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Abstract The aim of this article is to evaluate and compare
established numerical methods of structural topology
optimization that have reached the stage of application in
industrial software. It is hoped that our text will spark off a
fruitful and constructive debate on this important topic.
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1 Introduction

Topology optimization is a relatively new but extremely
rapidly expanding research field, which has interesting
theoretical implications in mathematics, mechanics, multi-
physics and computer science, but also important practical
applications by the manufacturing (in particular, car and
aerospace) industries, and is likely to have a significant role
in micro- and nanotechnologies. At the recent ISSMO
World Congress (WCSMO 7, 2007, Seoul), more than 160
papers discussed topology optimization (out of some 400
submitted papers).

The first paper on topology optimization was published
over a century ago by the versatile Australian inventor
Michell (1904), who derived optimality criteria for the least-

weight layout of trusses. Some 70 years later, the author and
his research group extended Michell’s theory to grillages
(beam systems) in a number of papers (starting with
Rozvany 1972a and b). Based on these applications, Prager
and Rozvany (e. g. 1977, presented in Gainesville in 1976)
formulated the first general theory of topology optimization,
termed “optimal layout theory” (for a review, see Rozvany
1993 or Rozvany et al. 1995). They applied this primarily to
exact analytical optimization of grid-type structures, but it
has also important implications for numerical methods and
continuum-type structures. A number of papers deal with
extensions of this theory, the most recent ones discussing
exact solutions of popular benchmark problems (e.g.,
Lewinski and Rozvany 2007, 2008a and b).

Starting with the landmark paper of Bendsoe and Kikuchi
(1988), numerical methods for topology optimization have
been investigated extensively since the late 1980s. As
explained in a review article (Rozvany 2001a), in numerical
finite element (FE)-based optimization, we may deal with
various types of topologies involving possibly several
materials that may be isotropic, anisotropic, and/or porous.
For simplicity, here we restrict our attention to so-called
ISE topologies with Isotropic Solid or Empty ground
elements of fixed boundaries. In other words, any “ground
element” of an ISE topology is either filled completely by a
given isotropic material or contains no material. Each
ground element may consist of one or several finite
elements.

In the following, two methods of numerical topology
optimization, namely SIMP and ESO (SERA) will be
discussed in detail (see Sections 3 and 4), although the
latter has been used only in isolated cases by the industry.

Topological derivative-based and level-set methods (e.g.,
Sokolowski and Zochowski 1999; Sethian and Wiegman
2000; Allaire et al. 2002, 2004; Wang et al. 2003, 2004,
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ranging to Norato et al. 2007) show tremendous promise,
but have not reached the stage of regular industrial
applications as yet. Non-gradient methods have also been
proposed for topology optimization. The disadvantage of
genetic algorithms for topology optimization (e.g., Hajela
and Lee 1995) is that they become prohibitively expensive
for large systems (with 104 to 106 ground elements).

2 The SIMP method

The presently most popular numerical FE-based topology
optimization method is the SIMP method, which was
developed in the late eighties. It is sometimes called
“material interpolation”, “artificial material”, “power law”,
or “density” method, but “SIMP” is now used fairly
universally. The term “SIMP” stands for Solid Isotropic
Microstructure (or Material) with Penalization for interme-
diate densities. The basic idea of this approach was proposed
by Bendsoe (1989), while the term “SIMP” was coined later
by the author and first introduced in a paper by Rozvany
et al. (1992).

2.1 Basic concept of SIMP

In practical problems of ISE type topology optimization, we
usually have a very large number of ground elements.
Because of the size of this discrete value (0–1) problem,
direct search methods would be prohibitively expensive,
and it is therefore advisable to use a continuous variable
formulation. Considering, for example, topology optimization
of a perforated plate in plane stress, we may denote the
thickness of the plate by ρ, which could also represent density
or specific cost in other topology problems. If we optimized
a variable thickness plate for compliance or displacement
constraints, for example, the normalized stiffness (s)–plate
thickness (ρ) relation becomes

r ¼ s ð1Þ
which is shown in continuous line in Fig. 1. The plate
thickness is normalized (scaled) by dividing over the actual
plate thicknesses rð Þ by the prescribed maximum plate
thickness (ρ0), giving ρ ¼ ρ=ρ0. Similarly, the normalized
stiffness equals the actual stiffness divided over by the
stiffness corresponding to the prescribed maximum thickness.
Then, empty (white) and solid (black) elements, respectively,
will have ρ=0 and ρ=1.

However, optimal solutions based on relation (1) for
compliance or displacement problems would consist of
mostly “grey” elements with 0<ρ<1. Such a result would
be very far from a (0–1) solution required in topology
optimization, and therefore, it would not help much with the
considered problem class. Nearly “black-and-white” topolo-

gies can be obtained, however, if we penalize grey elements
having “intermediate” densities of 0<ρ<1. For this, various
functions can be used, but one of the simplest is the so-called
power law proposed by Bendsoe (1989), with

ρ ¼ s1=p p > 1ð Þ; ð2Þ
see the dash-dot line in Fig. 1.
Alternative methods for suppressing intermediate densities

were proposed by Stolpe and Svanberg (2001), Fuchs et al.
(2005), and Sigmund (2007).

2.2 Rationale for or physical modeling of the SIMP method

To justify the relation in (2), we may employ physical or
computational arguments. Physical justifications in the past
were based on either (a) taking fictitious manufacturing
costs for intermediate thicknesses into consideration (e.g.,
Rozvany and Zhou 1991, presented in 1990; Zhou and
Rozvany 1991) or (b) non-homogeneous plate elements of
a suitable microstructure (Bendsoe and Sigmund 1999).

In case (a) above, ρ in Fig. 1 denotes the specific cost
(cost per unit area) of the plate, including manufacturing
costs, details of which are reviewed in a paper by Rozvany
(2001a). The optimization problem consists of minimizing
the total cost for a given compliance or vice versa. A
conceptual difficulty may arise from the fact that we are
switching from the usual volume or weight minimization to
cost minimization. On the other hand, in case (b), we can
justify (2) only within certain bounds on the p values.

Computational justification does not need a physical
model, penalization being a standard technique of discrete
value optimization.

Fig. 1 Normalized stiffness (s)–specific cost or density (ρ) relations
in topology optimization methods (after Rozvany et al. 1994)
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2.3 SIMP vs other gradient-type methods

As explained in a review article (Rozvany 2001a), mainly
the author’s research group explored the details of the
SIMP method during the nineties because others concen-
trated on homogenization methods, such as optimal micro-
structures with penalization (OMP; e.g., Allaire and Kohn
1993b; Allaire 2002) or near-optimal microstructure (NOM;
e.g., Bendsoe and Kikuchi 1988; Bendsoe et al. 1993). The
latter used optimized square or rectangular holes and
homogenization. It took some time for the author’s research
school to convince the optimization community that both
these methods are somewhat uneconomical, without
significant advantages. Moreover, the NOM method may
lead to some grey elements due to insufficient penaliza-
tion (see the dotted line for square holes in Fig. 1).
Optimal microstructures would give too weak penalization
(dash-line in Fig. 1) without adding extra penalty in a
second stage of the computation. Both OMP and NOM
methods use several variables per ground element, while
SIMP uses only one. In addition, SIMP requires no
homogenization. However, at the early stages of the history
of topology optimization, OMP and NOM methods
represented a significant progress in this field, and their
exploration was therefore justified. A great advantage of the
OMP method is that its side-product is a solution with
optimal microstructures (e.g., Jog et al. 1994), which gives
a useful insight into optimal topologies.

2.4 Brief history of the SIMP method

The idea of FE-based topology optimization is due to
Rossow and Taylor (1973) who used the unpenalized
relation (1) (continuous line in Fig. 1) and therefore
obtained solutions with intermediate thicknesses (“grey”
elements). In a pioneering publication, Bendsoe and
Kikuchi (1988) suggested homogenization based on square
or rectangular holes, which also produced some degree of
penalization (dotted line in Fig. 1). A year later Bendsoe, in
another milestone paper, considered a SIMP-like method
based on the power law relation in (2), but expressed as yet
preference for homogenization with square holes. This he
justified by referring to mesh dependence and fictitiousness
of material properties represented by (2) above, which was
quite reasonable from his viewpoint. Mlejnek (e.g., 1992)
proposed later an independently conceived SIMP-like
procedure. Some outstanding homogenization papers dis-
cussed applications to multiple loading (Diaz and Bendsoe
1992), eigenvalue problems (Diaz and Kikuchi 1992), and
3D continua under single and multiple loads (Diaz and
Lipton 1997, 2000).

