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Abstract: Ground-penetrating radar (GPR) is an established technology with a wide range of applica-
tions for civil engineering, geological research, archaeological studies, and hydrological practices.
In this regard, this study applies bibliometric and scientometric assessment to provide a systematic
review of the literature on GPR-related research. This study reports the publication trends, sources of
publications and subject categories, cooperation of countries, productivity of authors, citations of
publications, and clusters of keywords in GPR-related research. The Science Citation Index Expanded
(SCI-EXPANDED) and the Social Sciences Citation Index (SSCI), which can be accessed through
the Web of Science Core Collection, are used as references. The findings report that the number
of publications is 6880 between 2001 and 2021. The number of annual publications has increased
significantly, from 139 in 2001 to 576 in 2021. The studies are published in 894 journals, and the
annual number of active journals increased from 68 in 2001 to 215 in 2021. Throughout the study,
the number of subject categories involved in GPR-related research fluctuated, ranging from 38 in
2001 to 68 in 2021. The research studies originated from 118 countries on 6 continents, where the
United States and the People’s Republic of China led the research articles. The top five most common
keywords are ground-penetrating radar, non-destructive testing, geophysics, electrical resistivity
tomography, and radar. After investigating the clusters of keywords, it is determined that civil
engineering, geological research, archaeological studies, and hydrological practices are the four
main research fields incorporating GPR utilization. This study offers academics and practitioners
an in-depth review of the latest research in GPR research as well as a multidisciplinary reference for
future studies.

Keywords: ground penetrating radar; bibliometric and scientometric assessment; bibliographic
coupling; co-citation analysis

1. Introduction

In the twenty-first century, mapping existing structures was a big issue for civil
engineers. A crucial part of this procedure was extracting relevant information about the
position, shape, and type of materials for embedded parts (e.g., sewers and reinforcing
rebar). There are varieties of non-destructive testing (NDT) methods available, with ground-
penetrating radar (GPR) being the most widely used in the civil engineering field [1,2]. GPR
is a relatively new geophysical technology that has made significant progress in the recent
decade. It can identify embedded things in structures without being destroyed since it uses
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electromagnetic waves and radargram processing technologies. Furthermore, it is portable
equipment that can manage the full scanning procedure with just one operator [3]. The
two key criteria of GPR are depth range and resolution. The signal may propagate farther
with a lower center frequency of the GPR antenna, but the resolution in the shallower
layers decreases. Higher frequencies do not penetrate deeply but provide higher resolution
in shallower layers. Moreover, depth affects the size of the observable item. At shallow
depths, little things can be observed, but as the depth range increases, an object’s physical
size must be big in order to be detected.

The antenna, storage unit, display unit, control unit, and various auxiliary devices
(e.g., battery, car, and global positioning system (GPS)) are all part of the GPR system [4,5].
Figure 1 depicts the structure of a typical GPR system. The antenna is made up of a
transmitter that sends electromagnetic waves into structures and monitors for echoes
caused by changes in the material characteristics of the structure. The GPR signal has
a wide variety of frequency components and commonly operates in the 10–5000 MHz
range. The GPR receiver detects these reflected signals, which serve as the foundation for
imaging inside the invisible structure [6]. A control unit delivers commands for sample
time, repetition time, frequency, and other parameters. A graphical user interface (GUI) is
included in the display unit, allowing numerous parameters to be visualized and adjusted.
There can be a storage unit that can deliver data onto a PC or other processing units for
additional analysis. Finally, depending on the type and technical requirements of the
system, accessories such as GPS and wheels may be provided.
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One of the most important applications of GPR in civil engineering is scanning build-
ings and common structural components [7]. GPR is also used to assess roads and pave-
ments since it is one of the most used non-destructive approaches to obtain subsurface
information on the structure of roads and pavements [8,9]. It may also be used for under-
ground utility (e.g., pipes, tunnels, and sewers) detection [10,11]. Mineral exploration has
major difficulty with complex geological conditions that could be investigated using this
emerging technology [12]. In geology, GPR is used to detect permafrost, locate fractures or
water-bearing zones, map shallow formations, and so on [13,14]. In archaeology, GPR is
commonly employed for mapping buildings in historical sites [15,16].

Notwithstanding the significance of this geophysical technology, there is a dearth of
comprehensive literature reviews to analyze the global research topics and future trends
of GPR from a statistical standpoint. Bibliometric studies rely on the analysis of journals,
authors, publications, author keywords, and collaboration between countries or institutions.
The method is gaining popularity as a research tool for examining the knowledge domain or
visualizing networks to offer a more comprehensive view of the subject [17]. Furthermore,
such investigations aim to evaluate how research has evolved and provide some insights
into future research trends [18–20].
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The primary goal of this study is to perform a comprehensive literature analysis
to study current and future global research trends in GPR research. The following sub-
objectives are carried out to attain the primary goal: (1) establishing a framework for
the reviewed literature; (2) conducting a science mapping analysis to identify time and
geographical distribution, authorship, sources, keywords, and citations of publications
in the field of GPR; (3) summarizing emerging research themes and determining current
research gaps; and (4) proposing future directions in GPR research. The novelty of this
study is as follows: (1) conducting objective review-based research in the GPR domain by
applying bibliometric and scientometric assessment; (2) providing a more comprehensive
analysis of research papers published across 20 years, from 2001 to 2021; (3) performing
qualitative analysis that identifies current research status and emerging research trends;
and (4) expanding the previous research study related to GPR research [21].

