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A critical comparison of some metrological parameters

characterizing local digital image correlation

and grid method

Michel Grédiac∗, Benôıt Blaysat∗, Frédéric Sur†

Abstract

The main metrological performance of two full-field measurement techniques, namely local digi-
tal image correlation (DIC) and grid method (GM), are compared in this paper. The fundamentals
of these techniques are first briefly recalled. The formal link which exists between them is then
given (the details of the calculation are in Appendix 1). Under mild assumptions, it is shown that
GM theoretically gives the same result as DIC, since the formula providing the displacement with
GM is the solution of the minimization of the cost function used in DIC in the particular case of a
regular marking. In practice however, the way the solution is found being totally different from one
technique to another, they feature different metrological performance. Some of the metrological
characteristics of DIC and GM are studied in this paper. Since neither guideline nor precise stan-
dard is available to perform a fair comparison between them, a methodology must first be defined.
It is proposed here to rely on three metrological parameters, namely the displacement resolution,
the bias and the spatial resolution, to assess the metrological performance of each technique. These
three parameters are thoroughly defined in the paper. Some of these quantities depend on external
parameters such as the pattern of the surface of interest, so the same set of grid images is processed
with both techniques. Only the contribution of the camera sensor noise to the displacement reso-
lution is considered in this study. The displacement resolution, the bias and the spatial resolution
are not independent but linked. These links are therefore studied in depth for DIC and GM and
compared. In particular, it is shown that the product between the displacement resolution and
the spatial resolution can be considered as a metric to perform this comparison. The extension
to speckled patterns of the lessons drawn from grids is finally addressed in the last part of the
paper. As a general conclusion, it can be said that for the value of the bias fixed in this study, the
additional cost due to grid depositing offers GM to feature a better compromise than subset-based
local DIC between displacement resolution and spatial resolution.
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1 Introduction

There is a wide literature on the metrological performance of full-field measuring techniques used in
experimental mechanics when they are considered individually. The influence of various parameters on
systematic and random errors in the displacement and strain maps provided by such techniques seems
to be the most widely addressed topic, especially concerning digital image correlation (DIC), see [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for instance, or the grid method (GM) [15, 16, 17, 18]. Comparing the
performance of different techniques between each other (or even between various versions of the same
technique) is, however, a major problem. Indeed, despite recent efforts [19, 20, 21, 22, 23, 24, 25], only
a general standard is available [26], and no clear guide helping the user to perform such a comparison
in an objective and systematic way is available on this subject. Comparing measuring techniques is
however crucial to assist experimentalists intending to use the tool, which is the most appropriate to
a given problem.

The main purpose of this study is to compare some parameters characterizing the metrological
performance of two 2D white-light full-field measuring techniques: subset-based local DIC and GM.
This problem is difficult to solve for two main reasons.

The first problem is to choose and define properly relevant parameters to characterize the metro-
logical performance of full-field measurement systems. An international guiding document gathering
the definitions of the main metrological parameters of any measurement technique is available, see
Ref. [27]. We propose thus to rely on this document in the present study. The systematic error (or
the bias) and the random error are considered here to characterize the metrological performance. The
random error is assessed through its standard deviation which is also referred to as the measurement
resolution. Since we deal here with full-field measurements, a third quantity must be considered in
addition to the last two, namely the spatial resolution. The spatial resolution reflects the ability of
a given technique to distinguish close features in a map. This last quantity is not defined in [27], so
we will rely here on a recent definition proposed in the literature, as explained in detail in Section 5
below. Finally, we only focus here on the displacement, the strain being considered as a quantity
deduced from the displacement by post-processing. Consequently, the measurement resolution is here
the displacement resolution. An important feature is that the bias, the displacement resolution and
the spatial resolution are linked. For instance, it is well-known that increasing the subset size in DIC
causes the displacement resolution (thus the noise level) to decrease, but the counterpart is that the
displacement distribution becomes more smoothed (thus blurred), which means that the spatial res-
olution is impaired and that the bias increases. Consequently, performing a fair comparison between
two different techniques should consist in comparing more the functions linking these three parame-
ters than comparing these parameters separately for given settings. Our methodology therefore relies
heavily on predictive formulas available in the recent literature to compare the nature of this link
between these parameters for each technique. These formulas being experimentally verified in other
papers, they were considered as reliable to predict the metrological parameters.

Performing a fair comparison requires to address a second problem, the fact that the parameters
defined above are influenced by various factors which are external to the measurement techniques
themselves. Lighting spatial homogeneity or flickering, lens artifacts (vignetting or geometric distortion
for instance), quality of the surface marking, micro-movement between specimen and camera which
may occur while taking the pictures or out-of-plane displacements are typical examples of external
factors influencing the results for a given technique or for a given version of a technique. This raises
the question of the comparability of results obtained from images taken under different conditions,
for instance at different places, or at the same place but at different times, thus under experimental
conditions which are not strictly the same. This issue was tackled here by considering only the errors
due to the image processing performed by 2D-DIC and GM, the impact of the external parameters
described above affecting both techniques a priori in a similar way. The same set of patterns was also
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considered for both techniques when it was possible, or the results obtained with different patterns
were normalized with respect to some relevant quantities which are detailed in the paper.

The paper is organized as follows. DIC and GM are briefly introduced in Section 2. The details
of the formal link between these two techniques are given in Appendix 1. The three parameters
considered here to compare the metrological performance of these two techniques are thoroughly
defined in Section 2.3. The determination of these parameters is then examined for each technique.
We will see that the bias has different causes which will be discussed separately. We compare finally
the obtained values as well as the links betweens the three metrological parameters when they are
available. The notations used in the paper are gathered in Table 1.

2 A brief digest on DIC and GM and remarks on their metrological

performance

DIC and GM share a common feature: they are white-light techniques. However surface marking is
generally different: GM relies on grids (but other periodic patterns may also potentially be employed),
while random markings are usually employed with DIC. This is due to the very nature of these
techniques since GM is a spectral approach while DIC works by comparing the gray level intensity
between current and reference images. Note that the use of grids with DIC is reported to be successful
in some papers, the natural contrast of the surface under investigation being enhanced, see [29] for
instance. This remark will turn out to be important here, grid images being employed with DIC in
several simulations performed to compare GM and DIC in the fairest way. Though Refs [30, 31] do not
recommend the use of regular patterns, our own experience confirms that such markings work pretty
well with DIC [29, 14]. The sole problem is the initialization of the iterative calculation used in DIC
(see the following section), but it can be easily solved by using a pyramidal approach, as suggested
in [32]. In conclusion, employing here the same type of marking for both DIC and GM enables us to
fairly compare the core of these methods independently of the difference in marking that usual random
patterns used in DIC would bring about. This approach is therefore used in the following sections.
Speckle patterns used in DIC are however considered in the last section of the paper.

2.1 Digital Image Correlation

DIC is a full-field measurement method based, in its conventional form, on the minimization of a cost
function with respect to the sought displacement. This cost-function reflects the difference between
sub-images (or subsets) extracted from current and reference images. The procedure provides even-
tually the displacement at the center of each subset. There is a wide literature describing DIC and
discussing the features of its main variants, see [31] for instance. More sophisticated approaches such
as the global DIC (G-DIC), which is also referred to as finite-element based DIC, have been proposed
in the literature (see [33] after [34]). Each approach has its own pros and cons [35, 36, 11, 37]. However
and for the sake of simplicity, we consider here the conventional version of DIC based on subset match-
ing. The residual considered here is the sum of the squared difference (SSD) between the gray levels
in subsets extracted in the current and reference images. An important point is that the minimization
of the cost-function is iterative. This makes it difficult to elaborate closed-form expressions for various
metrological parameters.

The principle of the local subset-based DIC is recalled here. Let sref (x, y) (resp. scur(x, y)) be
the reference (resp. current) image. The cost function is the subset DIC residual RΩ(u), which is the
sum of the squared difference between the gray levels in subsets extracted in the current and reference
images. In other words, for each subset Ω we have:

RΩ(u) =
∑

(xi,yi)∈Ω

(
sref (xi, yi)− scur(xi + ux(xi, yi), yi + uy(xi, yi))

)2
. (1)
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Notations for the camera and material data

(x, y) (pixel) Pixel coordinates in the (reference) camera sensor system

sref Reference image

scur Current image

ũ (pixel) Reference (and sought) displacement occurring between the reference and the current configurations

f (pixel−1) local reference displacement frequency

Notations for the metrological quantities

u (pixel) Displacement measurement of ũ, see Equation 18

b (pixel) Bias

e (pixel) Random error

du (pixel) Spatial resolution for a given value of λ2, see section 5.1 and 5.2

d′u (pixel) Spatial resolution for a given value of λ2 and λ3, see section 5.4

α (pixel2) metrological efficiency indicator for a given value of λ2,

see Section 5.3

α̃ (pixel2/DN)† normalized metrological efficiency indicator for a given value of λ2,
see Section 5.3

α̃′ (pixel2/DN)† normalized metrological efficiency indicator for a given value of λ2 and λ3,
see Section 5.4

˜̃α (pixel) pattern-independent normalized metrological efficiency indicator for a given value
of λ2, see Section 6.3.3

λ1 (pixel) Data interpolation bias, see section 3.1

λ2 (-) Attenuation bias, see section 3.2

λ3 (-) Displacement interpolation bias, see section 3.3

λ4 (-) Large-strain induced bias, see section 3.4

σu (pixel) Displacement resolution, see section 4

σ̃u (pixel/DN) Normalized displacement resolution, see Equation 29

σ̃′
u (pixel/DN) Normalized displacement resolution in the presence of Bias 3, see Section 5.4

˜̃σu (-) Pattern-independent normalized displacement resolution, see Equation 40

Notations for DIC

d (-) degree of the matching function

2M + 1 (pixel) Subset size

LΩ Projection of DIC displacement shape function on the reference image gradient, see Equation 8

MΩ DIC tangent operator, see Equation 6

PΩ Interpolation operator, once the DIC scheme has converged

Ω (-) subset

Notations for GM

p (pixel) Grid pitch

Φ (rad) Phase modulation of the grid patterns

Φref (rad) Phase modulation of the reference image

Φcur (rad) Phase modulation of the current image

σ (pixel) Standard deviation of the Gaussian window

a (pixel) Width of the triangular window

†DN: Data Number, see [28]

Table 1: Main notations used in the paper.

While it is evaluated at the pixel coordinates (xi, yi) ∈ Ω, an interpolation is required to elaborate
the back-deformed image. It means that scur in Equation 1 must be evaluated at points whose
coordinates are those of the pixels in the reference coordinate system, to which the value of the sought
displacement is added. The subsets are considered as squares, whose side is equal to 2×M +1 pixels.
In the examples discussed in this paper, M is equal to 3, 6, 10, 15 or 20 pixels. The subsets are
built up around their center. These subsets define a mesh. Within each subset, the displacement u is
assumed to be of the first order, i.e.
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∀Ω, ∀(x, y) ∈ Ω, ∃(uΩ,k)1≤k≤6 ∈ R
6 such that

{
ux(uΩ)(x, y) = uΩ,1 + uΩ,3 × x+ uΩ,5 × y
uy(uΩ)(x, y) = uΩ,2 + uΩ,4 × x+ uΩ,6 × y

, (2)

where uΩ is the 6 × 1 vector collecting the degrees of freedom (dofs) (uΩ,k)1≤k≤6. For the sake of
simplicity, x and y are dimensions which are normalized with respect to the subset, thus (x, y) ∈
[−1, 1]. Consequently, uΩ,1 (resp. uΩ,2) represents the x−component (resp. y−) of the subset center
displacement.