As mentioned, the author and Zhou based the relation (2)
on combined cost of material and manufacturing, assuming

that only one plate thickness is available originally, and
other thicknesses must be obtained by an expensive
machining process. Zhou developed the full computational
details of the SIMP method, with suitable redesign
formulae for thicknesses (densities) and Lagrange multi-
pliers (for a detailed review, see Gaspar et al. 2002). At a
Karlsruhe conference in 1990, Zhou and the author
presented already advanced solutions (Rozvany and Zhou
1991, 1993; Zhou and Rozvany 1991), one of which is
reproduced (once more) in Fig. 2a. The corresponding
analytical solution is shown in Fig. 2b (Lewinski et al.
1994). A lower resolution solution for this problem was
obtained via homogenization by Olhoff et al. (1991).

Zhou and the author initially applied the DCOC optimality
criteria method (Zhou and Rozvany 1992/1993) to solve the
optimization problem under SIMP formulation. While
DCOC offers unique capability in the handling of stress
constraints, general optimization codes such as CONLIN and
MMA (Fleury 1989; Svanberg 1987) based on dual method
of convex programming offer robust black-box solutions to
a general multiply constrained optimization problem. In
fact, due to its public availability, Svanberg’s MMA code
has almost become a standard tool within the topology
optimization community.

SIMP was gradually accepted by other topology groups
as well, particularly after Sigmund, who started working in
the author’s research group in Essen on topology optimiza-
tion, moved back to Denmark and contributed much to
explaining SIMP to the optimization community. Sigmund’s
(2001a) educational article with a 99-line SIMP-code and his
web-based topology optimization program (Tcherniak and
Sigmund 2001) played an important role in SIMP’s general
acceptance. Sigmund’s versatile applications of SIMP,
amongst many others, included compliant mechanisms
(e.g., Sigmund 1997), geometrically nonlinear structures

Fig. 2 a A very early SIMP solution for the “MBB beam”, presented
in 1990 (Rozvany and Zhou 1991). b The corresponding exact
analytical truss solution (Lewinski et al. 1994)
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(Buhl et al. 2000), multi-physics actuators (Sigmund 2001b),
photonic crystal structures (Jensen and Sigmund 2004,
2005), and phononic band gap materials (Sigmund and
Jensen 2003). As mentioned, Bendsoe and Sigmund (1999)
also generated microstructures corresponding to the power
law in (2) above.

Olhoff has also been extremely active in applying SIMP
to reliability-based problems (Kharmanda and Olhoff 2004),
vibrating continua (Olhoff and Du 2006; Du and Olhoff
2007a and b), and design-dependent loads (Hammer and
Olhoff 1999, 2000; Du and Olhoff 2004a and b). Maute
extended topology optimization to shells and elastoplastic
structures (Maute and Ramm 1997, 1998; Maute et al. 1998).

The complete acceptance of SIMP can be seen also from
the fact that the second edition of Bendsoe’s trendsetting
book (Bendsoe and Sigmund 2003) uses almost exclusively
SIMP for its main part (on what we call here ISE
topologies), while its earlier edition (Bendsoe 1995)
mentioned the “penalized variable thickness approach”
only in one sentence under “Biographical notes” (p. 230).

Topology optimization has become increasingly popular
in a wide range of industries including automotive,
aerospace, heavy industry, etc. partly because of development
and promotion through commercial FEA software (e.g.,
OptiStruct, Genesis, MSC/Nastran, Ansys, Tosca, etc.). To
the knowledge of the author, all software have implemented
the SIMP method, except Tosca that used an ESO type
method. Recent publications (e.g., Pedersen and Allinger
2006) indicate that Tosca has also started to adopt the SIMP
approach combined with MMA (Svanberg 1987).

2.5 Is SIMP really a heuristic method?

Many researchers outside the topology field seem to believe
that SIMP and ESO are equally heuristic methods, and
therefore, it is only a question of luck if we get the correct
solution by either of them. This author strongly disagrees
with this view for the following reasons.

Taking the formulation of SIMP on the basis of fictitious
manufacturing costs for intermediate densities, for example,
we have a physical problem, even if the assumed cost
structure may not possibly correspond to true manufacturing
costs. For this real problem, we have derived rigorously
redesign formulae based on sensitivities. In optimality criteria
(OC) methods, formulae for element densities and Lagrange
multipliers are available for combinations of various (stress,
displacement, natural frequency, stability, etc.) constraints.
The method does not become more heuristic either if we use
some rigorously derived nonlinear programming method (e.g.,
MMA, see Svanberg 1987, or CONLIN, see Fleury 1989) for
the considered physical problem.

With the above penalization, even originally convex
problems (e.g., minimization of compliance for given

volume) become non-convex, and therefore, it is theoreti-
cally possible to finish up in a local optimum. However,
from the very beginning, the author’s team used an
unpenalized problem (p=1) in the first computational cycle,
increasing the penalization factor (p) progressively in small
steps in subsequent cycles. This procedure was first
described in a book chapter (Rozvany et al. 1994) where
R. V. Kohn was thanked for the idea. Later, this technique
was called by others “continuation method” (e.g., Petersson
and Sigmund 1998). This way, for originally convex
problems, we get a global optimum for p=1, and later,
grey regions change locally into black-and-white regions of
the same average density, and thereby, we do not move
away too far from the global optimum. At least, this is
found by comparisons with exact analytical solutions for
the same problem.

In practice, all real-world engineering problems are non-
convex, and hence, an optimization process typically leads
to a local optimum. This feature does not render the entire
field of structural optimization ‘heuristic’.

The so-called “continuation method” itself may be
classed heuristic, but it only determines the initial design
for each subsequent iteration for an increased p value. The
actual optimization procedure is based on rigorously
derived sensitivities.

From the very start, a serious problem with SIMP was
the erroneous appearance of corner contacts between solid
ground elements in the solution (checkerboards, diagonal
element chains, isolated hinges). This problem was first
noticed in connection with homogenization methods
(Bendsoe et al. 1993, see also a review in Bendsoe
1995). A highly efficient but partially heuristic solution to
this problem, the filtering method, was suggested by
Sigmund (1994, 2001a), see also Diaz and Sigmund
(1995); for comprehensive reviews of filtering methods,
see Sigmund and Petersson (1998) and Sigmund (2007).
We must understand that checkerboarding is merely a
discretization error of the FE method, which has nothing
to do with SIMP. This error results in an overestimation of
the stiffness, if for example, each ground element consist
of a single four-node FE and solid (material-filled)
elements have only a corner contact. If the computer time
is not a primary consideration (e.g. in some basic research
projects), then checkerboarding can be controlled without
heuristics, if e.g. we use higher order elements (Sigmund
and Petersson 1998) or more FEs per ground element
(Zhou and Rozvany 1991). Rigorously derived sensitivi-
ties are used also, if we employ a checkerboard prohibiting
constraint (Poulsen 2002), perimeter constraint (Haber et
al. 1996), slope constraints (Petersson and Sigmund 1998),
adaptive side constraints (Zhou et al. 2001), or penaliza-
tion for corner contacts (COSIMP, Rozvany et al. 2004;
Pomezanszki et al. 2005).

G.I.N. Rozvany



2.6 The concept of “extended optimality”

We are discussing extended optimality here briefly because
an equivalent objective function was proposed for ESO by
Ling and Steven (2002) under the term “performance
index”. This was also used by Edwards et al. (2007) and
in an attempt to justify ESO by Tanskanen (2002), see
Sections 3 and 12.

The above concept was explained in a paper by Rozvany
et al. (2002a), see also an erratum (Rozvany et al. 2005b).
Considering, for example, a perforated plate in plane stress,
traditional topology optimization may consider minimization
of the compliance for a given limit on material volume (or on
volume fraction) or minimization of the volume for a given
limiting compliance value. In both problems, the uniform
plate thickness is restricted to a given value.