2. Research Methodology

In this review-based study, a holistic analytical approach that integrates quantitative
and qualitative evaluations is applied to gain a better understanding of the study area
and remove biased findings [22]. The flowchart of this review-based research study is
divided into three primary steps, as illustrated in Figure 2. In this study, bibliometric
and scientometric assessment has been applied as quantitative tools for examining GPR
research from a variety of perspectives, including publication time and citations, author
collaboration and productivity, subject categories and journals, relevant countries and
institutions, and author keywords [23]. The final element of the study framework is
qualitative analysis, which offers a thorough knowledge of the major topics in the GPR
research study.
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Web of Science (WoS) is the most frequently used scientific literature database platform,
with over 12,000 high-impact publications. Furthermore, this database is frequently used
by scholars to gather accurate data for bibliometric studies [24,25]. As a result, the literature
for this study is retrieved from the WoS database. Various phrases are examined to search
for the targeted publications from the database. The utilized search phrases are GPR radar*,
ground probing radar*, ground penetration radar*, ground penetrating radar*, GPR micro-
wave*, GPR microwave*, geo-radar*, and georadar*. The asterisk indication guarantees that
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the search includes all relevant keywords. The targeted research and review publications
are those published between 2001 and 2021. The conference papers are omitted because
they lack the comprehensiveness of scientific content available in journal publications [26].
Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index
(SSCI) are chosen as citation indexes, and English is selected as the publishing language.
Records related to the authors, article title, source title, author keywords, abstract, cited
references, citations count, publisher, publication year, and WoS category of 6880 papers
are downloaded as plain text (on 23 December 2021) from the database.

Bibliometric and scientometric assessment can be accomplished using many software
applications such as Bibexcel, CiteSpace, VOSviewer, and VantagePoint. In this research, MS
Excel is used to do the standard data analysis (such as publication trends, subject categories,
journals, authors, nations, institutions, and keywords). The co-occurrence, bibliographic
coupling, and co-authorship networks are developed using VOSviewer software (version
1.6.17) because of its aptitude for knowledge mining and visualization of vast networks
(www.vosviewer.com; accessed on 23 December 2021 [27]). Kessler [28] was the first to
use the term bibliographic coupling to characterize the thematic closeness between two
research studies. Although bibliographic coupling was designed to locate articles with
comparable research viewpoints, it may also be extended to other sources, such as authors
and journals [29,30].

VOSviewer software visualizes three different formats of maps: network, overlay, and
density visualization. The elements in the network visualization are represented by nodes
where the size of each node reflects its weight and degree of importance. In addition, a
node’s color is determined by the cluster to which it belongs. The correlation between
nodes is inversely proportional to their distances. The overlay visualization is similar to the
network visualization, except that the elements are colored using a scale bar that displays
the scores of clusters/items with respect to specific aspects (e.g., publication year). The
density visualization shows how dense an object is at a specific point [31]. The density can
be presented individually for each cluster to which the items belong (cluster density view)
or without taking this distinction into account (item density view). However, network
visualization is used in this study for brevity and visualization.

3. Results and Discussion
3.1. Publication Trends

The search yields 6880 publications during the twenty years from 2001 to 2021. The
number of annual publications has increased significantly, from 139 in 2001 to 576 in 2021.
Between 2001 and 2005, the annual number of articles was fewer than 200, with an average
of around 160 each year. The annual number of publications climbed in 2006, reaching
219 compared to 173 in the previous year. There are around 258, 388, and 525 articles each year
on average in the years 2007–2011, 2012–2016, and 2017–2021, respectively (Figure 3). In terms
of the yearly total number of citations, Figure 3 shows an uneven trend: the three greatest
values were 7659, 7548, and 7284 citations in 2007, 2013, and 2014, respectively. However, after
2014, the annual number of citations has steadily fallen, achieving 494 in 2021. This can be
attributed to the fact that the more recent papers have had less time to be referenced.

3.2. Sources of Publications and Subject Categories

GPR papers were published in 894 journals between 2001 and 2021, illustrating the
many disciplines and areas involved. Annually, the number of active journals increased
from 68 in 2001 to 215 in 2021. As depicted in Table 1, the influence of these journals is
quantified using four indicators; the number of publications, the average publication year,
the average citations, and the average normal citations. The top five active journals in
GPR-related research are the Journal of Applied Geophysics, IEEE Transactions on Geoscience
and Remote Sensing, Near Surface Geophysics, Remote Sensing, and Geophysics, with 401, 316,
231, 199, and 198 total publications, respectively. These journals publish a total of 19.5%
of the total articles, demonstrating the importance of these publications for GPR-related

www.vosviewer.com
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research. Figure 4 illustrates the annual number of publications for the five most productive
journals. It demonstrates that each journal experiences yearly fluctuations in the number of
published articles, with multiple peaks that tend to converge in the same periods, such as
those in 2003, 2005, and 2010.
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Table 1. Top 5 most productive journals in GPR research between 2001 and 2021.

Journal Publisher Impact
Factor (2021)

Number of
Publications

Average
Publication Year

Total
Citations

Average
Citations

Average Normal
Citations

Journal of Applied
Geophysics Elsevier 2.121 401 2012.66 8052 20.08 1.04

IEEE Transactions on
Geoscience and
Remote Sensing

IEEE 5.600 316 2011.79 9365 29.64 1.42

Near Surface
Geophysics Wiley 2.033 231 2011.80 2525 10.93 0.54

Remote Sensing MDPI 4.848 199 2019.11 1276 6.41 0.98

Geophysics SEG Library 2.928 198 2011.19 4421 22.33 0.97
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The top two most productive journals also have the highest number of total citations.
For instance, the IEEE Transactions on Geoscience and Remote Sensing journal achieves the
highest total citations of 9365, followed by the Journal of Applied Geophysics (8052 citations).
However, journals with the highest average citations per article are not among the top three
most productive or cited documents: Computer Physics Communication has the most (109.67),
followed by Tree Physiology (94.75) and Earth-Science Reviews (80.67). On the other hand,
articles published in IEEE Transactions on Geoscience and Remote Sensing have garnered an
average of 29.64 citations per article, showing that GPR research papers published in these
journals have had a significant impact on this subject.

