

when using the CVR approach (Fig. 2), using both

simulated and real data sets. First, we took the com-

mon approach employed in the IPM literature of

using the point estimates of the probability density

for the midpoints of all of the size classes, multiplied

by the class width, to approximate the probability

density function (PDF) of size at the next time step

conditioned on current size. We call this the “mesh

point method.” Second, we used the cumulative den-

sity function (CDF) for growth to get the probability

of reaching each size class at the next time step con-

ditioned on starting size. We call this the “CDF dif-

ference method.” While other approaches have been

proposed, in particular the Ellner et al. (2016) “bin-

to-bin” approach, we only tested these two most

commonly used methods here. For either, there is a

concern that some substantial fraction of the total

probability of growth will fall outside the upper and

lower limits for size defined in the model (the evic-

tion problem; Williams et al. 2012). There are multi-

ple ways to correct the estimated growth

probabilities so that, for any starting size (or size

class), they sum to 1 (Williams et al. 2012). We do so

by renormalizing the growth probabilities for a given

starting size by the difference of the CDFs for the

minimum and maximum sizes used in the model (as

in Williams et al. 2012). While this correctly stan-

dardizes total growth rates for the CDF difference

method, it is a more error-prone exercise for the

mesh point method, as we discuss in Results.

Appendix S1: Table S1 lists the vital rates fit for each

species, including non-size-dependent vital rates used in

all models. Appendix S1: Figs. S3–S7 show the best-sup-

ported vital rate functions for each species. As these

figures show, the species span a range of patterns in

growth, survival, and reproduction. In particular, Bor-

derea (Appendix S1: Fig. S4) and guppies

(Appendix S1: Fig. S7) show a pattern of declining mean

and variance in growth at larger sizes, while the other

species show declining mean but increasing or relatively

stable variance as size increases.

For each model constructed from each data set, we

estimated k, damping ratio, and longevity. We also

explored the effects of class number and discrete vs. con-

tinuous vital rate estimation on elasticity values, con-

trasting DVR models with 20 evenly spaced size classes

with CVR models built with 80 classes and using med-

ian-based and CDF difference methods. The 20-class

models are at the upper range possible to use for simple

even class definitions for all our data sets, while use of

80 classes is well within the range used by most IPM

models (Fig. 4).

Finally, we tested the effect of sample size on model

results by rarifying each data set in two different ways.

First, we randomly sampled each data set, with replace-

ment, 200 times for the full sample size, and also for 1/2,

1/4, 1/8, down to 1/32th of the full sample size, depend-

ing on species. We then replicated the model-fitting pro-

cess for 20-class DVR and CVR models, employing

median-based and CDF difference methods for CVR

discretization. For these models, we use a slight variant

on even class boundaries. To perform analyses on rari-

fied data sets using even size classes for DVR estimation,

we had to use a stratified bootstrap approach, so that we

retained some individuals across sizes in each data set.

This stratification regime also reflects the empirical sam-

pling decisions that many demographers make, with

efforts to include individuals at the top and bottom of

the size distribution in the sample followed for data col-

lection. To stratify the sampling, and also to define class

boundaries for all models, we used the top and bottom

5% of all individuals by starting size to define the small-

est and largest classes. We then divided the remaining

individuals into 18 even size-class divisions. Boot-

strapped samples were generated by resampling with

replacement separately for each size class. Resampled

data sets ranged from a sample equal to the original (see

Appendix S1: Figs. S13–S17 for per class sample sizes

statistics), down to between 1/8th and 1/32nd of the orig-

inal sample size, reflecting quite small minimum sample

sizes of individuals in a given class: bistorts, 6; gorgoni-

ans, 5; Borderea and guppies, 3; Vulpicida, 2. As supple-

mentary tests, we also (1) fit 80-class CVR models to

each data set to see if higher class numbers changed the

results and (2) ran similar rarefactions, but using non-

stratified bootstraps and fitting proportional class

boundary models using 20 classes for DVRs and 80

classes for CVRs.

In addition to the rarefaction simulations just

described, we also used a rarefaction approach to test

whether DVR models that are fit with high class num-

bers, and hence low sample sizes per class, perform
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worse than CVR models fit to the same resampled data.

For these analyses, we used the same 20-class stratified

bootstrap described in the last paragraph to generate

200 samples. For each species, we used one resampled

data set size, between 1/4th and 1/16th of the original

sample size; these sample sizes allowed us to fit a range

of class numbers for each species but also resulted in

small minimum sample sizes per class. We then fit mod-

els using from 5 up to 50 size classes, defining the upper

and lower classes using the 1/class number and 1 –

(1/class number) quantiles and evenly divided class

boundaries in between. We fit DVR and CVR models to

the same data and class boundaries, and employing med-

ian-based and CDF difference methods for CVR dis-

cretization. We fit models to any data set that had at

least one individual in each class, and also recorded the

fraction of failed data sets for each size-class number.

We show results for class numbers for which <30% of

samples failed for DVR models. We then predicted

lambda, damping ratio, and life span estimates for each

model.

All analyses were conducting using R version 3.5.2 (R

Core Team 2018). Example R scripts and data files

showing the routines used in our analyses are included

in Data S2.

Results

Use of mesh points vs. CDF differences to characterize

growth rates.—To restrict the range of modeling deci-

sions considered in subsequent analyses, we began by

addressing the last modeling decision listed above (Dis-

cretizing continuous size distributions), asking if using

mesh points or CDF differences had substantial effects

on growth rate estimation and hence on model results. It

is clear that the mesh point approach will be inaccurate

at smaller class numbers (Fig. 2e), as it is essentially a

crude numerical integration, but how accurate it is with

larger class numbers under realistic assumptions is less

clear. We therefore started by running a simplified simu-

lation, not tied to any of our real data sets, to illustrate

how well the mesh point method works to characterize

growth when starting from a single size, and when the

resulting sizes are far from size boundaries (so “eviction”

is not a problem). As noted in Ellner et al. (2016: sec-

tions 2.7.4 and 6.8), the mesh point approach performs

worst when there is low variance, in which case they sug-

gest increasing the variance (if model predictions are

unaffected), using sparse matrix methods with many

mesh points, or alternative integration approaches such

as Gauss-Legendre quadrature. To mimic this low-vari-

ance scenario, we simulated a realistically low SD of 0.5

with a mean size that varied from 49 to 51 (e.g., Fig. 7a

with mean = 50). We used from 10 to 100 mesh points

spanning a range of sizes between 0 and 100 to discretize

the resulting probability density function (PDF).