Considering “extended optimality” (Rozvany et al.
2002a), neither the uniform plate thickness nor the volume
fraction is fixed, and we minimize the total volume (weight)
for given constraints on the response variables (the simplest
being compliance). In other words, in extended topology
optimization, we optimize the plate thickness and topology
simultaneously. As explained in the above paper, this is a
much wider problem than traditional topology optimization,
and it may give entirely different results. For perforated
plates in plane stress, an equivalent problem is minimization
of the product (C.V) of the compliance C and the material
volume V (see Rozvany et al. 2002a, 2005b) for variable
uniform plate thickness and variable volume fraction.

The implications of extended optimality and a case study
are presented in a separate brief note (Rozvany 2008),
which shows that an extended optimum can be very much
different from, and much more economical than, the
conventional one for perforated plates. The above brief
note is based on previous basic findings by Kohn and
Strang 1986; Lurie and Cherkaev 1986; and Rozvany et al.
1985, 1987).

2.7 Numerical verification of solutions obtained
by the SIMP method

The author has repeatedly expressed concern about the lack
of “quality control” in topology optimization (Rozvany
et al. 2005a, 2006a and b). His method of verifying
numerical solutions in topology optimization is based on
the fact that the optimal topology of perforated plates in
plane stress under a compliance constraint tends to that for
plane trusses, if the volume fraction of the plate approaches
zero (Rozvany et al. 1985, 1987; Bendsoe and Haber 1993;
Allaire and Kohn 1993a; Rozvany 2008). Most of the
authors in numerical topology optimization simply compare
their solutions visually with the exact optimal truss
topology and are satisfied with a vague resemblance. This

is a very subjective method for verifying topology
optimization methods and solutions.

To enable a reliable check on numerical solutions in
topology optimization, Lewinski and the author are deriving
analytically a series of exact truss topologies for popular
benchmark problems (Rozvany 1998; Lewinski and Rozvany
2007, 2008a and b). The actual verification of a solution
consists of the following procedure (Rozvany et al. 2005a, b,
2006a and b).

(a) For a given set of response (or behavioural) constraints,
derive numerically the optimal topology for various
volume fractions and various numbers of elements.

(b) Calculate the structural volume (weight) for each solution.
(c) Extrapolate the volume (weight) value for zero volume

fraction and infinite number of elements.
(d) Compare this extrapolated value with that calculated

analytically for the exact benchmarks.

For compliance constraints, the abovemethod reduces to the
one represented graphically in Fig. 3. In the latter, we indicate
that the “efficiency” of a topology should tend to unity as
we decrease the volume fraction and increase the number of
elements. In Fig. 3, C = compliance of a numerical solution,
CM = compliance of Michell truss, E ¼ CMVM=CV =
efficiency of a numerical solution, F = volume fraction, N =
element number, V = structural volume of a numerical
solution, and VM = structural volume of Michell truss.

As can be seen from the next section, certain numerical
difficulties had to be overcome (Rozvany et al. 2006a), but
the above procedure gives a quantitative confirmation of
SIMP solutions.

2.8 Quality control in topology optimization: difficulties
and how to overcome them

The procedure outlined in Section 2.7 (Fig. 3) may
encounter computational difficulties. In this section, we
explain how to handle these pitfalls.

(a) Mesh-independent methods
Mesh independence for methods of checkerboard control is

a mixed blessing because it prevents getting higher resolution
solutions with mesh refinement. This means that in Fig. 3, we
get stuck on the lowest curve (marked “N lower”) and cannot
get onto the higher curves. It follows that we cannot
extrapolate to get an estimate for an infinitely dense system.
The solution is simple: not to use mesh independent methods
in the proposed procedure. For getting increasing resolution
and checkerboard control, we may use, e.g., higher order
elements or several FEs per ground element. In quality
control, computer time is of secondary importance because
we check on the efficiency of a particular method relatively
infrequently.

A critical review of established methods of structural topology optimization



This is in contrast to industrial applications where
computer time is of primary consideration. Manufacturability
is of course important in practice and may justify low
resolution solutions, but high-resolution solutions will be
increasingly important with high-tech manufacturing meth-
ods, mass production, and micro/nanotechnology. Of course,
the author agrees with Sigmund (2007) that one could get a
series of solutions of different resolutions with mesh-
independent filters, decreasing the filter radius progressively.

(b) Erroneously higher stiffness for coarser meshes
It was found in earlier studies (e.g., Rozvany et al. 2005a,

b) that contrary to the theoretical trends in Fig. 3, the
“efficiency” decreased with element refinement in numerical
experiments using SIMP. As it was realized later, this was
because the number of FEs and the number of ground
elements were increased simultaneously, keeping the number
of FEs per ground element constant (e.g., 4). The coarser net
of larger size elements increased the discretization error,
erroneously increasing the stiffness and decreasing the
compliance (even without corner contacts in the solution).
This phenomenon is well known from the finite element
literature.

The above problem was overcome in improved experi-
ments (e.g., Rozvany et al. 2006a and b) in which the total
number of FEs was kept constant in all calculations, but the
number of ground elements was progressively increased
(i.e., the number of FEs per ground element decreased).
After this essential correction, the expected trend was
observed.

(c) Sudden drop of the efficiency curve at low volume
fractions

It was also found that the efficiency curves in Fig. 3.
suddenly drop (take on very low values) at low volume

fractions. This is because for a given number of ground
elements, a very low volume fraction allows too few
“black” elements for an efficient load transmission. In
Michell’s “bicycle wheel problem”, for example, a low
volume fraction would allow only too few “spokes” in the
solution, resulting in a less efficient layout causing higher
compliance values (see Rozvany et al. 2003). At even lower
volume fraction, the allowed number of elements is
insufficient for transmitting the prescribed loads at all, and
the compliance value goes to infinity (only theoretically, in
practice we use a very low finite thickness for “white”
elements).

The solution to the above difficulty is to ignore
systematically designs with such “forced” incorrect topol-
ogies when we extrapolate for near-zero volume fraction
and near-infinite FE number (see Rozvany et al. 2006b).

(d) Poisson’s ratio
In Michell structures, the members are in uniaxial

stress, and the volume of member intersections is negligible.
For this reason, we have found that we get the best
convergence to the corresponding Michell truss if we use
zero Poisson’s ratio for the perforated plate in the proposed
quality test.

(e) The choice of the test problem
It is shown in a brief note (Rozvany 2008) that in

some cases, the Michell truss (with a near-zero volume
fraction) gives a much higher value for the objective
function C.V than perforated plate solutions for other
volume fractions. In such benchmark problems, the
efficiency curves in Fig. 3 approach the line with E=1
from above. However, it is preferable to select benchmark
problems for which a Michell truss corresponds to the
extended optimum.

Fig. 3 Quantitative verification
of a numerical topology
solution by using exact truss
topologies as benchmarks
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2.9 The role of tuning parameters in topology optimization

In many topology optimization papers, particularly in
those on heuristic methods, the results depend largely on
the value of certain arbitrarily chosen constants termed
“tuning parameters”. The problem is that authors must
often experiment with lots of tuning parameter values
before they get a reasonably looking solution, and they
do not state this in their research papers. Sometimes,
they do not even list the tuning parameter values used,
and therefore, their results are not replicable. For any
respectable quantitative verification of the results, all the
above information should be fully reported in the
literature.

Undoubtedly, the optimal topologies obtained by SIMP
also depend on the value of certain parameters, but this can
be fully justified for the reasons explained below. As an
example, we usually set the following values in OC-based
SIMP programs:

(a) initial value of p;
(b) steps in the p value;
(c) simultaneous convergence criteria for stepping up the

p value, such as

1. prescribed highest number of ground elements
changing from active to passive or vice versa,

2. prescribed highest change in total volume or
weight,

3. prescribed highest change in the thickness or
density of any one ground element.

In the above SIMP application, broadly speaking, we
increase the accuracy of the results if the initial p value is
closer to unity (it should be preferably unity), and the
other values listed above are made smaller. On the other
hand, greater accuracy is costing more computer time. For
this reason, the selection of the tuning parameters actually
decides how much extra computer time we want to invest
for greater accuracy of the results. They are, therefore, not
as much “tuning parameters”, but rather “accuracy
parameters”.

In many heuristic methods, we get quite absurd results
if the tuning parameters are not set optimally, and
therefore, the method may lead to entirely non-optimal
solutions.

