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Abstract
In oil and gas industries, the explosive hazards receive lots of attention to achieve a safety design of relevant facilities. As a 
part of the robust design for offshore structures, an explosion risk analysis is normally conducted to examine the potential 
hazards and the influence of them on structural members in a real explosion situation. Explosion accidents in the oil and gas 
industries are related to lots of parameters through complex interaction. Hence, lots of research and industrial projects have 
been carried out to understand physical mechanism of explosion accidents. Computational fluid dynamics-based explosion 
risk analysis method is frequently used to identify contributing factors and their interactions to understand such accidents. 
It is an effective method when modelled explosion phenomena including detailed geometrical features. This study presents 
a detailed review and analysis of Computational Fluid Dynamics-based explosion risk analysis that used in the offshore 
industries. The underlying issues of this method and current limitation are identified and analysed. This study also reviewed 
potential preventative measures to eliminate such limitation. Additionally, this study proposes the prospective research topic 
regarding computational fluid dynamics-based explosion risk analysis.

1  Introduction

There are lots of accidental scenarios in the oil and gas 
industry, but the most devasting accidents are fires and 
explosions that occur on offshore facilities. The injuries and 
property damage from an incident of this nature are extreme 
and can have long-term consequences [1]. The most severe 
recorded offshore incidents are the Piper Alpha accident, 
which occurred on 6 July 1988, and the Deepwater Hori-
zon accident which occurred on 20 April 2010. Piper Alpha 
was an oil production facility in the North Sea, which con-
sists of four separated modules. Some malfunctioning parts 
and a small gas leak which ignited under pressure caused an 

explosion and the resulting oil and gas fires killed 167 people 
and caused damage of US$3.4 billion. At the time of the dis-
aster, Piper Alpha provided about 10% of North Sea oil and 
gas production, and the accident was the worst offshore oil 
disaster in terms of loss of lives and economic damage [2–5]. 
In addition, Deepwater Horizon is the most recent explosion 
accident in the offshore industries. The accident not only 
caused an explosion in the topside area but also resulted in oil 
release for several months. The oil spill reportedly continued 
for 3 months after the explosion, and over 4.9 million barrels 
of oil were released [6–8]. Therefore, the extensive research 
regarding the evolution of major disasters and hazard evalu-
ation is required for the safety of such facilities.

The purpose of risk assessment is to offer required 
information for the safety design and let operators rec-
ognize the significance of potential risks which consist 
of issues such as structural damage, failure, financial loss 
and injury. To understand such risks and reduce those 
possibilities, systematic investigation for managing risks 
effectively is required throughout the life cycle of the tar-
get structure. For successful explosion risk management, 
at first, the most possible explosion risk scenarios during 
a project’s life cycle should be assumed based on the sta-
tistical data or historical cases, and then the consequence 
of potential hazard is calculated. The computational fluid 
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dynamics (CFD) simulation is one of the most frequent 
and reliable approach for predicting specific explosion 
circumstances since its numerical models can be applied 
specifically considering detailed geometries and environ-
mental conditions like turbulence effect by obstacles on 
the consequence of explosion incidents [9, 10]. A lot of 
oil and gas projects have been used the CFD method to 
predict the explosion scenarios and the extent of damage 
by them [11–13]. However, there is large variability due 
to the uncertainties which are normally related to lots of 
parameters including randomness and probabilistic fea-
ture. Therefore, it is the most important task to select the 
reliable scenarios which can represent the real situation.

In general, a few unfavourable cases or a single scenario 
is used in current oil and gas industries. There are several 
reasons for assuming such a scenario, it could be to get more 
efficiency in time and cost aspects, or to pursue more con-
servative design by reflecting the most unfavourable case. 
Although such an approach could be more proper in some 
projects, it is required to establish a set of realistic explosion 
cases that can represent most possible incidents but with 
limitative cases to prevent overlooked cases and overesti-
mated design [14, 15]. When considered the explosion cases, 
many parameters should be used, such as leak profile, wind 
information, gaseous materials, and the geometries, so the 
suitable model involving such conditions is required.

There are several substitutes for that, but the Floating 
Production Storage and Offloading (FPSO) facility is one 
of the best target models when considering its structural 
functionality, vulnerability and properties all against pos-
sible explosion events. FPSO structures are equipped with 
many installations and systems for oil and gas production in 
limited space, and even generate lots of flammable gaseous 
material during operation. Because of such a complexity, 
more variables and correlation between them must be con-
sidered than onshore plant generally employing the simpli-
fied gas dispersion and explosion models [16–21].

Since the modelling process have an effect on the Explo-
sion Risk Assessment (ERA) results, explosion risk informa-
tion must be handled by considering the nature of relevant 
parameters and all condition regarding the target structure. 
Common sense in ERA is to assess the performance crite-
ria and corresponding explosion design loads based on the 
overpressure or drag pressure which can be generated by 
explosion ignition [22, 23]. This is because explosion wave 
pressure is the most detrimental threat to structural stabil-
ity. It can be characterised by a time-varying pressure and 
its duration, and the interaction of explosion waves and the 
structure is the main cause of partial or global structural 
failure. The explosion wave is a time-dependent load, so its 
influence on the physical behaviour of structures is totally 
different from static problems. Therefore, the influence of 
several factors associated with explosion load-time profiles 

on the structural response should be extensively investigated 
considering not only static and dynamic analysis, but also 
linear and nonlinear analysis [24].

The typical methods for measuring explosion loads could 
be divided into two approach, correlation model based on 
experimental results (TNT and multi-energy theory) and 
numerical model based on Computational Fluid Dynamics 
(CFD) simulations. CFD methods can not only reflect lots 
of parameters and information regarding explosion phenom-
enon, but also do numerous analyses with little efforts, so it is 
normally regarded as preferable and practical in ERAs, rather 
than correlation model-based approach when analysing poten-
tial explosion events with a great number of scenarios [25].

