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tric oxide and periostin). In parallel, anti-IL-4 strategies have 
been attempted (pascolizumab, pitakinra and dupilumab). 
So far, dupilumab was reported capable of reducing the se-
verity of asthma and the rate of exacerbations. IL-13 and IL-4 
are crucial in TH2-mediated inflammation in asthma, but it 
remains clear that only specific endotypes respond to these 
treatments. Although the use of anti-IL-14 and anti-IL-13 
strategies is promising, the search for appropriate predictive 
biomarkers is urgently needed to better apply biological 
treatments.  © 2016 S. Karger AG, Basel 

 Introduction 

 Asthma is a high-prevalence, chronic disease. In fact, 
in the USA, it affects about 24.6 million and worldwide 
about 334 million of people of all ages  [1] . Although the 
mortality for asthma is decreasing overall  [2] , it still ac-
counts for 90–170 deaths per million. In addition, direct 
(e.g. hospital care and drugs) and indirect (e.g. loss of 
work or school days) costs still represent a major burden 
of the disease. The cost per year for a European patient 
has been estimated at 509 euros for controlled asthma and 
2,281 euros for uncontrolled asthma  [3] . Although asth-
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 Abstract 

 Asthma is a high-prevalence disease, still accounting for 
mortality and high direct and indirect costs. It is now recog-
nized that, despite the implementation of guidelines, a large 
proportion of cases remain not controlled. Certainly, adher-
ence to therapy and the education of patients remain the 
primary objective, but the increasingly detailed knowledge 
about the pathogenic mechanisms and new biotechnolo-
gies offer the opportunity to better address and treat the 
disease. Interleukin (IL)-13 and IL-4 appear as the most suit-
able targets to treat the T helper 2 (TH2)-mediated forms (en-
dotypes) of asthma. IL-13 and IL-4 partly share the same re-
ceptor and signaling pathways and both are deeply involved 
in immunoglobulin E (IgE) synthesis, eosinophil activation, 
mucus secretion and airways remodeling. Several anti-IL-13 
strategies have been proposed (anrukinzumab, lebrikizunab 
and tralokinumab), with relevant clinical results reported 
with lebrikizumab. Such studies facilitate better definition of 
the possible predictive markers of response to a specific 
treatment (e.g. eosinophils, total IgE, fraction of exhaled ni-
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ma can be frequently controlled with the standard inhal-
ant therapy, clinical trials report that in about 20% of pa-
tients using traditional drugs, asthma remains not con-
trolled  [4] , and the situation is even worse in real life. On 
the other hand, the idea that asthma is a single disease has 
been recently questioned, and it is now considered as a 
heterogeneous disease with different pathogenic mecha-
nisms, clinical behaviors and responses to treatment. 

  The process of asthma phenotyping started about 10 
years ago, with the aim of identifying homogeneous 
groups (either clinically or biologically) of patients. More 
recently, the term ‘endotype’ was introduced to underline 
a more in-depth identification of asthma, including the 
genetic aspects. Nowadays, >100 genes related to the 
pathogenesis of asthma have been identified, but the road 
to fully understand the genetic contribution seems to still 
be long and tortuous, since no ‘asthma gene’ has been 
identified so far. In recent years, it was realized that dif-
ferent phenotypes can be characterized by specific mo-
lecular patterns, possibly predictive of the response to 
specific treatments. The most apparent example is the 
discovery of the role played by T helper 2 (TH2) lympho-
cyte-mediated inflammation (so-called ‘TH2 high’) in 
about half of asthmatic subjects. Subsequently, more clin-
ical trials have been conducted targeting those molecules 
specifically related to TH2 inflammation. For instance, 
clinical trials with biological agents against TH2-associ-
ated cytokines consistently show a more remarkable ef-
ficacy in patients with markers of elevated TH2 inflam-
mation, such as eosinophils  [5, 6] .