In OC-based SIMP programs, we usually also employ
step-size parameters, multiplying the calculated element
thickness variation by a constant (e.g., 0.6) and limiting the
maximum thickness variation of elements. This again
represents a trade-off between computer time and stability
of convergence. We are getting more stable convergence at
the price of extra computer time if we decrease the above
“step size parameters”.

3 The ESO (or SERA) method

So-called “hard-kill” methods introduce finite changes in a
design on the basis of certain heuristic criteria, which may
not be based on sensitivities. One of these is inappropriately
called “ESO” (Evolutionary Structural Optimization) be-
cause “evolutionary” usually refers to Darwinian processes
(as in genetic algorithms) and “optimization” implies
computation of a truly optimal solution, which has been
shown not to be the case with ESO. An appropriate term for
this method would be “SERA” (Sequential Element
Rejections and Admissions), suggested by the author (e.
g., Rozvany and Querin 2002a, b). In “ESO”, a certain
parameter value (we call it here “criterion function”, e.g.,
Mises stress or energy density) is calculated for each
element, and in each iteration some element(s) with the
lowest criterion function value are eliminated (changed
from material-filled “black” elements to empty “white”
elements). In the so-called “BESO” (bi-directional ESO, e.g.,
Yang et al. 1998) method, new elements are added in
locations next to those elements with a high criterion
function value.

In more recent versions of ESO (e.g., Ling and Steven
2002; Edwards et al. 2006, 2007), a two-stage procedure is
used for improving the results of ESO. After deriving a
large number of solutions by the usual ESO method, the
value of a “performance index” or “objective function” is
calculated for each solution, and then the “global optimum”
with the highest (or lowest) value of the performance index
(or objective function) is found by enumeration (i.e.,
numerical comparison).

Although ideas similar to ESO were presented earlier by
Schnack (e.g. Schnack et al. 1988) and by Mattheck (e.g.
Mattheck and Burkhardt 1990), the literature on ESO is
most extensive, with well over hundred publications
(starting with Xie and Steven 1992, including a book, Xie
and Steven 1997), a publicity that probably exceeds the
merits of this method. In fact, the Xie and Steven 1992
paper is one of the most cited papers on structural
optimization in Google Scholar (no doubt, most of the
non-critical citations by the ESO group).

3.1 Usual criticisms of ESO

Most critics of ESO mention the following shortcomings.

(a) ESO is fully heuristic, that is, there exists no rigorous
proof that element eliminations or admissions on the
above basis do give an optimal solution. It will be
explained in Section 12 that Tanskanen’s (2002)
paper does not justify ESO’s computational procedure
either.
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(b) There may not be any rational relation between the
above “criterion function” and the “performance
index” or “objective function”.

(c) It is not particularly efficient if we have to select the best
solution by comparison out of a very large number of
intuitively generated solutions (enumeration method).

(d) Although ESO usually requires a much greater
number of iterations than gradient-type methods, it
may yield an entirely non-optimal solution even with
respect to ESO’s objective function (see Zhou and
Rozvany 2001).

(e) In the above two-stage procedure, we have no control
over the final volume fraction, we just have to accept
the one given by ESO. If we do pre-assign a volume
fraction, then we may finish up with a highly non-
optimal value of the objective function.

(f) The ESO procedure cannot be easily extended to other
constraints, or to multi-load, multi-constraint problems.
This was also remarked by Tanskanen (2002, p 5495).

3.2 Example showing complete breakdown of ESO

In a very brief note, Zhou and Rozvany (2001) verified
criticism (d) above on a simple example shown in Fig. 4a.
This indicates a ground structure with volume fraction of
100%, having a compliance value of C=388.5. They
showed that ESO removes element “a” from the above

ground structure, giving the design in Fig. 4b with volume
fraction of 99%, but a huge compliance value of C=4,371.
To demonstrate how non-optimal this design is, they
calculated that if element “c” in Fig. 4a were to be
removed, then the compliance would increase insignificantly
to 396. ESO gives 11 times as much increase by removing
element “a”.

They also compared the ESO design in Fig. 4b with an
intuitive design in Fig. 4c, which has a low volume fraction
of 40%, but a compliance value of only C=1,121. Even if
we accept an “objective function” of volume fraction times
compliance (V.C), we have V.C=432,729 for the ESO
design and only V.C=44,840 for the intuitive design. The
latter is a mere upper bound on the true optimum, which
may have an even lower objective function value than that
of the intuitive design. We can conclude that ESO gives
about ten times higher “objective function” value than the
true optimum.

Moreover, if we employ BESO for adding elements to
the structure in Fig. 4b, we find that the new element would
be the one shown in broken line at the bottom left corner
because the element “b” (Fig. 4a) has the highest stress or
energy density value after the removal of element “a”. This
means that BESO fails to correct the disastrous mistake in
the first iteration of ESO.

Zhou and Rozvany (2001) proposed the solution in
Fig. 4c as an intuitively good design, but in retrospect, this
design seems to be very near optimal for a volume fraction
of 40%. This is because in the solution in Fig. 4c, the four
elements in contact with the external load cannot be
removed, and moving any other element would either (a)
break the horizontal or the vertical member or (b) introduce
load transmission by corner contact (checkerboard) only,
both of which produce a very high compliance value if a
more accurate FE analysis is used. For the more accurate
analysis of topologies with corner contacts, see Rozvany
et al. (2002b, 2003), and Pomezanski et al. (2005).

In a very interesting paper, Stolpe and Bendsoe (2007)
generated global optima for the considered problem by both
a nonlinear branch and cut method and by simple
enumeration. The compliance value for their global
optimum for a volume fraction of 40% is a little lower
than that for the “intuitive” solution in Fig. 4c, but the latter
assumed that no checkerboarding or removal of loaded
elements is permitted.

4 Attempts to defend ESO from the above criticisms

Unquestionably, any discussion on the above issue is very
useful for the topology community, and therefore, any
attempted rebuttal of the criticisms under Sections 3.1 and
3.2 are of considerable interest. Such discussions may lead

Fig. 4 The example in a brief note by Zhou and Rozvany (2001). a
Problem statement, b highly non-optimal solution for a volume
fraction of 99% by the ESO method, c intuitively “good” design for a
volume fraction of 40%
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to great improvements of ESO (SERA) by joint research
efforts from both sides.

Counter-arguments about the above criticisms, and also
suggestions for improving ESO (SERA), have appeared in
the literature. Out of these, we will examine the three best
ones by the ESO group (Edwards et. al. 2006, 2007; Huang
and Xie 2007; Tanskanen 2002) and those by the author
and Querin (e.g., Rozvany and Querin 2002a and b, 2004).

5 First version of paper by Edwards et al. (2006)

This text was originally presented at (and published in the
proceedings of) a very large US (AIAA/ASME/ASCE/
AHS/ASC) meeting in 2006. Its modified version was
published in the journal Structural and Multidisciplinary
Optimization. First, we discuss here the conference version
in detail because it has probably been exposed to more
readers/participants than the journal version ever will be.

The considered paper is rather useful because it may
open up a constructive debate about ESO. As will be seen,
in its conference form, it rather confirms the shortcomings
listed under Section 3.1, but its authors may express a
different opinion. Here, we list some implications for both
ESO and SIMP based on the evidence arising from this
earlier version.

5.1 Implications of the considered paper for ESO

(A) The objective function is the normalized standard
deviation of the element Mises stresses from the fully

stressed design. This may not make much sense because
fully stressed designs are often not optimal. This was
pointed out by Save and Prager (1985) who called
fully stressed design criteria “questionable optimality
criteria”, referring to some results by Chern and Prager
(1972). Similar conclusions were reached by Haftka
and Gürdal (1992), Section 9.1.1 and Rozvany
(2001b).

(B) The above objective function cannot be used for other
types of constraints, whilst SIMP formulations are
available for any combination of a wide range of
constraints. Mises stress would be an entirely inap-
propriate criterion, e.g., for a displacement constraint.

(C) As mentioned above, it is not very efficient to generate
heuristically a very large number of solutions and then
picking the one with the lowest objective function
value (enumeration).

(D) The ESO examples require a very high iteration
number (e.g. 1400), much higher than the SIMP
examples in the same paper.

(E) The plots of the objective function values jump all over
the place (Fig. 5), with sharp local minima (points d, e,
f). This is nothing like the monotonic convergence of
SIMP (Fig. 6).