The most fundamental problem in approximating

growth probabilities is if they do not sum to 1, as all

surviving individuals should have a size at the next time

step; values greater than one implicitly boost survival

when used in a full demographic model, while summed

growth rates below 1 implicitly reduce survival. In our

simulations, models with from 20 to 100 classes estimate

growth probabilities that sum to between 3.0 9 10�5

and 1.76; while there is a general trend to more accuracy

with higher class number, both under- and overestimates

still occur as class number increases (Fig. 7b). The

summed growth probability is also highly sensitive to

small differences in the mean of the growth distribution

relative to the mesh points, with significant over- and

underestimation of total growth probability until high

class numbers are reached (near to 100). This is because

the probability of growth into a given class is estimated

using exact PDF values at mesh points, so that the exact

placement of mesh points relative to the peak of the
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point growth estimation. (a) A distribution of ending size val-
ues, with mean 50 and SD 0.5, on a possible size range between
0 and 100 and with probabilities shown for classes of width 1.
(b) The summed probability of growing to any size, as estimated
by the standard mesh point method. Results are shown for bin
numbers between 10 and 100. Each line shows results for a dif-
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most of the time. With a narrower ending size distribution, far
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PDF creates erratic misestimation, particularly when

there are few mesh points relative to the growth vari-

ance. In contrast, the CDF difference approach always

estimates the summed growth probability as 1.

The problems with the mesh point approach can also

affect the construction and results of full population

models. To test the effects of mesh point misestimation

on growth rate estimates across starting sizes, we built

CVR models for each of our five focal species, using

each of the two methods and both moderately high (50)

and high (100) class numbers. For both methods, we nor-

malized the estimated growth rates for a starting size

based on the difference in the CDF between the mini-

mum and maximum sizes used in the model. This test is

the one proposed by Williams et al. (2012) to detect evic-

tion. While it is the correct estimate of “true” eviction

(i.e., growth outside the range of sizes in the model), and

corrects all the transition probabilities for the CDF dif-

ference method so that they sum to 1, for the mesh point

models it is not a perfect test or correction, since the

summed growth probabilities can deviate substantially

from 1, even in the absence of any meaningful eviction.

Use of mesh point methods leads to substantial over-

or underestimation of summed growth rates for some

small or large classes for four of our five species, and

does so even with models built with 50 or 100 classes

(Fig. 8). Misestimation tends to occur where variance in

growth is low (Appendix S1: Figs. S3–S7), and can occur

for size classes that include abundant individuals (e.g.,

large Borderea and small gorgonians). We also tested for

the effects of eviction correction in changing the esti-

mated mean and variance in growth for different sizes.
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Not surprisingly, eviction correction can substantially

shift both mean and variance estimates (Appendix S1:

Figs. S8–S12); while this is expected, it does suggest that

alternative models for growth rates that minimize the

eviction problem need to be developed and more widely

employed (e.g., Peterson et al. 2019).

To test the effects of mesh point misestimation of

growth rates on lambda estimates, we took the same

approach just described, but building entire demo-

graphic models for a range of class numbers for each

focal species. The models used mean class values for esti-

mation and even size class boundaries. For all of our

focal species, use of mesh points results in greater devia-

tions in lambda estimates and slower convergence on

stable lambda values as class number increases than do

models built using CDF differences to estimate growth

probabilities (Fig. 9).

In sum, the mesh point method can be highly inaccu-

rate, and much of this inaccuracy will also be undetected

by the usual test employed for growth rate eviction.

Given that the CDF difference method is highly robust

and extremely fast (only taking an additional 1.8 s than

the mesh point approach in a test with 10,000 classes on

a standard laptop), it is not clear that there is any reason

to continue to use the mesh point approach to estimate

growth, especially as it can generate artifacts and

extreme class number dependence in the absence of any

benefit. While the problems with the mesh point

approach can be easily solved by using increasing class

numbers, this number can reach ridiculous levels (e.g.,

>4,000; Zuidema et al. 2010, Needham et al. 2018) and

require careful analysis to detect. In the simulations

below, we always use the CDF difference approach in

our CVR models.
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Effects of modeling decisions on population growth esti-

mates.—All four of the remaining modeling decisions

that we explored can also have substantial influence on

estimated lambda values. However, the strength and pat-

terns of these effects are not necessarily what are usually

assumed by most population biologists. While we have

no independent measure of the “right” answer for these

real data sets, most models based on the same data set

converge on almost exactly the same lambda (k) esti-

mates with moderate (for discrete parameter estimation)

or high (for continuous vital rate functions) class num-

bers, and we assume that these values are reasonable

approximations of reality.

Class number and vital rate estimation method (DVR

vs. CVR) show significant interactions in their effects on

k, but do not indicate any clear advantage for the use of

CVRs (Fig. 10). Models using DVRs, corresponding to

classic matrix models, converge on the same lambda val-

ues as do models using CVRs, corresponding to IPM

models, especially when using even class boundaries. k

values also show convergence to a very narrow range of

values (�0.01) by ~10–20 classes, depending on the spe-

cies. While these are higher class numbers than are typi-

cal in many matrix models, they are far below those

generally used in IPMs (Fig. 4). Neither estimation

method gives consistently better results with small class

numbers. DVRs always misestimated k when used with

very few classes, but the use of CVRs also resulted in

over- or underestimation, often of greater magnitude,

depending on the species and other aspects of model

construction. This suggests that the number of classes

has a greater impact on model performance than the

method of parameter estimation, but that the extremely

large matrices used in most IPMs are unnecessary to

achieve model accuracy.

In general, bistorts, Borderea, and guppies showed fas-

ter convergence on the same lambda values with increas-

ing classes than did the other two species, and the first

two species also showed better correspondence between

the predictions of median-based CVR and DVR models.

Unfortunately, there is not a simple difference in the life

histories or size distributions of the species that appears

to correspond to these different results (see Fig. 6,

Appendix S1: Figs. S3–S7 for size distributions and vital

rates of the species).

Other components of model building also influenced

k estimates. First, defining class boundaries using even

divisions generally yielded more consistent results across

class numbers, regardless of other modeling decisions.

This was most obvious for bistort, Borderea and Vulpi-

cida, for which even class models show convergence to

the same lambda values at lower class numbers than do

models with proportional classes, which continued to

show divergence out to 100 classes. Second, use of esti-

mated median sizes with CVR models to characterize

average vital rates often yielded more accurate k esti-

mates, particularly at lower class numbers, than did use

of midpoint sizes. This was especially striking for Vulpi-

cida, for which use of midpoint sizes substantially

altered k estimates even with 80–100 classes with propor-

tional class sizes, with no sign of convergence with the

other estimates. The somewhat poorer performance of

models with either proportional classes or midpoints

appears to be due to the same underlying cause: mis-

characterizing average performance either by grouping

together very different individuals and/or by a poorer

approach to characterizing the average state of individu-

als within a class.

