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A Critical Comparison of Two Kinds of
Adaptive Classification Networks

K. STEINBUCH AND B. WIDROW, MEMBER, IEEE

Adaptive pattern-recognition systems have been under study
since 1959 at the Technische Hochschule Karlsruhe, Karlsruhe, West
Germany; in the Department of Electrical Engineering at Stanford
University; Calif., and elsewhere. This note results from a visit to
Stanford by Dr. Steinbuch in May, 1964. The note summarizes the re-

sults of discussion in which the authors compared the "Learning
Matrix" developed at Karlsruhe [1]-[4], with the "Madaline" de-
veloped at Stanford [5 ], [6 ]. In several cases, conclusions were drawn
on experimental evidence only. These conjectured results have value,
it is believed, because they give a certain insight based on experience,
and at the same time they represent unsolved theoretical problems.

The basic structures of the Learning Matrix and the Madaline
systems are shown in Fig. 1. The input signals (or patterns) may be
binary or nonbinary. The output signals of both systems are binary
(except in certain situations where the Madaline is used with multi-
level quantizers producing ternary or other forms of output, or where
no quantizers are used at all, producing analog outputs). For purposes

of comparison, let the number of input-signal parameters to both
systems be n, and let the number of pattern classes (output cate-
gories) be m. Both the Learning Matrix and the Madaline have n

input lines; the Learning Matrix has m output lines, while the
Madaline has k output lines, where k is the smallest integer equal to
or greater than log2m _ Id m.1

(1+ ldrn) > k _ldm. (1)

The Learning Matrix and the Madaline are structurally quite
similar, forming arrays of output signals from linear combinations of
input signals.2 They differ primarily in their training methods and in
their output logic. The training of the Learning Matrix is on a one-

pass basis, while the training of the Madaline is an iterative process in
which the individual training patterns may be repeated several times
until adaptation3 is completed.

The various training procedures for the Madaline are described
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Fig. 1. Comparison of structures of Learning Matrix and Madaline.

in [5]-[7]. In the Madaline system each adaptive linear threshold
logic element (called an "Adaline") may be adapted by a least-mean-
square-error (LMS) procedure developed by Widrow and Hoff [5];
by a procedure due to Ridgway, described by Mays in [7 ]; or by still
other procedures [7].

The various training procedures for the Learning Matrix are
described in [1 ]-[4]. In the Learning Matrix, each linear weighting
filter (represented by a horizontal line on Fig. 1) to which a pattern is
matched is associated with a pattern class. Each pattern class has its
own output line, so that the response is provided by a one-out-of-m
code. The actual output selected is determined by a peak detector
(minimum Hamming- or Euclidean-distance method).

In the Madaline system, the pattern class is indicated by an array
of binary-coded output signals. Each output signal could come from
a single threshold logic element connected to the inputs. Such an
element could cause a space of input pattern points to be sectioned
by a hyperplane [8]. Alternatively, each output signal could come
from several such elements whose inputs are connected in parallel
and whose outputs are combined in a fixed-logic element such as a
majority element, an OR element, an AND element, a parity element,
etc. The number of paralleled Adaline units used to provide a single
output bit is represented as p. Thus each output bit is generated by
sectioning the input space with p hyperplanes. In the system illus-
trated in Fig. 1, p= 3, and the outputs are based on majority logic.
Training algorithms for Madaline systems using majority and OR
output logic were devised by Widrow and Hoff [5 ]. The possibilities
and advantages of paralleled rows, especially by OR combinations,
have been considered for the Learning Matrix as well.

Both Learning Matrix and Madaline systems have been realized
by adaptive hardware and by digital-computer simulation. It is felt
that, although digital-computer circuitry and technology are vastly
more advanced at present than adaptive-computer circuitry and
technology, many future developments in data-processing systems for
pattern discrimination will involve the use of physically realized
adaptive circuits. The comparisons in this note between the Learning
Matrix and the Madaline with regard to the amount and types of
components, training time, and sensing time are based on realization
by adaptive hardware rather than by simulation on a general-
purpose digital computer.

The analog weights at the crosspoints of the Learning Matrix and
the Madaline, as shown in Fig. 1, have been physically realized by
means of a variety of circuit elements. At Karlsruhe, these analog
storage functions have been performed by transfluxors and by square-
loop toroids with beat-frequency RF readout [3]. At Stanford,
analog weights have been realized by square-loop toroids with RF
second-harmonic readout [9], and by electrochemical integrators
called memistors (resistors with memory), which utilize the phenom-
enon of electroplating to vary resistance [6]. At the present time, an
all-digital circuit realization of adaptive threshold elements is under
development at Stanford University. The weight values are stored
in a magnetic-core memory.