  Despite the use of guideline recommendations for 
management and therapy, a relevant number of patients 
continue to report an unsatisfactory control of asthma, 
with impaired quality of life, exacerbations, increased use 
of rescue medications or systemic corticosteroids and 
emergency room/intensive care unit admission. It is 
noteworthy that in about 50% of these patients there is 
strong evidence of the pathogenic role of TH2 cytokines 
such as interleukin (IL)-4, IL-5 and IL-13 orchestrating 
the eosinophilic and allergic inflammatory processes  [7] .

  The Role of IL-13 and IL-4 

 IL-4 and IL-13 were among the first TH2-related in-
terleukins discovered in the early 1980s and, since then, 
they have been traditionally associated with atopy and al-
lergic diseases in general but are also involved in preg-
nancy, fetal development, mammary development, lacta-
tion and various neuronal functions including cognitive 

and learning processes and memory formation  [8–10] . In 
theory, every cell has the potential to respond to IL-4, IL-
13 or both, but some cell types seem to be more suscep-
tible  [11] .

  We have described the relevance of IL-13 and IL-4 in 
the pathophysiology of asthma, concerning the prolifera-
tion of bronchial fibroblasts, myofibroblasts and airway 
smooth muscle cells, which leads to airway remodeling 
 [12, 13] . An IL-13 induced role in goblet cell differentia-
tion, mucus production, bronchial hyperresponsiveness, 
immunoglobulin E (IgE) synthesis (a switch of B cell anti-
body production) and the recruitment of eosinophils and 
basophils  [14–20]  has been repeatedly demonstrated  [21] .

  Several clinical trials have highlighted the role of anti-
IL-13 biological agents in the control of disease in the 
‘TH2 high’ asthmatic phenotype which is characterized by 
an overexpression of IL-13 inducible genes such as peri-
ostin  [6] . The role of TH2 inflammation is apparent in 
about 50% of asthmatic patients, in whom there is an ab-
normal production of proinflammatory cytokines, such as 
IL-4, IL-5 and IL-13, which induce IgE synthesis and eo-
sinophilic inflammation  [22] . TH2 effector cells, once ac-
tivated by stimulating factors such as allergens, pollutants 
or infectious agents, release the aforementioned cytokines 
which act on the surface cells. Several studies have dem-
onstrated that the production of IL-4, IL-5 and IL-13 is 
associated with the response of type-2 innate lymphoid 
cells (ILC2s) to IL-25, IL-33, thymic stromal lymphopoi-
etin (TSLP) and leukotrienes  [23] . High concentrations of 
ILC2s have been shown in patients with nasal polyposis 
and/or a high eosinophil blood count  [6, 24] .

  IL-4 was discovered in the 1980s. It is secreted by acti-
vated T cells, mast cells, basophils and eosinophils  [25] . 
There is a close link between IL-4 and IL-13 activity: both 
activate the α-subunit of the IL-4 receptor (IL-4Rα), and 
IL-4 also activates a γC subunit while IL-13 stimulates the 
IL-13 receptor α1 subunit (IL-13Rα1)  [26] . The role of 
IL-4 is linked to TH2 phenotype lymphocytes. It regulates 
the synthesis of IgE by B cells and the apoptosis and ex-
pression of numerous genes involved in the maturation 
of macrophages, fibroblasts, epithelial and endothelial 
cells  [27]  ( fig. 1 ).

  Overview of IL-4/IL-13 Receptor Signaling 

 Circulating IL-4 and IL-13 bind to a specific receptor 
which is expressed on various cells, including B lympho-
cytes, eosinophils, basophils, monocytes and macro-
phages, dendritic cells, endothelial cells, fibroblasts, air-
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way epithelial cells and smooth muscle cells  [28] . The re-
ceptor is a heterodimer complex of IL-13Rα and IL-4Rα. 
Circulating IL-13 firstly engages the IL-13Rα1 subunit 
and this event leads to the recruitment of IL-4Rα. The 
binding to theIL-13Rα1/IL-4Rα complex initiates the ac-
tivation of multiple transduction pathways including ty-

rosine kinase 2 (Tyk-2) and Janus kinase 1 (JAK1), which 
are associated with the IL-13R subunit  [29] . The activa-
tion of these transduction systems induces the phosphor-
ylation and activation of the proteins, signal transducer 
and activator of transcription 6 (STAT6) and insulin re-
ceptor substrate 2 (IRS-2)  [29] , which move from the cy-