For each subset Ω, the best displacement field is considered as the one that minimizes the associated
residual RΩ. The optimized dofs satisfy:

∀Ω, (uΩ,k)1≤k≤6 = Argmin
u
∗
Ω
∈R6

(RΩ(u(u
∗
Ω))) . (3)

This minimization problem is rewritten as a root-finding one, such that for any Ω, the six real numbers
uΩ,k, 1 ≤ k ≤ 6 satisfy the following equation:

∀k ∈ {1, ..., 6}, ∂RΩ(u(uΩ))

∂uΩ,k
= 0. (4)

A modified Gauss-Newton algorithm is implemented to solve this problem [38], and the iterative
scheme is elaborated such that

∀Ω, uit+1

Ω = u
it

Ω + δuΩ. (5)

with δuΩ = M
−1
Ω × bitΩ and u0

Ω = 0. MΩ is a 6× 6 matrix and bitΩ a 6× 1 vector. They are elaborated
as follows, by using matrix LΩ and the residual rΩ(u(u

it

Ω)):

MΩ = LΩ ×L
t
Ω (6)

b
it

Ω = LΩ.rΩ(u(u
it

Ω)). (7)

Matrix LΩ and residual rΩ(u(u
it

Ω)) are defined such that

∀Ω, ∀(xi, yi) ∈ Ω, ∀k ∈ {1, ..., 6},
{

[LΩ]k,i = ∇(s0)(xi, yi) · ∂
∂uΩ,k

u(uΩ)(xi, yi)

[rΩ(u(u
it

Ω))]i = s0(xi, yi)− s1(xi + ux(u
it

Ω)(xi, yi), yi + uy(u
it

Ω)(xi, yi))
. (8)

Since u(uΩ) is of the first order, ∂
∂uΩ,k

u(uΩ) does not depend on uΩ anymore. Hence matrix LΩ is

constant as well as matrix MΩ. Equation 5 is solved until the displacement increment ‖δuΩ‖ is below
some given threshold (set here to 10−5). The obtained displacement at the center of the subset is here
directly defined thanks to the first two dofs.

u = uΩ,1ex + uΩ,2ey (9)

where (ex, ey) is the orthonormal basis where the displacement is expressed. It is attached to the
pixel directions of the camera sensor. The displacement map is obtained by interpolating the nodal
displacements using the mesh associated with the subset centers. The interested reader is referred to
Ref. [31] for more details.

2.2 Grid Method

GM only concerns regular patterns. We briefly present here how displacement fields can be deduced
from a set of two grid images representing the current and reference configurations.
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2.2.1 Grid model and phase modulation

With the grid method, the sought displacement is contained in the phase change between current and
reference grid images. A grid is indeed the superimposition of two perpendicular line patterns, each of
them containing the information on one of the two components of the in-plane displacement, so two
phase changes must be determined to retrieve the complete in-plane displacement.

In grid images, the light intensity s(x, y) can be modelled as follows [39]

s(x, y) =
A

2

(
2 + γ · frng

(
2πx

p
+Φx(x, y)

)
+ γ · frng

(
2πy

p
+Φy(x, y)

))
(10)

where:

• A is the average global field illumination;

• γ is the contrast of the oscillatory pattern between 0 and 1;

• frng is a real 0-mean 2π-periodic function. Its amplitude is equal to 1;

• p is the pitch of the two line patterns (the spatial frequency of the grid is therefore equal to 1/p);

• Φx(x, y) and Φy(x, y) are the phase modulations of the line patterns along each direction.

Each in-plane displacement component ui, i ∈ {x, y} is proportional to the phase change, which is
obtained by subtracting current and reference phase distributions. These quantities are denoted Φcur

i

and Φref
i , i ∈ {x, y}, respectively. To obtain the displacement field, the first method is to subtract

directly the current and the reference phase distributions, which gives

ui(x, y) = − p

2π

(
Φcur
i (x, y)− Φref

i (x, y)
)

i ∈ {x, y} (11)

The second approach consists in taking into account the movement of the physical points between
current and reference images in the calculation of the displacement. Accounting for this movement
is necessary to get rid of possible grid defects by subtracting their signature at the same physical
points [17]. This gives

ui(x, y) = − p

2π

(
Φcur
i (x+ ux(x, y), y + uy(x, y))− Φref

i (x, y)
)

i ∈ {x, y} (12)

In the second case, ui(x, y), i ∈ x, y, is the solution of an implicit equation whose solution is
found iteratively. Assuming that an initial estimation u0i (x, y), i ∈ x, y is available (for instance with
Equation 11), it is possible to iteratively refine ui(x, y) through a fixed-point algorithm:

uit+1
i (x, y) = − p

2π

(
Φcur
i (x+ uitx(x, y), y + uity (x, y))− Φref

i (x, y)
)

i ∈ {x, y} (13)

It can be checked with the fixed-point theorem that convergence is very rapid [17], one iteration
being generally sufficient in the case of small strains. This point is discussed further in Section 3.4.
With DIC, the solution is also found iteratively, but it relies on the Gauss-Newton algorithm, which
is known to need more iterations to reach the same precision as the fixed-point algorithm, and each
iteration involves a matrix inversion which is more demanding in terms of computational cost. More-
over, the numerical scheme used to minimize the residuals in Equation 3 may be trapped in a local
minimum, while the solution of the fixed point problem in Equation 12 is unique.
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2.2.2 Localized Spectrum Analysis

Solving Equation 12 requires to estimate the phase modulations beforehand. Various Fourier-based
image processing techniques can be used to process grid images to retrieve phase, displacement and
strain maps, for instance sampling moiré [40], geometric phase analysis [41] and Windowed Fourier
Transform (WFT). Concerning the WFT, two main approaches can be considered, either taking, in
the Fourier domain, a set of frequencies close to the nominal grid frequency [42, 43], or picking only the
nominal frequency of the grid and performing phase extraction with this sole frequency [44, 39, 17].
We propose to consider here only the last case for two main reasons (besides the computation time
which is much shorter in this case):

• most of the recent examples available in the literature concerning real material characterization
are based on this procedure;

• a big advantage is that closed-form expressions for the prediction of the metrological parameters
are available in this case [15, 16], some of them having even been experimentally verified [16].

With this grid image processing technique named the Localized Spectrum Analysis [17], retrieving
the phase from the signal s consists of calculating the following complex number Ψ(x, y, θ) at any pixel
(x, y), where θ is the angle of the direction along which the information is obtained with the WFT.

Ψ(x, y, θ) =

∫ +∞

−∞

∫ +∞

−∞

s(ξ, η)g(x− ξ, y − η)e
− 2iπ

p
(ξ cos(θ)+η sin(θ))

dξ dη (14)

where g is a 2D window function. This function is symmetric, positive, and integrates to 1. Ψ(x, y, θ)
shall be calculated twice: with angle θ equal to 0 and π

2 to investigate the x- and y-directions,
respectively. Note that using an isotropic window enables us to employ grids rotated with respect to
the x−y axes of the camera sensor. This procedure has recently shown to be suitable to avoid aliasing
in grid images, but is not detailed here (see [45] for more details). Various envelopes can potentially
be employed in the WFT (see the discussion on the choice of the window in [18]). We consider two
types of windows in this paper: the Gaussian and the bitriangular one. It can be shown that the
former achieves the best compromise between various requirements, but its lower admissible width
is such that its standard deviation σ shall be greater than p, where p is the pitch of the grid. This
can be an issue if narrower windows must be employed to reveal localized features in displacement or
strain maps. Hence we also consider the bitriangular window to complete the results obtained with the
Gaussian window. Indeed the lowest admissible width 2a is equal to 2p for the bi-triangular window.
This eventually leads to narrower windows compared to the Gaussian one, which can be an advantage
in certain cases.

The function defining the Gaussian window is given by the following equation:

g(x, y) =
1

2πσ2
e

(

−
x2+y2

2σ2

)

(15)

and the bitriangular one by:

g(x, y) =
a− |x|
a2

× a− |y|
a2

× ✶[−a,a](x)× ✶[−a,a](y) (16)

where ✶[−a,a] denotes the indicator function of interval [−a, a]. It is defined as ✶[−a,a](x) = 1 if
−a ≤ x ≤ a and ✶[−a,a](x) = 0 otherwise. The 3-D graphical representation of g is a square pyramid

of height 1
a2
, whose base is a square of dimension [−a, a]× [−a, a] in the x− y plane. The conditions

on the smallest admissible values for a and σ lead the smallest allowable window in the first case
to be lower than in the second case, which is an advantage to detect localized features in a map.
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In the second case, however, a shall be a multiple of p to avoid potential parasitic fringes in the
displacement/strain maps [18], while σ can be equal to any real value greater than p [15]. This gives
more freedom when taking images of the grids and processing them to extract the sought information.

It is generally assumed that the argument of Ψ(x, y, 0) and Ψ(x, y, π2 ) are equal to Φx(x, y) and
Φy(x, y), respectively. A certain constant value k must be added, but it has been demonstrated
recently in [15] that this argument was, at first approximation and regardless of the noise, the phase
of s convolved by g plus this constant value. Thus

angle (Ψ(x, y, θi)) = g ∗ Φi + k, i ∈ {x, y} (17)

where k is a real number. In this equation, θx = 0 and θy = π
2 . This result will turn out to be useful to

determine one of the metrological parameters of the technique, namely Bias 1 as defined in Section 2.3
below. k disappears when performing the difference between current and reference phase distributions,
so it is not detailed here. The argument of Ψ(x, y, θ) is calculated for each image, for each direction
and at each pixel, which enables us to determine the two in-plane displacements using Equation 11
or 12, and then the strain components by differentiation. Note finally that Equation 17 holds modulo
2π, so the phase is discontinuous as soon as the amplitude of the phase change is greater than 2π
over a grid image, this jump being equal to 2π. A procedure named unwrapping shall thus be used
to obtain a continuous distribution. This procedure is widely documented in the literature ([46, 47]
for instance) and various unwrapping programmes are available on the internet, so this point is not
discussed further here. The programmes used in this study to process the grid images by GM are
available in [48].

2.3 General remarks on the metrological performances of DIC and GM

It is shown in Appendix 1 that, under mild assumptions, the displacement found by the GM is
theoretically the same as that found by DIC. The reason is that the difference in phase used in GM
to obtain the displacement (see Equation 11) is the solution of the minimization problem addressed
in DIC (see Equation 1), but in the particular case of a regular pattern such as a grid. In practice
however, the way the solution is found is totally different from one technique to another. It means that
if the same experimental conditions are used for both techniques (same lighting, gray depth, camera,
· · · ), the difference between the performance of DIC and GM can only be due to various factors such
as:

• the relevancy, for a given experiment, of the assumptions under which this calculation is per-
formed;

• the stopping criterion fixed by the user in the iterative calculations performed for each technique;

• the method used to interpolate the information contained in the images;

• the sampling frequency;

• the way the noise propagates up to the final result for each technique;

• and the quality of the marking.

In this paper, we consider only the errors which are due to image processing to retrieve the displacement
field from a set of reference and current images, and the objective is to characterize them.

As for the measurement of any physical quantity, the measurement denoted here ui, i ∈ {x, y} of
the displacement components given by DIC and GM can be split into three different parts:

ui = ũi + bi + ei i ∈ {x, y} (18)

where
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• ũi is the reference (and sought) value;

• bi represents the bias as defined in [27, 49], i.e. the estimate of the systematic measurement
error;

• ei represents the zero-mean random part of the error in the measurements.

With this notation, bi + ei represents the measurement error for the displacement.
Any user of full-field measurement technique is seeking ũi, which means that bi + ei must be

as small as possible. Both these quantities must be estimated to provide an uncertainty interval
for the measurement of the displacement components. Comparing the metrological performance of
two full-field measuring technique thus means that both quantities (bi and ei) must be estimated for
each technique. The last one are zero-mean random values. The standard deviation characterizes
the spread of these distributions. This standard deviation can be considered as the smallest reliable
quantity that emerges from noise. It is named here the displacement resolution. An important
point is that both the bias and the displacement resolution depend on the size of the region considered
for calculating these quantities at a given pixel. This is logical because the bigger this zone, the greater
the “averaging effect” over this zone, so the higher the impairment of the details in the displacement
distribution and the lower the noise level. It means that a third parameter influences the bias and the
displacement resolution: the so-called spatial resolution. It is a feature of full-field measurement
systems, since measuring systems providing only point-wise quantities are not concerned. The three
parameters presented above, namely the bias, the displacement resolution and the spatial resolution,
are discussed in turn for both techniques in the following sections.

In this context, we propose here to focus our comparison on the three metrological parameters
defined above, and on their links (if any) for a given technique. This latter approach was proposed
recently for GM alone in [16, 17].

3 Bias

The bias at a given point of a displacement map is difficult to grasp because it is potentially the
consequence of various phenomena. We propose here to consider the following causes, which are
considered each as a different bias:

• Bias 1, or bias due to the interpolation required to express the data describing the current state
of deformation in the reference coordinate systems. This information is contained in the gray
level images for DIC and the phase maps for GM;

• Bias 2, or attenuation bias;

• Bias 3, or displacement interpolation bias;

• Bias 4, or large-strain induced bias.

These phenomena will be quantified by a parameter denoted here λi, where i is the number of the
bias. As we shall see, λ1 is not directly comparable with the others because it is a displacement. The
others are relative losses of information due to the phenomena which are studied in turn.