CFD approaches can provide the potential to develop a 
comprehensive and accurate interpretation of an explosion 
load, but it is impossible to consider all possible scenarios 
due to the relatively high associated computational cost. 
Thus, it has simplified assumption and approximations based 
on probabilistic approaches to keep the number of possible 
scenarios manageable [26]. Although there are many guide-
lines or rules for structural design against explosion loads, 
very limited design codes are only available. That means 
current methods regarding ERAs include lots of uncertain-
ties [27–29]. The objective of the present paper, therefore, 
is to review comprehensively from the phenomenological 
analysis of an offshore explosion to the current application/
limitation and future study direction.

2 � Background

2.1 � Explosion Risk Analysis of Offshore Facilities

An explosion accident is a potential hazard that can lead to 
very destructive damage of the total system. Particularly in 
the oil and gas industry, explosion risk analysis (ERA) is 
compulsory in the design stage since the entire system in 
an offshore facility is exposed to hazardous and flammable 
hydrocarbon materials. The main purpose of ERA is to iden-
tify and mitigate vulnerable members in the target system 
that could lead to fatal damage if exposed to an unexpected 
situation. An explosion event occurs through accidental 
release of gaseous materials into the area followed by an 
ignition source. Therefore, ERA for such a target should take 
into account a series of events associated with the explosion 
like gas leak, dispersion and ignition. Based on the prin-
ciple of quantitative risk assessment, it is possible to sys-
tematically identify events for that issue [30]. But the ERA 
is usually performed in a probabilistic manner since there 
are a great number of scenarios together with geometries or 
operational conditions.

The basic concept of the probabilistic ERA is to use the 
computational fluid dynamics (CFD) methodology. By using 
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CFD, it is possible to consider relevant factors involving 
their probability or frequency distribution with possible sce-
narios. Although there are almost infinite scenarios in the 
real world, fewer practical scenarios are used in the CFD. 
But reasonable scenarios can be used by dividing the possi-
bility of real values into several intervals, and then selecting 
representative data at each interval. In this way, gas disper-
sion or explosion scenarios including hazard elements can 
be established, and then potential explosion wave pressure 
data caused by explosion ignition can be derived.

Figure 1 shows the schematic overview for ERA using 
CFD methodology. As described in the figure, it is divided 
into two categories according to the distribution of the gas 
cloud. The first section focuses on deriving the probabil-
istic distribution by considering the combination effect of 
gas dispersion analysis and its probability investigation. 
Leakage cases as the initial event should be studied based 
on the probabilistic approach, and then the frequency of 
established leak scenarios should be computed considering 
any relevant factors like wind direction, leak rate and dis-
tribution [31–33]. Ventilation analysis should be carried 
out prior to gas dispersion simulation to get the flow geom-
etries influenced by wind conditions [34]. In the second 
part, explosion overpressure is assessed using the exceed-
ance curve which consists of frequency distribution and 

the pressure range. It is normally used in the explosion-
resistant design stage to determine the explosion design 
load.

2.2 � Hazard of Offshore Explosion: Learnt 
from Accidents

Oil and gas industries and offshore facilities workers must 
take extreme precaution during all process of the drill-
ing operation to prevent undesired situation. Even trivial 
design errors or mistakes can lead to a catastrophic blow-
out. Especially, explosion accidents that occur on offshore 
facilities are some of the most devastating cases that can 
occur [36]. The most severe recorded offshore incidents 
are the Piper Alpha accident, which occurred on 6 July 
1988, and the Deepwater Horizon accident which occurred 
on 20 April 2010. Figures 2 and 3 show the aftermath 
from the accidents [37]. Other than that, there have been 
several explosion accidents in the history of offshore 
industries. The following sections describe the details of 
representative explosion related accidents, and Table 1 
summarizes the explosion accidents that occurred in off-
shore platforms.

Fig. 1   Schematic overview of 
typical ERA based on CFD 
method [35]

Fig. 2   Major explosion accidents in the oil and gas industries a Piper Alpha b Deepwater Horizon



4854	 K. Kang et al.

1 3

2.2.1 � Piper Alpha

Piper Alpha was an oil production facility in the North Sea, 
which consists of four separated modules. It was situated 
on the Piper oilfield, approximately 193 km northeast of 
Aberdeen, Scotland. It began production in 1976, operated 
by Occidental Petroleum Limited [38]. At first, it was an 
oil-only platform but later changed to add gas production 
module. For worker health and safety, the most dangerous 
operations were distant from the residence district. However, 
the process of converting the facility from oil to gas broke 
this safety doctrine, considering the other concept that sen-
sitive areas should be located together. As a result, the gas 
compression caused this tragic accident.

On 6 July 1988, some malfunctioning parts and a small 
gas leak which ignited under pressure caused an explosion 
and the resulting oil and gas fires killed 167 people and 
caused damage of US$3.4 billion. At the time of the disaster, 
Piper Alpha provided about 10% of North Sea oil and gas 
production, and the accident was the worst offshore oil disas-
ter in terms of loss of lives and economic damage. There are 
several reasons for the catastrophic outcomes. Most manager 
who had the authority to order evacuation were killed by the 
first explosion, and the platforms continued to pump oil and 
gas to Piper Alpha until the second explosion happened. 
The worker who saw that Piper Alpha was burning could 
not do anything because the worker thought they did not 
have authority to shut off production, even in such an urgent 
situation [39, 40].