Based on the average normal citations indicator, IEEE Transactions on Industrial In-
formatics (10.33) is shown to be the most significant journal in this study subject. This
indicator is computed by dividing the total number of citations by the average number of
citations published each year. It is used to deduce that older texts are not always cited more
frequently than newer releases [32]. Furthermore, while having the largest research output,
the Journal of Applied Geophysics is not regarded as the most fruitful journal since it does
not have the highest average normal citations. The most recent studies are published in
IEEE Access, Water, and Remote Sensing journals. The IEEE Aerospace and Electronic Systems
Magazine and IEE Proceedings—Radar, Sonar and, Navigation journals, on the other hand, are
no longer active in this study arena.

Figure 5 presents the prominent journals on the topic of GPR. The minimal threshold
values are established at three articles and thirty citations. It was found that 251 out of
894 journals matched these criteria. Each journal is distinguished by a circle whose size is
proportionate to the number of published articles. The distance between circles indicates
the strength of the link with the other journal, such that the shorter distance indicates a
stronger connection. Furthermore, the colors of clusters refer to the research topics such
that journals belonging to the same cluster cover similar themes. For instance, 77 journals
that primarily publish articles on earth sciences, geology, landslide, and sedimentology
make up the largest red cluster. A total of 67 Journals that publish articles on applied
geophysics, structure, and infrastructure are represented by the green cluster. The blue
cluster, comprising 51 journals, includes research on glaciology, atmosphere, hydrology,
and planetary and space science in the GPR-related domain.
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Figure 5. Bibliographic coupling analysis for the active journals.
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Throughout the study, the number of WoS categories involved in GPR-related research
fluctuated, ranging from 38 in 2001 to 68 in 2021. A large number of involved categories is
dependent on the fact that publishing journals might cover numerous WoS categories. As
shown in Figure 6, Geosciences, Multidisciplinary is the most important (2491 articles, or
17.51% of the total), followed by Geochemistry and Geophysics (1393 articles, or 9.79%),
Engineering, Electrical, and Electronic (1152 articles, or 8.10%), Remote Sensing (857 articles,
or 6.02%), and Imaging Science and Photographic Technology (803 articles, or 5.64%). These
five categories account for 45.66% of all GPR-related research articles.
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Figure 6. Distribution of top thirty WoS categories involved in GPR-related research.

After examining the growth trends of the five most important categories, it is clear that,
while the trends show a general increase in the number of articles published, the scientific
interest in each category has shifted over time (Figure 7). The Geosciences, Multidisciplinary
and Geochemistry, and Geophysics categories have switched places multiple times over the
years. The same applies to Geochemistry and Geophysics and Engineering, Electrical, and
Electronic categories. In addition, there have been some significant changes in the number
of articles published, such as the peaks in the Geochemistry and Geophysics category
in 2007 and the sudden increase in the number of articles published in the Geosciences,
Multidisciplinary category from 2011 onwards.

3.3. Country and Institution of Publications

Due to the lack of author address information in 24 (0.34%) of the 6880 papers, these
data have been removed from the analysis of the publishing country and institution of
research outputs. In the period 2001–2021, the GPR research encompasses 118 countries on
six continents from all over the world. The six continents are arranged in the following or-
der: Europe (43 nations), Asia (34 nations), Africa (18 nations), South America (10 nations),
North America (9 nations), and Oceania (4 nations). It is determined that 59 countries
(50.0%), 14 countries (11.86%), and 45 countries (38.14%) produced fewer than 10 articles,
between 10 and 20 articles, and more than 20 articles, respectively. With 2002 research out-
puts (20.16%), the United States is the top productive country (see Table 2). With 959 articles
(9.66%), the People’s Republic of China comes in second but is still a long way behind the
first. Italy (732, 7.37%), Germany (583, 5.87%), England (540, 5.44%), France (463, 4.66%),
and Canada (408, 4.11%) are among the nations with at least 400 publications. Because
both developing and developed countries are rated among the top ten countries, academic
contributions are not solely dependent on economic progress. Furthermore, the articles
have a global reach because they are scattered across three continents: North America, Asia,
and Europe.
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Figure 7. Number of annual publications in the top five WoS subject categories.

Table 2. Top 5 most active countries in GPR research between 2001 and 2021.

Country Number of
Publications

Average
Publication Year

Total
Citations

Average
Citations

Average Normal
Citations

United States 2002 2012.58 41,744 20.85 1.11
People’s Republic of China 959 2016.75 9372 9.77 1.08
Italy 732 2013.69 12,193 16.66 1.02
Germany 583 2013.47 12,825 22.00 1.24
England 540 2013.49 12,054 22.32 1.50

Regarding the average publication year, the most recent studies are published in Qatar
(2018.75), Cyprus (2018.71), and Vietnam (2018.64). The United States (41744), Germany
(12825), Italy (12193), England (12054), and the People’s Republic of China (9372) attain
the highest total citations among other countries. Despite that, Syria, the country with
the highest average citations (42.00), is not among the top-five most productive or cited
countries. Concerning the average normal citations indicator, Kyrgyzstan (2.06) is the most
significant country in this study subject.