One striking aspect of these results is that the outputs

of CVR-based models are more dependent on other

decisions about model structure and estimation than

seems to be the case for discretely estimated vital rate

models (Fig. 10). This result contrasts with the common

assumption that use of CVRs will lead to more stable,

and hence reliable, results. This finding also suggests

that, if models are made with moderate numbers of

classes, discretely estimated matrix analyses are likely to

provide estimates of growth rates that are just as robust

as those arising from IPMs.

Simulation results: Damping ratios, life spans, and sensi-

tivity analysis.—Predictions of life spans and damping

ratios mirrored those for population growth rates,

although with greater effects of several modeling deci-

sions (Figs. 11, 12). First, models made with even class

widths show weaker effects of other modeling decisions

on their eventual convergence than do models made with

proportional class widths. Second, CVR models that

used median sizes to characterize performance often

yielded more stable values than did those that used the

midpoint of a class. This was most evident for life span

estimates, for which midpoint models gave highly diver-

gent estimates for Vulpicida and, with proportional

classes, Borderea as well. Third, using discrete vital rate

estimation yielded the same results as did CVR models,

and generally converged upon stable values more quickly

with increasing class number. Overall, these results bol-

ster the conclusion that discretely estimated matrix mod-

els are no less representative of demographic patterns

than are IPMs fit with CVRs and evaluated at mid-

points, with IPMs of high (>80) classes and matrix mod-

els of quite moderate size (~10–20 classes) giving

essentially identical results.

We also examined the dependence of sensitivity analy-

ses of lambda to matrix elements on modeling

approach, contrasting the results of a DVR-based

model of 20 even size classes and a CVR model of 80

even classes, evaluated at midpoints. The contrasting

models for each species showed very similar results

(Fig. 13). The elasticity values of matrix elements were

strongly correlated (r = 0.95–0.97) with litte to no evi-

dence of systematic bias, and there was a similarly close

correspondence in sensitivity values (r = 0.94–0.99;

Appendix S1: Fig. S18).
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Simulation results: sample size effects.—One assumed

advantage of CVRs that has often been advanced in the

demographic literature is that they perform better when

data are sparse (Easterling et al. 2000, Ellner and Rees

2006, Ramula et al. 2009, Zuidema et al. 2010, Merow

et al. 2014), so we compared model outputs for 20-class

CVR models (fit with median values) vs. 20-class DVR

models, each fit to 200 bootstrapped data sets across a

range of sample sizes (Fig. 14). Regardless of the model-

ing approach used, the variance in lambda estimates

increased with smaller samples. However, to our sur-

prise, there was little consistent advantage of the CVR

approach with increasingly rarified data. Even when

using sample sizes in the low hundreds, both discrete

and continuous approaches to parameter estimation

yielded similarly variable predictions. This finding does

not support the generality that continuous functions will

better estimate vital rates and hence produce better

model outputs with small sample sizes. This result likely

reflects in part the model-selection process inherent to

fitting continuous vital rate functions. With smaller sam-

ple sizes, different sets of data can yield support for

alternative forms of the vital rate parameters or even

functions, such as linear vs. quadratic relationships,
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thereby altering model predictions. In addition, outliers

can exert effects on entire vital rate functions when using

the CVR approach, again creating variance in predic-

tions that appear to be equivalent in their effects to the

randomness generated in the estimates coming from the

DVR approach. While this result might change with

even smaller sample sizes, our simulation results based

on 300–400 individual transitions already show so much

variation that the effects of the sampling variance in the

data overwhelm any advantage of one modeling

approach over the other. We ran the same comparisons

using 80-class CVR models (Appendix S1: Fig. S19) and

also used non-stratified bootstrapped data sets with pro-

portional class boundaries (Appendix S1: Fig. S20); in

both cases, we find qualitatively similar results to those

seen in the main simulations. In the future, it would be

illuminating to estimate the relative contributions of dif-

ferent processes, such as model selection, outliers, and

size distributions, to the precision of both DVR and

CVR model predictions and how these vary with sample

size for each approach.

We also conducted a different test of sample-size

effects, focused on the effects of low sample sizes per

class for DVR models. Here we are looking at the
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possibility that with higher class numbers, DVR models

will be increasing unreliable, since they will have at least

some classes with vital rates estimated from extremely

small samples (down to n = 1 in our simulations). Using

relatively low total sample sizes (see Methods) we fit

models with a range of class numbers and found surpris-

ingly little evidence for an advantage of CVR over DVR

models or of a disadvantage of DVR models with higher

class numbers (Fig. 15 and Appendix S1: Figs. S21–

S25), even when multiple classes have extremely low

sample sizes (e.g., N < 6; Appendix S1: Figs. S21–S25).

At the lowest sample sizes, for guppies and gorgonians

we do see that DVR models generated a bimodal distri-

bution of lambdas, but the second, erroneous peak in

estimates results from models that have one or more

classes where individuals are immortal and cannot leave,

resulting in lambda = 1. While erroneous, this is a

pathology that is easy to recognize and rectify when

building a model for a particular species. The surprising

lack of advantage for CVR models also occurs for damp-

ing ratio and life span estimates (Appendix S1:

Figs. S21–S25), and does so even though we created

models in which minimum sample sizes per class

spanned extremely low numbers.
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Simulation results: One more lesson.—One lesson that

we learned from constructing the models used in our

simulations may not be apparent to many demogra-

phers, but can have large effects on model performance

and especially the effects of varying class number: how

the size distribution of new recruits is treated. For most

species, including those in our focal data sets, there is a

wide enough range of new recruit sizes, at least after

their first year of life as a seedling or equivalent new

recruit class, that they can grow into a meaningful range

of sizes. While in IPM models, the size distribution of

new recruits is typically quantified (92% of IPMs in our

literature review; Data S1: Literature Review), in matrix

models, new recruits are often deposited into the small-

est size class and then can proceed through the other size

classes of a model. In the course of making our simula-

tions, we realized that making this simple assumption

guarantees an artificial dependency of model predictions

on class number, because use of fewer, wider size classes

essentially increases the size of new recruits, while nar-

rower classes essentially shrink them. This problem is

avoidable if, instead, new recruits are explicitly modeled
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as having probabilities of growing to a range of sizes.

When testing effects of class number on model outputs,

attention to this potential artifact is important.

DISCUSSION

IPMs and traditional matrix models are often dis-

cussed as wholly distinct modeling approaches, with

IPMs represented as a substantial improvement in

demographic modeling by dealing more realistically with

the continuous ranges of state variables and vital rates

seen for many organisms. While an argument can be

made that conceptually the two methods really are dis-

tinct, both our literature review and demographic analy-

ses, based on data for five diverse organisms, challenge

the view that they are entirely distinct in practice or that

one is clearly superior. Instead, we find broad overlap in

the way IPMs and matrix models are fit and interpreted.

A quarter of size-based matrix models estimated at least

one vital rate as a continuous function of size, and

although these models used substantially fewer classes

on average than IPMs, the range of class numbers was

very wide and overlapping across the two approaches.