2.2.2 � Deepwater Horizon

Deepwater Horizon is the most recent explosion accident 
in the offshore industries. The accident not only caused an 
explosion in the topside area but also resulted in oil release 

for several months. It was wrapping up the well and was in 
the final stages of completion. An explosion of seawater 
from the drilling riser was occurred and the erupted sea-
water was followed by a combination of mud, flammable 
gas and water. As a result, several explosions took place 
on the platform. At the time of the explosion, there were 
126 crew on board. Eleven workers were presumed to have 
died during the initial explosion. The rig was evacuated, 
with many workers airlifted to receive an emergency medi-
cal treatment. The burning continued for about 36 h after 
the first explosion, and then Deepwater Horizon sank two 
days later, on 22 April 2010. The remains of the rig came 
to rest on the seafloor at a location approximately 1500 m 
deep, and about 400 m from the northwest of the well. 
The oil spill reportedly continued for 3 months after the 
explosion, and over 4.9 million barrels of oil were released 
[41]. On 15 July 2010, the wellhead was finally capped. 
As well as the deaths and injuries of the crew, the released 
oil had an extremely negative effect on surrounding area, 
wildlife and coastal ecosystem. During the clean-up work, 
the coastline was closed, and a range of ships, barriers 
and many other methods were used to stop the spill from 
spreading. However, despite concerted efforts, it was esti-
mated that over 450 km of the Louisiana coastline had 
ultimately been affected [42]. 

In January 2011, the oil spill commission team in the 
US White House released their report on the causes of the 
Deepwater Horizon accident. The report stated that the 
companies involved in the Deepwater horizon project had 
not taken measure to provide safeguards against an inci-
dent of this nature happening. The report also showed a 
chart on the correlation of decisions which possibly saved 
time and money but increased the risk to the crew aboard 
Deepwater Horizon [43].

Fig. 3   Aftermath from the disaster a marine pollution by oil spill b seabird losses from oil spill
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3 � Current Applications of Explosion Risk 
Analysis

Hydrocarbon explosions and relevant hazards like fires, 
blasts and heat are the most frequent accidents that could 
be occurred in offshore structures. The purpose of explo-
sion risk analysis is to offer required information for 
safety design and let operators recognize the significance 
of potential risks. To understand the explosion risk, the 
systematic investigation of the risk factors from such a 
hazardous phenomenon is needed to be performed. This 
section describes the mechanism of an explosive ignition 
and the influence of explosion risk parameters on struc-
tural elements through the literature.

3.1 � Explosion Phenomena

A gas explosion is regarded as an action in which the burn-
ing of gaseous materials, that is, combustible substances, 
cause a dramatic increase of pressure. It is a very complex 
phenomenon with several spatial and time issues as well 
as powerful gradients of field variables such as fluid den-
sity, velocity, temperature, and pressure. Gas explosions 
can occur almost anywhere if combustible substances are 
present, which could be inside process equipment, build-
ings, or offshore platform as well as open and unconfined 
process area. The level of explosion impact is related to 
the flame speed and the quantity of released waves from 
the ignition source [51]. Once an explosion occurs in a 
certain location, explosion pressure waves are produced, 
and the pressure build-up can damage not only personnel 
and facilities but also the environment and ecosystems.

When ignition is occurred, two types of the blaze, defla-
gration and detonation are generated. The difference between 
them is the speed of the blaze. The deflagration occurs at 
subsonic speed (1–1000 m/s), and pressure can be increased, 
up to 5 times higher than the initial value, while the detona-
tion mode propagates at supersonic speed (1000–3500 m/s), 
and its peak pressure can increase to more over 20 times 
higher than the earlier pressure [52]. Therefore, detonation 
can create a much more dangerous situation.

Gas explosions are also classified as either confined or 
unconfined. If the gas cloud is located in an unconfined 
area, the explosion pressure can be negligible. However, 
in a confined situation, there is no venting and heat loss 
or very little relief of the explosion wave propagation, and 
the overpressure can be high. The detonation mode in a 
confined area is clearly the most dangerous situation. A 
gas explosion is very sensitive, its severity is dependent 
on many factors, making it difficult to estimate the conse-
quences of each explosion case.
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3.2 � The Amplitude–Frequency Relation 
of Explosion Loading

In an explosion, a great amount of energy is released in sev-
eral forms like high temperature, fire, shock wave and gase-
ous materials. All of them are harmful for structures, but the 
explosion shock wave accompanying high pressure and large 
impulse is regarded as the most dangerous in an explosion 
[53]. The explosion pressure, commonly called overpres-
sure, is expressed relative to ambient pressure rather than an 
absolute value. In an offshore facility, structural failure may 
lead to environmental destruction, like the aftermath of the 
Deepwater Horizon accident. Therefore, a firm understand-
ing of explosion wave load is required. Figure 4 shows the 
typical pressure–time history which can appear in an explo-
sion event with the distribution of amplitude and frequency 
for several load cases. As described in the Fig. 4, the explo-
sion pressure–time curve indicates a step rise in pressure 
from barometric pressure P0 to the maximum, Pm, followed 
by a dramatic decrease in value during a duration time of 
positive pressure phase (tp). The second peak is related to 
the negative pressure wave from the obstacle. The pressure 
then reduces to below atmospheric point over a period tn, 
which is called the negative phase duration. Finally, pressure 
returns back to usual as the shock wave passes by. This type 
of pressure–time curve can be measured in detonation mode, 
where the maximum overpressure can be high as 15–18 bar 
[54, 55].

