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ABSTRACT  
This paper addresses the problem of how to evaluate the quality 
of a model built from the data in a multi-objective optimization 
scenario, where two or more quality criteria must be 
simultaneously optimized.  A typical example is a scenario where 
one wants to maximize both the accuracy and the simplicity of a 
classification model or a candidate attribute subset in attribute 
selection. One reviews three very different approaches to cope 
with this problem, namely: (a) transforming the original multi-
objective problem into a single-objective problem by using a 
weighted formula; (b) the lexicographical approach, where the 
objectives are ranked in order of priority; and (c) the Pareto 
approach, which consists of finding as many non-dominated 
solutions as possible and returning the set of non-dominated 
solutions to the user. One also presents a critical review of the 
case for and against each of these approaches. The general 
conclusions are that the weighted formula approach – which is by 
far the most used in the data mining literature – is to a large extent 
an ad-hoc approach for multi-objective optimization, whereas the 
lexicographic and the Pareto approach are more principled 
approaches, and therefore deserve more attention from the data 
mining community.    

Keywords 
Multi-objective optimization, lexicographic approach, Pareto 
dominance, Classification. 

1. INTRODUCTION 
A crucial issue in data mining is how to evaluate the quality of a 
candidate model – e.g., a classification model such as a rule set or 
a decision tree. This paper addresses an important aspect of this 
issue, which is how to evaluate a model’s quality by taking into 
account multiple quality criteria (objectives) to be optimized. In 
this case the quality of a model can be represented by a n-
dimensional vector, where n is the number of quality criteria to be 
optimized, rather than by a single scalar number. Multi-objective 
problems are very common in a number of different data mining 
tasks and problems. As typical examples, let us mention two very 
generic scenarios, which are broad enough to refer to a large 
number of data mining projects.  

The first scenario involves predictive tasks. Examples of 
predictive data mining tasks are classification (where the attribute 
to be predicted is categorical), regression (where the attribute to 
be predicted is continuous) and dependence modelling (where 
there are several categorical attributes to be predicted). Here we 

focus on the classification task, which is in general the most 
studied in the data mining literature, but the arguments discussed 
here also hold for other predictive tasks.  

The knowledge discovered by a data mining algorithm should be 
not only accurate but also comprehensible to the user [Fayyad et 
al. 1996]. Hence, there are a number of classification projects 
where the goal is to maximize both the predictive accuracy of the 
classification model and the comprehensibility (simplicity) of the 
classification model, in order to obtain a model easier to be 
interpreted by the user. This is the case particularly in the context 
of decision tree and rule induction algorithms, which lend 
themselves naturally to the discovery of knowledge in a high-
level representation, which can in principle be interpreted by the 
user – as long as the “complexity” of the model, typically 
measured by the size of the model, is relatively small. This raises 
the question of how to evaluate the trade-off between the 
accuracy of a model and its size.  

Indeed, a common approach in the literature consists of reporting 
the values of both the predictive accuracy and the simplicity (size) 
of different models produced in a set of experiments [Weiss et al. 
2003], [Chisholm & Tadepalli 2002], [Weiss & Indurkhya 2000], 
[Li et al. 2002]. When reporting these kinds of results, accuracy 
and simplicity are usually analyzed separately from each other, 
and it is often the case that “model A is more accurate than model 
B, but model B is simpler than model A”. For instance, which one 
is a “better” classification model: an easily-interpretable decision 
tree with a dozen nodes and accuracy rate (on the test set) of 92% 
or a large, non-interpretable decision tree with hundreds of nodes 
and accuracy rate of 95%? The answer depends on the problem at 
hand and the preference of the user.  

The second scenario involves attribute selection. This is one of 
the most studied data preprocessing tasks of the knowledge 
discovery process, where the goal is to select, out of all original 
attributes, a subset of attributes that are relevant for the target data 
mining task [Guyon & Elisseeff 2003]. Again, for the sake of 
simplicity we focus on attribute selection for the classification 
task, which is the kind of attribute selection most investigated in 
the data mining literature, but the arguments discussed here also 
hold in general for other kinds of data mining tasks, particularly 
predictive tasks.  