  Fig. 1.  Diagram of the potential cellular effects of IL-4 and IL-13 
on inflammatory and structural cells in asthma. After interaction 
with noxious agents, including allergens, viruses and proteases, 
pulmonary epithelial cells can produce TSLP, IL-25 and IL-33. 
These cytokines activate specific receptors on ILC2s and drive 
their expansion. Activated ILC2s are central mediators of type 2 
immune responses in the lung. Once activated, ILC2s and mast 
cells produce several cytokines including IL-13. IL-13 induces sev-
eral cellular changes in the airways including goblet cell hyperpla-
sia and mucus production, airway smooth muscle cell prolifera-

tion, fibroblast proliferation and polarization of alternatively acti-
vated macrophages. IL-4, produced by TH2 cells and basophils, 
activates alternatively activated macrophages and eosinophils and 
induces IgE synthesis from B lymphocytes and plasma cells. IgE 
binds to FcεRI receptors on human mast cells and basophils. IgE 
cross-linking by allergens induces the release of histamine, cys-
leukotrienes (Cys-LTs), PAF, prostaglandin D 2  (PGD 2 ), cytokines 
and chemokines that are responsible for some of the symptoms of 
asthma. 
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toplasm to the nucleus, and activate other transduction 
processes such as that of phosphatidylinositide 3-kinase 
(PI3-K)  [30–32] , serine-threonine protein kinase  [33–36]  
and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB)  [37–39] . IL-13R has another recep-
tor chain, IL-13Rα2, which does not activate transduction 
processes, but might play a regulatory role in IL-13-in-
duced effects  [40]  and has been associated with human 
lung cancer as a potential target for novel therapies  [41] . 

  Biomarkers 

 As the role of specific cytokines in asthma became 
clearer, specific biomarkers of TH2 airway inflammation 
were identified. Biomarkers could help to stratify asthma 
into different subtypes (endotypes), reflecting the pre-
dominant pathophysiological mechanism,  [42] , helping 
to predict future risk  [43]  and target TH2-oriented thera-
pies to patients that could respond. TH2-specific bio-
markers identified so far include sputum/blood eosino-
phils, total serum IgE, the fraction of exhaled nitric oxide 
(FeNO) and bronchial epithelium-derived proteins. 

  The first biomarker identified and used to predict cor-
ticosteroid response was the eosinophil count in sputum 
and blood. Woodruff et al.  [44]  found that asthmatic pa-
tients with elevated bronchial expression of IL-5 and IL-
13 had higher blood eosinophil count than nonasthmatic 
controls. Some years later, Jia et al.  [24]  demonstrated a 
weak correlation between blood and airway eosinophil 
count, suggesting a limited sensitivity and reproducibility 
for this biomarker of TH2 inflammation. Furthermore, 
they presented experimental evidence that periostin is 
linked to IL-13 and TH2 inflammation.

  Asthmatic patients can be classified in 2 main sub-
groups, as having eosinophilic or noneosinophilic asth-
ma, according to a 2% bronchoscopy-based cut-off of 
sputum eosinophilia  [45–47]  found to be positively cor-
related with IL-13 expression in bronchial submucosa, 
thus indicating that sputum eosinophil count may be a 
marker of TH2 inflammation  [48] .

  IL-4 and IL-13 also regulate the synthesis of IgE, and 
it could be hypothesized that total serum IgE is a bio-
marker for asthma phenotypes  [49] . Unfortunately, total 
IgE has a low sensitivity and correlates poorly with eo-
sinophilic inflammation  [24] .

  IL-13 promotes NO-synthase activity and NO produc-
tion, so elevated FeNO is a good index of TH2 inflamma-
tion and high levels of IL-13 in bronchial mucosa  [50] . In 
addition, FeNO can also be used as a predictor of steroid 

responsiveness more consistently than other parameters. 
It has been shown that patients with high FeNO levels re-
spond better to steroid therapy, compared to those with 
lower levels of FeNO  [51] . Similarly to FeNO, other evi-
dence shows that the lower the level of eosinophils, the 
poorer the response to therapy  [52, 53] . 