The explosion wave clearly has a much higher amplitude 
than the other cases. Although wind load is also included in 
high amplitude in some cases, its frequency range is very 
small. Generally, higher amplitude has a more severe effect 
on structural damage or deformation. However, frequency is 
also an important factor in damage and deformation aspects. 
Resonance is a good example related to frequency. Reso-
nance is a phenomenon caused by an external force which 
can drive another structural system to oscillate with bigger 
amplitude at specific frequencies. This phenomenon nor-
mally occurs when the natural frequency of a structure is in 

accord with the external force duration. Under this condi-
tion, large amplitude oscillations can be generated despite 
small periodic forces. As described in Fig. 4, explosion 
wave load has a large frequency range from low to very 
high frequency. Therefore, structural response analysis based 
on the extensive scope of the amplitude–frequency relation 
is required. The relevant analyses considering the effect of 
explosion loads on structural damage would be reviewed in 
the next section.

3.3 � Structural Damage Analysis Under Explosion 
Loading

An explosion wave profile is characterized by a time-varying 
pressure and its duration, and the interaction of explosion 
pressure wave and structural elements is the main cause of 
partial or global structural failure [56, 57]. Therefore, the 
input properties for an explosion wave profile are the deter-
ministic factors which can directly influence on how the 
structure would be deformed. Basically, a number of param-
eters could be influenced on the feature of explosion wave 
properties, like explosion source, standoff distance, geomet-
rical condition, as so on [58–60]. Therefore, the amplitudes 
and the frequencies of explosion load are varied, a series of 
analyses considering such variables are required to investi-
gate the structural responses under explosion loads. Table 2 
summarises the relevant research found in the literature for 
using methods, studied parameters, and main findings.

Experimental research has been conducted to investigate 
the explosion resistance for composite materials with a dif-
ferent laminate condition by Refs. [61, 62]. These studies 
reported the effectiveness of laminate on blast resistance, 
and also describes the optimal location of the laminate 
against such a loading condition. Cai et al. [61] found the 
influence of UHMWPE layer location on the interaction of 
the stress waves between the faces of multi-layered core. 
This paper described the mechanism of penetration of blast 
waves and fragments through the multi faces, thereby ana-
lysing the level of local bending deformation on each side.

Fig. 4   Typical explosion pressure–time history characteristics produced by an explosion
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The damage analysis using P–I diagram has been studied 
by Refs. [63, 64]. Shi et al. [63] found an analytical equation 
for the P–I diagram which combines shear rupture, bend-
ing rupture and buckling failure, and a series of analyses 
were conducted to assess the effect of the configuration 
of corrugated panels on the P–I diagram. As a result, they 

provided a parametric design guidance of corrugations in 
early design phase against potential explosion cases. Syed 
et al. [64] presented the P–I curves as a rapid assessment tool 
which can be used instead of nonlinear structural analyses 
for typical blast walls consisting of stainless-steel mate-
rial, so that those curves can be effective on designing or 

Table 2   Structural damage analysis considering blast loads in literature

References Method Studied parameters Main findings

Cai et al. [61] Experimental The effect of combined blast and fragments 
loading, laminate location, foam core 
gradation, ceramic fiber felt, and refractory 
interlayer

▪ The dominant failure modes of the front faces 
and foam layers

▪ The better position of the laminate against 
combined loads

▪ The trivial effect of foam core gradation in 
failure modes

▪ Weakened blast performance by ceramic fiber 
felt

▪ The effectiveness of UHMWPE laminate on 
blast resistance

Chen et al. [62] Experimental The effect of PVB-laminated glass, TNT charge, 
standoff distance

▪ Typical failure modes and structural dynamic 
response characteristics

▪ The influence of negative blast loading and 
recovery force on displacement

▪ The overestimation of current blast resistant 
design approaches

Zhao et al. [65] Numerical/theoretical The effect of concrete type, TNT charge, slab 
thickness, compressive strength, and dynamic 
increase factor

▪ The relationship between damage modes and 
TNT charges

▪ The feature of crack distribution and damage 
mode with thickness changing

Yang et al. [66] Numerical The effect of the CFRP strengthening schemes, 
the CFRP cloth thickness, stand-off distance, 
and TNT weight

▪ Damage prediction of an RC tunnel by non-
contact underwater explosions

▪ The influence of the CFRP cloth on the blast 
resistance of the underwater tunnel

▪ The mitigation effects by geometry conditions 
of the bonded CFRP cloth

▪ The optimal thickness of the CFRP cloth
Choi et al. [67] Experimental/numerical The effect of pre-stress, concrete rebar, strain 

rate, acceleration behavior, standoff distance 
and crack patterns

▪ Better shear resistance of prestressed concrete 
specimens.

▪ The effect of rebar for blast-resistance
▪ The pattern of flexural and shear macro cracks 

of target specimens
▪ The results of damage assessment depending on 

blast load types, structural condition, material 
types, etc.

Kang et al. [68] Numerical/theoretical The effect of blast loading application methods, 
geometrical characteristics, strain rate, simpli-
fied pressure–time curve

▪ The features of blast wave in congested geom-
etry condition

▪ The comparison results of structural response 
and plastic strain according to loading condition

▪ The conservativeness of conventional blast 
design load assumption

Shi et al. [63] Numerical/theoretical The effect of geometry regarding corrugation, 
load types, strain rate, overpressure, and 
impulse

▪ Pressure-impulse diagram combining shear 
rupture, bending and buckling failure

▪ The influence of corrugated panel on structural 
damage

▪ The effectiveness of SDOF model application
Syed et al. [64] Numerical/theoretical The effect of stainless steel blast wall, scale 

distance, TNT charge, SDOF model, peak 
pressure and impulse

▪ Pressure-Impulse diagram regarding blast load 
parameters with structural responses

▪ The damage patterns for the blast wall under 
considered loading conditions
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damage assessment of offshore blast walls considering pos-
sible explosion loadings.

Other literatures [65–68] have been focused on analysing 
the characteristics of structural dynamic responses like fail-
ure pattern, deformation, or crack criteria by using numeri-
cal model and then comparing with theoretical model. As 
an example, single degree of freedom (SDOF) model is 
normally used in such studies to verify the suitability of 
developed numerical models.