The bibliographic coupling analysis for the active countries involved in GPR re-
search is illustrated in Figure 8. Countries with at least three articles and thirty citations
are included in the study. The network comprises 81 countries from a total of 118. It
is worth noting that the countries are represented by nodes, where the size of each
node indicates the total number of articles produced by each country. Meanwhile, the
line thickness represents the strength of the cooperation link between the two coun-
tries. Malaysia (1.88), Oman (1.80), and Scotland (1.70) have the greatest influence on
the average normal citation indicator, followed by Portugal (1.50), England (1.50), and
Northern Ireland (1.45). The United States partners with the majority of nations, includ-
ing the People’s Republic of China, France, and Switzerland. Italy, which co-authored
papers with the top productive countries, worked more closely with the People’s Re-
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public of China, Greece, and Algeria. Similarly, Switzerland, which coordinated with
most of the other nations in the network, has Norway, Sweden, and Austria as its pri-
mary collaborators. All of these findings suggest that GPR research greatly encourages
cross-national collaboration.
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The contribution of the institution has been assessed based on the affiliation of
the article’s authors. The institutions are determined by counting the total articles
ascribed to a certain institution. GPR-related research is supported by 4714 institutions
in total. The analysis includes organizations with at least three papers and thirty
citations. Out of the total institutions, 889 organizations satisfy these criteria and are
incorporated into the network (see Figure 9). It should be noted that the organizations
are represented by nodes, with the size of each node indicating the total number of
articles published by each organization. Meanwhile, the thickness of the line sym-
bolizes the strength of the two organizations’ cooperation relationship. The Chinese
Academy of Sciences works with the vast majority of organizations, including Penn
State University, the University of Waterloo, and Ohio State University. Meanwhile,
the University of Wisconsin collaborates more closely with Boston University and the
University of Copenhagen. All of these data indicate that GPR research promotes
cross-national collaboration.

Table 3 depicts the top-five institutions that have been active in the last 20 years.
The Chinese Academy of Sciences is the most productive among the main organiza-
tions, with 169 papers. The other four organizations came from four different coun-
tries (i.e., Italy, Holland, United States, and Germany); National Research Council is
the most productive, with 116 papers, followed by Delft University of Technology
(91), University of Illinois (88), and Forschungszentrum Jülich (85). With regard to
the average publication year, Sun Yat-sen University (2019.92), Chongqing Jiaotong
University (2019.80), and Central South University (2019.70) published the most
recent studies. Delft University of Technology (2784), University of Leeds (2583),
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Forschungszentrum Jülich (2427), Chinese Academy of Sciences (2357), and Uni-
versité Catholique de Louvain (2343) obtain the highest total citations among other
organizations. However, organizations with the highest average citations are not
among the top five most productive institutions: the University of North Dakota
(50.50), the University of California, Berkeley (47.69), and the National Center for
Atmospheric Research (46.29). Based on the average normal citations indicator, the
Nanjing University of Aeronautics and Astronautics (25.72) is the most significant
organization in this study subject. Furthermore, while having the largest research
output, the Chinese Academy of Sciences (1.26) is not regarded as the most fruitful
organization since it does not have the highest average normal citations.
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Table 3. Top 5 most active institutions in GPR research between 2001 and 2021.

Institution Country Number of
Publications

Average
Publication Year

Total
Citations

Average
Citations

Average Normal
Citations

Chinese Academy of Sciences China 169 2016.35 2357 13.95 1.26

National Research Council Italy 116 2012.61 2339 20.16 1.05

Delft University
of Technology Holland 91 2010.84 2784 30.59 1.29

University of Illinois
Urbana-Champaign United States 88 2012.77 2207 25.08 1.43

Forschungszentrum Jülich Germany 85 2013.94 2427 28.55 1.57
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3.4. Productivity of Authors

Nineteen thousand thirty-seven individual authors are participating in GPR-related
research, and the average cooperation index (i.e., number of authors per article) is 4.4.
Table 4 depicts the quantitative measures of the most significant scholars. S. Lambot from
the Université Catholique de Louvain and F. Soldovieri from the Italian National Research
Council are the most productive authors, with 63 articles, followed by H. Vereecken from
the Forschungszentrum Jülich, with 47 articles. According to the average publication year,
X. Liu and D. Kumlu are among the most recently active researchers. Based on the total
citations, S. Lambot, F. Soldovieri, H. Vereecken, J. Van Der Kruk, and Y. Rubin receive
a total of 1547, 1271, 1118, 1027, and 1022 citations, respectively. Several scholars in the
same cluster receive the same average normal citations. For example, C. Le Bastard and Y.
Wang have an average normal citation of 0.74. This shows that these scholars made equal
contributions to the scientific field. Furthermore, different groups of researchers differ in
terms of the average normal citations. This suggests that these researchers collaborated
with other teams or worked alone to develop new collisions.

Table 4. Top 5 most productive authors in GPR research between 2001 and 2021.

Scholar Affiliation Number of
Publications

Average
Publication Year

Total
Citations

Average
Citations

Average Normal
Citations

S. Lambot Université catholique
de Louvain 63 2013.97 1547 24.56 1.37

F. Soldovieri Italian National
Research Council 63 2013.06 1271 20.17 1.18

H. Vereecken Forschungszentrum
Jülich 47 2014.64 1118 23.79 1.33

R. Persico
Institute for
Archaeological and
Monumental Heritage

43 2012.55 747 17.37 0.85

J. Van Der Kruk Forschungszentrum
Jülich 42 2014.29 1027 24.25 1.39

The bibliographic coupling for the most productive authors is illustrated in
Figure 10. 1477 out of 19,037 authors meet the minimal criterion of three publications
and thirty citations. The node size and color represent an author’s number of articles
and the membership cluster, respectively. Meanwhile, the distance between circles
indicates the strength of the relationship between authors. In general, the shorter the
distance, the stronger the connection based on bibliographic coupling. In other words,
authors who are close to each other tend to cite the same publications and vice versa.
The lines connecting between nodes are represented such that the thicker line indicates a
greater bibliographic coupling between the two authors. The researchers are classified
into seven clusters, and the size of each cluster ranges from 15 to 324. These clusters
reflect the research network of academics in GPR research, such as the research group of
G. Leucci, X. Comas, and E. Forte.