3.1 Bias 1, Data interpolation bias

With both techniques, the images of the specimen which deforms are captured with a camera. The
pixel grid of its sensor usually defines the reference coordinate system. Retrieving the displacements
necessitates in both cases to map the data describing the current state of deformation in the reference
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coordinate system. The information which is mapped is however different from one technique to
another. Let us examine below the impact of this mapping on the displacement field for each of the
two techniques.

3.1.1 Digital Image Correlation

With DIC and using the procedure described in Section 2.1, the discretized images of the deformed
patterns is back-deformed in the reference coordinate system to find the extremum of the correlation
function (see Equation 1). The displacement being in general a non-integer value, interpolation be-
tween integer locations must be performed. This procedure induces a systematic error, which depends
on various parameters, the main one being the subpixel displacement. The nature of the function used
to perform this interpolation strongly influences the amplitude of this phenomenon. This amplitude
is therefore difficult to predict and a wide literature is available on this subject, see [50, 51, 52] for
instance. Note that other strategies than back-deforming the current image in the reference coordinate
system can be used while performing DIC (see the comprehensive review in [53]), but the presence of
a systematic error is observed in all cases.

3.1.2 Grid Method

The procedure is different with GM since the images are first processed to extract the phase distribution
of the reference and the current grid images, so it is not necessary to back-deform the current image.
The current phase distributions can be directly subtracted with the reference phase distribution and
the result multiplied by −p

2π (see Equation 11) to obtain a first estimate of the displacement. As
explained above, this is however a “rough” estimate because subtraction is not performed at the
same physical points, their movement during deformation being not taken into account. This induces
potential perturbations which increase with the displacement. The safest route is therefore to map the
current phase distribution in the reference coordinate system to be sure to subtract the information
at the same physical point, which insures the impact of grid defects on displacement and mainly
strain maps to be strongly attenuated, if not suppressed [54, 17]. The procedure employed to map the
phase distribution in the reference coordinate system also needs an interpolation between the integer
locations of the pixels. The impact of these interpolations is studied below through a numerical
simulation.

3.1.3 Numerical simulation and comparison

The consequence of the change of coordinate system presented above is illustrated with a simulation.
This simulation consists of considering a 1000*1000-pixel image of a surface marked with a bidirectional
grid created artificially with Equation 10. The pitch is equal to 5 pixels and the gray depth is
12 bits to mimic the response of a 12-bit camera. The theoretical profile of the grid lines is given by
Equation 10, in which the frng function is a sine. The image is then shifted along the vertical (y-)
axis, with a translation magnitude changing stepwise, the step being equal to 1/24 pixel. At each
step, the theoretical gray level distribution is merely obtained by adding a phase change of −2π

24 to
y in Equation 10. The gray level at each pixel of the resulting images is found by integrating over
each pixel the theoretical continuous gray level distribution given by Equation 10. A 3 × 3-point
Gauss integration scheme is used for this purpose. This gives 25 images (the reference one and the
24 shifted ones) which are processed with the methodologies and settings discussed above. The first
image of the series is considered as the reference image. The mean vertical displacement is then
collected for each value of the subpixel displacement, and subtracted from the actual value which has
been imposed to the image. A linear interpolation is deliberately used to interpolate the gray levels
between integer values. Here, the number of pixels per grid period is equal to 5, which leads to local
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gray-level gradients which can be high. This is an unfavorable situation, which enhances the effect of
Bias 1 for DIC, so the results presented here can be considered as an upper bound for DIC. There is a
wide literature showing that better results are obtained with other types of interpolants [31, 51, 52],
this bias being almost entirely cancelled out in certain cases. In Figure 1, we give for instance the
result obtained with a cubic spline. It is clear that the bias is lower in this case than in the case
of a linear interpolant. Employing more sophisticated interpolants would lead to even lower values
of Bias 1, but would also induce additional computational expenses. This also certainly has a slight
impact on the spatial resolution because interpolation relies on information at pixels surrounding that
for which interpolation is performed. This point is not discussed in the literature, to the best of the
authors’ knowledge, and is therefore out of the scope of this paper. The subset size considered to plot
the curves in Figure 1 is 2M + 1 = 21 pixels, but other sizes give similar results. This gives rise to
the classic “S-shaped” curve shown in Figure 1. With a linear interpolant, it is null for integer values
of the displacement, as well as for a subpixel displacement equal to 0.5 for symmetry reasons. In the
present calculation, this bias is maximum when the subpixel displacement is equal to 0.25 and 0.75
pixel. These locations change in the presence of noise, as discussed in [55].

The same set of images is processed with GM. A Gaussian window with σ = 5 pixels is used in
this case. A linear interpolation is also used for GM, but this time on the current phase distribution,
not on the gray levels between adjacent pixels of the images. The value for the displacement returned
by the grid image processing is averaged over the displacement map and subtracted to the reference
one which was imposed in the grid images. The residual is considered as due to the interpolation.
The resulting curve is superimposed to that obtained with DIC in Figure 1. The main conclusion is
that the response is notably different between DIC and GM since only DIC is prone to a bias which
is observable in the figure. There are two main reasons for this:

• the first reason is that the nature of the data which are interpolated are different from one
technique to each other. We deal with integer values (the gray level of the images) with DIC,
and floating numbers with GM (namely the phases, which are also estimated from the integer
gray values). Indeed, interpolating integer values with DIC a priori leads to larger errors than
interpolating real values with GM.

• the second reason is that the quantity to be interpolated exhibits gradient amplitudes which are
different from one situation to another: the gray level must feature high gradients to ensure a
good contrast, while the phase distribution generally gently evolves over the deformed surface,
apart from the case of singularities like those occurring near crack tips for instance. This leads
the resulting displacement field to be nearly not impacted by interpolation.

3.2 Bias 2, or attenuation bias

This bias comes from a rather intuitive phenomenon: both techniques provide information at isolated
pixels, but this information depends on the gray level at the surrounding ones. Hence some kind of
spatial averaging effect occurs. For instance, considering a displacement simulated by a sine function,
the amplitude of the displacement returned by DIC and GM is all the more affected by image processing
as the frequency of the sought distribution is high. This impairment is also all the greater as the size
of the region considered by the user for calculating the displacement is large, this calculation acting
as a low-pass filter, whose size is inversely proportional to the size of the region.

3.2.1 Digital Image Correlation

Concerning DIC, this bias comes from the fact that the displacement within each subset is modeled by
a polynomial shape function. This function is supposed to mimic and match the actual displacement
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Figure 1: Bias 1 vs. subpixel displacement. Both curves for GM are superimposed.

within each subset, but it is clear that the quality of the matching depends on this function and on
the real displacement distribution.

It is shown in [30] that the displacement at the center of the subsets returned by DIC can be
considered as the actual one filtered by a Savitzky-Golay (SG) low-pass filter. This result is obtained
if polynomial shape functions (characterized by their degree d) are employed to represent the dis-
placement of the subsets between reference and current images. This is due to the fact that a local
least-square fitting can be presented as a convolution by a kernel, which does not depend on the nature
of the curve which is fitted [56]. It is worth noting that this conclusion does not take into account
other sources of disturbance such as sensor noise propagation (this issue is discussed in Section 4) or
imprecision inherent to the numerical scheme, DIC relying on iterative calculations.

3.2.2 Grid Method

A similar result as the preceding one has been demonstrated in [15] for GM: the phases (and thus
the displacement and the strain components) retrieved by the WFT are equal, at first approximation
and regardless of noise, to their actual and sought counterparts convolved by the analysis window
employed in the WFT [15]. This is a consequence of Equations 11 to 13, and 17.

3.2.3 Theoretical analysis

Even though no matching function is employed with GM, we have here the same property for both
techniques: they return quantities which are not exactly the actual ones, regardless of noise, interpo-
lation, and other sources of errors like those discussed in the other sections. The amplitude of Bias 2
is therefore directly comparable between DIC and GM, Bias 2 being merely due to a convolution of
the actual and sought displacement distribution by a kernel known a priori for each technique. In
practice, Bias 2 is defined as the relative loss of amplitude λ2 of a given sine displacement distribution.
It can be directly assessed for each technique from the transfer function ĥ of its corresponding filter
characterized by its impulse response h, namely the SG filter for DIC and the Gaussian or the trian-
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gular filter for GM. This transfer function is the Fourier transform of the filter h. Indeed, in signal
processing, the transfer function of any linear filter is defined as the Fourier transform of its impulse
response. Thus

λ2 = 1− ĥ (19)

Applying such a filter to a reference sine signal of frequency f provides a sine function featuring
the same frequency. Its amplitude is, however, affected since it is equal to the amplitude of the sought
signal multiplied by the value of the modulus of the transfer function for frequency f , the complex
phase being shifted when the transfer function is not a real function. In the present situation, however,
it should be noted that ĥ is real and symmetric with respect to 0, as h. Consequently, the relative
loss of amplitude λ2 is always a real number.

Without loss of generality, we reduce here the discussion to the 1D-case for the sake of simplicity.
The extension to the 2D case is straightforward because the filters used in the 2D-case are separable
with respect to each direction. In this 1D case, the transfer function ĥ of a filter h is generally given
as a function of the spatial frequency f of the signal in the continuous case. If the filter support
is {−M,−M + 1, . . . ,M − 1,M} (i.e., it is null outside these 2M + 1 points), we shall consider the
transfer function of the discrete filter denoted here ĥM . ĥM is usually expressed as a function of
the normalized wave number denoted k̃, as in the seminal paper [30]. This dimensionless quantity is
defined as the frequency f divided by the Nyquist frequency, which is equal here to 1

2 pixel−1. λ2(k̃)
is therefore given by:

λ2(k̃) = 1− ĥM (k̃) = 1−
(
h(0) + 2

M∑

i=1

h(i) cos
(
ik̃π
))

(20)

where k̃ lies between 0 and 1. This equation holds thanks to the symmetry of h. With this notation,
the discrete Fourier coefficients of h are given by ĥM (k̃) where k̃ = 2k/N and N is the number of
samples of the input signal, k being any integer between −N/2 and N/2−1 (for even values of N). As
mentioned earlier, ĥM is, as h, symmetric with respect to 0. In order to make comparisons between
the relative loss of amplitude independent from N , we adopt the same presentation as in Ref. [30],
and plot graphs of λ2(k̃) against real values of k̃ spanning the [0, 1] interval.

For DIC, the transfer function of a SG filter of degree d, discretized over 2M +1 points, is denoted
here ĥDIC

M,d . The values of the corresponding SG coefficients hDIC
M,d (i) are defined and tabulated in [56].

If d=0, the SG filter is a box filter of width 2M + 1, hence hDIC
M,0 (i) = 1

2M+1 ∀ i ∈ [0,M ]. The
value returned by the SG filter is therefore the mean value of the displacement over the subset but
no strain can be determined [30]. A first-degree SG filter accounts for straining. For symmetry
reasons, the displacement returned at the center of the subset is the same as that returned by a zero-
degree SG filter [30, 56]. Increasing this degree provides then more freedom to describe the actual
displacement fields, so we considered d = 1, 2 in this section. We chose M = 3, 6, 10 pixels only and
not M = 15, 20 pixels, the hDIC

M,d (i) coefficients being not available in [56] for these last two values in
the case d = 2. The value of the coefficients employed here is recalled in Appendix 2, see Tables 3
to 5.

For GM, the situation is slightly different because the calculation of the Fourier transform of classic
windows employed in the WFT is tractable, which then enables us to analyze their properties more
easily, as in [15] and [18] for instance. For the two types of windows considered here, we have therefore
a transfer function which is given directly as a function of the frequency f of the signal
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ĥGM−G(f) = e−2π2σ2f2

for a Gaussian window of standard deviation σ

ĥGM−T (f) = sinc2 (af) for a triangular window of width 2a

(21)

“sinc” denotes here the cardinal sine function defined by sinc(x) = sin(πx)
πx

for x 6= 0 and sinc(0) = 1.
To make Bias 2 calculated for DIC and GM comparable, it is, however, necessary to consider the

discrete transfer function over 2M + 1 points of the windows used in the WFT, not its continuous
versions given in Equation 21. In the same spirit as for the SG filter, these functions are denoted
ĥGM−G
M for a Gaussian window and ĥGM−T

M for a triangular one. Bias 2 is deduced by considering
again Equation 20, but the h(i) coefficients, i = 1 · · ·M , are now the values of either the Gaussian or
the triangular windows at the 2M + 1 points where the signal is sampled.

Using this approach, Figure 2 shows Bias 2 for DIC and GM. Bias 2 is deduced from the transfer
function of the SG filter function for various values of M for DIC, and from the transfer function of
the Gaussian and triangular filters for GM.