Further, our simulations showed no substantive differ-

ences in outputs of models using discrete vs. continuous

approaches to estimating vital rates. Rather, both

approaches performed similarly well when sample sizes

and class numbers were sufficient and similarly poorly

when data were limiting or too few classes were used to

capture an organism’s life history. Further, we found lit-

tle advantage to using more than 10–20 classes even for

extremely slow-growing and long-lived organisms, sug-

gesting that continuous demographic processes can be

well approximated by matrices of moderate dimension.

This range of size classes is at the high end for most size-

based matrix models in the literature, but it is far lower

than that used to analyze virtually all IPMs. Although

these two aspects of demographic modeling, matrix
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dimension and discrete vs. continuous vital rate estima-

tion, have received the most attention in the literature,

our simulations also highlight the equal or greater

importance of other modeling decisions, such as how

classes are defined and continuous vital rate functions

are discretized, as well as the quality and quantity of the

underlying demographic data. Together, these results

suggest that some model building decisions have been

overemphasized whereas data collection methods and

sample size effects have been underemphasized in discus-

sions of improving demographic models and their pre-

dictions.

One of the principal critiques of traditional matrix

models is that they use too few classes to accurately rep-

resent what are inherently continuous demographic pro-

cesses, and this idea has been bolstered by analyses of

IPMs that show that class numbers into the hundreds

are often necessary to stabilize model outputs. Our simu-

lations lend partial support to this idea, by showing that

demographic models with too few classes do indeed

produce biased outputs. Interestingly, however, our

models were able to accurately capture the demography

of long-lived species with sizes spanning up to 2.6 orders

of magnitude with 10–20 classes, much less than what is

typically used by IPMs. These results suggest that tradi-

tional matrix models for size-based life histories may

indeed require more classes than are typically used,

although many models are built for species with smaller

size ranges, more stage-based life histories, or shorter life

spans than most of our focal species. For such species,

there are likely to be smaller differences between the

fates of most individuals and also less steep changes in

vital rates across the sizes of most individuals. In such

cases, fewer classes may well be sufficient, as we see with

our guppy example. In addition, studies focused on par-

ticular species often make careful, biologically based

decisions about class boundaries, which seem likely to

yield better results than our more standardized but

mindless class divisions (but see Ramula et al. 2020).

Our results also suggest that the perceived need for
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extremely high class numbers with IPMs may be driven

by the inefficiency of the midpoint method for estimat-

ing growth, or some other pathology in the way the

models are being constructed, rather than a more funda-

mental need for high class number to capture biological

patterns.

The other aspect of model fitting that has been

emphasized in discussions of demographic modeling has

been whether vital rates are estimated discretely for each

class or by using the data across all classes to fit continu-

ous vital rate functions (CVRs). The main arguments for

CVRs are that they are more biologically realistic than

discrete classes, are more accurate and efficient when

data are limiting, can allow easier incorporation and

testing of demographic drivers, and can utilize sophisti-

cated statistical methods, such as mixed models or Baye-

sian approaches (Ramula et al. 2009, Merow et al.

2014b, Ehrl�en et al. 2016, Elderd and Miller 2016). In

our simulations, we found no evidence for the first two

arguments. There was no improvement when using

CVRs for a range of model outputs, including popula-

tion growth, life span, damping ratio, or sensitivity and

elasticity patterns. In fact, we observed a general ten-

dency in our simulations for CVR-based model outputs

to be more sensitive to other modeling decisions, such as

whether classes are equally spaced or proportional to

sample sizes. We also saw no evidence that CVRs

increase the precision or accuracy of estimates as sample

sizes decrease. This is in contrast to results found by

Ramula et al. (2009), which compared 100-class IPMs

with four-to-six-class matrix models. This discrepancy

may have been driven by the difference in class number

rather than the method of vital rate estimation. By sepa-

rating these two components in our simulations, we find

a large effect of class number but little consistent effect

of estimation method. Ramula et al. (2009) also found a

weak correlation between matrix dimension and sample

size for 63 plant matrix models, suggesting that matrix

models with low sample sizes could also suffer from few

classes. However, we found no relationship between

matrix dimension and sample size for size-based matrix

models in our literature review (Appendix S1: Fig. S2).

Our results lead us to conclude that neither the contin-

uous nor discrete approaches to estimating vital rates is

inherently better. Instead, the choice of approach should

depend on the particular life history and analysis goals

of a given study. Discrete vital rate estimation (DVR) is

arguably the most flexible approach if life-history pat-

terns are complex, because it is agnostic about many

aspects of vital rate patterns. For example, multiple state

variables can be easily combined into complex states rep-

resenting combinations of size, age, or stage variables.

DVR can also easily accommodate sharp transitions or

nonlinearities in vital rates, cases where survival asymp-

totes at values less than 1, and cases that violate distribu-

tional assumptions about state variables (e.g., normally

distributed growth). Further, the explanatory power of

different model structures can be tested statistically to

infer the number and placement of class divisions, and

there is some evidence that this approach outperforms

model structures informed by expert opinion alone

(Ramula et al. 2020). Alternatively, there are clear

advantages of the statistical framework of CVRs. By

modeling vital rates in a regression-based framework,

CVRs can easily incorporate the effects of covariates

such as climate, can incorporate or correct for site or

year effects as random variables, and can account for

individual effects using random effects to account for

repeated measures. CVRs can also provide a clear con-

ceptual framework for hypothesis testing and model

selection, and also allow investigation of sensitivities

with respect to underlying functional forms or model

parameters. However, it is worth noting that various

methods, including multistate mark–recapture models,

can also allow model selection to be applied to DVR

estimation. Thus, CVR and DVR-based models may

each be most appropriate for different data sets and

analysis goals.

One surprising result to emerge from this work is the

importance of other aspects of model fitting that have

received far less attention in the demographic literature.

For example, traditional matrix models often define

classes based in part on sample sizes, but our results sug-

gest that dividing classes evenly, on the transformed or

untransformed scale for which size best relates to vital

rates, depending on species, generally gives more accurate

results. We also identified several ways to improve meth-

ods for discretizing continuous vital rate functions. First,

we show that the mesh point method can badly misesti-

mate growth probabilities when using CVR functions, but

that this is solved by using the CDF difference method.

Second, our results suggest that vital rates are better char-

acterized by using the median rather than the midpoint of

a class, as long as the distribution of sampled individuals

represents the size distribution in the population. We

expect that this distinction is behind the slower conver-

gence of the Vulpicida models with increasing class num-

bers. This is the only data set we used where sampling was

not roughly comprehensive, but stratified over sizes, mak-

ing the distribution of sampled individuals a poor charac-

terization of the population-wide size distribution.