6 Implications of the considered paper for SIMP

1. Iteration history is usually monotonic (Fig. 6). Note that
in this diagram, the broken line (penalized compliance)

Fig. 5 Variation of the objective
function for the ESO
method (after Edwards
et al. 2006)
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is the objective function. The unpenalized compliance
increases because penalization forces black-and-white
solutions, which are less efficient than grey solutions.

2. Optimal solution is at the end of the iterative procedure.
3. Low iteration number.
4. It does not follow from the paper that SIMP generates

non-optimal solutions (see also par. 6 below).
5. The paper uses a heuristic method for checkerboard

control, which may cause anomalies in SIMP solutions.
6. For the penalty factor in SIMP, the authors used a

constant value of 4, which is more likely to give a non-
global (local) minimum than the “continuation method”
(i.e., increasing its value of p gradually from unity).

7 Note by Huang and Xie (2007)

This is a most reasonable communication. In fact, the author
hopes to do some collaborative work with the writers of this
note in the future. Three possible methods are proposed for
eliminating the problem outlined by Zhou and Rozvany (2001).

1. Preventing changes in support conditions by “freezing”
elements next to supports. Thewriters of the note correctly
point out that this can cause computational complications.
This author could easily produce an example with many
possible supports, some of which are obviously uneco-
nomical to use. The very aim of topology optimization for
multi-support problems is to select by computer the
supports that are economical to use, and this is not
possible if we freeze all elements at supports.

2. Replacing removed elements with low density ele-
ments, which may be recovered in the next cycle. This

method was actually proposed by Rozvany and Querin
(e.g. 2001, 2002a and b, 2004) under “virtual material”
approach (see also Section 11.1). Oscillation can be
avoided by indeed freezing those elements that have
been reinstated by the virtual material approach.

3. Mesh refinement. This is discussed in Section 9.

8 Second version of paper by Edwards et al.
(2007)—remaining deficiencies

Possibly following suggestions of the reviewers, the authors
have revised their paper significantly. For example, the
somewhat sweeping title of the conference paper “Investi-
gation on (sic) the validity of topology optimization
methods” has been toned down to “An evaluative study
on ESO and SIMP for optimizing a cantilever tie-beam”,
which is more factual. The previously used unrealistic
objective function (normalized standard deviation of the
Mises stress field) has been replaced with the product of the
compliance and volume. Instead of using a constant penalty
factor of p=4 (which is likely to give the wrong local
optimum), the “continuation method” of gradually increasing
the penalty factor was employed. However, a number of
fundamental weaknesses remained in the paper.

8.1 Mixing up the results of two distinctly different
problems

In addition to considering the problem in Fig. 4a of this
paper, the above authors considered also a different
problem in which the previous ground structure is embed-

Fig. 6 Variation of the objective
function (broken line) for the
SIMP algorithm (after Edwards
et al. 2006)
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ded into a larger rectangular ground structure with 224
elements (instead of 100, see Fig. 4 of Edwards et al. 2007).
This is not a different initial design, but an entirely different
problem, and as expected, the optimal ESO topology for
101 elements even contains elements outside the ground
structure of the original problem (see top right four
elements in Fig. 5 of Edwards et al. 2007). It is well
known that both in SIMP and in ESO, the “initial design”
consists of the entire ground structure with only “black”
elements or (in SIMP) uniformly grey elements. It follows
that in this case, not the initial designs are different, but we
are considering two entirely different problems (a frequent
error in evaluative studies), the optimal design for the
second one even containing elements outside the design
domain of the first problem. However, the ESO CV history
of the second problem also crashes at the 99th iteration
(Fig. 6, Edwards et al. 2007), so the introduction of a
different problem only delays the breakdown of ESO.

8.2 ESO producing only insignificant improvements
of their objective function (C.V )

For the ground structure in Fig. 4a, we have C.V=38,850
(38,986 according to Edwards et al.). The ESO runs in
Table 1 in Edwards et al. (2007) give final results of C.V=
39,997, 38,671, 41,699, 41,469. Even if we accept the
value of 38.986 for the ground structure, this means an
improvement of only 0.8% for one solution and a
worsening of the objective function in the other three
ESO solutions. In fact, the average final objective function
for the four solution is 40,456, almost 4% higher than that
of the initial design. Is this optimization?

8.3 ESO’s highly inefficient and somewhat irrational
optimization procedure

Gradient methods try to improve the solution in each it-
eration, and the required (possibly local) optimum is
obtained with the last iteration when conditions for
optimality (the Kuhn–Tucker conditions) are satisfied.
ESO does not use such a condition for evaluation. It first
generates by a fully heuristic procedure a very large number
of solutions (e.g., 1,600 solutions in Fig. 13, Edwards et al.
2007). One would hope that the optimal solution is found
after all this effort. But no, this set of solutions must be
searched through to find the best objective function value
from it. The authors call this solution “global minimum”,
but it is certainly not the global minimum in the accepted
sense of this term.

It is surprising that Tanskanen (2002, p 5487) claims that
ESO requires relatively little FEA time. The example in
Fig. 13 required 1,600 analyses for a small system; SIMP
can converge with a fraction of this iteration number.

8.4 ESO may produce highly non-optimal solutions
and there is no proof that any of its solutions are optimal

The Zhou and Rozvany (2001) note showed that ESO may
fail completely. It will be explained in Section 9 that mesh
refinement is no remedy against ESO’s breakdown. Al-
though both Tanskanen (2002, p 5487) and Edwards et al.
(2007) try to verify ESO by claiming that comparisons with
Michell structures are “quite promising”, one must point out
that no quantitative comparisons have been carried out for
ESO (they have been for SIMP, see Section 2.7). A vague
subjective resemblance is no proof, Michell’s problem being
a convex one, for which even the crudest methods produce
some similarity to the corresponding Michell layout.

8.5 Comparison of objective function values for ESO
and SIMP are meaningless because they use different
objective functions

As the objective function for SIMP is either compliance (C )
or volume (V ), and for ESO it is C.V, they aim at different
objectives and produce different results. A comparison of the
numerical results for these is similar to a fictitious car rally in
which one car goes for speed and the other one tries to
minimize fuel consumption. It is shown in a separate note
(Rozvany 2008) that compliance minimization and that of
C.V produce quite different optimal solutions.

8.6 Chaotic convergence histories for ESO

It can be seen from Fig. 7a that the objective function
history for ESO jumps around quite irregularly, lacking any
sign of convergence. The monotonic volume curve (broken
line) should not mislead the reader; the ESO program
enforces volume reduction in each iteration by taking out
some element(s).

In the objective function history of SIMP (Fig. 7b), the
penalized volume value (top curve) naturally steps up, as it
should, with each increment of the penalty factor p, but
within each iteration (with a constant p value), the
convergence is perfectly monotonic. The volume curve is
increasing most of the time because black-and-white
solutions are less efficient than grey solutions. However,
we do require in topology optimization black-and-white
solutions. These curves were obtained for a fairly complex
structure (Michell cantilever).

8.7 Misapplication of SIMP

In the considered paper (Edwards et al. 2007), four SIMP
solutions were computed with the original mesh size, two for
the original problem and two for a modified problem with
rectangular ground structure. Each used two different initial
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p values (p=1 and p=1.5). First, it is not surprising that
p=1.5 gives different results, we have known about
“p-dependence” of SIMP solutions for more than 15 years.
On the basis of many years experience, one should start with
p=1, use small increments of p, and one should also employ
more refined convergence criteria than the one used in the
above paper (see Section 2.9 above).

There are two things wrong with the above SIMP
solutions. First, there are too many grey elements in the
results. As was shown by Rietz (2001, consistently mis-
spelled as “Reitz” by the authors), grey elements can be
eliminated (in practice, nearly eliminated). The same was
shown by Stolpe and Svanberg (2001) for their alternative
interpolation scheme. Second, there is only a corner contact
between two black elements in three solutions, which makes
these solution a false optimum.

According to the paper under consideration (Section 2.3),
the authors used a Bartlett filter, which is a heuristic method
with an unknown objective function that may modify the
original Michell-like layouts, but does not suppress single

hinges (corner-contacts) in the solution. Combining such a
heuristic method with different starting values of the penalty
factor (p) may produce unpredictable changes in the
solution.