Several remarks can be drawn from these curves:

• Bias 2 is null for k̃ = 0. Indeed, ĥM (0) = 1 since it is the mean value of the filter hM , which is
allways equal to 1 in order that it does not change constant signals. Consequently both DIC and
GM return an unbiased value for a null wave number, which corresponds to a flat displacement
distribution. The information becomes, however, biased for both techniques as soon as the
frequency of the displacement becomes different from zero;

• concerning the size of the zone over which the displacement is retrieved, GM shares the same
trend as DIC: the narrower this zone (thus the narrower the subset for DIC and the narrower
the analysis window for GM), the better the ability to return a value for the displacement close
to the actual one, and thus the lower the bias. Note that the Gaussian curve has not a compact
support, but its “apparent width” can be estimated to 6σ according to the classic 3-σ rule [57].
Bearing in mind that the analysis windows employed here are the narrowest that can be used
for GM, it is worth mentioning that DIC is able to provide a displacement at a given pixel by
relying on a smaller zone than the minimum one required for GM;

• for DIC and for a given value of d, all the curves all the more sharply increase as the subset is
wide, which illustrates an averaging effect which becomes more pronounced when the subset is
wide;

• for DIC and as already mentioned in [31], the benefit of a second-degree polynomial matching
function clearly appears by comparing Figures 2-a and 2-b, representative curves of Bias 2
being shifted to the right from the first to the second degree whatever the size of the subset.
This is a consequence of the fact that the shape function is a polynomial of greater degree,
and has therefore “more freedom” to describe the actual displacement field. Interestingly, the
representative curves for DIC are globally on the right of the curve representing the response of
GM with a Gaussian filter and σ = 5 pixels. The case defined by DIC, d = 2 and M = 3 is the
best case, but its practical implementation seems to be difficult, the number of pixels covered
by this subsets being limited compared to the number of unknowns to be fixed in the matching
function;

• the curves for DIC exhibit oscillations and become even greater than one for some frequencies,
which means that the signal returned by DIC at the centers of the subsets may not only be
attenuated, but affected by a wrong sign for these frequencies. This feature is illustrated in the
following section with a example.
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Figure 2: Comparison between Bias 2 obtained by DIC with linear (top) and quadratic (bottom)
matching functions, M = 3, 6, 10 pixels (shades of blue). The values for Bias 2 obtained by GM with
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superimposed (shades of red).
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• Bias 2 for GM in the case of the Gaussian and the triangular windows remains lower than (or
equal to) one, so no sign error occurs with GM whatever the value of the frequency;

• slight oscillations can be observed for the representative curve of Bias 2 for a triangular window.
They are due to the sinc2 function involved in the continuous version of Fourier transform of the
filter (see Equation 21-b). Their amplitude is however smaller than that observed with DIC;

• the Fourier transform of a Gaussian function being also a Gaussian function, we have the same
remark for the continuous version of the transfer function of the Gaussian function. As a
consequence, Bias 2 for GM in the case of a Gaussian window does not theoretically exhibit
any oscillation, which is the most favorable case. No oscillation is observed neither to the naked
eye in the discrete version used here (a sum of cosine functions, see Equation 20). It means that
high frequencies vanish in the displacement fields retrieved by GM. This causes the maps to be
only slightly blurred. The price to pay to avoid these oscillations is, however, that the minimum
size of the standard deviation of the Gaussian envelope is greater than the minimum size of the
subset which can be used in DIC in practice.

3.2.4 Numerical simulation

An exemple is proposed here to illustrate the effect of Bias 2. It consists of a synthetic vertical
displacement map which features an a priori known and spatially changing frequency in the same
spirit as in [2, 11] for instance for DIC, and later in [58, 17] for GM. Figure 3-a shows this reference
displacement field. It is such that the period of the displacement along the y-direction linearly evolves
along the x-direction: from 10 to 150 pixels. The minimum period (10 pixels) corresponds to twice
the typical smallest number of pixels generally considered to discretize grids, namely 5 pixels. The
amplitude of the reference displacement wave is constant and equal to 0.5 pixel, which corresponds
to the most favorable case for Bias 1 in DIC, as discussed in the preceding section. Hence this choice
allows to emphasize the effect of Bias 2 for DIC. In the same spirit, no interpolation between remote
points is performed here in order to get rid of the influence of Bias 3 discussed later in Section 3.3. For
this purpose, the DIC subsets are defined with a shift of only 1 pixel, which is not a classic setting in
DIC because of the demanding computation time. The DIC output displacement field is thus directly
a full displacement field defined pixelwise and exhibiting the same size as that of the image. There is
no extra interpolation step. It is worth mentioning that no particular precaution has been made for
GM; the default option is generally to perform the calculation pixelwise because it is very fast.

This reference distribution is then filtered with the different filters discussed above (SG for DIC,
Gaussian and triangle for GM). The change in period of the reference wave along the horizontal
direction (x) is negligible at the scale of the subset in DIC or the window in GM. Hence we can
reasonably consider this problem as a succession of 1D problems defined along the y-direction, which
means that the 1D filters discussed above can be applied along the y-direction for each column.

Figure 3-b shows an example of displacement field. A SG filter, with M=10 pixels and d=1, is
employed here. The filtered signal is significantly attenuated on the left-hand side. It is null for a
certain value of the period, and its sign even changes over a certain interval of periods as discussed
above when λ2 > 1. The attenuation of the amplitude clearly decreases when considering increasing
periods for the reference displacement wave, thus when going to the right in Figure 3.

Figure 3-c shows the displacement field really obtained by DIC. The image processed here is that
of a grid image modulated by the displacement imposed in Figure 3-a, and DIC is applied pixelwise,
without interpolation (thus Bias 3 is null). No real difference can be observed to the naked eye between
Figure 3-b and Figure 3-c (apart from the border effect which have been removed in Figure 3-c), which
means that the SG filter correctly models the real response of DIC in terms of Bias 2 in this case.

We consider now in Figure 4 the distribution of Bias 2 along a cross-section of this displacement
field. This cross-section is the horizontal symmetry axis. It is represented by a red line in Figure 3.
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Figure 3: a- Reference displacement map uy. b- Example of displacement map filtered by a SG filter,
M = 10 pixels, d=1. c- Example of displacement map retrieved pixelwise with DIC, M = 10 pixels,
d=1. d- close-up view of the reference distribution. The corresponding zone is bounded by the green
rectangle in sub-figure a- and c-. e- close-up view of the distribution retrieved with DIC. The sign flip
is clearly visible with the interweaving of the blue and yellow waves between each side of the vertical
line x ≃ 150 pixels. The location of this line moves rightwards when M increases. The range of the
colorbar is different in sub-figures d- and e- to highlight the phenomenon.
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A first order-SG filter (resp. second order) is employed to plot Figure 4-b (resp. Figure 4-c). The full
lines correspond to the bias calculated with Equation 19, but represented as a function of the period
of the sinusoidal displacement (it is equal to 1

f
= 2 × 5/k̃) instead of k̃ directly. DIC and GM are

considered with M = 3, 5 and 10 pixels and first-degree SG filters in Figure 4-a, and second-degree SG
filters in Figure 4-b. The curves representative of GM are obtained for the sharpest analysis windows
which can be used with this technique, namely a Gaussian window with σ = p = 5 pixels and a
triangular window with a = 5 pixels. The consistency between the results in Figures 2 and 4 can be
easily checked. A closeup view of Figure 2-a is shown in Figure 4-a for this purpose. As an example,
the minimum value of the transfer function of the first-degree SG filter with M = 10 pixels is obtained
for a normalized wave number approximately equal to 0.136 (see Figure 4-a). This corresponds to a
period equal to 1/0.136/0.5 ≃ 14.7 pixels in Figure 4-b.

The main remark that can be drawn from Figure 4 is that the highest biases are globally obtained
for the smallest pitches of the prescribed sinusoidal displacement, the presence of oscillations for the
SG filters changing the precise location of the worst case from one value of M to another. The bias
becomes even greater than one in some cases, which is the consequence of a change of sign in the
signal after filtering, as can be seen on the left-hand side of Figures 3-b and 3-c. For DIC, this
phenomenon becomes more pronounced when using wider subsets (not represented here). This is a
consequence of the fact that the shape functions becomes progressively unable to reliably describe the
real displacement [30]. This remark underlines that the subset size and the degree of the matching
function must be carefully chosen to avoid obtaining wrong results. When possible, these settings
must be such that the right-hand part of the curves in Figure 2 and the left-hand part of the curves
in Figure 4-b and -c are not activated. Another remark is that as expected, second-degree shape
functions provide better results than first-degree ones. The problem is that to the best of the authors’
knowledge, most of the commercial DIC packages rely on first-degree polynomial matching functions,
probably to limit the computational cost. Consequently their users cannot increase this degree if they
wish to do so. In addition, overmatching may induce additional errors [59], and we observed during the
present study that the case M = 3 could only work with d = 1, the case d = 2 leading to unexpected
results, probably because the information contained in the subset was too poor in comparison to the
freedom offered by a second-degree matching function.

The dashed lines in Figure 4-a represent Bias 2 which is really obtained by DIC and GM. The
images processed here are those of a grid image modulated by the displacement imposed in Figure 3-
a, and DIC is applied pixelwise, without interpolation (thus Bias 3 is null). There is a very good
agreement between results obtained with Equation 19 and those obtained by applying really DIC and
GM, which lends credence to the theoretical predictions on which the results given in this section
rely. As a last remark, it must be emphasized that any real reference displacement or strain field
can be expressed in Fourier series, after taking the discrete Fourier transform of the corresponding
maps. Consequently, the issues with high frequencies discussed in this section not only concern the
theoretical displacement field shown in Figure 3-a, but any field, the terms of the Fourier series being
all the more affected as the frequency increases.

We consider only the case d = 1 in the remainder of the paper for the sake of simplicity. In
addition, most of the commercial DIC codes feature bilinear matching functions.

3.3 Bias 3, or displacement interpolation bias

With the subset-based DIC, displacements collected at the subset centers must be interpolated to
deduce the displacement at other places located between the centers of the subsets in order to obtain
a full-field map. This is generally done by interpolating the displacements at the nodes where this
information is provided by DIC, or smoothing them for further calculation of the strain components.
This eventually gives an interpolation error, which is all the higher as the strain gradient is high,
and the distance between interpolated points high. In addition, Bias 2 described above propagates
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Figure 4: Bias 2 for the zero/first-degree (top) SG filter, the second-degree (bottom) SG filter, the
Gaussian and the triangle filters (the dashed line represent the result really obtained after running
DIC).
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Figure 5: Effect of interpolation between remote points. Worst case of linear interpolation and maxi-
mum interpolation distance (equal to the subset size).

through this procedure since this interpolation is performed between points where the displacement
is impaired by Bias 2. Bias 3 potentially affects GM if interpolation is used. In practice, however,
the pixelwise displacement calculation is rapid because the calculations can easily be implemented
in the Fourier domain [48], so interpolation is not necessary. It is worth mentioning that the usual
WFT tools used with GM deal with dense data. Hence Bias 3 does not affect GM. To estimate the
impact of Bias 3 on results obtained by DIC only, we considered the worst case, which corresponds to
a linear interpolation between two adjacent subset centers at which DIC returns a displacement, i.e.
the center of two adjacent subsets. The greater impact of Bias 3 is obtained when the subsets are such
that they are located on both sides of an extremum of this displacement distribution, see Figure 5.
This figure represents the profile of a sinusoidal 1D displacement, the effect of Bias 2, which induces
an attenuation of the amplitude of the displacement, and Bias 3 in the worst case. The displacement
field really obtained by DIC without interpolation (thus with Bias 3 equal to zero) in superimposed.
The displacement value that would be returned by DIC applied with linear interpolation would be
that, in the worst case, of a point shifted by 2M+1

2 from the point where the maximum value of the
theoretical displacement is reached. This displacement is equal to A cos

(
2πf 2M+1

2

)
, where A is the

amplitude of the sine function that is returned by DIC without interpolation, so it is also affected
by Bias 2. In the same spirit as for Bias 2, if we define Bias 3 by the corresponding relative loss of
amplitude of the signal, we have:

λ3 = 1− cos(πf(2M + 1)) (22)

where 2M + 1 is the size of the subset and f the frequency of the sinusoidal displacement.
Increasing Bias 3 leads to an impairment of the spatial resolution and to a decrease (thus an im-

provement) of the displacement resolution between the centers of the subsets, as discussed in Section 5
below.
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3.4 Bias 4, or large-strain induced bias

DIC is often used in cases for which large strain occurs because it is known to be an efficient tool in
this case. GM is generally used in the case of small strains, so it is often thought that it is not suitable
for larger ones. Indeed retrieving phases (and thus displacements) from pseudo-regular markings is
made under some assumptions. In particular, it is shown in [15] that the first derivatives of the phases
must be small compared to 2πf , and the second derivatives “small enough” to make Equations 17
satisfied in practice. It is clear that considering large strains may cause these assumptions not to be
satisfied. Another point is that many applications of GM only deal with “small” strains, thus the phase
distributions are merely subtracted and the displacement is deduced by using Equation 11 instead of
Equation 12 above. This automatically induces a bias due to the fact that this subtraction is not
performed at the same physical points. These points are illustrated through a simulation discussed in
the following section.