Finally, the most overwhelming effect on model accu-

racy in our simulations was the sample size of the under-

lying demographic data, which is an indicator of the

sampling precision of vital rates and their relationships

with the state variable used. We found low precision in

model outputs with sample sizes less than several hun-

dred regardless of modeling approach, and, in these

cases, CVRs did not solve the problems caused by low

sample sizes. The lowest sample sizes we used (305–405)

were typical of many published demographic studies,

and considerably larger than used in some studies

(Appendix S1: Figs. S2, S26). However, our simulations

pooled all demographic data to estimate a single transi-

tion matrix. This means that spatial and temporal varia-

tion in individual fates will be at least somewhat larger
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in our samples than would be expected in samples of a

single population over a single transition, potentially

inflating the variance in lambda estimates we see with

small samples. Furthermore, in cases where data are col-

lected across multiple time periods or locations and sam-

ple sizes are limiting, CVRs may enable a researcher to

improve accuracy by fitting vital rate functions that bor-

row strength by including all the data while appropri-

ately modeling its structure. Statistical models can also

be used to estimate DVRs while accounting for random

effects of site or time period (Altwegg et al. 2007, Morris

et al. 2011, Ramula et al. 2020), and a mixed strategy of

fitting CVRs with class-specific random effects could

also be useful in some cases.

There are several other important aspects of demo-

graphic model construction that we do not consider

here, but that have recently been explored and shown to

be of real importance. Perhaps most critically, we do not

address how the choice of state variable can influence

model results. As Louthan and Doak (2018) show, mea-

sured state variables that are not closely correlated with

an individual’s “true state” can yield misleading model

results due to errors in characterizing state. For example,

perennial plant size is often characterized by measuring

leaf or stem size, whereas demographic rates may in fact

be driven more by belowground energy stores. A second

concern that we do not address is the distributional

assumptions that are often made when modeling size

transitions with CVRs. Most IPMs assume that growth

is normally distributed, but this can bias model outputs

if growth is asymmetric such as when growth or shrink-

age is more likely (Peterson et al. 2019). In general,

choices regarding the form of vital rate functions are

likely to be just as important for inference as the issues

investigated here. Several authors have repeatedly

emphasized that IPM practitioners should carefully

evaluate the goodness of model fits for vital rate func-

tions and their influence on IPM outputs (Easterling

et al. 2000, Rees et al. 2014, Ellner et al. 2016), and we

echo those recommendations here.

Taken together, our results suggest that IPMs and

matrix models are overly dichotomized in the literature.

We suggest that this distinction is neither useful nor rep-

resentative of the range of modeling decisions that

underlie every structured demographic model. Many

models use some combination of continuous and dis-

crete vital rate estimation (e.g., when some individuals

are described by continuous state variables and others

[juveniles, seeds, etc.] by stage). Although the methods

used to build these matrices will often be very similar,

the language and notation used to describe models are

often completely different based on whether authors

decide to refer to a model as an IPM or matrix model.

In our experience, the terminology and integral notation

used to describe IPMs can be intimidating to many new

students and to nonspecialist consumers of demographic

analyses, such as conservation managers, when in fact

the vital rate models and discretization methods would

be familiar if described differently. In addition, much of

the language used to present IPMs obscures the fact that

the continuous vital rate functions are discretized into

projection matrices prior to analysis, making the actual

model outputs or their correspondence to matrix models

difficult to understand. As we note above, many IPM

studies in our literature review do not report the dis-

cretization methods used at all.

We suggest that it is more informative to refer to both

projection matrix models and IPMs as Structured Popu-

lation Models more generally, in part to emphasize the

need to break these labels down into the important

details of vital rate estimation, the number of size

classes, and the methods used to discretize CVRs. In

particular, we emphasize that statements suggesting that

IPMs avoid discretization, are more biologically realistic,

or perform better at small sample sizes, are not sup-

ported by our findings.

SPECIFIC RECOMMENDATIONS

Below, we highlight several of the most important rec-

ommendations for constructing demographic models

that have emerged from this work.

(1) When using an inherently continuous state variable,

test the sensitivity of results to class number (partic-

ularly when using few classes).

(2) When using continuous vital rate functions (CVRs),

report methods for discretization by including class

number and integration method.

(3) When using CVRs to model size transitions, use the

CDF difference method or explicitly show that the

use of the standard mesh point method is accurate.

(4) Especially when using smaller class numbers, use pop-

ulation size distributions to base class-specific vital rate

estimates on representative (mean or median) sizes.

(5) Both small sample sizes (indicative of low precision

in vital rate estimates) or very few classes can result in

biased or imprecise model outputs, and this should

be carefully considered when interpreting or using

published models (e.g., meta-analysis, COMPADRE

or COMADRE databases), especially as many matrix

models have been built with fewer classes than what

we would recommend. A caveat to this conclusion is

that for short-lived species or species with a limited

range of sizes, fewer classes may be sufficient.

SUMMARY

In summary, we do not find support for several com-

mon generalities and assumptions about demographic

modeling methods, and we also expose some new consider-

ations for the construction of accurate structured popula-

tion models. However, our results are generally positive:

widely repeated but untested assumptions about the

dependence of demographic results on modeling

approaches were largely unsupported, meaning that we
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have a far wider range of useful demographic studies to

learn from than would otherwise be the case. Looking for-

ward, this result also implies that the structure and param-

eterization of demographic models should always be

guided by careful consideration of the species and data

being modeled and that, if this is done, different

approaches will generally reach the same ecological conclu-

sions. With sufficient sample sizes and enough classes to

accurately represent the key life-history variation of a given

species, a range of model-fitting approaches will converge

on the same answer. Structured demographic models, one

of the backbone methods of population biology, are com-

prised of a robust set of methods that can be usefully

added to, but do not require fundamental re-tooling.

ACKNOWLEDGMENTS

Bruce Kendall provided many suggestions and critiques that

greatly improved this work and its presentation. We also thank

the many volunteers, colleagues, and assistants who helped

gather the extensive data sets that we use in our simulation stud-

ies. Support for this work was provided by NSF awards

1146489, 1242558, 1242355, 1353781, 1340024, 1753980, and

1753954, 1144807, 0841423, and 1144083. Support also came

from USDA NIFA Postdoctoral Fellowship (award no. 2019-

67012-29726/project accession no. 1019364) for R. K. Shriver;

the Swiss Polar Institute of Food and Agriculture for N. I.

Chardon; the ICREA under the ICREA Academia Programme

for C. Linares; and SERDP contract RC-2512 and USDA

National Institute of Food and Agriculture, Hatch project

1016746 for A .M. Louthan. This is Contribution no. 21-177-J

from the Kansas Agricultural Experiment Station.

LITERATURE CITED

Altwegg, R., M. Schaub, and A. Roulin. 2007. Age-specific fit-

ness components and their temporal variation in the barn

owl. American Naturalist 169:47–61.