The physical Learning Matrix and Madaline systems are truly
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parallel. Sensing times are essentially independent of the numbers of
inputs and outputs. In the Learning Matrix, one output line is
trained at a time. In the Madaline, as many output lines as necessary
are trained in parallel (simultaneously). The times of one adaptation
are assumed to be equal for the Learning Matrix and the Madaline.

A comparison of the Learning Matrix and the Madaline with re-
gard to number of outputs, number of crosspoint weights, and num-
ber of adaptations required for training is presented in Table I. The
application here is that of a one-to-one logic translator which will
provide a precise and different output code word for each input code
word (pattern). For each input pattern, the Learning Matrix has a
separate output line. The capacity of the Learning Matrix (the
number of input patterns that can be precisely classified) is certain
and is equal to the number m of output lines. Without an analysis
of the separability of the particular input patterns by a single
hyperplane [10] or by p hyperplanes, the performance of the Mada-
line can-not be predicted with certainty. However, in the case of
random input patterns in general position [11], a statistical capacity
has been analytically established for the single Adaline [1l]-[13],
giving an average value for the number of input patterns that can be
correctly classified. This average is 2(n+1), twice the number of
weights per Adaline. Theoretical curves showing the probability of
linear separability vs. the ratio of number of patterns N to number of
weights (n+1) are shown in Fig. 2 (taken from Brown [12]). No
Madaline capacity formula for the case of p> 1 has yet been derived,
although Winder has established an upper bound [13]. Experimental
measurements, made by Koford at Stanford, and privately com-
municated to Widrow, indicate that the statistical capacity tends to
remain at twice the number of weights for both the majority and
OR fixed-logic outputs. It has been conjectured, on the basis of
extremely limited experimental evidence, that the average capacity
will turn out to be 2 (n+1)p for most nontrivial output logic functions,
although choice of output logic affects the specific switching func-
tions that can be realized.

In a Madaline network having k output bits, it is shown [12] that
when the outputs are assigned independently and when n>>k, the
statistical capacity of the entire network is less than, but very close
to, that of a network having a single output bit. The reasons for this
are 1) that the probability of separability for k output bits is the
kth power of the probability of separability with k = 1; and 2) that
the curves showing probability of separability are initially flat and
close to unity, and drop off sharply as shown in Fig. 2.

The Learning Matrix is compared in Table I with a Madaline
whose designed average statistical capacity is at least twice the
deterministic capacity of the Learning Matrix. The purpose of this
difference is to make the probability of separation of the input pat-
terns by the Madaline very close to unity, giving a fair basis of com-
parison. In the logic translator, the number of input patterns equals
the number of pattern classes m. Let the integer p for the Madaline be
chosen so that

(n + 1) n + 1()

Accordingly, the statistical capacity of the Madaline is conjectured
to be

statistical capacity = (2n + l)p > 2m. (3)

By comparison, the capacity of the Learning Matrix is m.
The number of adaptations for the Learning Matrix is certain.

The training time for the Madaline is variable. The average number
of adaptations is conservatively taken as Sm for the case where the
number of training patterns is half capacity. Analytical work has been
done by Mays [7] in estimating means and bounds on convergence
time for the single Adaline (p= 1) using the adaptation procedure of
Ridgway and others; but so far, no simple closed-form expression for
these parameters has been obtained. They are very sensitive to
pattern characteristics. Experimental work has been necessary,
especially where p> 1.

A comparison of equipment requirements can be obtained by

TABLE I

COMPARISON OF LEARNING MATRIX AND MADALINE AS
ONE-TO-ONE LOGIC TRANSLATORS

Learning Matrix Madaline

Number of input lines =n Number of input lines =n

Number of pattern classes =m Number of pattern classes =m

Number of output bits =nz Number of output bits =k (1 +ld m)
>k>ld m

Capacity =m patterns, exactly (deter- Statistical capacity=2(n+1)p patterns
ministic)

For comparison, half tile statistical capacity of the
Madaline is made equal to the capacity of the Learn-
ing Matrix:

m m
1+- >p __

n + 1 n + I

Number of matrix outputs =m Number of threshold elements =pk

_____[-n+
__ Equipment ratio m:pk = --):1Id m

Number of weights4 =(ns+l)m Number of weights=(n+1)pk

Training time, exactly m adaptations Average training time with Ridgway
adaptation, Sm adaptations (where con-
vergence is achieved)