It should be noted, however, that filtering is a heuristic but
highly economical method in practical applications. In basic
research, however, computer time is usually not important,
and therefore, it is possible to use less heuristic techniques.
The wide scatter of solutions by filtering methods was shown
in an excellent review article by Sigmund (2007).

As mentioned, four-node elements grossly underestimate
the compliance value for corner contacts. The compliance
value even reaches infinity if we calculate its value
analytically (Rozvany et al. 2002b, 2003). This error can
be avoided or reduced if we use higher order elements, or
several FEs per ground element, or the constrained slope
method (Petersson and Sigmund 1998), or penalization
against corner contact (COSIMP method, Rozvany et al.
2004; Pomezanski et al. 2005), or Poulsen’s (2002)
constraint. The above methods are based on rigorous

Fig. 7 Iteration histories for
a ESO (after Edwards
et al. 2007) and b SIMP (after
Querin). In the latter, top curve:
penalized volume, bottom
curve: volume
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sensitivities and, therefore, do not interfere significantly
with the Michell-type optimal topologies. However, they
usually suppress even isolated hinges. A more accurate FE
analysis would have given highly non-optimal compliance
values for solutions with hinges (even with some light-grey
elements around them) in Figs. 16, 18, and 19 of Edwards
et al. (2007).

It may make sense, however, that the beam tries to lean
downwards to the left because this reduces the force in the
vertical tie. This tendency can be observed both in solutions
with mesh refinement in this paper and in a very carefully
derived solution for the Zhou–Rozvany problem (Fig. 4a)
by Norato et al. (2007).

8.8 Comparing results with an “intuitive” solution

In both versions of their paper (Edwards et al. 2006, 2007),
the authors point out that some of their solutions have a
lower C.V or C value than that of the “intuitive” solution in
Fig. 4c in this article. As a question of basic logic, any
optimization method should indeed do in general better
than a solution picked intuitively. Such a finding, therefore,
proves nothing in relation to ESO or SIMP. In fact, Stolpe
and Bendsoe (2007) obtained global optima with a lower
compliance value for the Zhou-Rozvany (2001) problem
than the intuitive solution in Fig. 4c.

8.9 Gross error in strain energy calculation

Zhou and Rozvany (2001) showed that both finite element
analysis and analytical results from a two-bar truss model
give almost the same value for the compliance of their
initial design (difference of 0.18%). Edwards et al. (2007)
tried to calculate the optimal cross-section values for the
Zhou–Rozvany problem using the same two-bar truss
model. Leaving the cross-section of the horizontal bar
unchanged (Ax=3), they obtain from the uniform energy
density principle a cross-sectional area of Ay=1/4 for the
vertical bar. Even according to Edwards et al. (2007), the
force in the horizontal bar is 6, and in the vertical bar, it is
1. Their “optimal” cross-sections would give, therefore, a
stress value of 2 in the horizontal bar and a stress of 4 in the
vertical bar.

It has been known for almost 40 years (e.g., Hegemier
and Prager 1969) that in trusses uniform energy density and
uniform stress are equivalent for a single load condition. In
fact, Edwards et al. (2007) have forgotten in their Eq. (16)
that the number of (constant size) elements (ny) in the
vertical bar does depend on the cross-section of that
member and this oversight caused the above gross error.
The correct value for the cross sectional area of the vertical
bar would be Ay=1/2, which is 100% higher than the
erroneous value by Edwards et al. (2007).

8.10 Fallaciousness of the argumentation using uniform
energy density

Irrespective of the incorrectly calculated cross-section, an
optimization method should not produce a 1,000% error in
the objective function just because it cannot attain an
analytical optimal solution with a given FE net. The user of
ESO would generally have no idea what the analytical
optimal solution is, and would believe blindly in the
computer output.

8.11 Mesh refinement

It is claimed by almost all authors from the ESO group that
failure of ESO may be prevented by using a finer FE mesh.
This question is examined in the next section.

9 Is it really possible to avoid breakdown of ESO
by mesh refinement?

The answer is probably yes–no (“jein” in slangy German).
Mesh refinement has been proposed in both texts above. In
the Edwards et al. (2006) text, 3,600 elements were used in
the Zhou–Rozvany (2001) example (instead of 100), in the
Huang and Xie (2007) note 10,000. One can only mention
that for any of the above mesh refinements, ESO would
crash if we used higher values for the horizontal load in the
above examples. For example, for the 10,000 element case,
we may increase the horizontal load intensity from 2 to 12.
Then, even when only one (out of ten) element remains in
place at the top support, in this element, the stress will be
about 10, while in the horizontal beam, it will be roughly
12. Then, of course, ESO will take out the element next to
the top supports, and the structure will become again highly
non-optimal.

Summarizing, for any mesh density, we can specify a
load for which ESO breaks down. Defenders of ESO may
reply that for any load, they can propose a mesh density for
which ESO does not break down. This may be true, but
then the user of an ESO program can never know if, for the
considered supports and loads and a given mesh, he does
not get a breakdown of ESO with an extremely uneconom-
ical solution.

10 Deeper reasons for the breakdown of and a possible
rigorous basis for ESO (SERA)

It was explained by Zhou and Rozvany (2001) that the
compliance sensitivity of the element “a” in Fig. 4a changes
from unity to almost 160 million, as the element thickness
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varies from unity to 10−6. This accounts for the disastrously
wrong choice of ESO in eliminating an element.

As indicated by the author (e.g., Rozvany and Querin
2002b), ESO would give a correct “iteration-wise optimal
element change”, if for all rejected elements of that iteration
the relevant sensitivities did not change significantly as
their thickness varies from unity to zero. This could be
checked in each iteration by comparing the sensitivity value
with the actual change caused by a unit change in the
density of the rejected elements. If the difference is large,
the corresponding elements could be stopped from being
eliminated. This would help ESO (SERA) much more in
the considered example than the suggestions in the above
three texts.

It was correctly pointed out by Zhou at the ISSMO
congress in Seoul that the proposed check may become
uneconomical for very large systems used in practice. For
example, if hundred elements are rejected (out of, say,
hundred thousand) in each iteration, then it is expensive to
assess which elements caused the disparity between
sensitivities for infinitesimal and finite changes in densities.

11 Proposed improvements of ESO (SERA) by Rozvany
and Querin

Apart from the suggestion in the previous section, Rozvany
and Querin (2001, 2002a and b, 2004) have proposed the
following improvements.

11.1 Virtual material

Where a solid element has been taken out, an element of
low density (e.g., 10−6) is inserted (this is usually already
done in ESO). Then, BESO should be based on the stress or
energy density in such an element of “virtual material” and
not on those in the adjacent solid element. This would
recover the “wrongly removed” element “a” in the
considered example (see Fig. 4 above).

11.2 Use of correct Lagrange multiplier values
and sensitivities

For several load conditions or several design constraints,
one does not know which constraints are active, and to
which extent, unless the Lagrange multipliers are evaluated.
This would also be necessary for ESO. A simple example
for two load conditions was shown at the Dalian meeting
(Rozvany and Querin 2001).

ESO may avoid the use of sensitivities for compliance
design under a single load condition, because for that case
compliance values and first-order compliance sensitivities

are proportional to each other (if all elements have the same
density). For any other problem, ESO should use at least
first-order sensitivities, which would also increase signifi-
cantly the computational effort. Of course, the use of
second-order sensitivities would prevent the failure experi-
enced in the Zhou–Rozvany (2001) example, but its use in
practice would become prohibitively expensive.

12 Comments on Tanskanen’s “proof” of ESO’s
computational procedure

Tanskanen’s (2002) paper has some interesting ideas.
However, it will be shown subsequently that it does not
justify the use of ESO in topology optimization.

As mentioned before, Tanskanen (2002) claims that (1)
ESO “requires relatively small amount of FE time” and (2)
it has been verified by comparisons with Michell trusses.
These assertions do not stand up to a more objective
scrutiny. The claim under (2) is based on rough visual
comparisons, while SIMP has been verified by quantitative
procedures (see Section 2.7). Michell’s problem being
convex and self-adjoint, even the crudest methods produce
vaguely Michell-like configurations for the same supports
and loading. Tanskanen’s claim that ESO is “simple to
program” is true only because ESO deals mostly with the
two simplest problems, which would be student exercises
for other methods.