The impact of large strain on DIC and GM is compared here with the following simulation. In
the same spirit as for Bias 2, a vertical virtual displacement is generated, with a longitudinal strain
gently evolving from 0 to 30% from the left- to the right-hand sides, with a null displacement along
the centerline. This displacement field is then used to modulate the phase of a grid along y using
Equation 10. These reference and current grid images are then used as synthetic input data for DIC
and GM. M = 10 pixels for DIC, and a Gaussian envelope with σ = 5 pixels is used here for GM.

Figure 6-a shows the reference vertical displacement field, which evolves with a linearly increasing
rate when going from the left to the right. It is given here in the reference coordinate system. The
displacement field retrieved by DIC is depicted in Figure 6-b. It is also given in the reference coordinate
system. Since some points have moved away from the rectangular zone corresponding to the initial
zone where the displacement is defined, these points are missing and the corresponding zones become
therefore visible when going rightwards on the map. Applying GM with Equation 11 does not lead
to the same conclusion, see Figure 6-c, since the movement of the physical points is not taken into
account. This is no longer the case when considering the displacement as the solution of a fixed-point
problem (Equation 12), solved iteratively by Equation 13. Figure 6-d obtained after the first iteration
is similar to that shown in Figure 6-b obtained with DIC. Further iterations provide a refinement of
the solution.

Bias 4 can be defined by the relative loss of amplitude of the displacement. This quantity is
denoted λ4. Figure 7 represents the cross-section of λ4 along the line y = 400 pixels.

The following remarks can be drawn:

• the displacement obtained by DIC perfectly matches the reference displacement since no error
is detectable to the naked eye. This is an illustration that DIC is efficient in the case of large
deformation;

• some slight oscillations occur on the left-hand side of the DIC curve. They are due to Bias 1 (i.e.
the interpolation bias). Indeed the points along the cross section of the map at y = 400 pixels
concern subpixel displacements, which change from one column to the other because of the
changing slope along the x-direction. The amplitude of Bias 1 is not completely negligible when
uy is small, which explains this error on the left-hand side of the map. Bias 4 tends then to zero
when uy increases, as expected;

• the result provided by GM by using Equation 11 is all the more biased as the displacement
increases, which is logical because the movement between physical points is not taken into
account. The resulting relative error is about two thirds of the slope itself with the settings used
in these calculations;

• taking into account the movement of the points significantly improves the quality of the results,
the relative error becoming lower than 5% for one iteration and 1% after two. No real distinction
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Figure 6: a- Reference map with progressive linear displacement uy. b- Displacement retrieved with
DIC, M = 10 pixels. c- Displacement retrieved with GM, 0 iteration. d- Displacement retrieved with
GM, 1 iteration. The colorbar shows the value of the displacement uy (in pixel).
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can be made between results obtained for three and twenty iterations, which illustrates that the
iterative method based on the fixed-point algorithm quickly converges, as mentioned in [17].

In conclusion, it can be said that both DIC and GM return reliable results in the case of large
strains. This remark holds at least up to the 30 % considered here for GM. This is however certainly
beyond the physical limit that can be reached in practice with GM, marking issues like cracking of the
glue used to transfer the grid occurring earlier, as reported in [60] where nearly 18 % is reached before
micro-cracking damages the adhesive used to transfer the grid. Another assumption deals with the
second derivative of the actual displacement, which should remain small under the analysis window
for GM [15]. In practice, cracking of the painting could also potentially impair surface marking and
subsequently affect displacement determination for both techniques, each in a different way. However,
tackling these issues is out of the scope of this paper

3.5 Conclusion

The bias induced by DIC and GM was investigated in this section. The global bias is the contribution
of several phenomena which have been addressed separately, and light has been shed on the difference
in response of DIC and GM through various simulations. After having addressed the systematic error,
the random error is investigated in the following section.

4 Displacement resolution

4.1 Introduction

The measurement resolution is defined in Ref. [27] as the smallest change in a quantity being measured

that causes a perceptible change in the corresponding indication. “Perceptible” means that the quantity
emerges from the noise floor, which can be quantified by the a certain multiple of the standard
deviation of the noise affecting the measurement. Thus we adopt here the definition of the measurement
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resolution proposed in [61], namely the change in quantity being measured that causes a change in the

corresponding indication greater than one standard deviation of the measurement noise. We consider
here the noise in the displacement field which is due to camera sensor. Indeed the latter propagates to
the final displacement maps through the image processing procedure which is employed. The sensor
noise can be observed, ceteris paribus, by considering a stack of images of a still scene, and then
observing the temporal brightness fluctuation at some pixels considered individually.

Noise in displacement maps may also have other potential causes, or may be amplified by some
phenomena. Concerning DIC, overmatching causes the noise level in displacement maps returned by
DIC to be amplified [59]. In the same way, the fluctuations of the marking observed with speckled
patterns causes a “spatial noise” to appear. No model for this noise is available in the literature, so
this noise is not considered in the present comparison based on predictive formulas experimentally
validated in other studies. Quantization of the signal causes the information not to be continuous but
discrete. It has been shown in [62] for GM that the effect of quantization noise on displacement/strain
maps was one order of amplitude lower than that due to sensor noise. With GM only, periodicity
defects in the grid deposited on the surface under investigation may induce annoying parasitic phase
changes since this technique aims at detecting slight fluctuations with respect to an ideal and perfectly
regular marking. Employing Equation 12 to process the phase maps with GM enables us to get rid
of a significant part of the influence of these defects in the final displacement maps [54, 39]. A
residue of these defects may subsist because of the interpolation needed to express the current phase
distribution in the coordinate system of the reference one. This residue can be interpreted as a non-
regular disturbance of the displacement field, and may potentially impact the measurement resolution.
This contribution of grid defects basically depends on the printing quality of the grid, and thus cannot
really be easily modeled in the general case, as for the spatial noise mentioned above for DIC.

The phenomena briefly described above are specific for each technique, so, apart from saying
that they exist, they cannot be directly compared from one technique to another. Both GM and
DIC are however affected by sensor noise because the latter propagates up to the final displacement
maps for each technique. We propose therefore to focus only on the contribution of sensor noise to
the measurement resolution for the comparison performed in this study. It means that the results
presented here are partial, and that additional studies should be carried out to account for these
phenomena due to marking issues, which are specific to each technique.

Concerning noise which impairs the images processed to retrieve the displacement, we assume for
the sake of simplicity that it is a white noise, i.e. a homoscedastic noise with fixed standard deviation.
However, noise in real camera sensors is Poisson-Gaussian and heteroscedastic (or signal-dependent),
see [63] for instance. Such a noise can be changed into a homoscedastic one by using suitable numerical
tools recently introduced in photomechanics, first for GM [16], then for DIC [14], but this issue is not
addressed here for the sake of simplicity.

In the following, the standard deviation of the noise in images is denoted σimage, and the displace-
ment resolution σDIC

u and σGM
u for DIC and GM, respectively. The latter quantities can be predicted

using closed-form expressions which are recalled hereafter.

4.2 Digital Image Correlation

Concerning DIC, σDIC
u is deduced from the covariance matrix for the noise in displacement maps.

Various predictive equations are available for this covariance matrix. A general formula, which takes
into account the subpixel interpolation (the one which induces Bias 1), is given in [13, 14]:

Σ(1)
u = σ2

image

(
M

−1
Ω LΩ

) (
I + PP

t
) (

M
−1
Ω LΩ

)t
(23)

where P is the subpixel interpolation matrix. If the subpixel interpolation is not taken into account,
this matrix writes as follows [64, 31, 55, 5]:
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Σ(2)
u = 2σ2

imageM
−1
Ω (24)

The other matrices involved in the two preceding equations are defined by Equations 6. The
equation can be simplified further, which gives directly an upper bound for the displacement resolution
σDIC
u [31] and gives a better understanding of the parameters involved in the displacement resolution:

σDIC
u =

√
2
σimage

∇̄ (25)

where ∇̄ is the average value of the norm of the gradient calculated over the subset. Equation 24
gives the same prediction as Equation 23 when the subpixel displacement is null, and lower values for
non-zero values. We consider here Equation 23 in our predictions to have a more realistic value for
the noise in the final displacement map. Since this prediction depends on the sub-pixel displacement,
we consider each time the equivalent standard deviation over the specimen.

Interpolating the displacement from the centers of the subsets to pixel coordinates also impacts
this results. This interpolation affects indeed the covariance matrix, which becomes in this case, when
considering Equation 23 for the prediction of the covariance matrix at the center of the subsets [13]:

Σ
(3)
u = CΣ(1)

u C
t (26)

where C is the matrix defining the displacement interpolation:

umap = Cucenters (27)

Vector ucenters gathers the displacement at the centers of the subsets, while umap corresponds to
the pixel displacements. Again, Equation 26 gives lower values for the displacement resolution than
Equation 24 for pixels located between subset centers, and the same values at the pixels defining the
subset centers. This is discussed later.

4.3 Grid Method

Concerning GM, the covariance matrix has been completely characterized in [15] in the case of a
Gaussian envelope and results obtained with other envelopes were given later in [18]. In the current
cases of the Gaussian and bitriangular envelopes, we have for a grid of pitch p:





σGM
u = p

4π
3
2Kσ

× σimage for a Gaussian window of standard deviation σ

σGM
u = p

3πKa
× σimage for a triangular window of width 2a

(28)

where K is the modulus of Ψ(x, y, 0) or Ψ
(
x, y, π2

)
, these two quantities being nearly equal for a

regular marking like a grid. This modulus is proportional to the lighting amplitude. It is also all the
higher as the line profile of the lines of the grid is “close” to a pure sine function [16].

4.4 Results and discussion

In the preceding results, σDIC
u and σGM

u are both proportional to σimage. This latter quantity is
however a characteristics of the camera itself, so it is relevant to introduce the normalized displacement
resolution σ̃DIC

u and σ̃GM
u defined by
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σ̃DIC
u = σDIC

u

σimage

σ̃GM
u = σGM

u

σimage

(29)

σ̃DIC
u and σ̃GM

u can be interpreted as the coefficients of amplification of the camera sensor noise for
DIC and GM, respectively. With these notations, the unit of the σi

u, i = GM,DIC is pixel, and the
unit of σ̃i

u, i = GM,DIC is pixel/DN, where DN, which stands for Data Number, is the pseudo-unit
for the gray level, as suggested in [28].

Predicting the displacement resolution for DIC needs to estimate matrix MΩ involved in Equa-
tion 23. For GM, K is required. Comparing σ̃DIC

u and σ̃GM
u from properties of MΩ and K seems

not obvious, so a simple procedure consists of performing this comparison again with the same set of
two images processed by both techniques separately. A grid image is therefore considered once again
(random patterns are discussed at the end of the paper). The very nature of the displacement between
the two images has no impact on the estimates which are used to assess the displacement resolution,
so the same set of images already considered in Section 3.4 were processed here for the sake of con-
venience. The calculations were performed for five subset sizes 2M + 1 (M = 3, 6, 10, 15, 20 pixels)
and with a bilinear matching function (d = 1) for DIC. Three sizes of the Gaussian and triangular
kernel were employed for GM (σ = a = 5, 10, 15 pixels). Figure 8 shows the average of the normalized
displacement resolution estimated for these different settings. Concerning the order of magnitude of
the standard deviation for the noise, it is worth remembering that the simulations presented here were
carried by using grid images, which were obtained with a gray depth equal to 12 bits. Consequently,
σ̃u shall be multiplied by a value for σimage expressed with the same gray depth to be consistent. For
readers having in mind values for σimage obtained with their own camera featuring a gray depth equal
n = 8, 12, 14 or n = 16 bits, which are usual values for DSLR (Digital Single Lens Reflex) or profes-
sional cameras, σu is obtained by multiplying σ̃u in Figure 8 successively by σimage and by 2(12−n) to
deduce a correct estimate of σu. For instance, for a 8-bit camera characterized by σimage = 2 DN, the
corresponding value for σu is σu = σ̃u × 2 × 24 = σ̃u × 25 (pixels). The same remark holds for the
following figures where σ̃u is involved (Figures 9-12)).