Training-time ratio = 1:5

Convergence5 is certain Convergence5 is not certain

4 For binary input signals, only nm weights are required (no normalization).
6 Convergence is defined as a condition in which all of the training patterns are

classified correctly.
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Fig. 2. Probability of linear separability of N or more random pattern vectors
having a nonsingular probability-density function and equally probable desired
output categories.

means of a specific example. Suppose that the number of input bits is
n= 100, and suppose that the number of classes m is 21' = 1024. The
Learning Matrix would have 1024 output lines and n- 1024= 102 400
weights. The Madaline would have k = 10 output lines and, in order to
obtain the proper statistical capacity, p would be 10. The Madaline
would have (n+1)pk=10 100 weights. Since the two systems have
the same number of input lines, the numbers of sense amplifiers that
would need to be connected to the outputs of the two matrices of
weights would be proportional to the numbers of weights. The equip-
ment ratio will, therefore, be taken as the ratio of the number of
weights, which for the preceding example is approximately 10:1-
ten times as much equipment in the Learning Matrix as in the
Madaline.

In general, the equipment ratio will be m:pk, as indicated in
Table I. The quantities k and p must be integers, determined by
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relations (1) and (2), respectively. The product pk is related to the
number of input lines n and to the number of pattern classes m.
This product can be bounded by the following relation, derived from
(1) and (2).

( m
ldm+ldm+ +1) >pk+>+ ldm.

n±1In+
(4)

If the application of the Learning Matrix and the Madaline were
statistical (rather than deterministic as in the translator application
described previously), the comparison would be somewhat altered.
Assume that the problem is to discriminate among noisy patterns
with high reliability after training on a limited number of noisy sam-
ple patterns. Suppose that there are ry training patterns per class, and
that there are m classes and n input lines as before. Comparison of
amounts of equipment and training times is given in Table II. The
parameter p of the Madaline is chosen so that the capacity of the
Madaline closely matches the capacity C of the Learning Matrix.

The structure and amount of equipment required for the Learn-
ing Matrix are unchanged. The number of matrix output lines equals
the number of classes m. Each line is trained -y times, corresponding
to the number of training samples per class. The total number of
adaptation cycles exactly equals the total number of training pat-
terns, m-y cycles. After the adaptation process terminates, it is
possible that all of the training patterns will not be classified cor-
rectly. Such a condition is generally not as troublesome in this case
as it would be when the Learning Matrix is used with noise-free pat-
terns as in the logic-translator application. The important thing in
statistical pattern classification is the achievement of a low error
probability in response to patterns outside of, as well as including, the
training set.

When the Madaline system is applied to the same noisy-pattern
classification problem, adaptation need not necessarily proceed until
the entire set of training patterns is correctly classified. Indeed, these
patterns may not be separable by the particular structure.

It has been shown analytically [5] that, when a single Adaline
element is trained to separate noisy patterns by the LMS procedure
termination of the adaptation process after a number of adaptations,
equal to 20 times the number of weights results in an error rate within
approximately 5 percent of that which would be achieved if the
adaptation process were continued indefinitely. Let this number of
training cycles be considered adequate. A series of experiments per-
formed at Stanford has indicated that the number of training cycles
required for separation of noisy patterns increases by a factor of
p > 1. Table II has been formulated on this basis.

The equipment ratios and the training-time ratios of the Learning
Matrix and the Madaline may be compared in the applications of
logic translator and classifier of noisy patterns by comparing Tables
I and II. The equipment required by the Learning Matrix is the
same for both of these applications. For the second application, the
equipment required by the Madaline must be increased generally
by the factorf(m, n) > 1. It is possible for the equipment required by
the Madaline to exceed that required by the Learning Matrix,
although this will not usually be so. The training time of the Learning
Matrix increases by a factor of y, while the training time of the
Madaline increases by a factor of 4p[(n+1)/m] in the statistical
classifier application as compared to the translator application. It is
possible that, in certain statistical classification applications where -y
is large, the average training time of the Madaline could be less than
that of the Learning Matrix, although in most situations the training
time of the Learning Matrix will be less than the average training
time of the Madaline.