Tanskanen (2002) also states (p 5494): “...the objective
function cannot reach the minimum until...all the structural
members are thoroughly fully stressed.” “...if there occurs
bending moment in the structural members, the fully
stressed state cannot be reached.” What does Tanskanen
mean by “thoroughly” fully stressed. A structure is either
fully stressed or not. Moreover, all authors solving prob-
lems for perforated plates in plane stress know that for
higher volume fractions, very wide members also develop
in the solution (e.g., along the edges of a “Michell
cantilever”). These cannot behave as pinjointed bars; they
are subject to considerable bending as well. Moreover, it
was found by Pedersen (2000) that for the shape design of
plates in plane stress “...minimum compliance shape design
will have uniform energy density....” and “the stiffest design
will also be the strongest design...” (i.e., optimal for stress
constraints). Pedersen’s conclusions were referring to
structures that were not at all truss-like.

Tanskanen declares “it was assumed that ESO minimizes
the C.V product”. In actual fact, ESO uses Mises stress or
element compliance as criterion for element elimination in
most papers. Out of the large number of solutions generated
by ESO, the “global optimum” (?) could be located by
using any arbitrarily selected objective function or “per-
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formance index”. The choice of the latter has nothing to do
with the ESO algorithm used in its element elimination
procedure.

Two main shortcomings of Tanskanen’s (2002) paper
will be discussed in the next two subsections.

12.1 First weakness: formulation in terms of trusses
and absurdly complicated optimization procedure

Tanskanen states that “ESO should be applied to structural
problems having pinjointed connections. For other types of
problems ESO should be studied further.”

Apart from the fact that structural problems do not have
pinjointed connections (but structures may have), ESO is
applied mainly to perforated plates, which can behave like
pinjointed systems (i.e., trusses) only if the volume fraction
is very low. For higher volume fractions, they behave quite
differently. A “proof” based on Michell trusses is therefore
not valid for ESO’s usual problem classes. Apart from this,
Tanskanen’s treatment of Michell trusses is absurdly
complicated for the following reasons.

It is well known (e.g., Sved 1954; Hemp 1973) that
discretized Michell trusses (with finite number of joints in
the ground structure) can be derived by standard linear
programming methods. When the author did his postdoctoral
work in Oxford around 1970 with William Hemp, discretized
Michell trusses were derived by linear programming for
ground structures with several hundred potential members
(see, e.g., McConell 1974). This project started almost
four decades ago when computer compatibilities were
incomparably more limited than now.

One can see that Michell1’s problem is a linear
programming one, by virtue of Sved’s (1954) theorem that
at least one optimal discretized Michell truss must be
statically determinate (i.e., does not require conditions of
compatibility). As the cross sectional area (A)–member
force (F) relation is then piecewise linear (c is the reciprocal
value of the permissible stress)

A ¼ c Fj j; ð3Þ
and the joint equilibrium equations (zero sum of horizontal
and vertical force components) are linear in the member
forces (F), both Sved (1954) and Hemp (1973) concluded
correctly that discretized Michell trusses constitute a linear
programming problem. The above argument is for stress-
constrained Michell structures, but the same topology is
valid for a compliance constraint (e.g., Hegemier and
Prager 1969).

Considering the above facts, it is rather remarkable that
Tanskanen (2002) suggests a very complicated and cum-
bersome method for Michell trusses (which he does not
even verify with a single numerical example). After a long
and superfluous description of the meaning of “compliance”

and of a general form of optimization problems with
equality, inequality, and side constraints, he shows that
Michell structures minimize the compliance–volume product
(C.V). All this had been well known before. Then, he uses a
logarithmic problem transformation

min ln C:Vð Þ¼ min lnCþlnVð Þ; ð4Þ
which he proposes to solve by linearization and sequential
linear programming (SLP). Finally, he describes the well-
known Simplex algorithm for solving sequentially the SLP
problem. No numerical example is given to show that the
proposed method actually works.

The use of such a complicated procedure is absurd for a
problem, which has been known for over 50 years as a
simple linear programming one!

12.2 Second weakness: use of sensitivities for finite design
modifications

It was explained in Section 10 that ESO breaks down in the
Zhou–Rozvany (2001) example because the compliance
sensitivity varies from unity to many millions as the
element thickness changes from unity to near zero. As
Tanskanen (2002) uses compliance sensitivities, his other-
wise doubtful proof could only be valid if sensitivities did
not vary significantly during such finite design changes.
Possible remedies for this problem were given in Section 10,
but they may be prohibitively expensive for larger real-
world systems.

13 Other methods with finite design changes
in the recent literature

13.1 An efficient and thoroughly verified method using
SILP (Svanberg and Werme 2006a)

For optimizing the topology of perforated plates in plane
stress, Svanberg and Werme (2006a) used sequential integer
linear programming. This method is clearly and rigorously
derived and verified by examples (unlike the paper by
Tanskanen 2002). The results for their benchmark problem
(L-shaped domain) are consistent with other papers by
these authors (Svanberg and Werme 2005, 2006b, 2007;
Werme 2006) and have also been confirmed by comparison
with exact analytical solutions by Lewinski and Rozvany
(2008a).

13.2 Method of element removal and reintroduction
by Bruns and Tortorelli (2003)

Bruns and Tortorelli (2003) discussed ways of overcoming
computational difficulties in topology optimization by
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element removal and reintroduction, with particular reference
to large deformations.

They use a Gaussian (bell-shaped) measure for density
filtering. Their method is basically similar to SIMP, with a
significant improvement by means of removing low-density
elements, which can be reintroduced later. The proposed
method achieves significant savings in computer time.

It should be emphasized that the method of Bruns and
Tortorelli (2003) differs significantly from ESO because it
is basically a continuous variable, gradient-type method,
but it reduces the problem size by iteratively decreasing the
design domain. The design changes are based on rigorously
derived sensitivities, unlike in ESO.

14 Conceptual and terminological ambiguities
and misconceptions in some ESO publications

As we were discussing Tanskanen’s (2002) paper, we
would like to point out some other fallacies in it.

“In the literature, topology optimization is most often
applied to truss ground structures...” This was possibly
the situation in the seventies. These days much more
attention is paid to two- and three-dimensional
continua.

“Compared with MP algorithms, the OC methods are
efficient in large optimization problems, but lack
generality in various kinds of minimization problems.”
This statement is about thirty years out of date. The
reconciliation of OC and MP was concluded by
Claude Fleury by the end of 1970s (see, e.g., Fleury
1982). The so-called OC school never correctly,
mathematically, solved the issue which constraints
are active. Dual MP methods, e.g., CONLIN (Fleury
1989) or MMA (Svanberg 1987) are nothing but
mathematically correct versions of OC methods.
Moreover, what is the difference by Tanskanen
between “optimization problems” and “minimization
problems”?

“It cannot be said that the objective function in...(2.11)
(i.e., min (C.V) for Michell trusses) is convex”

As mentioned, Michell’s problem is known to be convex
(e.g., Hemp 1973) if suitably formulated.

On p 5494 Tanskanen (2002) claims that once an opti-
mal topology is obtained for a compliance constraint, this
design could be made to satisfy other constraints by
scaling the cross-sectional areas. It was shown, e.g., by
Sankaranarayanan et al. (1992) and Rozvany (2001b) that
this procedure can lead to entirely non-optimal designs. It is
appropriate to remark here that Tanskanen (2002) quotes
somewhat inaccurately this author (Rozvany 1993) that

“structural optimization is divided into three classes: sizing,
geometrical, and topology optimization.” This author, in
fact, emphasized that these must be “simultaneous opera-
tions”, and the order of the three was, logically, topology,
geometry, and sizing.

Everywhere in the literature, “compliance” is defined as
the virtual work (i.e., scalar product) of external forces and
displacements. This can also be used in dual methods for
calculating the volume of a structure. For some unknown
reason, Tanskanen (2002) deviates from this established
practice and makes compliance equal to the total strain
energy, which is half the magnitude of the usual compliance
value.