Bakker, V. J., and D. F. Doak. 2009. Population viability man-

agement: ecological standards to guide adaptive management

for rare species. Frontiers in Ecology and the Environment

7:158–165.

Bakker, V. J., D. Doak, G. W. Roemer, D. K. Garcelon, T. J.

Coonan, S. A. Morrison, C. Lynch, K. Ralls, and R. Shaw.

2009. Incorporating ecological drivers and uncertainty into a

demographic population viability analysis for the island fox.

Ecological Monographs 79:77–108.

Bakker, V., M. Finkelstein, D. F. Doak, L. Young, E. Van-

derWerf, J. Arata, P. Sievert, and C. Vanderlip. 2018. The

albatross of assessing and managing risk for long-lived pela-

gic yet terrestrial breeding species. Biological Conservation

217:83–95.

Barlow, J., and P. Boveng. 1991. Modeling age-specific mortality

for marine mammal populations. Marine Mammal Science. 7:

50–65.

Batista, W. B., W. J. Platt, and R. E. Machhiavelli. 1998.

Demography of a shade-tolerant tree (Fagus grandifolia) in a

hurricane-disturbed forest. Ecology 79:38–53.

Bernal, R. 1998. Demography of the vegetable ivory palm

Phytelephas seemannii in Colombia, and the impact of seed

harvesting. Journal of Applied Ecology 35:64–74.

Biek, R., W. C. Funk, B. A. Maxell, and L. S. Mills. 2002. What

is missing in amphibian decline research: insights from eco-

logical sensitivity analysis. Conservation Biology 16:728–734.

Carroll, R., C. Augspurger, A. Dobson, J. Franklin, G. Orians,

W. Reid, R. Tracy, D. Wilcove, and J. Wilson. 1996. Strength-

ening the use of science in achieving the goals of the Endan-

gered Species Act: an assessment by the Ecological Society of

America. Ecological Applications 6:1–11.

Caswell, H. 2001. Matrix population models: construction,

analysis, and interpretation. Sinauer Associates, Sunderland,

Massachusetts, USA.

Chien, P. D., P. A. Zuidema, and N. H. Nghia. 2008. Conserva-

tion prospects for threatened Vietnamese tree species: results

from a demographic study. Population Ecology 50:227–237.

Cole, L. C. 1954. The population consequences of life history

phenomena. Quarterly Review of Biology 29:103–137.

Coma, R., M. Zabala, and J. M. Gili. 1995. Sexual reproductive

effort in the Mediterranean gorgonian Paramuricea clavata.

Marine Ecology Progress Series 117:173–183.

Crouse, D. T., L. B. Crowder, and H. Caswell. 1987. A stage-

based population model for Loggerhead sea turtles and impli-

cations for conservation. Ecology 68:1412–1423.

Csergo, A. M., et al. 2017. Less favourable climates constrain

demographic strategies in plants. Ecology Letters 20:969–980.

Dahlgren, J. P., and J. Ehrl�en. 2009. Linking environmental

variation to population dynamics of a forest herb. Journal of

Ecology 97:666–674.

Dahlgren, J. P., M. B. Garcia, and J. Ehrl�en. 2011. Nonlinear

relationships between vital rates and state variables in demo-

graphic models. Ecology 92:1181–1187.

Dibner, R. R., M. L. Peterson, A. Louthan, and D. Doak.

2019. Multiple mechanisms confer stability to isolated popu-

lations of a rare endemic plant. Ecological Monographs 89:

e01360.

Diez, J. M., I. Giladi, R. Warren, and H. R. Pulliam. 2014.

Probabilistic and spatially variable niches inferred from

demography. Journal of Ecology 102:544–554.

Doak, D. F., G. K. Himes Boor, V. J. Bakker, W. F. Morris, A.

Louthan, S. A. Morrison, A. Stanley, and L. B. Crowder. 2015.

Recommendations for improving recovery criteria under the US

Endangered Species Act. BioScience 65:189–199.

Doak, D. F., and W. F. Morris. 2010. Demographic compensa-

tion and tipping points in climate-induced range shifts. Nat-

ure 467:959–962.

Easterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-

specific sensitivity: applying a new structured population

model. Ecology 81:694–708.

Eberhardt, L. L. 1985. Assessing the dynamics of wild popula-

tions. Journal of Wildlife Management 49:997–1012.

Ehrl�en, J., W. F. Morris, T. von Euler, and J. P. Dahlgren. 2016.

Advancing environmentally explicit structured population

models of plants. Journal of Ecology 104:292–305.

Elderd, B., and T. E. Miller. 2016. Quantifying demographic

uncertainty: Bayesian methods for integral projection models.

Ecological Monographs 86:125–144.

Ellner, S. P., D. Z. Childs, and M. Rees. 2016. Data-driven mod-

elling of structured populations: A practical guide to the inte-

gral projection model. Springer International Publishing,

Switzerland.

Ellner, S. P., and M. Rees. 2006. Integral projection models for

species with complex demography. American Naturalist

167:410–428.

Fitzpatrick, S. W., et al. 2016. Gene flow from an adaptively

divergent source causes rescue through genetic and demo-

graphic factors in two wild populations of Trinidadian gup-

pies. Evolutionary Applications 9:879–891.

Fitzpatrick, S. W., G. S. Bradburd, C. T. Kremer, P. E. Salerno,

L. M. Angeloni, and W. C. Funk. 2020. Genomic and fitness

consequences of genetic rescue in wild populations. Current

Biology 30:517–522.

Article e01447; page 28 DANIEL F. DOAK ETAL. Ecological Monographs
Vol. 91, No. 2



Franco, M., and J. Silvertown. 1996. Life history variation in

plants: an exploration of the fast-slow continuum hypothesis.

Philosophical Transactions of the Royal Society B 351:1341–

1348.

Franco, M., and J. Silvertown. 2004. A comparative demogra-

phy of plants based upon elasticities of vital rates. Ecology

85:531–538.

Gamelon, M., O. Gimenez, E. Baubet, T. Coulson, S. Tul-

japurkar, and J. M. Gaillard. 2014. Influence of life-history

tactics on transient dynamics: a comparative analysis across

mammalian populations. American Naturalist 184:673–683.

Garcia, M. B. 2003. Demographic viability of a relict popula-

tion of the critically endangered plant Borderea chouardii.

Conservation Biology 17:1672–1680.

Gillespie, J. H. 1977. Natural selection for variances in offspring

numbers: a new evolutionary principle. American Naturalist

111:1010–1014.

Griffith, A. B. 2017. Perturbation approaches for integral pro-

jection models. Oikos 126:1675–1686.

Gross, K., W. F. Morris, M. S. Wolosin, and D. F. Doak. 2005.

Modeling vital rates improves estimation of population pro-

jection matrices. Population Ecology 48:79–89.