The co-authorship map for the influential researchers is illustrated in Figure 11. Be-
cause not all of these researchers collaborated, the cooperation network has only 721 authors.
There exist 38 clusters that range in size from 3 to 77 scholars. There is a clear distinc-
tion between co-authorship and bibliographic coupling networks. The researchers in a
particular co-authorship cluster may belong to a larger cluster of bibliographic coupling
that comprises authors from other co-authorship clusters. For instance, F. Soldovieri is a
member of the green cluster in the co-authorship map, with 41 authors. The same author, on
the other hand, is a member of a larger green cluster in the author bibliographic coupling,
with 266 researchers.
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3.5. Citations of Publications

The total citation count is gathered from the Web of Sciences Core Collection (23
December 2021). A total of 470 out of 6880 papers receive at least 50 citations. The top five
most-cited publications are listed in Table 5. Giannopoulos [33] is the first most referenced
article (409 citations). The paper discussed the foundations of GPR operation, in addition
to presenting a software tool for modeling GPR responses from complex targets (GprMax).
Yoshikawa and Hinzman [34] is the second most referenced article (334 citations). Lambot
et al. [35], which was referenced 299 times, is the third most cited article. Warren et al.’s [36]
publication entitled “gprMax: Open source software to simulate electromagnetic wave
propagation for ground penetrating radar” came in fourth place with 293 citations. Finally,
Gurbuz et al.’s [37] article, which was referenced 234 times, is the fifth most cited article.

Table 5. Top 5 most influential publications in GPR research between 2001 and 2021.

Scholars Title Journal Impact
Factor 2021

Publication
Year

Total
Citations

Normal
Citations

Giannopoulos [33] “Modelling ground penetrating
radar by GprMax”

Construction and
Building Materials 6.141 2005 409 11.32

Yoshikawa and
Hinzman [34]

“Shrinking thermokarst ponds
and groundwater dynamics in
discontinuous permafrost near
Council, Alaska”

Permafrost and
Periglacial Processes 4.368 2003 334 10.29

Lambot et al. [35]
“Modeling of ground-penetrating
radar for accurate characterization
of subsurface electric properties”

IEEE Transactions on
Geoscience and
Remote Sensing

5.600 2004 299 8.74

Warren et al. [36]

“gprMax: Open source software to
simulate electromagnetic wave
propagation for ground
penetrating radar”

Computer Physics
Communications 4.390 2016 293 20.97

Gurbuz et al. [37]
“Compressive sensing for
subsurface imaging using ground
penetrating radar”

Remote Sensing 4.662 2009 234 3.93

3.6. Cited References

When two studies cite one or more documents in common, this is known as bibli-
ographic coupling. The bibliographic coupling strength is higher when there are more
common citations in the referring works, detecting the subject similarity between the
two studies. On the other side, co-citation analysis overcomes the shortcomings of biblio-
graphic coupling by considering document citations that change over time to assess the
similarity between articles. Two documents are said to be co-cited when they acquire a
citation from the same third document [38].

Out of 149,276, 1004 cited references are extracted and grouped into seven clusters
based on a criterion of at least 20 co-citations. Table 6 presents the top five most co-cited
references. Davis and Annan [39] is the most cited reference (741 citations). The article
demonstrated the ability to apply radar to map the stratigraphy of soil and rock. Neal [40] is
the second most cited reference (491 citations). This research was concerned with studying
the principles and problems of applying GPR in sedimentology. Daniels [41], which was
referenced 453 times, is the third most cited reference. This article discussed the general
system considerations, modeling aspects, applicability in different soil types, modulation
techniques, and various technology applications. Jol’s [42] article, which was referenced
423 times, is the fourth most cited reference. This research discussed the fundamental
theory and current developments of GPR for different applications. Finally, Huisman
et al.’s [43] publication came in fifth place with 334 citations. This article provided a
detailed review of GPR technologies for measuring soil water content.
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Table 6. Top 5 most cited references in GPR research between 2001 and 2021.

Scholars Title Publication Year Total Citations

Davis and Annan [39] “Ground-penetrating radar for high-resolution mapping
of soil and rock stratigraphy” 1989 741

Neal [40] “Ground-penetrating radar and its use in
sedimentology: Principles, problems and progress” 2004 491

Daniels [41] “Ground penetrating radar” 2004 453

Jol [42] “Ground penetrating radar: Theory and applications” 2009 423

Huisman et al. [43] “Measuring soil water content with ground penetrating
radar: A review” 2003 334

3.7. Author Keywords in Publications

Author keywords can aid in grasping the patterns in a certain subject [44]. As a
result, the author’s keywords are investigated to examine the most important themes in
the articles. A portion as large as 5117 (74.4%) of the 6880 total articles features one or more
keywords, whereas the remaining 1763 (25.6%) articles do not incorporate any keywords.
The majority of articles (1574; 22.9%) have five keywords (Figure 12).
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Figure 12. Statistical distribution of the keywords in GPR research publications.

There are a total of 13,626 occurrences of 27,499 unique author keywords. The
50 most common terms (0.37%) are thoroughly examined to obtain a more detailed look.
These terms refer to some major “hot” issues, such as geophysics (e.g., electrical resistivity
tomography), archaeological investigations (e.g., archaeology and cultural heritage), civil
engineering (e.g., landmine detection and concrete), geology (e.g., stratigraphy and geo-
morphology), and hydrological research (e.g., hydrogeophysics, soil water content, soil,
water content, and permafrost).

Keyword co-occurrence networks are one of the most prominent linguistic networks
examined in the past. These networks are used to discover the semantic similarity between
phrases [45]. In addition, they are used to reveal information about knowledge structures
and their temporal evolution in a changing research topic [46]. The author keywords’ and
‘full counting’ approaches are used to display the co-occurrence network. Some parameters
in the VOSviewer, such as the minimum number of term occurrences, are adjusted to
ensure building the map with several terms that represent the article content. When the
frequency of keywords in the network map is adjusted to 10,230, 13,626 of the keywords
are chosen. In addition, a thesaurus text file is inserted for combining multiple spellings
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of the same phrase (e.g., antennas and antenna, electrical resistivity tomography (ERT),
and (FDTD) finite-difference time-domain). Furthermore, it could be useful for deleting
irrelevant words (e.g., Egypt and Italy) or merging different terms referring to the same
concept (e.g., numerical models and numerical modeling).