In general it is accepted that, in the context of data mining, an 
attribute selection method should select an attribute subset that 
not only maximizes the accuracy of the classification model, but 
also minimizes the number of selected attributes (to save memory 



space, speed up the classification algorithm, etc.) and/or the size 
of the classification model built from the selected attributes (to 
improve the simplicity/interpretability of the model).  

Again, a common approach in the literature consists of reporting 
not only the predictive accuracy of the model built from the 
selected attributes, but also the number of selected attributes 
and/or the size of the classification model built from the selected 
attributes [Yu & Liu 2003], [Kim et al. 2000], [Kohavi & John 
1998], [Cherkauer & Shavlik 1996]. It is often the case that 
“attribute subset A leads to a more accurate model than attribute 
subset B, but B has a smaller cardinality (number of attributes) 
than A”. This introduces the difficult problem of analyzing the 
trade-off between maximizing a model’s accuracy and 
minimizing the number of selected attributes, which is analogous 
to the above mentioned trade-off between a model’s accuracy and 
its size.  

We emphasize that the previous two generic scenarios are just a 
sample of the many kinds of scenario where a data mining 
problem involves the simultaneous optimization of two or more 
criteria (objectives). One could easily add to the list scenarios 
with several other criteria to be optimized. For instance, one could 
“decompose” the accuracy criterion into the precision and recall 
criteria, as it is usual in the information retrieval literature [Baeza-
Yates & Ribeiro-Neto 1999]. One could measure rule 
surprisingness (unexpectedness) separately from accuracy and 
simplicity [Liu et al. 1997], [Freitas 1998]. (The motivation for 
this is clear by considering the following hypothetical rule: IF 
(patient is pregnant) THEN (gender is female). This rule is very 
accurate and very simple, but it gets a very low mark for 
surprisingness.) One could consider the two objectives of 
maximizing accuracy and minimizing the cost of the attributes 
used by the classifier [Turney 1995]. A comprehensive discussion 
about all kinds of multi-objective data mining scenarios would 
take a far larger space than the available space, but the above list 
is, hopefully, enough to show that multi-objective optimization 
problems are quite common in data mining.  

The remainder of this paper is organized as follows. Section 2 
discusses three general approaches to cope with multi-objective 
problems. Section 3 discusses arguments for and against each of 
those three approaches. Section 4 discusses the relationship 
between multi-objective optimization and ROC graphs. Finally, 
section 5 concludes the paper.  

2. THREE APPROACHES FOR 
COPING WITH MULTI-OBJECTIVE 
PROBLEMS 
 
2.1 The Conventional Weighted-Formula 
Approach: Transforming a Multi-objective 
Problem into a Single-objective One 
In the data mining literature, by far the most used approach to 
cope with a multi-objective problem consists of transforming it 
into a single-objective problem. This is typically done by 
assigning a numerical weight to each objective (evaluation 
criterion) and then combining the values of the weighted criteria 
into a single value by either adding or multiplying all the 

weighted criteria. That is, the quality Q of a given candidate 
model is typically given by one of the two kinds of formula:  

Q = w1 × c1  +  w2 × c2  + . . . + wn × cn     (1), or 
            Q = c1

W1 × c2
W2 × . . . × cn

Wn                    (2) 
where wi, i=1,…n, denotes the weight assigned to criteria ci, and n 
is the number of evaluation criteria. Let us mention some 
examples of this approach in the context of the two multi-
objective scenarios discussed in the Introduction.  

The first scenario involves rule induction algorithms for 
classification, where it is common to evaluate the quality of a 
candidate rule by measuring two or more criteria. An example is:  

Q = w1.consistency + w2.completeness        (3), 
an instance of the general formula structure (1) combining 
completeness and consistency into a single measure of rule 
quality. This formula and its variations are used in several rule 
induction algorithms [Bruha & Tkadlec 2003], [Furnkranz & 
Flach 2003]. Another example is:  

Q = completenessw × consistency_gain(1-w)      (4), 
an instance of the general formula structure (2) used in 
[Kaufmann & Michalski 1999] to produce one of the evaluation 
criteria used in a lexicographic approach for rule evaluation (to be 
discussed in section 3.2). 