Haridas, C. V., and S. Tuljapurkar. 2005. Elasticities in variable

environments: properties and implications. American Natu-

ralist 166:481–495.

Hartshorn, G. S. 1975. A matrix model of tree population

dynamics. Pages 41–51 in F. B. Golley and E. Medina, editors.

Tropical ecological systems: trends in terrestrial and aquatic

research. Springer-Verlag, New York, New York, USA.

Hunter, C. M., H. Caswell, M. C. Runge, E. V. Regehr, S. C.

Amstrup, and I. Stirling. 2010. Climate change threatens

polar bear populations: a stochastic demography analysis.

Ecology 91:2883–2897.

Jacquemyn, H., R. Brys, and E. Jongejans. 2010. Size-depen-

dent flowering and costs of reproduction affect population

dynamics in a tuberous perennial woodland orchid. Journal

of Ecology 98:1204–1215.

Jongejans, E., O. Skarpaas, and K. Shea. 2008. Dispersal,

demography and spatial population models for conservation

and control management. Perspectives in Plant Ecology, Evo-

lution, and Systematics 9:153–170.

Katz, D. S. 2016. The effects of invertebrate herbivores on plant

population growth: a meta-regression analysis. Oecologia

182:43–53.

Kendall, B. E., M. Fujiwara, J. Diaz-Lopez, S. Schneider, J. Voigt,

and S. Wiesner. 2019. Persistent problems in the construction

of matrix population models. Ecological Modelling 406:33–43.

Lande, R. 1982. A quantitative genetic theory of life history

evolution. Ecology 63:607–615.

Lande, R. 1988. Demographic models of the northern spotted

owl (Strix occidentalis caurina). Oecologia 75:601–607.

Lefkovitch, L. P. 1965. The study of population growth in

organisms grouped by stages. Biometrics 21:1–18.

Leslie, P. H. 1945. On the use of matrices in certain population

mathematics. Biometrika 33:183–212.

Linares, C., and D. F. Doak. 2010. Forecasting the combined

effects of disparate disturbances on the persistence of long-

lived gorgonians: a case study of Paramuricea clavata. Marine

Ecology Progress Series 402:59–68.

Linares, C., D. Doak, R. Coma, D. D�ıaz, and M. Zabala. 2007.

Life history and viability of a long-lived marine invertebrate:

the octocoral Paramuricea clavata. Ecology 88:918–928.

Louthan, A., and D. Doak. 2018. Measurement error of state

variables creates substantial bias in results of demographic

population models. Ecology 99:2308–2317.

Louthan, A. M., R. M. Pringle, J. R. Goheen, T. M. Palmer, W.

F. Morris, and D. F. Doak. 2018. Aridity weakens

population-level effects of multiple species interactions on

Hibiscus meyeri. Proceedings of the National Academy of

Sciences USA 115:543–548.

Matsuda, H., and K. Nichimori. 2003. A size-structured model

for a stock-recovery program for an exploited endemic fish-

eries resource. Fisheries Research 60:223–236.

McEvoy, P. B., and E. M. Coombs. 1999. Biological control of

plant invaders: regional patterns, field experiments, and struc-

tured population models. Ecological Applications 9:387–401.

Merow, C., et al. 2014a. Advancing population ecology with

integral projection models: a practical guide. Methods in

Ecology and Evolution 5:99–110.

Merow, C., A. M. Latimer, A. M. Wilson, S. M. McMahon, A.

G. Rebelo, and J. A. Silander. 2014b. On using integral projec-

tion models to generate demographically driven predictions

of species’ distributions: development and validation using

sparse data. Ecography 37:1167–1183.

Metcalf, C. J. E., S. M. McMahon, R. Salguero-G�omez, E.

Jongejans, and M. Rees. 2013. IPMpack: an R package for

integral projection models. Methods in Ecology and Evolu-

tion 4:195–200.

Miller, T. E. X., and B. D. Inouye. 2011. Confronting two-sex

demographic models with data. Ecology 92:2141–2151.

Moloney, K. A. 1986. A generalized algorithm for determining

category size. Oecologia 69:176–180.

Molowny-Horas, R., M. L. Suarez, and F. Lloret. 2017.

Changes in the natural dynamics of Nothofagus dombeyi for-

ests: population modeling with increasing drought frequen-

cies. Ecosphere 8:1–17.

Montero-Serra, I., J. Garrabou, D. F. Doak, L. Figuerola, B.

Hereu, J.-B. Ledoux, and C. Linares. 2018. Accounting for

life-history strategies and timescales in marine restoration.

Conservation Letters 11:e12341.

Morris, W. F., J. Altmann, D. K. Brockman, M. Cords, L. M.

Fedigan, A. E. Pusey, T. S. Stoinski, A. M. Bronikowski, S.

C. Alberts, and K. B. Strier. 2011. Low demographic variabil-

ity in wild primate populations: fitness impacts of variation,

covariation, and serial correlation in vital rates. American

Naturalist 177:E14–28.

Morris, W. F., and D. F. Doak. 2002. Quantitative conservation

biology. Sinauer, Sunderland, Massachusetts, USA.

Needham, J., C. Merow, C. H. Chang-Yang, H. Caswell, and S.

M. McMahon. 2018. Inferring forest fate from demographic

data: from vital rates to population dynamic models. Pro-

ceedings of the Royal Society B 285:20172050.

Ozgul, A., T. Coulson, A. Reynolds, T. C. Cameron, and T. G.

Benton. 2012. Population responses to perturbations: the

importance of trait-based analysis illustrated through a

microcosm experiment. American Naturalist 179:582–594.

Palmer, T. M., D. Doak, M. L. Stanton, J. L. Bronstein, E.

T. Kiers, T. P. Young, J. R. Goheen, and R. M. Pringle.

2010. Synergy of multiple partners, including freeloaders,

increases host fitness in a multispecies mutualism. Proceed-

ings of the National Academy of Sciences USA 107:17234–

17239.

Peterson, M. L., W. Morris, C. Linares, and D. Doak. 2019.

Improving structured population models with more realistic

representations of non-normal growth. Methods in Ecology

and Evolution 10:1431–1444.

Picard, N., and J. Liang. 2014. Matrix models for size-struc-

tured populations: unrealistic fast growth or simply diffusion?

PLoS ONE 9:e98254.

Pulliam, H. R. 1988. Sources, sinks, and population regulation.

American Naturalist 132:652–661.

R Core Development Team. 2015. R: A language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. www.R-project.org

May 2021 COMPARING DEMOGRAPHIC MODELING METHODS Article e01447; page 29



Ramula, S., N. Z. Kerr, and E. E. Crone. 2020. Using statistics

to design and estimate vital rates in matrix population models

for a perennial herb. Population Ecology 62:53–63.