4 � Methodologies for Explosion Modelling

Four different analysis methods are introduced in this sec-
tion. Correlation models generally use the results obtained 
by experiments. Two representative methods (TNT and 
multi-energy theory) commonly used in the industry are dis-
cussed. Furthermore, experimental model and CFD numeri-
cal model are also described in detailed.

4.1 � Correlation Model

4.1.1 � TNT Equivalent Method

TNT equivalence is generally used to express the energy 
released by an explosion. The relationship between the 
weight of TNT charge and the distance from the ignition 
is considered. The diagram for TNT detonation has been 
used to estimate the gas explosion magnitude, even though 
there are differences between them [69]. The pressure gener-
ated by gas explosion is much lower than TNT detonations, 
and even the pressure decay from TNT is much more rapid 
compared to a gas explosion [70]. Nevertheless, the reason 
for using this method is to predict peak pressure from a gas 
explosion. The TNT model uses a pressure-distance diagram 
to transform the maximum overpressure of gas explosions, 
and the equivalence of TNT charge is calculated from the 
energy content in the ignited gas cloud volume [71]. To find 
the mass of TNT equivalent to the mass of hydrocarbon in 
the cloud, the following equation can be used:

where WTNT  is the mass of TNT, � is a yield factor 
( � = 3 − 5%) , and WHC is the actual mass of hydrocarbons 
in the gas cloud. The number 10 indicates that most hydro-
carbons have ten times higher combustion heat than TNT. 
For military purpose, ample tests of TNT have been per-
formed by many researchers. As a result, a great amount 
of data was obtained, explosion wave properties like over-
pressure, phase duration time and impulse can be described 
by using the scaled factors. These factors are for an explo-
sion of ground level, and negative pressure influence on 

(1)WTNT ≈ 10 ⋅ � ⋅WHC,
[

kg
]

the total overpressure. The scaled factors are described in 
Table 3. For convenience of calculation, the scaled factors 
are described using the below equation developed by Brasie 
and Simpson [72]:

where P0 is the maximum pressure in bars. This formula is 
only used when the maximum value is included in the range 
of 0.01 to 1 bar. In the original TNT equivalency model, 
however, the geometry was not considered. Therefore, in 
order to reflect the geometrical effects in the TNT model, 
another equation was proposed by Harries and Wickens 
[73]. The yield factor was increased to 0.2 and the weight 
of hydrocarbon was to accord with the weight of gas in the 
severely congested area. In case of natural gas, the equivalent 
TNT mass can be calculated using the following equation:

where Veff = min
(

Vcon,Vcloud

)

 indicates the smaller of either 
the total volume of the congested part or gas cloud volume.

4.1.2 � Multi‑energy Method

The multi-energy method proposed by van den Berg [74] 
is normally used to predict the level of gas explosion with 
variable strength. It estimates that only part of the gas cloud 
would contribute to the blast. The reason for this assumption 
is that an unconfined gas cloud only has a small effect on 
increasing pressure, and the level of confinement is regarded 
as the most important factor for increasing the overpressure. 
In the numerical analysis for this technique, the generation 
condition of explosion wave is regarded as formulaic type. 
It is only ignited at the central position in the spherical 
cloud with constant flame speed. There are two variables in 
the formula: a combustion-energy scaled distance and the 
strength of the explosion. The scaled distance, Rce, can be 
defined as:

(2)log10(z) = 0.082(log10P0)
2 − 0.529log10P0 + 1.526

(3)WTNT ≈ 0.16Veff ,
[

kg
]

Table 3   The scaled factors in TNT method

Scaled factors Equation

Scaled overpressure Ps = Po∕Pa,
(Po : Peak over pressure, Pa : 

Ambient pressure )
Scaled positive phase duration Td =

tp

W1∕3
 

(tp : Positive phase duration)
Scaled arrival time Ta =

ta

W1∕3
 

(ta : Arrival time)
Scaled impulse is =

ip

W1∕3
 

(ip : Positive phase impulse)
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 where R0 is the distance from the ignition centre, E is the 
total combustion energy and P0 is the barometric pressure. 
Most hydrocarbon type materials have similar total amount 
of energy, therefore the total combustion energy can be cal-
culated by the following equation.

The extent of the explosion impact is considerably differ-
ent according to the position of ignition source. The charge 
strength is expressed using a number from 1 to 10, where 10 
denotes a detonation mode.

A correlation for the charge strength has also been pro-
posed, based on the three factors of the volume blockage 
ratio (Br), the flame length (Lf) and the average obstacle size 
(Os) [75]. This approach also considered not only the scale 
of the situation but also the fuel type by using the laminar 
combusting velocity (Vl) and a scale factor (D). The cor-
relation is:

When it comes to offshore structures, another researcher 
[76] has proposed a method for determining the charge 
strength using three variables:

•	 Congestion: If congestion level is over the 30% of the 
limitation, it can be regarded as “High”.

•	 Ignition source: Low in spark and hot surfaces, High in 
naked flames and welding.

•	 Parallel confinement: Low for granted decks, High for 
plated decks.

(4)Rce = R0∕(E∕P0)
1∕3, [m]

(5)E ≈ 3.5Vcloud,[MJ]

(6)PCS = a

[

Br ⋅ Lf

Os

]b

Vl
2.7D0.7

4.2 � Experimental Model

The test method is the most accurate method for generating 
an explosion consequence database if all the variations in 
environmental conditions and operational systems in target 
structures can be reflected. However, explosion tests have 
many constraints such as space limitations, safety issues 
and excessive cost. Therefore, laboratory scale tests are 
normally performed to compare to computational simula-
tion results. Some experimental studies for gas explosion 
are introduced as follows. Gieras et al. [77] carried out a 
lab-scale experiment on methane gas explosions. Figure 5 
shows the test apparatus of this study. A chamber which has 
a 40-dm3 volume with 140 mm in diameter and 441 mm in 
height was used and the initial gas temperature inside the 
explosion chamber was varied, at 297, 373 and 473 K. A 
pressure gauge and temperature sensor were attached to the 
chamber’s outer surface.