With regard to optimal schemes for the classification of noisy
patterns, Table III is a limited list including 1) some of the condi-
tions and types of problems in which it is known that the Learning
Matrix is the better classifier; 2) some of the other conditions in which
the Adaline is known to be the better classifier; and 3) still other
conditions in which a certain form of the Learning Matrix using the
conventional Adaline-type LMS adaptation procedure is optimal
[14]. In the Learning Matrix, a separate linear filter is matched to the

TABLE II

COMPARISON OF LEARNING MATRIX AND MADALINE AS STATISTICAL CLASSIFIE RS
(Using -y Training Patterns per Class)

Learning Matrix Madaline

Number of input lines =n Number of input lines =n

Number of pattern classes =m Number of pattern classes =m

Number of output bits =m Number of output bits =k (1 +ld m)
>k_ld m

Capacity' =mf(m, n) = C pattems Statistical capacity =2(n +l)p >C pat-
terns

For comparison, the statistical capacity of the Mada-
line is made equal to the average capacity of the Learn-
ing Matrix

(l 2 (n + l)) (2(n + l))

Number of matrix outputs =m Number of threshold elements=pk

_- ____ Equipment ratio =m:pk --

Number of weights =m(n +l) Number of weights = (n+l)pk

Number of training patterns available Number of training patterns available
=my =M'y

Training-time ratio =m-y:20(n+l)p

Training time, exactly m-y adaptations Average training time, LMS adaptation,
20(n +1)p adaptations

Convergence is not certain Convergence is not certain

6 The coefficient f(m, a) of m proposed by H. Kazmierczak and relating to the
capacity of the Learning Matrix may be greater than or less than 'y, but up to now
an exact estimate of f(m, n) does not exist.

TABLE III

OPTIMAL CLASSIFIERS FOR A LIMITED LIST OF STATISTICAL SEPARATION
PROBLEMS AND CONDITIONS

Classifier Optimal Usage Conditions for Minimum Error Probability

Learning Matrix Multiple-category separation. Noises in input signals mutual-
ly uncorrelated and uncorrelated with pattern class, and of
equal variances among all input signals and among all classes.
During adaptation, Learning Matrix weights made equal to
sample means for each class. Weiglits along each matrix out-
put line must be normalized. No influence on trained weight
distribution if m' new additional pattern classes are admitted
and trained in m' additional rows. Inverse operation ('BE
mode') of Learning Matrices possible.

Madaline. single Two-category separation. Gaussian noise in the two pattern
output with one classes may or may not be correlated, but should have identi-
Adaline cal covariance matrices in both classes. Least-mean-square
(p =1; k =1) (LMS) adaptation procedure should be used. Normalization

of patterns or weights ilot required.

Learning Matrix Multiple-category separation. Gaussian noises in each pattern
with LMS adlapta- class may be correlated but should have identical covariance
tion (iterative matrices. All patterns in a given class should be trained into
training) an individual line of weights that are adapted to minimize the

mean-square error for a desired output of +1. It is important
that the weights aqo for each q be removed. Normalization of
input patterns is required. Normalization of weights is not
required.

sample mean of each class of patterns. When the Madaline scheme is
utilized, each Adaline element is "matched" to a variety of classes
simultaneously.

In many situations, the application of the Learning Matrix is
simpler because one can be very sure about its memory capacity, and
one can be certain about its convergence in separating properly an
MHD- or MED-separable set of training patterns. An example is the
deterministic translator problem described above. Convergence of
the Madaline in such situations would be uncertain without an ex-
tensive preliminary analysis to guarantee separability. There are a
number of other important situations, however, in which the picture
is reversed. One example is the realization of optimal switching sur-
faces by adaptive networks for a variety of contactor ("bang-bang")
control processes.
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Contactor controllers produce real-time binary-actuation signals
to "plants" being controlled. These instantaneous binary decisions
depend on the state of the system. In many cases, it has been deter-
mined that, when the analog state variables are quantized and en-
coded with the linearly independent codes proposed by Smith [15],
the resulting patterns and associated responses are linearly separable
when discrete approximations to optimal switching surfaces (mini-
mum settling time, minimum fuel, etc.) are realized. At Stanford
University, a machine (the "broom-balancer") has been constructed
to illustrate these principles. It is used to control a fourth-order
process. An inverted pendulum on wheels is stabilized by encoding
four state variables (angle, angle rate, position, and velocity of
pendulum mount) and feeding the resulting binary patterns to a
single adaptive threshold element. The threshold-element output
controls a relay, which actuates a motor coupled to the rolling
pendulum mount.