Ramula, S., and K. Lehtil€a. 2005. Matrix dimensionality in

demographic analyses of plants: when to use smaller matri-

ces? Oikos 111:563–573.

Ramula, S., M. Rees, and Y. M. Buckley. 2009. Integral projec-

tion models perform better for small demographic data sets

than matrix population models: a case study of two perennial

herbs. Journal of Applied Ecology 46:1048–1053.

Rees, M., D. Z. Childs, and S. P. Ellner. 2014. Building integral

projection models: a user’s guide. Journal of Animal Ecology

83:528–545.

Rees, M., D. Z. Childs, J. C. Metcalf, K. E. Rose, A. W. Shep-

pard, and P. J. Grubb. 2006. Seed dormancy and delayed

flowering in monocarpic plants: selective interactions in a

stochastic environment. American Naturalist 168:E53–E71.

Rees, M., and S. P. Ellner. 2009. Integral projection models for

populations in temporally varying environments. Ecological

Monographs 79:575–594.

Rogers-Bennett, L., and D. W. Rogers. 2006. A semi-empirical

growth estimation method for matrix models of endangered

species. Ecological Modelling 195:237–246.

Sæther, B.-E., and Ø. Bakke. 2000. Avian life history variation

and contribution of demographic traits to the population

growth rate. Ecology 81:642–653.

Salguero-G�omez, R., et al. 2015. The COMPADRE plant

matrix database: an open online repository for plant demog-

raphy. Journal of Ecology 103:202–218.

Salguero-G�omez, R., et al. 2016a. COMADRE: a global data

base of animal demography. Journal of Animal Ecology

85:371–384.

Salguero-G�omez, R., O. R. Jones, E. Jongejans, S. P. Blomberg,

D. Hodgson, C. Mbeau-Ache, P. A. Zuidema, H. De Kroon,

and Y. M. Buckley. 2016b. Fast-slow continuum and repro-

ductive strategies structure plant life-history variation world-

wide. Proceedings of the National Academy of Sciences USA

113:230–235.

Salguero-G�omez, R., and J. B. Plotkin. 2010. Matrix dimen-

sions bias demographic inferences: implications for compara-

tive plant demography. American Naturalist 176:710–722.

Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Good-

willie, I. M. Parker, and J. G. Bishop. 1994. Evaluating

approaches to the conservation of rare and endangered

plants. Ecology 75:584–606.

Sergei, I. 2015. binr: Cut Numeric Values into Evenly Distribu-

ted Groups. R package version 1.1. https://CRAN.R-project.

org/package=binr

Shaffer, M. L. 1981. Minimum population sizes for species con-

servation. BioScience 31:131–134.

Shaffer, M. L. 1983. Determining minimum viable population

sizes for the grizzly bear. Bears: Their Biology and Manage-

ment 5:133–139.

Shea, K. 1998. Management of populations in conservation,

harvesting and control. Trends in Ecology and Evolution

13:371–375.

Shimatani, I. K., Y. Kubota, K. Araki, S.-I. Aikawa, and T. Man-

abe. 2007. Matrix models using fine size classes and their appli-

cation to the population dynamics of tree species: Bayesian non-

parametric estimation. Plant Species Biology 22:175–190.

Shriver, R. K., C. Andrews, R. Arkle, D. Barnard, M. Duniway,

M. J. Germino, D. S. Pilliod, D. Pyke, J. Welty, and J. Brad-

ford. 2019. Transient population dynamics impede restora-

tion and may promote ecosystem transformation after

disturbance. Ecology Letters 22:1357–1366.

Shriver, R. K., K. Cutler, and D. F. Doak. 2012. Comparative

demography of an epiphytic lichen: support for general life

history patterns and solutions to common problems in demo-

graphic parameter estimation. Oecologia 170:137–146.

Siler, W. 1977. A competing-risk model for animal mortality.

Ecology 60:750–757.

Silvertown, J., M. Franco, I. Pisanty, and A. Mendoza. 1993.

Comparative plant demography: relative importance of life-

cycle components to the finite rate of increase in woody and

herbaceous perennials. Journal of Ecology 81:465–476.

Stearns, S. C. 1992. The evolution of life histories. Oxford

University Press, Oxford, UK.

Stubben, C. J., and B. G. Milligan. 2007. Estimating and analyz-

ing demographic models using the popbio package in R.

Journal of Statistical Software 22:11.

Ureta, C., C. Martorell, J. Hortal, and J. Fornoni. 2012. Assess-

ing extinction risks under the combined effects of climate

change and human disturbance through the analysis of life-

history plasticity. Perspectives in Plant Ecology, Evolution,

and Systematics 14:393–401.

Vandermeer, J. 1978. Choosing category size in a stage projec-

tion matrix. Oecologia 32:79–84.

White, J. W., K. J. Nickols, D. Malone, M. H. Carr, R. M. Starr,

F. Cordoleani, M. L. Baskett, A. Hastings, and L. W. Bots-

ford. 2016. Fitting state-space integral projection models to

size-structured time series data to estimate unknown parame-

ters. Ecological Applications 26:2677–2694.

Wilber, M. Q., R. A. Knapp, M. Toothman, and C. J. Briggs.

2017. Resistance, tolerance and environmental transmission

dynamics determine host extinction risk in a load-dependent

amphibian disease. Ecology Letters 20:1169–1181.

Williams, J. L. 2009. Flowering life-history strategies differ

between the native and introduced ranges of a monocarpic

perennial. American Naturalist 174:660–672.

Williams, J. L., T. E. Miller, and S. P. Ellner. 2012. Avoiding

unintentional eviction from integral projection models. Ecol-

ogy 93:2008–2014.

Yau, A. J., H. S. Lenihan, and B. E. Kendall. 2014. Fishery

management priorities vary with self-recruitment in sedentary

marine populations. Ecological Applications 24:1490–1504.

Yokomizo, H., T. Takada, K. Fukaya, and J. G. Lambrinos.

2017. The influence of time since introduction on the popula-

tion growth of introduced species and the consequences for

management. Population Ecology 59:89–97.

Zuidema, P. A. 2000. Demography of exploited tree species in

the Bolivian Amazon. Utrecht University, Utrecht, The

Netherlands.

Zuidema, P. A., E. Jongejans, P. D. Chien, H. J. During, and F.

Schieving. 2010. Integral Projection Models for trees: a new

parameterization method and a validation of model output.

Journal of Ecology 98:345–355.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecm.1447/full

DATA AVAILABILITY

Example R scripts and data files showing the routines used in our analyses are included in Data S2.

Article e01447; page 30 DANIEL F. DOAK ETAL. Ecological Monographs
Vol. 91, No. 2

https://CRAN.R-project.org/package=binr
https://CRAN.R-project.org/package=binr
http://onlinelibrary.wiley.com/doi/10.1002/ecm.1447/full