Jingde et al. [78] tested vented gas explosion with dif-
ferent separation gaps between tanks. Explosion-proof 
fans were used to mix the methane and air. The pressure 
measuring range is from zero to 150 kPa. Several pressure 
sensors were installed on the tank wall in order to measure 
internal pressure, while two other sensors were mounted on 
the neighbouring tanks for external pressure. The ignition 
system was remotely controlled, and only the ignition sce-
nario in the central area was considered. Figure 6 shows the 
explosion testing equipment.

4.3 � CFD Numerical Model

Computational fluid dynamics (CFD) analysis is a use-
ful and effective method, which can describe the circum-
stance related to engineering phenomena including detailed 

Fig. 5   General view of 40 dm3 explosion chamber and layout of the test facility [77]
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geometrical condition. The main objective of such an analy-
sis is to compute the numerical solutions using relevant gov-
erning equations for the phenomenon. To obtain the compu-
tation results, a series of mathematic techniques are required 
taking into account space and time domains. Through the 
discretisation process, several coupled algebraic equations 
are generated, and then they are applied to each sub-domain. 
Therefore, the outputs obtained by CFD model mean a great 
deal of information about the phenomenon.

In general, CFD analysis is widely used to model an 
explosion event and calculate the explosion wave loads. It 

can not only investigate many different scenarios but can 
also repeat the same analysis with little extra effort. The 
consequence of a gas explosion depends on many variables, 
but explosion simulation using a CFD model can reflect 
this complexity with more realistic and accurate input data. 
In addition, the complex geometries can be designed by 
importing the 3D-objective model. Table 4 describes the 
features of the representative CFD codes. While there are 
a variety of CFD codes developed for different purposes, 
the FLame Acceleration Simulator (FLACS) software devel-
oped by Global Explosion Consultants (GexCon) is the most 

Fig. 6   The explosion test set using a series of tank groups [78]

Table 4   The comparison for the representative CFD codes

List of models Type Developer Features Accuracy

FLACS 3D CFD Finite Volume CMR-GEXCON in Norway - A structured Cartesian grid
- Finite volume code
- PDR method of sub-grid 

obstacle

- First order
- Reaction progress variable 

second order

EXSIM 3D CFD Finite Volume Tel-Tek R&D in Norway - A structured Cartesian grid
- Semi-implicit
- Finite volume code
- PDR method of sub-grid 

obstacle

- First order temporal
- Second order spatial

AUTOREAGAS 3D CFD Finite Volume PML in Netherlands - A structured Cartesian grid
- Finite volume code
- Integration of REGAS and
Blast code
- PDR method of sub-grid 

obstacle

- First order temporal and 
spatial

COBRA 2D and 3D CFD Finite 
Volume

Mantis Numerics Ltd. - Unstructured Cartesian grid
- Cylindrical Polar or Hexa-

hedral
Adaptive
- PDR method of sub-grid 

obstacle

- Second order temporal and 
spatial
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frequently used for the gas dispersion and explosion simula-
tion. It is generally used to model the dispersion and com-
bustion of flammable materials considering the geometries 
of the target and to generate explosion pressure responses 
by counting possible scenarios [79].

The validation of the model and the accuracy of simula-
tion results has been confirmed by many studies [80–82]. 
Wang et al. [83] applied the FLACS model to analyse the 
shock wave propagation process in a building and to com-
pare the blast-wave curve at different locations. Li et al. 
[84] used the FLACS model to assess the effect of safety 
gab in gas dispersion as well as the explosion risk for heav-
ily congested offshore facilities. Hansen et al. [85] stud-
ied the explosion loading on different types of equipment 
with various shapes by using the FLACS explosion model. 
Dadashzadeh et al. [86] applied FLACS to investigate the 
dispersion of flammable hydrocarbon release and the explo-
sion consequence of BP’s Deepwater Horizon accident. Das 
and Weinberg [87] used the FLACS code to present a project 
result for improving the application of correlation models 
in quantitative risk assessment (QRA) considering vapour 
cloud explosion (VCE) events in offshore platforms. There 
are many previous research studies based on CFD analysis, 
but they have drawbacks. The main flaw is caused by the 
limitations imposed by the available computing hardware.

5 � CFD‑Based ERAs

ERAs are conducted in a design process of offshore facilities 
in order to determine the level of design accidental loads 
required for evaluating the explosion resistance of the objec-
tive structure. Following the major offshore explosion acci-
dents, it was revealed that explosion models underestimated 
or overestimated the accidental loads [88]. Both industry and 
academia have since concentrated on increasing the accuracy 
of predicted overpressure for a reliable design against possi-
ble explosion hazards. A lot of efforts have been put into the 
relevant research, but CFD based approach is still regarded 
as one of the most reasonable method.

The typical approach of CFD-based ERAs is shown as 
Fig. 7. It requires complicated and sequent processes includ-
ing lots of variables, which should handle the entire chain of 
scenarios regarding a gas release, dispersion, ignition, and 
explosion. First of all, the size of the release is subdivided 
into the spectrum of possibilities, and then the consequences 
of each scenario are calculated to determine the size of gas 
cloud. The following is to establish the gas cloud distribu-
tion considering combining results of the leak properties, 
wind information, and gas valve option (blowdown/emer-
gency shutdown). The next process is related to predict the 
overpressure based on established scenarios. Herein, gas 
cloud distribution is important in evaluating explosion loads 

since the number of scenarios for that influences on the total 
number of the explosion scenarios. Based on the predicted 
overpressure, the explosion-resistant design would be car-
ried out. Since the nature of variables regarding an explosion 
indicates strong randomness, probabilistic approach is on the 
trend for obtaining more reasonable results in the current 
ERA study [89].