It is possible to realize the same kind of control surface with a
Learning Matrix. The output signals could be decoded to produce a
single binary output. It is likely, however, that a considerable
amount of preliminary study would be required in order to determine
the proper number of matrix outputs, how these outputs should be
decoded to a single binary output to insure separability in the
realization of an optimal switching surface, and how many adapta-
tions would be required to achieve convergence.

The comparisons made previously allow few unequivocal conclu-
sions. It can safely be said, however, that in most cases, the Learning
Matrix will require fewer adaptation cycles than the Madaline, when
applied to a given problem; while on the other hand, the Madaline
will usually require less equipment than the Learning Matrix. How-
ever, in making a choice of techniques for a given situation, the over-
riding consideration will usually be the question of optimality. The
method selected will be the one that can be shown to provide optimal
responses or to approach this goal as closely as possible. Both the
Learning Matrix and the Madaline, together with variations and
combinations of the techniques described, have their own natural
areas of application.

An increasingly important field for research is the development
of a network theory (both statistical and deterministic) for adaptive
systems, which will relate the nature of the problem to the optimal
configuration of adaptive elements that would produce a solution.
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Logical Design of Analog-to-Digital Converters

PETER FELLGETT

Verster' has described a serial-parallel A-D converter which has
improved accuracy, and he has embedded his description in an in-
teresting discussion of A-D logic.

The speed of an A-D converter can be increased by processing
several digits in parallel. The penalty is that subtraction of the
equivalent analog feedback quantity cannot then take place until
after the decision is made. This effectively opens the feedback loop of
the A-D with respect to certain types of drift etc., and errors may
result. Verster overcomes this objection by making the decision
revocable within calculated limits, and is thus able to increase the
speed-accuracy product.

There are many A-D applications which make only modest de-
mands on the speed of modern transistors. At Royal Observatory
Edinburgh (ROE) it has been found valuable to design an A-D in
which speed is sacrificed for extreme simplicity of logic.2 The object
of the present note is to show that this design, although initially
based on different objectives, is compatible with Verster's concepts,
and that a combination of both sets of ideas enables a good speed-
accuracy-simplicity product to be attained over a wide range of re-
quirements.

Figure 1 outlines the ROE arrangement, which consists essentially
of a simple counting register, feeding a weighting and summing net-
work, which is fed back subtractively to the analog input in the
ordinary way. A discriminator detects whenever the signal fed back
differs from the input by more than a prescribed threshold value (in
principle, half the least significant digit) and gates an oscillator into
the counter which then cycles until balance is restored. There is
provision (not shown) for either continuous or one-shot operation.
A fuller description will be given in Matley et al.2

Using cheap silicon transistors capable of counting at 1.024 Mc/s,
this circuit needs a maximum of 1 ms to make a 10-bit reading. This
performance is fully sufficient for many applications. If it is desired
to increase the speed, a first step is to use a reversible counter,
and to gate the oscillator either to add or to subtract according to the
sign of the error. The maximum reading time is thus halved, and the
mean reading time for a reasonably smooth input waveform is re-'
duced considerably.

The speed may be further increased by using multiple-level dis-
crimination to gate the oscillator to more significant stages of the
counter when the error is large. For example, two disciminators of
appropriate sensitivity can control the zeroth and the Nth stages of a
2N-bit register, as shown in Fig. 2. This effectively divides the
register into two halves, which are set successively, and the maximum
operation time is reduced by a factor of approximately 2N-1.

By continuing this process, a configuration is eventually found in
which every stage of the counter is controlled by a discriminator of
appropriate threshold (see Fig. 3). For this configuration, it is not
very appropriate to regard the pulses reaching the counting stages as
"add" or "subtract" pulses but rather they are better regarded as
"set" and "reset" pulses. It is simplest (but not necessarily optimum)
to postulate a circuit in which carries are propagated from one stage
to the next of the counter only in the absence of set or reset pulses
affecting the two stages. The present treatment will follow that of
Verster in omitting discussion of carry propagation times.

It may be judged that the arrangement shown in Fig. 3 is rather
easier to implement than the more usual type of serial A-D which
operates under the control of explict sequencing logic. In Fig. 3, the
sequencing is obtained implicitly from the gradation in threshold be-
tween the various discriminators. This yields a number of apparent
advantages. At each stage of taking a reading (including the first)
the circuit changes the most significant bit, which is currently in
error. It will, therefore, have a considerable speed advantage over the
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