  Other emerging biomarkers which could be helpful to 
stratify asthma patients are periostin and osteopontin. 
Both are matricellular proteins associated with TH2 in-
flammation due to their regulatory role in cell migration, 
extracellular matrix remodeling, growth and metastasis 
formation in various malignancies, transforming growth 
factor beta (TGF-β) concentration and collagen synthe-
sis, that lead to airway remodeling  [54–57] . In fact, TH2 
high inflammation is characterized by high levels of ex-
pression of Il-13 and IL-4 inducible genes, including peri-
ostin  [58] . Osteopontin and periostin sputum and serum 
concentration are associated with refractory eosinophilic 
airway inflammation and an accelerated decline in pul-
monary function in patients undergoing inhaled cortico-
steroid (ICS) therapy  [59–61] . Thus, they might be pre-
dictive of the response to anti-IL-13 therapy in ICS-in-
sensitive patients, helping to stratify patients in which a 
relevant improvement of lung function is expected. Na-
gasaki et al.  [62]  studied 121 asthmatic patients receiving 
ICS treatment. They evaluated FeNO levels and serum 
periostin, and found that among 57 patients with high 
FeNO, 23 with concomitant high serum periostin had an 
accelerated decline in pulmonary function and more fre-
quent and severe asthma exacerbations (despite high-
dose ICS therapy). These findings suggested that a com-
bined evaluation of FeNO and serum periostin may be 
useful to identify ICS-insensitive patients.

  All these data also suggest that these biomarkers pro-
vide complementary information about the different as-
pects of TH2 inflammation and, consequently, their use 
should be combined in clinical therapy  [63] .

  Anti-IL-13: Anrukinzumab, Lebrikizumab and 

Tralokinumab 

 According to the important role of IL-13 in TH2 in-
flammation, a potential therapeutic strategy is to block 
the interaction of IL-13 with the specific receptor. Three 
monoclonal antibodies are currently under clinical evalu-
ation.

  Anrukinzumab is a humanized anti-IL-13 monoclonal 
antibody which acts to block the cytokine and prevent the 
activation of IL-13Rα1 and IL-13Rα2. Anrukinzumab has 
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been tested in asthma and ulcerative colitis in phase II 
studies  [64] .

  Lebrikizumab is an IgG4 humanized monoclonal anti-
body that blocks the signaling pathway through the IL-
4Rα/IL-13Rα1 heterodimer by binding soluble IL-13 and 
preventing its link to the receptor  [65, 66] . Corren et al.  [6]  
performed a randomized, double-blind, placebo-con-
trolled study of lebrikizumab in a population of 219 asth-
matic patients with uncontrolled disease according to 
guidelines-recommended therapy. They found that, com-
pared to the control population receiving placebo, patients 
on lebrikizumab at a dose of 250 mg monthly for 6 months 
had a higher increase in forced expiratory volume in 1 s 
(FEV 1 ) versus at baseline. Furthermore, patients with 
higher serum levels of periostin before treatment had a 
greater improvement in lung function with lebrikizumab 
than patients with low periostin levels (8.2 vs. 1.6% higher 
than in the placebo group) and a greater reduction in 
FeNO levels in the high-periostin subgroup  [6] . Another 
evidence of lebrikizumab efficacy came from Hanania et 
al.  [67] , who performed 2 randomized, multicenter, dou-
ble-blind, placebo-controlled studies and found that treat-
ment with lebrikizumab reduced asthma exacerbations, in 
particular in the subgroup of periostin-high patients, with 
a significant 60% reduction, versus the subgroup of peri-
ostin-low patients (a 5% reduction). A second study per-
formed by Noonan et al.  [68]  demonstrated the efficacy of 
lebrikizumab in terms of variations in FEV 1 , though this 
was not statistically significant, especially in patients with 
high levels of periostin. These data underlined the poten-
tial role of biomarkers, such as periostin, in tailoring an 
appropriate therapy. It would be of interest to know if all 
the patients with high periostin were responders or wheth-
er there were responders and nonresponders in this high-
periostin group. Overall, the mentioned data would fur-
ther support the discriminating role of high periostin as a 
predictive biomarker of response to lebrikizumab.