A great number of scenarios are required to validate the 
probabilistic approach for overpressures, especially, in case 
of complicated structures including numerous variables like 
offshore facilities, potentially thousands of scenarios are 
normally considered. Table 5 summarizes the previous CFD-
based ERA studies, and relevant variables and assumptions 
considered in CFD models. All target models in Table 5 are 
offshore facilities which have a complicated geometry con-
dition. The probabilistic sampling method or possible cases 
assumption is used to reflect the nature of strong random-
ness of wind/leak profiles. As for gas cloud properties, most 
studies used the constant release rates leading to steady state 
results [88, 92–96], but the effect of time-varying leakage 
has been studied by Refs. [90, 91]. In particular, Gupta and 
Chan [90] carried out a dispersion analysis with time-vary-
ing gas clouds and then compared with the results obtained 
by equivalent gas cloud assumption. The study found that 
constant release assumption may be more reasonable when 
considering the systems with slow depressurization rates, 
but in the case of rapid depressurization systems, such an 
assumption may lead to unreliable results. Yang et al. [91] 
considered both the constant release rate and the time-vary-
ing release according to the accident scenarios, and toxic gas 
profiles and flammable gas profiles were considered sepa-
rately to investigate the effect of toxic gas-containing flam-
mable gas leakage. The fundamental assumption for constant 
release rates is the flammable gas cloud volume acquired 
by such an approach could be alternative of actual transient 
gas cloud volume from varying release rates over time. The 
simulation results based on the constant release rate assump-
tion, however, cannot be the same with the results by real 
release rate at any moment, so that the total mass of gas 
released in a given time is also different. In addition, the 
selection of variables can also raise questions that related 
to why that variable should be considered and how many 
categories should be required.

6 � Future Possibility of CFD‑Based ERA

Neutral Network can robustly determine the complex non-
linear relationship between the input and output data with-
out the full understanding of the physical mechanism of the 
gas dispersion and explosion. As mentioned above, one of 
the simplifications in CFD-based ERA is to use equivalent 
cloud metrics, namely Q9, which is the most commonly used 
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in gas dispersion simulation using FLACS software. While 
inhomogeneous cloud is generated from realistic release, 
Q9 is to assume the equivalent stoichiometric gas volume 
as indicated in Fig. 8 and thereby reduces the number of 
potential explosion scenarios [97].

To provide a more accurate approach, this chapter covers 
such a limitation of CFD-based ERAs currently and pro-
vides future research trends that can increase the accuracy 
of CFD-based ERA by using ANN models. In addition, data 
visualization technologies for effectively managing a great 
amount of CFD results are proposed.

6.1 � Limitation of CFD‑Based ERA

CFD can be an effective tool to analyse the nonlinear engi-
neering issues since detailed input parameters are used, 
and the output graphics are very persuasive and seductive. 
However the results could be totally different according to 
the skilfulness of the person setting up the model and inter-
preting the results. Moreover, idealized assumptions and 
simplification for saving computational costs and time can 
raise doubts on the accuracy of the results. Especially, com-
plicated nonlinear problems like an explosion require the 

Fig. 7   Framework of typical CFD-based ERAs
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deeply understanding for mathematical model and physical 
theories, but it is impossible to reflect all variables without 
simplification in a CFD simulation.

At the present stage, CFD-based explosion models are 
useful to analyse the physics of such extreme loads, but sim-
plified assumption and approximations in numerical process 
based on the probabilistic approach are unwillingly accom-
panied in constructing a model to keep the number of simu-
lations manageable [98, 99]. For example, assumption of 

constant release rate and frozen cloud approach are normally 
assumed for simplification in gas dispersion modelling of 
CFD-based explosion analysis procedure [100]. The funda-
mental assumption for constant release rates is the flamma-
ble gas cloud volume acquired by such an approach could be 
alternative of actual transient gas cloud volume from vary-
ing release rates over time. The aim of this assumption is 
to minimize the number of scenarios as possible by giving 
similar level of explosion load as a realistic gas release.

Table 5   CFD-based ERAs in literature

References Geometry details Leak profiles Wind condition Gas cloud proper-
ties

Ignition condition The number of 
scenarios

Xu et al. [92] Topside module of 
FPSO

Stochastic sam-
pling

Probabilistic 
assumption

Equivalent cloud Immediate ignition 
& delayed igni-
tion

60

Yang et al. [91] Offshore platform 
module

Worst-case 
assumption

Worst-case 
assumption

Time-varying gas 
cloud

Delayed ignition A specific-
hypothetical 
accident 
scenario

Yang et al. [93] Offshore drilling 
platform

Worst-case 
assumption

Worst-case 
assumption

Equivalent gas 
cloud

N/A 6

Shi et al. [94] Offshore platform Stochastic sam-
pling

Sampling method Equivalent gas 
cloud

N/A 384

Li et al. [95] FLNG platform Worst-case 
assumption

Worst-case 
assumption

Equivalent gas 
cloud

Center of the gas 
cloud

N/A

Jin and Jang [88] Topside module of 
FPSO

Time-varying leak 
rate

Sampling method Equivalent gas 
cloud

Time dependant 
ignition model

50

Gupta and Chan 
[90]