It can be seen in Figure 8 that the displacement resolution decreases as the size of the subset or
the window increases, which is logical since the averaging effect on the noise is more pronounced as the
number of pixels considered to calculate the displacement at any pixel increases. The second remark is
that the order of magnitude of the different values obtained for the displacement resolution is the same
for both techniques. It is, however, difficult to go further with the comparison between the techniques
since the obtained results depend on settings chosen by the user for each technique separately, more
precisely on the size of the subset for DIC and window for GM. Those sizes only constitute a rough
parameter to compare the techniques. In addition, the Gaussian curve has no compact support, so
the size is only arbitrarily defined using the 3− σ rule. Performing a fair comparison thus requires to
introduce another parameter, namely the spatial resolution, which must be defined on the same basis
for both techniques. This point is investigated in the following section.

5 Link between Bias 2, Bias 3 and measurement resolution through

the spatial resolution

The objective here is to examine how to compare the performance of DIC and GM with the same
definition of the spatial resolution for both techniques. We first show how to determine this spatial
resolution for DIC and GM. Then we examine how the displacement resolution depends on the spatial
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Figure 8: Normalized displacement resolution (upper bound for DIC). The values reported in this
figure are obtained with a gray depth equal to 12 bits, so σimage shall be estimated accordingly to
obtain a consistent value of σu by multiplying σ̃u by σimage.

resolution for both techniques, and consider the product between these two quantities to compare DIC
and GM. Finally, we discuss the influence of Bias 3 on the results when interpolation between remote
points is performed, which is generally the case with DIC.

5.1 Determination of the spatial resolution for DIC

As mentioned in Section 2.3, the spatial resolution reflects the ability of a technique to distinguish
close features in a map. This quantity depends on Bias 2 and even on Bias 3 when interpolation
between remote points is employed. We propose here to define the spatial resolution as the period
of the sine displacement beyond which the relative loss in amplitude of the displacement returned by
the measuring technique is greater than a certain value ([11] after similar definition proposed in [65]).
If no interpolation is used and regardless of noise, this relative loss is directly λ2 defined above. If
interpolation is used, this is 1− (1− λ2)(1− λ3).

Let us first consider the case λ3 = 0 (no interpolation between remote points). As in previous
studies [11], it is proposed first to fix Bias 2 to a certain acceptable value, here 20%. The spatial
resolution is then deduced from the transfer functions discussed in Section 3.2 for each setting retained
for the calculation (subset and window sizes). The equation 1−ĥM (k̃) = λ2 = 0.2 is solved numerically
with Matlab R© for the SG filter, no analytical solution being available. It means that the normalized
wave length k̃ = k̃0 solution of the following equation (see Equation 20 where ĥM (k̃) is defined)

1− h(0)− 2
M∑

i=1

h(i) cos
(
ik̃π
)
= λ2 = 0.2 (30)

must first be determined. The spatial resolution du is then deduced. This is merely

du =
2

k̃0
(31)

since the Nyquist frequency is equal to 0.5 pixel−1. As explained in Section 3.2.3, the h(i) coefficients,
i {0 · · ·M}, represent the value of the filter used for modeling Bias 2 for DIC, namely the SG filer.
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Again, this filter is sampled over 2M + 1 points, where M = 3, 6, 10, 15, 20 pixels. This calculation
enables us to determine du for DIC. The associated displacement resolution is then deduced using the
same approach as that shown in Section 4.

5.2 Determination of the spatial resolution for GM

Concerning GM, two methods are available to determine the spatial resolution since one can consider
either the continuous or the discrete version of the transfer function, for both the Gaussian and the
triangular windows.

5.2.1 With the closed-form expression of the bias

For the continuous approach and after [17] and [18], the relationship between spatial resolution du
and λ2 writes as follows:

λ2 = 1− e
−2π2 σ2

d2u for a Gaussian window of standard deviation σ (32)

λ2 = 1− sinc2
(

a

du

)
for a triangular window of width 2a (33)

In practice, the bias can be considered as a parameter fixed by the user (here 20%). The spatial
resolution can thus be deduced from Equations 32 in which du is the unknown, all other quantities
involved in this equation being known. In the case of a Gaussian window, Equation 32 leads to

du =

√
2πσ√

− log (1− λ2)
with 0 < λ2 < 1 (34)

5.2.2 Discrete transfer function of the Gaussian filter

In Section 3.2, we introduced the discrete version of the transfer function for both the Gaussian and the
triangular filters to make possible the comparison between DIC and GM. We can therefore consider the
same approach here, by taking Equation 30 in which the h(i) coefficients, i ∈ {0, · · · ,M}, represent
now the value of either the Gaussian or the triangular filter for the different values of i. The benefit
is to have the same approach for DIC and GM to determine du, namely the discrete one. However
it can be checked that both the continuous and the discrete approaches lead to practically the same
results for the Gaussian envelop, so the continuous approach is employed in this case hereafter for the
sake of convenience, a closed-form solution being available for the Gaussian envelope.

5.3 Normalized measurement resolution as a function of spatial resolution for DIC

and GM

For DIC, the spatial resolution is determined for a given subset size using the approach given in
Section 5.1. The displacement resolution is obtained for the same subset size using the procedure
given in Section 4.2. This enables us to have a representative point for DIC for each subset size in the
spatial resolution-displacement resolution plane.

For GM, we can follow the same procedure as for DIC, i.e. estimating the spatial resolution with
the procedure given in Section 5.1 (continuous case) and then estimating the displacement resolution
given in Section 4.3, which gives a representative point for GM for each type of window and for each
size in the same plane as above. In the particular case of a Gaussian envelope, we can also apply the
following predictive formula given in [17], deduced from Equations 29 and 34:
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σ̃GM
u =

p

2
√
2πduK

√
− log (1− λ2)

with 0 < λ2 < 1 (35)

where

• p is the pitch of the grid;

• K is the modulus of the WFT of the grid image. The modulus obtained for the WFT calculated
along x or y are theoretically equal for a regular grid [15], so no distinction is made here in the
notation for values of K calculated along x and y.

Choosing a value for λ2 gives in turn a spatial resolution du which depends on the size of the window
chosen for the calculations. The displacement resolution σ̃u is eventually expressed as a function of du.
The corresponding points are shown in Figure 9. The conclusion is similar to that drawn from the
preceding results: as expected, the displacement resolution decreases for both techniques as the spatial
resolution increases, but DIC and GM are now fairly comparable. We can see that triangular and
Gaussian windows seem to be nearly on the same curve, while the points reflecting the response of
DIC are slightly above those of GM.

This figure illustrates the tradeoff between displacement resolution and spatial resolution that
every user of full-field measurement method faces in one way or another. The ability of each technique
to manage at best this tradeoff, namely having at the same time the lowest spatial resolution and the
lowest measurement resolution as possible, is reflected by the following product

α̃ = du × σ̃u, (36)

which corresponds to the area of the rectangles constructed between the origine of the plane and any
point in the diagram (see Figure 9). We propose to name this product the normalized metrological

efficiency indicator for a given value of λ2. It is worth remembering that in this study, this product does
not take into account the “spatial noise” due to marking issues which are specific to each technique.
In the same spirit, the product defined by

α = du × σu (37)

is the metrological efficiency indicator. This quantity should be as low as possible to reflect a good
compromise between spatial resolution and displacement resolution for a given bias. As explained
in [17] in the case of a Gaussian envelope, α̃ is constant for GM for a given bias whatever the size
of the analysis window used in the WFT. This can also easily be deduced from Equation 35. This
property is less clearly established in the case of the triangular envelope, du being obtained from
numerical calculations. α̃ is also constant for DIC. We can therefore calculate α̃ in all these cases and
compare the results which are obtained. This area of the aforementioned rectangles is reported in
Figure 10.

We can see in this figure that α̃ is constant in all cases, thus it really constitutes an indicator to
compare techniques among themselves. Concerning GM, α̃ is nearly the same for the two types of
windows considered here. Another conclusion is that this product is slightly greater for DIC than for
GM, which means that at least for the present image, the compromise between displacement resolution
and spatial resolution is not as good as that obtained for GM, but the difference between the two is
not very marked.

5.4 Impairment of the performance of DIC due to Bias 3

The first results given above for DIC rely on the particular case of a 1-pixel subset shift. Such a small
shift is generally not adopted in practice because of the high computational cost which is induced,
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Figure 9: Normalized displacement resolution as a function of the displacement resolution. DIC:
M = 3, 6, 10, 15, 20 pixels, GM triangle: a = 5, 10, 15 pixels, GM Gaussian: σ = 5, 10, 15 pixels. The
values reported in this figure are obtained with a gray depth equal to 12 bits, so σimage shall be
estimated accordingly to obtain a consistent value of σu by multiplying σ̃u by σimage, as explained in
Section 4.4.
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Figure 10: DIC and GM: α̃ for various settings. The values reported in this figure are obtained with
a gray depth equal to 12 bits, so σimage shall be estimated accordingly to obtain a consistent value of
σu by multiplying σ̃u by σimage.

as discussed in the section dealing with Bias 3 above. Since almost all DIC codes introduce higher
subset shift, the output in terms of full-field displacement maps are interpolated values. It is therefore
important to highlight the effect of Bias 3 for DIC.

Effect on the spatial resolution The impact of the additional bias due to interpolation can be
estimated using the same approach as in the preceding section. Figure 5 shows indeed that the worst
situation corresponds to the case for which two remote points located on both sides of the maximum
of a sine displacement distribution are linearly interpolated. The relative loss of amplitude for the
displacement returned by DIC after interpolation is in this (worst) case: 1 − (1− λ2) (1− λ3). This
leads to a new value for the spatial resolution, which is greater than that obtained when Bias 2
is considered alone. In the same spirit as for du calculated in the case “without interpolation”,
the normalized wave number k̃0 for which 1 − (1− λ2) (1− λ3) becomes equal to 0.2 must first be
determined. Thus the solution of Equation 38 below

1−
(
1− cos

(
π
k̃

2
(2M + 1)

))(
1− h(0)− 2

M∑

i=1

h(i) cos
(
ik̃π
))

= 1− (1− λ2) (1− λ3) = 0.2 (38)

must now be considered instead of the solution of Equation 30. This solution is found numerically,
the calculations being again not tractable. Then the corresponding spatial resolution, denoted now
d′u, is deduced again from Equation 31.

Effect on the displacement resolution The displacement resolution in this case has a new feature
compared to the displacement resolution obtained without Bias 3: since the displacement at the center
of the subsets are interpolated, the displacement resolution decreases in between (which means that it is
improved). This is a consequence of Equation 26 above (see [13, 14] for more details). This lower value
is denoted σ̃′

u. At the centers of the subsets, however, the displacement resolution remains unchanged
compared to the values discussed in the preceding case because interpolation has no effect at these
points. Consequently, the spatial resolution is the highest when the displacement resolution is the
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Figure 11: Effect of Bias 3 due to interpolation between remote points. Normalized displacement
resolution σ̃u as a function of the spatial resolution du (GM) or d′u (DIC). For DIC, Bias 3 impairs
the spatial resolution but improves the measurement resolution. As a result α̃ is greater, so the
compromise between measurement resolution and spatial resolution is impaired. The values reported
in this figure are obtained with a gray depth equal to 12 bits, so σimage shall be estimated accordingly
to obtain a consistent value of σu by multiplying σ̃u by σimage.

lowest and vice versa, which means that both parameters fluctuates throughout a given displacement
map.

Figure 11 summarizes these results. The points representing the response of DIC move to the right
when interpolation is taken into account, showing that the spatial resolution is impaired. At the same
time, these points move however downwards, illustrating that the displacement resolution is improved.
The points corresponding to GM do not change because λ3 = 0 for GM, calculations being performed
pixelwise.

Effect on the compromise between displacement resolution and spatial resolution The
compromise between displacement resolution and spatial resolution can again be represented by the
product between these two quantities, denoted here

α̃′ = d′u × σ̃′
u (39)

The new values for DIC are represented in Figure 12 along with the points of GM. It can be seen
that interpolation negatively impacts this compromise when comparing these values to those shown
in Figure 10. Interestingly α̃′ remains constant for DIC in this case too. The main remark is that
Bias 3 severely affects the compromise between displacement resolution and spatial resolution, α̃′ being
nearly 50% greater than α̃ calculated without Bias 3
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Figure 12: α̃′ (DIC) and α̃ (GM) for various settings. The values reported in this figure are obtained
with a gray depth equal to 12 bits, so σimage shall be estimated accordingly to obtain a consistent
value of σu by multiplying σ̃u by σimage.