  Tralokinumab is a human interleukin-13-neutralizing 
monoclonal IgG4 antibody which has been tested in se-
vere uncontrolled asthma, ulcerative colitis and idiopath-
ic pulmonary fibrosis. In a first study on moderate-to-
severe asthma, Piper et al.  [69]  show good results about 
quality of life variation in subjects treated versus placebo 
group. Brightling et al.  [70]  performed another random-
ized, double-blind, placebo-controlled, parallel-group, 
multicenter, phase 2b study, showing an acceptable toler-
ability and safety profile for tralokinumab but a nonsig-
nificant reduction of asthma exacerbation rates. Some 
partially encouraging results were found in a subgroup of 
patients with a higher baseline amount of dipeptidyl pep-

tidase-4 (DPP-4) and periostin. These findings suggest a 
possible treatment effect in certain populations. This ef-
fect is also currently being analyzed in an ongoing phase 
3 trial, together with the possible use of DPP-4 and peri-
ostin as biomarkers of interleukin-13 pathway activation. 
According to the role played by IL-13 in driving airways 
remodeling and fibroblast proliferation and the positive 
effect of tralokinumab in reducing IL-13  [12, 13]  that 
contributes to airways inflammation, the use of 
tralokinumab is also currently being investigated in pa-
tients with idiopathic pulmonary fibrosis, especially in 
the rapidly progressive forms, where IL-13 is overex-
pressed in the lung tissue  [71]  ( fig. 2 ).

  Anti-IL-4: Pascolizumab, Pitrakinra and Dupilumab 

 IL-4, produced by T lymphocytes, activated mast cells 
and basophils, is involved in asthma via its role in many 
cellular mechanisms such as IgE production, eosinophil 

  Fig. 2.  Novel therapies for asthma targeting IL-4, IL-13 or their 
receptors. IL-4 signals via type I (IL-4Rα + γc) and type II receptors 
(IL-4Rα + IL-13Rα1) whereas IL-13 binds to type II receptors (IL-
4Rα + IL-13Rα1) and to IL-13Rα2, which does not contain a trans-
membrane-signaling domain. Pascolizumab is a humanized anti-
IL-4 monoclonal antibody. Dupilumab and pitrakinra prevent 
IL-4/IL-13 interactions with IL-4Rα of the IL-4 and IL-13 receptor 
complex. Lebrikizumab and tralokinumab are humanized mono-
clonal antibodies that target IL-13. Anrukinzumab is a humanized 
anti-IL-13 monoclonal antibody that inhibits the downstream sig-
nal of IL-13/IL-13Rα1 through a blocking interaction between IL-
13 and IL-4Rα. 
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chemotaxis and the development of effector T cell re-
sponses  [72] . One of the main roles of IL-4 is to promote 
the differentiation of undifferentiated T helper (TH0) 
cells to TH2 cells. The TH0 to TH2 skew favors the sub-
sequent production of cytokines and mediators implicat-
ed in airway inflammation, obstruction and hyperre-
sponsiveness, typical features of asthma  [73] . IL-4 is also 
implicated in the production of IL-5. Thus, blocking IL-4 
could be a reasonable strategy for controlling TH2 in-
flammation and reducing IL-5-dependent pulmonary eo-
sinophilia  [74] . Since IL-4 contributes to collagen pro-
duction and fibronectin synthesis, fundamental events in 
airway remodeling, its inhibition could play a relevant 
role in preventing long-term airway remodeling in pa-
tients with severe asthma  [75] . Different cells contribute 
to the production of IL-4 in the airways, particularly eo-
sinophils, basophils, mast cells and ILC2s  [23] . Tradition-
ally, TH2 cells are considered the major cellular source of 
the archetypal TH2 cytokines. Recently, ILC2s have been 
identified as an alternative source of IL-4, IL-5, IL-9 and 
IL-13 in response to circulating IL-25, IL-33 and TSLP. 
These cells are sufficient to induce an allergic response in 
mice  [76] . The role of ILC2s in allergic human diseases 
characterized by eosinophilic inflammation, such as nasal 
polyps and atopic dermatitis, has recently been demon-
strated  [77] . Elevated levels of ILC2s in peripheral blood 
have also been found in asthmatic patients  [78] . Liu et al. 
 [79]  have analyzed ILC2 levels in peripheral blood as an 
alternative and practical biomarker of eosinophilic in-
flammation in patients with mild-to-moderate asthma 
who could benefit from a TH2-targeted therapy, and 
found a 67.7% sensitivity and 95.3% specificity. 