FPSO process area Time-varying leak 
rate

Sampling method Time-varying gas 
cloud

Time dependant 
ignition model

240

Hansen et al. [96] Two confinement 
configurations

Worst-case 
assumption

Statistical assump-
tion

Equivalent gas 
cloud

Pre-ignition turbu-
lence

20

Fig. 8   Concept of equivalent gas cloud volume in the FLACS code
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6.2 � Application of Artificial Neural Networks 
to CFD‑Based ERA

ANNs can solve the complex nonlinear relationship between 
the input and output parameters by applying data mapping, 
regression, classification, and image processing. A variety 
types of ANNs have been applied in numerous fields, but the 
multi-layer perception (MLP) with back-propagation (BP) 
algorithm are most commonly used [101]. The BP algorithm 
performs learning on a multilayer feed-forward neural net-
work as shown in Fig. 9. It consists of three main parts, 
namely input network, one or more hidden layers, and an 
output layer. The input variables are modelled through the 
pre-connected paths by using a series of numerical weights 
and combined together into an activation function in the hid-
den layer which outputs transient values. The outputs of the 
hidden layer can be input to another hidden layer, and so on. 
As a result, those processed input variables are conveyed by 
using another series of weights and eventually combined to 
be the output [102].

The transient output value of the network is then com-
pared to the expected value, and an error signal is calculated 
for each of the output neurons. Since all the hidden layers 
can contribute to the level of errors in the output layers to 
some degree, the output error signals are delivered back-
wards from the output layer to previous neurons in the hid-
den layer directly connected to the transient outputs. Once 
the error for each neuron has been calculated, the errors are 
then used by the neurons to update the weight of each con-
nection until the network meets the condition that allows all 
the training patterns to be encoded [103].

The purpose of ANNs application is to develop the effi-
cient data management and to reduce the computational cost 
reasonably. Recently, a lot of researcher have tried to apply 
such technologies in gas dispersion or explosion analysis 

regarding typical ERA procedure as described in Table 6. 
Dennis et al. [103] used ANN consisting of two hidden lay-
ers to predict the blast impulse based on validated numerical 
modelling data. Shi et al. [104] presented Bayesian regu-
larization ANN-based simplification for gas dispersion and 
explosion part in CFD-based explosion risk analysis. This 
study used ANN model to capture real gas release state, and 
then the effectiveness and accuracy of the develop model 
for the CFD-based ERA was validated through a series of 
comparative studies.

The common purpose of such studies is to increase the 
accuracy of transient gas dispersion by incorporating ANN 
technologies into the CFD-based ERA. Although it requires 
further testing and validation with various geometries and 
operation condition of offshore facilities, such multidiscipli-
nary studies are necessary to develop a more accurate gas 
explosion model.

6.3 � Application of Data Visualization 
into CFD‑Based ERA

In an explosion simulation using a CFD method, a series of 
mathematical calculation process are required to solve the 
problematic issue and then a set of physical quantities such 
as pressure, temperature, and velocity would be captured in 
the range of simulation domain [108]. The simulator cannot 
capture target information at an infinite area, so discretiza-
tion process for simulation domain is initially required to 
define a finite set of geometric regions.

In an explosion simulation, the porosity monitoring tools 
like points and panels are distributed in such a finite region 
to capture the information of explosion wave propagation 
over a period of time. Since a range of variables with hun-
dreds of scenarios are normally used in explosion analysis, 
the size, complexity, and dimensionality of the CFD result 

Fig. 9   Example of artificial neural network consisting of key parameters
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data are immensely large [109]. Therefore, data visualiza-
tion technologies are required to acquire quick and effective 
insight into those huge datasets. Figure 10 shows a sche-
matic diagram of visualization system process for CFD 
explosion analysis results.

The input is the explosion pressure wave histories meas-
ured by porosity monitoring points in CFD simulation. The 
porosity monitoring manager is used to compute and inves-
tigate the explosion wave information. It is characterised by 
the high-dimensional data which includes position, velocity, 
and various simulation attributes such as pressure, viscos-
ity, turbulent kinetic energy, etc. Drawing graphs provide 
an intuitive overview of explosion pressure variation with 
time at each position in a simulation domain. After gain-
ing a basic understanding of the explosion pressure–time 
curve, the user can analyse input data specifically focusing 
on the dominant variables in details by using the polar his-
togram and parallel coordinates plot simultaneously. The 
polar histogram presents an intuitive visual summary of the 
explosion pressure distribution, while parallel coordinates 
plot compares the features between simulation variables to 
support exploration and analysis. Interactive glyph visu-
alization could be also employed to enrich the user-defined 
data visualization. Direct visualization, vector clustering 
with pressure contour and geometrical images can provide 
insightful information. Finally, the user can compare and 
analyse the different data visualization, so that more intuitive 
CFD-based ERA and damage analysis could be conducted.

7 � Conclusions

This paper presented a comprehensive review on the meth-
odologies of explosion risk assessment, especially focused 
on offshore industries. The explosion phenomenon and 
mechanisms of interaction with structures, damage pattern, 
explosion model approach, and the limitation of current 
methods were extensively investigated through the find-
ings of previous works. In addition, lots of relevant skills 
and theories for analysing explosion risks quantitatively 
such as probabilistic approximation, simplified assumption 
in FE analysis, and experimental methods were examined. 
As one of the most frequent analytical tools for explosion 
modelling, CFD method was especially thoroughly analysed 
by studying previous application, common limitation, and 
future possibilities.

In conclusion, this study summarized the future possibili-
ties and requirements of CFD-based ERA by proposing the 
specific application method of ANNs into the CFD-based 
ERA to provide more accurate design reference values for 
industrial facilities having potential explosion possibilities 
and recommended to employ visualization system design Ta
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tool into the CFD-based ERA for effectively analysing a 
great amount of data acquired through CFD simulations.
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