6 From regular to random patterns

6.1 Introduction

The reader accustomed to using DIC is certainly wondering how to establish a link between the results
presented above obtained with grid images processed by DIC, and results that would be obtained with
“usual” speckled patterns. Indeed DIC also works with regular patterns like grids, which enabled us to
stabilize the influence of the pattern itself in the analysis presented in the previous sections. However,
such regular patterns are scarcely employed with DIC, mainly because depositing such patterns is
less convenient than depositing a random pattern. We propose here to compare the results obtained
with random patterns and grid images processed by DIC, and consequenty results obtained with
random patterns processed by DIC and grid images processed by GM. Considering all the quantities
introduced in the preceding sections to perform this comparison is out of the scope of this paper, so
we focus mainly on the compromise between spatial resolution and displacement resolution, which has
the advantage of being quantified by a product nearly independent of the size of the subset for DIC,
and window for GM. Several types of markings are used for this purpose, namely a regular one and
five random ones. Again, it is worth remembering that the “spatial noise” due to marking fluctuations
is not taken into account in the present study. Such fluctuations are expected to be more significant
for speckles than for regular grids, which justifies further work on this specific point. We compare
first the results obtained by DIC and GM on the grid image. Random patterns are then considered
for DIC.

6.2 Metrological performance of DIC and GM with the same regular pattern

We consider first the picture of a real grid shown in Figure 13-a. It is obtained with a 12-bit CCD
camera but images are stored in tif files featuring a gray depth equal to 16 bits by multiplying the
raw 12-bit output by 24. Five pixels are used to discretize one grid pitch. In the same spirit as in the
previous sections, the idea is to consider parameter α̃ for this comparison since it reflects the tradeoff
between measurement and spatial resolutions. The spatial resolution du only depends on the size of the
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Figure 13: Grid and speckle images under study.
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subset for DIC, and on the size of the window in GM. While the normalized displacement resolution
σ̃u is defined by Equation 29, the displacement resolution σu is estimated with Equation 26 for DIC,
and with Equation 28 for GM. The obtained results are compared by calculating pixelwise the ratio
σ̃GM
u /σ̃DIC

u . DIC is performed for three values of the subset size (2M+1 = 7, 13, 21 pixels) and GM for
three values of σ (5, 10, 15 pixels), a Gaussian window being used here. This makes 3×3 = 9 different
combinations, and thus 9 different maps for this ratio. The results obtained with a triangular window
are not discussed here because they lead to conclusions similar to those obtained with a Gaussian
window. As explained above, the product between displacement and spatial resolution α̃′ is expected
to be constant for a given technique and lighting conditions. By definition, the same remark holds for
the ratio defined above.

Figures 14-a shows the portion of the grid figure for which the results are considered in the
comparison. This is the same as Figure 13-a, but it has been cropped to get rid of the border effects.
As an illustration, the different subset sizes used here with DIC and window sizes used with GM
are superimposed to Figure 14-a. It is worth remembering that the ”size of the window for GM” is
considered here for a Gaussian window. This is a circle whose diameter is 3 σ according to the 3− σ
rule, but this size is arbitrary. The value of the spatial resolution estimated for a given value for Bias 2
equal to 20% is plotted in front of each subset/window. These spatial resolutions are estimated using
the procedure given in Sections 5.1 and 5.2 above for DIC and GM, respectively.

Figures 14-b and -c show two typical examples of the spatial distribution of the ratio σ̃GM
u /σ̃DIC

u .
They are obtained with σ = 5 pixels and M = 3 pixels and σ = 5 pixels and M = 10 pixels,
respectively. It can be seen that the global aspect is the same, but the blur in this distribution is higher
in the second case, which is due to the fact that local averaging is more pronounced. Interestingly, the
ratio is mainly lower than one (dominant blue in the maps), which means the compromise between
displacement and spatial resolutions is better for GM than for DIC. On average, the relative difference
is equal to 10% in both cases. The ratio is however much greater than one on a very localized
zone which corresponds to the yellow spot on the map. Comparing both maps with the grid image
recalled in Figure 14-a enables us to see that this yellow spot corresponds to a localized lack of marking.
Interestingly the zone affected by the defect is much smaller on the grid image than on the maps, which
is a consequence of the fact that the information displayed at a given pixel of a map depends on the
information contained in its surrounding pixels. Consequently, any marking defect spreads out in the
maps for GM. The mean distribution is finally calculated by averaging the nine combinations between
σ = 5, 10, 15 pixels and M = 3, 6, 10 pixels, which gives a clearer view on the spatial distribution of the
ratio. This ratio is nearly uniformly spatially distributed apart from the yellow zone. On average, the
mean ratio is equal to 0.90, which means that the tradeoff between spatial resolution and measurement
resolution is more favorable for GM than for DIC for this grid image. It is worth remembering that
applying interpolation between remote points in DIC would impair the performance of DIC, and this
ratio would therefore be lower.

6.3 From regular to random patterns, impact on the metrological performance of

DIC

6.3.1 Introduction

The influence of the marking on the results obtained by DIC is now studied by considering the five
speckle images shown in Figures 13-b to 13-f. The first three speckles are synthetic images used in [2]
to compare various DIC programmes. Their gray depth is 8 bits. They are named Speckle 1 to
Speckle 3 in the following. The last two are real in-house speckles obtained by painting a surface in
white, and then spraying droplets of black paint. Their gray depth is 16 bits. These two speckles
are named Speckle 4 and Speckle 5. Such markings can be processed only by DIC. Nevertheless the
obtained results can be compared with those obtained by DIC with the grid image, and consequently
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a- Grid pattern with subsets and windows b- σ = 5, M = 3

used to process the image.

Corresponding spatial resolutions

c- σ = 5 pixels, M = 10 pixels d- average distribution for the nine combinations

Figure 14: a-Grid image under study. The subsets and windows used in the calculations are superim-
posed. The corresponding spatial resolutions estimated for a given Bias 2 equal to 20% are plotted as a
straight line segment in front of each subset/window. b- to d- examples of ratio between α̃ calcutated
piwelwise for GM and DIC. The same dimensions are used for the four sub-figures.
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with the results obtained with the grid image processed by GM.

6.3.2 Normalization

The product between displacement and spatial resolution defined above can be calculated again in
each of the five cases. Comparing the metrological performance of DIC and GM from the obtained
results would however be biased by some factors which are not really intrinsic to DIC, but which are
external to the DIC technique itself. This mainly concerns the displacement resolution, the spatial
resolution being theoretically unaffected. The lighting conditions, the gray depth used when recording
the pictures and eventually the dynamic range of the image of the pattern are typical examples,
these quantities changing between the images used here. A normalization of the results obtained by
processing these images is therefore necessary in some way prior to use them for comparison purposes
between DIC and GM.

It is proposed here to locally normalize the obtained results by the local gradient of the image, the
noise level in final maps being inversely proportional to this gradient for both techniques. It means
that σ̃u must be multiplied by the local image gradient norm denoted above ∇̄ to obtain another
normalized displacement resolution denoted ˜̃σu. By “local gradient”, we mean the average value of
the norm of the gradient calculated over the subset for DIC. For GM, a convolution between the
window used in the WFT and the pixelwise distribution of the gradient norm is performed. Note
that this quantity is known as the local total variation in the image processing literature [66]. This

procedure gives eventually a pattern-independent normalized displacement resolution denoted ˜̃σu. It
is defined by

˜̃σu = σ̃u × ∇̄ (40)

The unit of ˜̃σu is that of σ̃u (pixel/DN) multiplied by that of ∇̄ (DN/pixel), so there is no unit for
this quantity. Let us justify more rigorously this type of normalization:

For DIC We consider here the simplest noise propagation model proposed in Equation 24, it can be
shown that an upper bound for σ̃u is inversely proportional to the mean gradient ∇̄ (see also Equation
5-97 in Ref. [31]), which justifies for DIC the normalization introduced in Equation 40.

For GM The following ideal sine profile for the lines of the regular patterns processed by GM is
now considered. We consider the 1D case for the sake of simplicity. This gives:

s(x) =
1

2

(
1 + γA sin

2πx

p

)
(41)

The gradient along x of the line profile is equal to γAπ
p

cos
(
2πx
p

)
, so the mean value ∇̄ of the

norm is proportional to γA
p
. When considering now Equation 35, we can see that with GM, σ̃u is

proportional to p
K
. In addition and according to [16], K is equal to

K =
γA

4
(42)

which means that σ̃u is proportional to p
γA

, and thus inversely proportional to ∇̄. This conclusion
also justifies for GM the normalization proposed in Equation 40.
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6.3.3 Results and discussion

We define first from preceding definitions the pattern-independent normalized metrological indicator
as

˜̃α = du × ˜̃σu. (43)

This quantity enables us to assess the difference in the results obtained by DIC performed on
speckles on the one hand, and DIC performed on a grid image on the other hand. The ratio between
˜̃α of two of the five speckles (Speckle 1 and Speckle 2), and ˜̃α of the grid image shown in Figure 13,
is considered in practice. Two values for M are considered: M = 6 and M = 20. The first one is
sufficient for patterns containing small details like the grid pattern. The second one is more suitable
for coarser patterns like Speckle 4. Figure 15 shows typical examples of the spatial distribution of this
ratio for two speckles as well as the corresponding histograms.

Strong spatial fluctuations are clearly visible because speckles and grid patterns are uncorrelated.
On average, the ratio is lower than one. This is clearly visible on the histograms. It means that
in this example, performing correlation on speckled patterns leads to a higher noise in displacement
maps due to camera sensor noise propagation than when performing correlation on grid images. More
generally, we consider now the mean value for this ratio over the maps. Table 2 gathers the results in
these ten cases (5 speckles × 2 values for M). Interestingly, the obtained values are lower than one in
nine cases, and slightly greater than one in one case. We can see that the lowest values are attained
for Speckles 3 and 4, which are the coarsest of the series, and for 2M + 1 = 13.

Subset size 2M + 1 Speckle 1 Speckle 2 Speckle 3 Speckle 4 Speckle 5

13 0.9007 0.8554 0.7230 0.7891 0.9430

41 0.9304 0.9300 0.9117 1.0021 0.9766

Table 2: Mean of the ratio between ˜̃α calcutated piwelwise by DIC between the grid and the speckle
images shown in Figure 13. Subset size 2M + 1: 13 and 41.

This result shows that the results concerning DIC which are discussed in the preceding sections, and
which were obtained with grid images, are globally representative of the more general case of speckle
patterns. Speckle patterns are however expected to give results which are less favorable compared to
those obtained with grid images.

To compare now results obtained with grid images processed by GM, and speckle or grid images
obtained by DIC, we represent in Figure 16 the cumulative distribution function of ˜̃α obtained for
the six markings shown in Figure 13. These curves represent the percentage of pixels (along the

vertical direction) for which ˜̃α reaches a certain value which is reported along the horizontal direction.
We consider here the different settings used in the preceding discussions for DIC and GM: M =
3, 6, 10, 15, 20 pixels and σ = 5, 10, 15 pixels, respectively, but we only represent the results obtained
with the smallest and the highest values of these parameters. Hence the cases M = 3 pixels for DIC
and σ = 5 pixels for GM is represented in Figure 16-a, while M = 20 pixels for DIC and σ = 15 pixels
for GM is represented in Figure 16-b.

The ideal shape for this distribution should satisfy the following properties:

• P1: This curve should be a perfect vertical line to illustrate that ˜̃α remains constant at any pixel
of the image;

• P2: This vertical line should be as close as possible to the origin (thus close to the left-hand
side of the figure) to illustrate that the best possible compromise between spatial resolution and
displacement resolution is achieved.
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Figure 15: Ratio between ˜̃α calcutated piwelwise for grid image and Speckle 1 (left) and Speckle 5
(right). M = 6 in the two first lines, M = 20 in the two last lines.
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Figure 16: Cumulative distribution function determined for various speckle and grid images and
settings (without interpolation for DIC). ˜̃α is calculated pixelwise. Neither the effect of Bias 3 nor
that of the “spatial noise” are taken into account in these results.