A co-occurrence map that includes 230 keywords for the whole period (2001–2021) is
developed in Figure 13. This map provides an overview of GPR research and subfields with
their interdependencies. The diameter of a circle and the size of labels show the occurrences
of phrases. Meanwhile, the colors of the nodes reflect the clusters such that the phrases
that often co-occur are clustered together on the map. Finally, the distances between nodes
show the connections between the keywords. Furthermore, the keywords are organized
into twelve clusters. Leading words identify each of these clusters. The keywords in the
largest five clusters are described in this sub-section. The largest red category (36 items)
includes keywords such as landmine detection, buried object detection, and permittivity.
The second green cluster (31 items) includes phrases such as archeological prospection,
geoarchaeology, monitoring, and geographic information system (GIS). The third blue
cluster (27 items) comprises many keywords such as finite difference time domain, image
processing, and tomography. The fourth yellow cluster (24 items) is responsible for topics
related to mountain permafrost, rock glacier, soil, and seismic reflection. The fifth purple
cluster (24 items) includes terms such as glacier, hydrology, ice, and snow. Within the same
cluster, geophysics and electrical resistivity tomography are all significantly connected. On
the contrary, there is no relationship between other terms in the same cluster, such as ice
and radar signal processing. Furthermore, significant relationships between terms from
different clusters, such as non-destructive testing, concrete, and condition assessment, may
exist. This demonstrates the capacity of co-occurrence networks to determine the extent of
a given area.
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With 2960 occurrences, ground-penetrating radar is the most frequent keyword (see
Table 7). With 160 occurrences, the non-destructive testing keyword comes in second but is
still a long way behind the first. Geophysics, electrical resistivity tomography, and radar are
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among the top five most frequent keywords. Regarding the average publication year, the
most recent keywords include machine learning (2019.59), predictive models (2020.10), data
models (2020.25), and deep learning (2020.36). On the other hand, traditional keywords
include buried objects (2007.56), borehole radar (2008.80), rough surfaces (2009.25), and
subsurface (2009.80). Inverse modeling (52.83), frequency domain (50.60), full-waveform
inversion (43.08), seismic refraction (40.88), hydrology and buried objects (40.31) attain the
highest average citations, among other keywords. Concerning the average normal citations
indicator, the predictive model’s keyword (13.69) is the most significant keyword in this
study subject. This indicates the different applications of prediction modeling from GPR in
various fields.

Table 7. Top 5 most cited keywords in GPR research between 2001 and 2021.

Keywords Total Occurrences Average Publication Year Average Citations Average Normal Citations

Ground penetrating radar 2960 2014.25 15.53 1.00
Non-destructive testing 160 2014.80 18.69 1.32
Geophysics 128 2013.50 18.34 1.02
Electrical resistivity tomography 122 2014.31 11.81 0.63
Radar 110 2010.65 21.04 0.87

4. Qualitative Analysis

The scientometric analysis provides the readers with keyword clusters without identi-
fying the current gaps and future directions in the studied research area [47]. As a result,
a qualitative discussion of the papers used in the scientometric review is conducted to
provide a comprehensive classification and summarization of GPR research. It also aims
at presenting the current gaps and future trends in this research field. In this research,
GPR-related studies are classified based on the dedicated application. It is determined that
GPR systems could be utilized in many diverse applications, including civil engineering,
geological research, archaeological studies, and hydrological applications, as follows:

4.1. Civil Engineering

GPR could be widely utilized in civil engineering applications [48], including build-
ings [49], foundations [2], roads [50], bridges [51], railways [52], tunnels [53], landmine
detection [54], pavements [8,9,55–61], and underground utilities [62–64], as follows:

4.1.1. Buildings

Buildings can be classified into different types: cultural heritage structures and mod-
ern structures. GPR is used to assess buildings and common structural components for
(1) heritage preservation and building code compliance, (2) deterioration mapping, which
can be used as a decision-making tool for preventive maintenance, and (3) determining
the extent of structural damage (i.e., detect fractures, voids, moisture, and rebar) caused by
natural disasters such as earthquakes, floods, and landslides [6]. The GPR application in
building deterioration is extremely useful, especially for occupied structures. This can be
attributed to the fact that GPR does not disrupt residents’ and tenants’ everyday activities
(i.e., less intrusive), unlike other assessment methods. In addition, because building main-
tenance and repair are likewise costly, GPR is regarded as a useful approach to identify
early problems before damage or failure is visible [65]. Despite that, the GPR application to
detect the probable damage causes and support the rehabilitation of buildings after natural
disasters is still very limited. Instead, the buildings are demolished or rehabilitated without
using non-destructive techniques [6].

4.1.2. Foundations

There are a few studies of GPR application in substructures that examine the inter-
action between building foundations and the ground. Examples of these applications in-
clude: (1) detecting foundations and assessing their structural safety and integrity [66] and
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(2) identifying water tables and wet ground that may induce settlement [67]. However,
because of the difficulties of accessing such structures through an antenna, the number of
these applications is currently limited [68].

4.1.3. Road Pavements and Bridges

Another unique application of GPR is providing subsurface information for the trans-
port infrastructure, including roads, pavements, and bridges [69]. For road pavements, GPR
surveys are conducted on flexible, rigid, semi-rigid, and composite pavements. Nowadays,
the scope of these surveys is not only focused on assessing steel bars or the thickness of
layers, but it is extended to conducting a structural assessment, detecting water infiltration,
subsidence, voids, cracks, and anomalies [70,71]. On the other side, GPR bridge surveys
are conducted either from the bridge deck or from specific bridge parts such as girders
and columns [72–75]. The surveys are mostly used to diagnose bridges for detecting prob-
lems related to embedded reinforcement (e.g., bars and post-tensioned or pre-stressed
tendons), corrosion and cracks [76,77], and poor compaction [78]. For the shortcomings,
it is worth mentioning that GPR is still being used on an ad-hoc basis rather than regu-
larly. Furthermore, the integration between building information modeling (BIM) and
pavement management systems (PMS) is still being researched for developing integrated
management and decision-making system [79,80].