  IL-4 inhibition can be done either by directly blocking 
IL-4 or indirectly by blocking the IL-4/IL-13 receptors. 
Hart et al.  [80]  evaluated the efficacy and safety of pascoli-
zumab, a humanized anti-IL-4 monoclonal antibody, and 
its murine parent 3B9. Their study suggested that pascoli-
zumab specifically binds IL-4 with a slow dissociation 
rate. The in vivo studies demonstrate a good tolerability, 
with a slight accumulation of the drug after chronic ad-
ministration due to its long half-life. No toxicity or his-
topatological findings occurred. Although pascolizumab 
was found to be well tolerated in clinical trials, it did not 
produce a significant reduction in circulating IgE, so the 
trials were aborted  [81] . 

  Pitrakinra, an IL-4Rα/IL-13Rα antagonist, was evalu-
ated by inhalation and the subcutaneous route  [82] . A 
double-blind trial with inhaled pitrakinra (10 mg) failed 
to demonstrate measurable clinical efficacy of the agent, 
but asthma exacerbations were significantly reduced in a 

subgroup of patients with moderate-to-severe asthma 
with specific amino acid variants in the 3 ′  end of the IL-
4Rα gene  (IL4RA)   [83] . Another clinical trial on pitrakin-
ra’s efficacy in atopic asthma patients demonstrated a 
lower pulmonary function reduction in the active group 
than in the control group  [84] .

  Dupilumab is another monoclonal antibody, blocking 
the alpha subunit of IL-4/IL-13 receptor  [85] . Wenzel et 
al.  [86]  performed a double-blind, placebo-controlled 2A 
phase clinical trial with dupilumab in adult patients with 
moderate-to-severe asthma symptoms and high blood 
eosinophils (>300 cells/μl) or sputum eosinophil level 
(>3%). The number of asthma exacerbations was signifi-
cantly lower in the active arm (3 vs. 23), and FEV 1  sig-
nificantly increased versus baseline. Although dupilumab 
causes a reduction in the biomarkers of TH2 inflamma-
tion, i.e. FeNO, eotaxin-3, thymus and activation-regulat-
ed chemokines (TARC), no significant effect on eosino-
phil blood count could be detected  [87] .

  Another currently ongoing phase 3 trial (NCT02528214) 
is evaluating the effects of dupilumab in asthmatic patient 
with severe, systemic, steroid-dependent asthma. Dupil-
umab has also been proposed for other TH2-related dis-
eases such as atopic dermatitis because of its role in the 
inhibition of IL-4 and IL-13 pathways. The provisional 
results of such studies are encouraging, and dupilumab 
seems to perform better than cyclosporine because of its 
lower adverse effects and good response to therapy  [88] . 
Other studies assessing dupilumab in TH2-based dis-
eases are investigating its possible use in nasal polyposis, 
chronic rhinosinusitis  [89]  and eosinophilic esophagitis 
(NCT02379052, phase 2) ( table 1 ). 