The following remarks can be drawn from the curves shown in Figure 16:

• None of the curves perfectly fulfills both requirements listed above. All of them form an S slanted
so that its base and top are horizontal. However, the curve for GM is nearly a vertical line: only
the low end of the three curves plotted for this technique, which represents about 10 % of the
pixels, exhibits a non-constant value for ˜̃α. The remaining 90 % exhibit a nearly constant value,
which can be explained by the regularity of the marking;

• Property P1 is not satisfied for DIC for the smallest values of the subset size 2M + 1 (see
Figure 16-a), but this property only reflects the fact that the subset size is not well suited
to the speckles under study. Larger subsets lead to curves which become more vertical (see
Figure 16-b);

• When correct setting are used for DIC (see Figure 16-b), all the five curves obtained with DIC

are on the right-hand side of the curve obtained with GM. It means that ˜̃α is higher for DIC
than for GM, thus that the compromise between spatial resolution and displacement resolution
is better for GM than for DIC for all these five speckles;

The preceding remark is illustrated by Figure 17, which shows the relative difference between
the average abscissa of the vertical portion of the cumulative distribution function of ˜̃α calculated
for DIC, and its counterpart calculated for GM. The first quantity is estimated for each of the six
markings (5 speckles and the grid). To avoid the influence of the tails of these distributions, only
the points belonging to the 15%-95% range along the vertical direction of each of these cumulative
distribution functions are considered in this calculation. Depending on the pattern, ˜̃α is between 10
and 20 % greater for speckles processed by DIC than for grids processed by GM, which means that
the compromise between displacement resolution and spatial resolution is better for GM than for DIC
in these examples. It is worth remembering here that this results holds for DIC performed pixelwise.
Interpolation between remote points would further impair the results found for DIC, as illustrated in
Section 3.3. Taking into account the heteroscedasticity of the noise in real images would also certainly
amplify this difference in response, the grid image being much darker than the speckles shown in
Figure 13.

7 Conclusion

A comparative study between DIC and GM is presented in this paper. Because of the lack of precise
standard available on the literature on the assessment of the metrological performance of full-field
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Figure 17: Relative difference between DIC and GM (without interpolation for DIC).

measurement systems, a suitable methodology had to be proposed to perform a fair comparison. The
metrological performance of both techniques was assessed in terms of bias, displacement resolution
and spatial resolution. Special attention was paid to characterize and compare quantities considered
as intrinsic to the techniques such as the link between these three quantities when they are available.
The size of the subset for DIC or the size of the analysis window for GM are not really metrological
quantities of interest. These quantities are settings fixed by the user, so they were more considered as
technical parameters, which are specific to each technique. Another striking point is that grid images
were processed by DIC to obtain results with both techniques on the same set of images, although this
procedure is not conventional for DIC. Speckle images were also processed and the obtained results
were compared to those obtained with GM after applying a suitable normalization. As a general
remark, these first results show that GM globally exhibits a better compromise between displacement
resolution and spatial resolution for a given attenuation bias (Bias 2). Interpolation between remote
points, which is classically used in DIC, has the most significant negative impact on the metrological
performance as defined here.

The study presented here is not completely exhaustive. The first reason is the lack of information
available in the literature on some couplings such as that which certainly exists between Bias 1 and
the spatial resolution. The second reason is that the “spatial noise” has not been taken into account to
assess the displacement resolution. This is due to the fact that there is a lack of models able to reliably
predict this phenomenon. This justifies that additional studies should be undertaken to tackle this
issue correctly for both techniques. The third reason is that other criteria such as the computational
cost or the ease with which the surface of the specimen is prepared, should be taken into account in a
more global comparison. The computational cost depends on the way the methods are programmed.
It may therefore strongly change from one version of the same technique to another. On this point,
GM relies on image processing tools based on Fourier analysis, which have been studied in depth in the
computer science community for decades. Concerning surface preparation, it is clear that depositing
a grid for GM is trickier than spraying speckles on uniformly painted surfaces for DIC. The first type
of marking is however reproducible, which can be an advantage for standardization purposes. As a
general remark, it can be said that GM and DIC are more complementary than competing. From this
first comparison between both techniques and even though the obtained results are partial, it turns
out that GM should be used in situations for which low strain levels, and high gradients occur, while
DIC is certainly the best solution in the other cases, the additional effort necessary to deposit regular
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grids instead of spraying speckles being then not justified. Depending on the parameter potential
users attach importance to, the limit between these two types of situations may fluctuate, and thus
the final choice for using one of the two techniques for a given application may be different.

As a last remark, it is worth recalling that we relied here on predictive formulas. Even though they
were validated in earlier studies, readers interested in verifying these results experimentally should
bear in mind that external parameters may strongly affect the results obtained with such experiments.
Out-of-plane motion occurring during the tests or micro-vibrations between specimen and camera are
typical examples.

In conclusion, though incomplete since other effects, criteria or parameter settings could also be
accounted for, this first attempt helps to critically compare subset-based local DIC and GM in an
objective and fair manner, and the methodology proposed here could also be used in other cases, for
instance to compare different versions of the same technique.

Acknowledgement

The GDR CNRS ISIS is gratefully acknowledged for its partial financial support of this study (TIMEX
project).

42



Appendix 1: formal link between DIC and GM

The aim of this calculation is to give the formal link that exists between DIC and GM. Let sref

and scur be two images taken before and after deformation, respectively. In local DIC, estimating the
2D displacement (ux, uy) at a given point (x0, y0) consists in minimizing the squared optical residual
in a neighbourhood Ω of (x0, y0), which writes:

∫∫

(x,y)∈Ω
(sref (x, y)− scur(x+ ux, y + uy))

2 dx dy (44)

where (x0, y0) ∈ Ω. This is a continuous version of Equation 1 used with DIC. By a slight abuse of
notation, we keep on denoting by sref and scur the restriction of both images sref and scur to Ω, this
restriction being extended to R2 as sref (x, y) = 0 and scur(x, y) = 0 when (x, y) is not in Ω. Thus
Equation 44 writes: ∫∫

(x,y)∈R2

(sref (x, y)− scur(x+ ux, y + uy))
2 dx dy (45)

Extending to R2 the domain of integration enables us to use the Parseval theorem (also named
Plancherel theorem), which states that, under mild assumptions, any function f and its Fourier trans-
form f̂ are such that

∫
R2 |f |2 = K

∫
R2 |f̂ |2, where K is some constant independent from f , and |z| is the

norm of any complex number z. In addition, denoting s′cur(x, y) = scur(x+ ux, y + uy) and assuming

that the displacement (ux, uy) is constant over Ω, we have ŝ′cur(ξ, η) = e2iπ(ξux+ηuy)ŝcur(ξ, η). As a
consequence, minimizing the squared optical residual

∫∫
(sref − s′cur)2 (cf. Equation 45) is equivalent

to minimizing ∫∫

(ξ,η)∈R2

∣∣∣ŝref (ξ, η)− e2iπ(ξux+ηuy)ŝcur(ξ, η)
∣∣∣
2
dξ dη (46)

For any complex number z1 and z2, |z1 − z2|2 = |z1|2 + |z2|2 − 2Re(z2z1) where Re(z) denotes the
real part and z the complex conjugate. The quantity defined in Equation 46 is thus equal to:

∫∫

(ξ,η)∈R2

(
|ŝref (ξ, η)|2 + |ŝcur(ξ, η)|2 − 2Re(e2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η))

)
dξ dη (47)

The optimum translation (ux, uy) has to satisfy Euler-Lagrange equation, that is, the derivative
of the integrand with respect to ux and uy must be null. As a consequence, for any ξ, η,





Re

(
2iπξe2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
= 0

Re

(
2iπηe2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
= 0

(48)

Both equalities eventually give:

arg

(
e2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
= 0 [π] (49)

where arg is the argument of any non-zero complex number, the equation holding modulo π. Since
we are looking for a minimum, the second derivative of the integrand must be positive, thus





−2Re

(
−4π2ξ2e2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
> 0

−2Re

(
−4π2η2e2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
> 0

(50)
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A consequence if that Equation 49 actually holds modulo 2π instead of π. Indeed, for any ξ and

η, e2iπ(ξu+ηv)ŝcur(ξ, η)ŝref (ξ, η) is a real number from Equation 49, which must be positive from
Equation 50. Consequently:

arg

(
e2iπ(ξux+ηuy)ŝcur(ξ, η)ŝref (ξ, η)

)
= 0 [2π] (51)

We can conclude that, for any (ξ, η), the displacement (ux, uy) satisfies:

ξux + ηuy = − 1

2π
arg

(
ŝcur(ξ, η)ŝref (ξ, η)

)
(52)

This calculation is not particular to grid images; it is valid for any pair of translated images.
Retrieving ux and uy from Equation 52 is the basis of the so-called phase correlation method [67].
Two approaches are recalled in [67] to solve this problem. With the first one, ux and uy can be
estimated through a multivariate linear regression on the scatter plot of (ξ, η) against the values

of arg

(
ŝ2(ξ, η)ŝref (ξ, η)

)
/(2π) computed from the discrete Fourier transform of both images sref

and scur. With the second method, since Equation 52 is equivalent to:

Ae2iπ(ξux+ηuy) = ŝcur(ξ, η)ŝref (ξ, η) (53)

where A > 0, the inverse Fourier transform of the right-hand member of this equality should be a
Dirac distribution located at (ux, uy). As a consequence, finding (ux, uy) consists in localizing the
corresponding peak. While the first approach suffers from phase wrapping and noise, the second one
is not adapted to cases where u, v are below one pixel, or needs a careful interpolation to reach such
low values [68].

As far as images of grids of nominal pitch p are concerned, it is possible to further simplify
Equation 52. The spectrum of grid images has been thoroughly studied in [45] by using the stationary
phase method. It has been shown that this spectrum is made of separated spikes lying around the
harmonics of the grid, the spikes being precisely expressed by Equation 9 of [45] (adapted to match the
notations of the present paper). For instance, for any (ξ, η) around the fundamental harmonics (1

p
, 0),

the following equation holds:

ξux + ηuy = − 1

2π
arg

(
êiΦcur

x (ξ − 1

p
, η)

̂
eiΦ

ref
x (ξ − 1

p
, η)

)
(54)

and for any (ξ, η) around the fundamental harmonics (0, 1
p
):

ξux + ηuy = − 1

2π
arg

(
̂eiΦ

cur
y (ξ, η − 1

p
)
̂
eiΦ

ref
y (ξ, η − 1

p
)

)
(55)

ux and uy can be retrieved from these equations by using several approaches, for instance the Geometric
Phase Analysis (GPA) [41], its windowed version [43], or the localized spectrum analysis [17] used in
the present study.

If the phase modulations Φx and Φy can be considered as constant in Ω (that is, no phase modu-

lation caused by grid manufacturing constraints is allowed), then êiΦ = eiΦδ(0,0) where δ is the Dirac
distribution. In this case, Equations 54-55 give:

ui = − p

2π

(
Φcur
i − Φref

i

)
i ∈ {x, y} (56)
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which is Equation 11 used with GM.
As a conclusion, it can be said that under mild assumption, minimizing the optical residual on a

subset requires iterative calculations in case of random pattern (DIC), but is straightforward in case of
regular pattern (GM). It means that assuming that the displacement field and the phase modulations
are constant within the subset, both approaches should theoretically give the same estimation. This
demonstration argues that both methods should theoretically provide the same solution if the small
strain assumptions holds, since in this case displacement fields are nearly constant. In practice, both
methods differ because of several reasons. It is possible to mention: algorithmic considerations (how to
set the stopping criteria?), practical considerations (grids are not perfectly periodic and speckles show
areas where pixel intensity does not provide any information, the gradient being nul for instance),
noise propagation, which differs in both methods. Since no unifying theoretical framework exists yet
to compare both methods with respect to these criteria, this motivates the numerical experiments
provided to the reader in the present paper.
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Appendix 2: Savitzky-Golay coefficients

In the case of DIC, for a matching function of degree d and for a subset size 2M+1, the h(i) = hDIC
M,d (i)

coefficients involved in Equation 20, i = 0 · · ·M are defined by:

hDIC
M,d (i) =

pi
norm

(57)

The values for the pi coefficients and for norm are defined in Tables 3 to 5 in the case d = 2.

p0 p1 p2 p3 norm

7 6 3 -2 21

Table 3: Savitzky-Golay coefficients, d=2, M = 3 [56].

p0 p1 p2 p3 p4 p5 p6 norm

25 24 21 16 9 0 -11 143

Table 4: Savitzky-Golay coefficients, d=2, M = 6 [56].

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 norm

329 324 309 284 249 204 149 84 9 -76 -171 3059

Table 5: Savitzky-Golay coefficients, d=2, M = 10 [56].
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