4.1.4. Underground Utilities

GPR may also be used to detect the invisible and sophisticated network of under-
ground utilities such as water supply pipes, stormwater drainage, sewers, gas pipes, power
cables, communications cables, and traffic lights cables [81,82]. The mapping and scanning
of underground utilities are one of the most difficult GPR activities of all civil engineering
applications. This is due to the following facts: (1) radargram patterns of utility depths,
orientations, and material types are frequently non-typical when compared to other in-
frastructures [6], and (2) the location and status of these underground utilities remain
mysterious in most cities in contrast to the evident and visible damage to above-ground as-
sets (e.g., roads and bridges). The condition deterioration of these utilities will be apparent
by the occurrence of road collapse or traffic safety hazards from water leaks and seepage
from water utilities, soil wash-out, and gas explosions [83,84]. Future research shall focus
on GPR interpretation, particularly in extracting the hyperbolas pattern, to forecast unantic-
ipated disturbances [82]. Another research direction incorporates examining combinations
of different underground hazards under the utility networks.

4.2. Geological Studies

Identifying geological layers is necessary for locating drinking water supplies and
other natural resources, as well as identifying risk zones. Furthermore, various strati-
graphic and geological studies have reported significant findings concerning the Earth’s
surface [40,85]. Excavations are time-consuming, expensive, and frequently impossible to
be conducted because some study sites are protected. As an alternative, GPR, a non-invasive
geophysical technology, could be utilized to provide high-resolution subsurface imaging
and map shallow formations, detect permafrost, and locate fracture or water-bearing
zones [13,14,86]. It is typically used in conjunction with electrical resistivity tomography
to offer comprehensive geological information. However, these geophysical technologies
have not been generally evaluated and deployed because of the following reasons [6]:
(1) the lack of knowledge and understanding of the capabilities of GPR in geophysics by
the geotechnical engineers, and (2) the preference of the geological community to believe
in the soil and rock that they can see (borehole log) over what they cannot see (radar
signal). Therefore, the potential of applying GPR in geotechnical studies needs to be further
examined in the future.
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4.3. Archeological Applications

In archeology, GPR is capable of mapping historical buildings as well as detecting
cracks, fractures, and cavities in historical sites [15,16,87]. Unlike conventional excavation
methods that might destroy important archaeological structures, this subsurface imaging
approach is very effective [88]. The capacity of GPR to detect the targeted buried objects
is influenced by the geometry of the object of interest, subsurface geometric features,
and the existence of complicated stratigraphy [89]. It has been demonstrated that soil
type and density, sediment mineralogy, and moisture and clay content have a significant
impact on data processing parameters and detection accuracy [90]. Other variables include
topography, burial depth, and vegetation cover [89]. Therefore, it is critical to investigate
and examine the burial conditions when detecting buried archaeological remains.

4.4. Hydrological Research

GPR is a potential technology for the characterization and monitoring of hydrological
systems at high resolution and on a broad scale [91,92]. Object detection in the ground is
affected by geological elements such as mineralogical clay, saline water, hot water, and
soils [93]. The application of GPR is viable for assessing soil water content with an accurate
vertical resolution and an increased spatial resolution [94]. It could also be applied in the
future to examine different soil types of different sizes and gradations [95]. Furthermore,
radar data may be utilized to detect the presence of liquid organic pollutants in contaminant
hydrology applications [96].

5. New Avenues of GPR Applications

GPR, ERT, shallow seismic refraction (SSR), and very low frequency electromagnetic
(VLFEM) are examples of the several available geophysical methods that could be utilized in
the fields of civil engineering, geological research, archaeological studies, and hydrological
applications. Geotechnical risks are the primary determinants of building decisions in
structurally challenging zones. Different techniques, such as geotechnical techniques,
geophysical tools, and remote sensing, are used and integrated to study the subsurface
structures and locate any geological formations that might obstruct the development of new
communities [97–99]. In the archaeological field, geophysical methods are commonly used
to highlight differences in the physical behavior of the subsurface caused by the presence
of buried remains [16,100,101]. Understanding the complexities of the interaction between
archaeological features and their geophysical reaction will consume considerable effort. The
studies revealed that integrating geophysical approaches can offset these limitations and
improve the reported findings. For hydrological applications, geophysical investigations
are carried out to demonstrate the capacity of technologies for detecting cavities, sinkholes,
and water infiltration pathways [102].

It is demonstrated that satellite radar remote sensing systems can be applied to com-
plement non-destructive ground-based techniques (e.g., GPR), paving the way for the
smart monitoring of infrastructure assets. The combination of these approaches enables
the high resolution, flexibility, and capacity of GPR to detect the sources of shallow defects
to be paired with the ability of satellite remote sensing to simulate the evolution trend
of distresses on a broader scale. Indeed, the increased precision can help to increase a
facility’s resistance to both external catastrophes and internal degradation, thus leading to
infrastructure resilience [103–105]. The groundwater potential of complex areas character-
ized by moderate to steep slopes of topography, strong heterogeneity, multiple intrusions,
and repetitive deformations could be assessed using a joint venture of satellite remote
sensing, geoelectrical resistivity, and GPR techniques [106]. The integrated approach of
remote sensing, sedimentological, and geophysical approaches has been proven to be
accurate and successful in the mapping of paleochannels and accomplishing sustainable
groundwater development goals [107]. Another important application has been reported
by the combination of field observations, geophysical tools, and satellite remote sensing
for landslide characterization [108]. The integration of various remote sensing techniques
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could be utilized for detecting and inspecting buried archaeological remains as well as
assessing their preservation degrees [109,110].