  Conclusions 

 The path to personalized medicine is now a reality and 
exploring it would guide to a relevant revolution in the 
prescription modalities for asthma. The new concept is a 
shift from the era of ‘one size fits all’ to the era of ‘one size 
does not fit all’. We are currently living in a situation of-
fering multiple solutions to the problem of difficult-to-
treat asthma. According to the increasing importance of 
biomarkers for choosing the right drug, a further desir-
able therapeutic step would be to have ready-to-go solu-
tions to be applied from the first visit. Rapid measure-
ment of biomarkers (serum periostin, FeNo, eosinophils, 
etc.) would be fundamental in choosing the more appro-
priate drug for each individual patient. An alternative 
could be the use of monoclonal drugs in sequence (‘ar-
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 Table 1. Principal clinical studies with biological drugs anti IL-4 and IL-13 in asthma

Drug First author [ref.]
year

Asthma severity Patients, n Dosage Summary of outcomes

Dupilumab Wenzel [86]
2013

moderate-to-severe;
blood eosinophil count
of at least 300 cells/μl

52 on dupilumab
52 on placebo

300 mg weekly
placebo

↓ asthma exacerbation
(3 in dupilumab group, 23 in 
placebo group)
↑ FEV1
change of ACQ5 score
↓ inhalation of albuterol or
levalbuterol
change in evening asthma score

Pitrakinra Wenzel [84]
2007

atopic group 1:
12 on pitrakinra
12 on placebo
group 2:
16 on pitrakinra

16 on placebo

25 mg daily s.c.
placebo

60 mg 2× daily
nebulization
placebo

↓ FEV1 17.1 vs. 23.1%
(pitrakinra vs. placebo)

↓ FEV1 4.4 vs. 15.9%
(pitrakinra vs. placebo)

Slager [83]
2012

moderate-to-severe 407 non-Hispanic 
subjects

10 mg
3 mg
1 mg

placebo

↓ asthma exacerbation and night 
waking
activity limitation in pitrakinra arm 
and homozygous for the rs8832 
common G allele
↓ (dose-response linked) asthma 
exacerbation also in subjects 
homozygous for the common allele 
in rs1029489 (p = 0.005) and rs8832 
(p = 0.009) and the intronic SNPs 
rs3024585, rs3024622 and 
rs4787956
(p = 0.03)

Tralokinumab Piper [69]
2013

moderate-to-severe;
uncontrolled

194 150 mg
300 mg
600 mg
placebo

modified from baseline in mean 
ACQ score (–0.76 ± 1.04)

Brightling [70]
2015

severe uncontrolled 452 (1) tralokinumab
every 2 weeks
(2) tralokinumab
every 4 weeks
(3) placebo every
2 weeks
(4) placebo every
4 weeks

↓ asthma exacerbation vs.
placebo in high-periostin and
high-DPP-4 groups
FEV1 in high-periostin and
high-DPP-4 groups

Lebrikizumab Hanania [67]
2015

moderate-to-severe 463 37.5 mg
125 mg
250 mg

placebo s.c. every
4 weeks

↓ asthma exacerbation in
high-periostin group
no dose response
↑ FEV1 in high-periostin group

Scheerens [66]
2014

mild 29 13 lebrikizumab
16 placebo
s.c. every 4 weeks

greater response in high-IgE,
high-eosinophil and
high-periostin patients

Noonan [68]
2013

not controlled despite
ICS therapy

212 125 mg
250 mg
500 mg
placebo 
s.c. monthly

changes in FEV1 were higher in 
patients receiving lebrikizumab but 
not clinically significant

Corren [6]
2011

steroid-dependent 219 250 mg
placebo

↑ FEV1 in high-periostin group

ACQ = Asthma control questionnaire; s.c. = subcutaneous.
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ticulated therapy’), first choosing a drug that acts via a 
particular immunological mechanism and then a second 
one that is specific for other pathways. For instance, in 
patients with an IgE concentration that is too high to use 
omalizumab, an anti-IL-4 could be proposed, and then 
once IgE levels are reduced, anti-IgE can be given. An-
other important unmet need is the duration of therapy. 
This is clearly emerging for omalizumab, where no stan-
dardized protocol is available on when to stop the treat-
ment. An additional open question and possible target of 
further investigations is the use of molecules targeting 
different interleukins at the same time, so as to cover mul-
tiple therapeutic targets of inflammation simultaneously.
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