When discussing “optimality criteria methods”, Tanskanen
(2002) writes mostly about the fully stressed design
method, which is called by Save and Prager (1985) a
“questionable” optimality criterion. This is because Chern
and Prager (1972) showed it much earlier that it may lead
to non-optimal solutions. In relation to rigorously derived
optimality criteria, Tanskanen (2002) only mentions that
“OC algorithms are also discussed by Save and Prager”.
One should remark that the cited book consists of a brief
review of optimality criteria methods and was written
mostly after William Prager’s death. It is on analytical
methods, does not mention even once finite elements or
matrix notation. In the chapters on topology optimization
(termed “design” of trusses and grillages), mostly the joint
work of Prager and this author is summarized at an
elementary level, with references to 22 publications of the
author (some with Prager, whose only research partner he
was during the last decade of Prager’s life). For a more
advanced study of optimality criteria methods, the reader
is referred to the author’s books (Rozvany 1976, 1989) or
the review articles (Rozvany and Zhou 1994; Rozvany et al.
1995).

Referring now to the more recent paper by Edwards et al.
(2007), the author would like to comment on the following
points.

Checkerboard patterns are called several times a
“numerical instability”. This and other explanations of
checkerboarding were widespread in the nineties. We know
it now (see also Section 2.5) that simple (e.g., four-node)
FEs grossly overestimate the stiffness of solid ground
elements having only a corner contact. SIMP cannot
“know” that the information coming from the FE program
is incorrect, and therefore, it uses this wrong data,
producing checkerboard patterns, diagonal element chains,
and/or single hinges. These turn out to be highly non-
optimal if we use a more accurate FE analysis (e.g., several
or higher order elements for each ground element).
However, the iterative procedure resulting in checkerboards
etc. is quite stable, so we should not speak about
“numerical instabilities” (but “discretization errors”).
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“The SIMP formulation is based on...minimizing the
total compliance”. In actual fact, SIMP can optimize the
structural volume for a variety of constraints and multiple
loads. The above assertion is therefore incorrect. It is ESO
which tries to optimize mostly for compliance (or Mises
stress).

“This investigation has identified some of the difficulties
associated with the two methods and the reasons behind the
said difficulties”. Edwards et al. (2006, 2007) have not
pointed out anything new about SIMP, we have almost
20 years of experience with it. It has been known for long
that if the objective function surface is very flat (as in the
considered example), then starting with a non-unit p value
may change the computed topology significantly. However,
SIMP has never produced a more than 1,000% error, as
ESO did in the Zhou–Rozvany (2001) example. Moreover,
it is no wonder that SIMP gives different solutions if the
problems are different (see Section 8.1).

Edwards et al. (2008) finish their “Conclusions” with the
sentence “When the volume constraint was specified as
V xð Þ � 99 and a fine computational mesh was used, ESO
and SIMP produced similar results; however, ESO pro-
duced the overall optimum solution”. This very final
statement could be interpreted by the reader that ESO is
actually a better method than SIMP. We would like to point
out that no designer of sound mind would optimize a real
world structure for a volume fraction of 99%. Moreover,
the comparison is unrealistic because the SIMP algorithm
was not used at its best by Edwards et al. (2007), see
Section 8.9.

14.1 Comments on Tanskanen’s (2006) second ESO paper

In hismore recent paper, Tanskanen (2006) reiterates that ESO
is “very simple to program” and “requires relatively small
amount of FE time”. These claims were already discussed in
Sections 12 and 14. He also admits that “different constraints
cannot be added into the problem” and “ESO is not capable
of handling general stress and displacement constraints” He
therefore states that “these constraints do not need (sic) to be
included in topology optimization” and can be dealt with in a
second stage of (“sizing”) optimization. It has been well
established that such a two-stage procedure may lead to a
highly non-optimal solution (e.g., Sankaranarayanan et al.
1992; Rozvany 2001b).

Tanskanen (2006) also observes that in the case of
additional constraints, ESO may lead to a design which is
not fully stressed. For these problems, he proposes a
“modified” ESO (termed “MESO”), which makes the
solution more fully stressed. The problem is that for such
problems, the real optimal solution is mostly not fully
stressed, and therefore, the suggested method takes the
solution away from the true optimum.

15 Comments on priorities in topology optimization

Sigmund (2007) quite correctly points out that the priorities
for desirable characteristics of numerical topology optimiza-
tion methods differ considerably in industrial applications
and in academic research. This author fully agrees. In the
latter, we try to get as close as possible to the theoretical
optimal solution by means of rigorously derived algorithms
and stable convergence, with little use of tuning parameters.
In industrial applications, the dominating preferences are (1)
low CPU time (2) generality of applicability, (3) reliability,
(4) simplicity of implementation, and (5) simplicity of the
topologies obtained. As mentioned before, priority (5) may
change with time due to improved manufacturing capabili-
ties. Priority (4) above is due to the fact that very few
industrial users would have the time for studying exact
optimal solutions or to check for possible errors in the
derivation of numerical optimization techniques. For this
reason, they are very often satisfied with any major cost
saving, although they do not have the slightest clue if the
solutions produced by a method are really close to the real
optimum. This is why they sometimes fall for misleading
publicity based on “simple” and “commonsense” arguments
whose understanding does not require much knowledge of
higher mathematics or mechanics. In reality, only exact
benchmark solutions “furnish information which is useful in
testing the validity, accuracy, and convergence of numerical
methods and in assessing the efficiency of practical designs”,
a 30-year-old truth (Prager and Rozvany 1977). Critical
reviews like the current one may help to some extent
because they make industrial users aware of the possibility
of false claims by the promoters of questionable methods.

This does not mean at all that the author is against
heuristic methods in general. They play an important role in
structural optimization, particularly in approximations.
However, heuristic methods should be verified quantita-
tively by correctly planned numerical experiments.

16 Conclusions

The following conclusions can be drawn from the above
investigation

16.1 SIMP

SIMP is a reasonably rigorously derived gradient method
for topology optimization, which usually gives a solution
near the correct global optimum if the problem is originally
convex (e.g. in compliance problems), and the penalty
factor p is increased gradually from unity. However, SIMP
is used in practice for highly complex non-convex prob-
lems, and therefore, a global optimum cannot be guaranteed
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in general, but this is so for all gradient-based methods.
Some theoretical convergence properties of SIMP have also
been explored (Rietz 2001; Martinez 2005; Stolpe and
Svanberg 2001). SIMP requires relatively few iterations and
is suitable for a combination of a wide range of design
constraints, multiple load conditions, multi-physics problems,
and extremely large (often 3D) systems. SIMP has been
verified quantitatively by showing numerical convergence to
Michell topologies (see Section 2.7). It is used extensively in
industrial software.

16.2 ESO (SERA)

The author has always had an open mind about ESO and
has even been working on possible improvements of this
method (under the term “SERA”, e.g., Rozvany and Querin
(2001, 2002a and b, 2004). However, in spite of his
“neutral” position in the SIMP/ESO controversy, he cannot
overlook compelling factual evidence of shortcomings in
the present versions of ESO. Particularly due to unresolved
problems arising from the Zhou–Rozvany (2001) counter-
example and significant fundamental flaws in some (but not
all) recent papers defending ESO (see above), the author
must report with regret the following findings of facts.

ESO is presently fully heuristic, computationally rather
inefficient, methodologically lacking rationality, occasionally
unreliable, with highly chaotic convergence curves. Unlike
the quantitative verification of SIMP (see Section 2.7), ESO
has only been “verified” by vague visual comparisons with
Michell topologies. In its present form (as discussed by
Edwards et al. 2006, 2007 and Tanskanen 2002, 2006), ESO
is only trying to solve problems with a single constraint
(such as compliance or stress) and single load condition,
which would be nowadays undergraduate exercises for other
methods. ESO is now therefore hardly ever used in industrial
applications, although greatly over-publicized in the
literature. Recent papers defending ESO ignore the fact that
ESO breaks down if the sensitivity with respect to element
density changes rapidly over finite density variations (e.g.,
from unity to zero, see Zhou and Rozvany 2001). The author
believes that the same problem, and some other serious
deficiencies (see Section 12), render Taskanen’s (2002)
“proof” of ESO’s algorithm invalid in its present form.
Moreover, the use of the objective function (C.V) makes
some sense in 2D problems (e.g., simultaneous optimization
of topology and plate thickness for perforated plates
under compliance constraint; see Rozvany 2008), but it does
not represent any real-world problem in 3D topology
optimization.

It follows that there is scope for very much research to
improve and justify ESO so that one day, it may possibly
constitute a useful alternative to gradient-type topology
optimization methods. This author hopes that the authors of

the papers reviewed here find his comments constructive
enough to be of benefit to them, or if they disagree, they
will submit discussions on this forum article.
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