The classic GPR system suffers from low detection efficiency and high labor costs
when the detection field is vast. Furthermore, the GPR application could be dangerous for
field investigations in harsh weather and terrain conditions. In an attempt to overcome
these shortcomings, an integrated system of the unmanned aerial vehicle (UAV)-mounted
GPR is developed to examine regions without being in direct contact with the Earth. This
system is beneficial for spotting and detecting destructive objects such as landmines or
archaeological surveys [111–114].

Future studies shall focus on automating GPR scanning operations. At the current time,
several parts of the scanning process are performed manually, being labor-intensive and
consuming considerable time. Furthermore, the output formats of different scanners are
not uniform, and the data cannot be simply imported into a general-purpose 3D modeling
software such as Autodesk Revit. This calls for the necessity of exploring other options for
solving this problem [3]. In civil applications, future studies might explore using GPR in
pavement design and maintenance procedures. The focus shall be given to examining the
drawbacks, including the method’s accuracy and the difficulty in interpreting recorded
signals [115]. In the archaeological field, it is suggested to integrate geophysical data to
acquire volumetric and planimetric structures in the subsurface, necessitating the use of
advanced algorithms (i.e., machine learning algorithms and image data fusion) [100].

In the recent few years, satellite-based interferometry has been leveraged for analyzing
and monitoring structural deformation in bridges. Wang et al. [116] used persistent scatters
interferometric synthetic aperture radar (PS-InSAR) technology to scrutinize the collected
time series data and detect differential deformation between piers. In this regard, they built
a three-dimensional deformation model using green’s function-based interpolation method.
In another study, Schlögl et al. [117] experimented with the use of airborne laser scanning
(ALS), vehicle-mounted mobile laser scanning (MLS), and satellite radar interferometry
(InSAR) for identifying structural deformation trends. They elucidated that three non-
invasive technologies were able to monitor deformation, with ALS offering a more flexible
and cost-effective approach than MLS. In addition, InSAR was found to stand out as a more
efficacious technology for long-term deformation assessment of bridge structures. Impact
echo was lately exploited by Hu et al. [118] for defect detection in ballastless tracks. They
utilized the finite-difference time-domain (FDTD) technique to emulate the propagation of
elastic waves in ballastless tracks, and an improved synthetic aperture focusing technique
(SAFT) was presented for the visualization of defects. In a study by Stüwe et al. [119],
impact echo and ultrasonic contact testing were implemented to investigate scaling growth
in geothermal pipelines. They evinced that both tests are applicable, while impact echo
offered a rapid and more cost-efficient scaling monitoring alternative.

Electrical resistivity tomography (ERT) is another non-destructive technique that was
newly deployed by Abudeif et al. [120] to find groundwater pathways and observe their
level rise. In this context, ERT was able to create 3D profiles and 3D voxel interpretations for
subsurface geoelectrical zones. As well, Guo et al. [121] jointly employed self-potential and
electrical resistivity tomography for the sake of seepage detection in earth-filled dams. They
managed to reestablish pseudo-3D seepage pathways by combining the measurements
of electrical resistivity alongside inversion outcomes of self-potential data. An infrared
thermography camera is a contactless non-destructive technique that was mounted by
unmanned aerial vehicles (UAV) and used by Zhou et al. [122] for the sake of automated
detection of earth embankment leakage. In their study, an AlexNet-based transfer learning
framework was created for the classification of infrared images into either cold slope
leakage, warm slope leakage, normal slope, normal ponding, cold piping, and warm piping.
Moreover, Loiotine et al. [123] utilized airborne infrared thermography for characterization
of rock mass in complex conditions. By analyzing thermograms, they succeeded in mapping
the correlation exhibited between rock mass properties and temperature profiles.
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6. Conclusions

The research study applied a holistic approach of bibliometric and scientometric
assessment to present a global overview of ground penetrating radar (GPR) research from
2001 to 2021. The Web of Science database produced 6880 publications that were examined
with respect to the publication trends, sources of publications and subject categories,
cooperation of countries, the productivity of authors, citations of publications, and clusters
of keywords. According to the findings, there has been a shift in the development and
promotion of the field of GPR. The number of annual publications had climbed from 139 in
2001 to 576 in 2021. Specifically, the publishing output has risen rapidly since 2006, with
a multidisciplinary and multi-regional approach distinguishing it. The research studies
were published in 894 journals, with the number of active journals rising from 68 in 2001 to
215 in 2021. The number of subject categories included in GPR-related research fluctuated
during the study, ranging from 38 in 2001 to 68 in 2021. The GPR research studies involved
118 countries from all around the world. The United States and the People’s Republic of
China made the most significant contributions to the research community. The Chinese
Academy of Sciences, China, was the most prolific institution, followed by the National
Research Council, Italy. “Modelling ground penetrating radar by GprMax” article that
was authored by Giannopoulos [33] in the Construction and Building Materials journal and
was the top most cited article (409 citations). Ground-penetrating radar, non-destructive
testing, geophysics, electrical resistivity tomography, and radar ranked first through fifth
in terms of emerging keywords. GPR was widely applied in four different fields; civil
engineering (landmine detection, bridge deck, and asphalt pavement), geological research
(sedimentology, stratigraphy, and Holocene), archaeological studies (archeology, cultural
heritage, and geoarchaeology), and hydrological practices (soil moisture, soil, and moisture
content). All of these findings and conclusions have been interpreted in light of the Web
of Science database. This review article could assist academics in identifying the most
prestigious journals and researchers with whom to collaborate or publish in the future. It
also aided in recognizing current hotspots in order to gain a comprehensive understanding
of the subject at hand.
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