 The second scenario involves attribute selection algorithms for 
classification, where it is also common to evaluate the quality of a 
candidate attribute subset by measuring two or more criteria. An 
example is:  

Q  =  ¾ × Acc  +  ¼ × (1 – (S + F)/2)          (5). 
This formula was used by [Cherkauer & Shavlik 1996] to measure 
the quality of a candidate attribute subset in an attribute selection 
method following the wrapper approach, where Acc (accuracy) 
was measured by the validation-set accuracy of a decision tree 
built with the selected attributes, S was the decision tree size and 
F was the number of attributes (features) in the candidate attribute 
subset. Other examples of attribute selection methods following 
the wrapper approach and combining two or more attribute subset 
quality criteria in a weighted formula can be found in [Liu & 
Motoda 1998].  

  
2.2 The Lexicographic Approach 
The basic idea of this approach is to assign different priorities to 
different objectives, and then focus on optimizing the objectives 
in their order of priority. Hence, when two or more candidate 
models are compared with each other to choose the best one, the 
first thing to do is to compare their performance measure for the 
highest-priority objective. If one candidate model is significantly 
better than the other with respect to that objective, the former is 
chosen. Otherwise the performance measure of the two candidate 
models is compared with respect to the second objective. Again, 
if one candidate model is significantly better than the other with 
respect to that objective, the former is chosen, otherwise the 
performance measure of the two candidate models is compared 
with respect to the third criterion. The process is repeated until 
one finds a clear winner or until one has used all the criteria. In 
the latter case, if there was no clear winner, one can simply select 
the model optimizing the highest-priority objective.  

A well-known algorithm using this approach is the AQ18 rule 
induction algorithm [Kaufmann & Michalski 1999] and its 



variants. AQ18 uses a “lexicographic evaluation functional 
(LEF)” defined by a sequence of pairs <(c1,t1), (c2,t2), …, (cn,tn)>, 
where each ci, i=1,…,n, represents the value of a performance 
criterion for a given candidate model, and each ti, i=1,…,n, 
represents the tolerance associated with ci. This tolerance is 
specified by a threshold indicating the maximum value that the 
performance criterion ci for a given candidate model is allowed to 
deviate from the value of ci for the best current candidate model. 
More precisely, let M1 and M2 be two candidate models being 
compared, and assume, without loss of generality, that M1 has a 
better value of ci than M2. If the difference between M1’s ci value 
and M2’s ci value is greater than ti, then M1 is immediately 
considered better than M2, without the need to check lower-
priority objectives. Otherwise the difference between M1 and M2 
is not considered significant, and in order to select the best 
candidate model one has to use the remaining lower-priority 
objectives. In [Kaufmann & Michalski 1999] this approach is 
used with a LEF where a predictive accuracy-related measure (a 
combination of completeness and consistency gain) is used as the 
highest-priority criterion (c1), and rule description simplicity as 
the next criterion (c2); but of course other criteria could be used.  

2.3 The Pareto Approach 
The basic idea of the Pareto approach is that, instead of 
transforming a multi-objective problem into a single-objective 
problem and then solving it by using a single-objective search 
method, one should use a multi-objective algorithm to solve the 
original multi-objective problem. Intuitively, this approach makes 
sense. One should adapt the algorithm to the problem being 
solved, rather than the other way around. In any case, this 
intuition needs to be presented in more formal terms, which is 
done in the following.  

Let us start with a definition of Pareto dominance. A solution s1 is 
said to dominate (in the Pareto sense) a solution s2 if and only if s1 
is strictly better than s2 with respect to at least one of the criteria 
(objectives) being optimized and s1 is not worse than s2 with 
respect to all the criteria being optimized. Mathematically, 
assuming – without loss of generality – that all criteria ci, i=1,…k, 
are to be maximized, a solution s1 dominates a solution s2 if and 
only if ∃ci such that s1(ci) > s2(ci) and ∀ci, i=1,…k, s1(ci) ≥ s2(ci), 
where s1(ci) denotes the quality of solution s1 with respect to 
criteria ci and k is the number of criteria being optimized. A 
solution si is said to be non-dominated if and only if there is no 
solution sj that dominates si. Note that the Pareto approach never 
mixes different criteria into a single formula – all criteria are 
treated separately.  

The concept of Pareto dominance is illustrated in Figure 1, where 
the two objectives to be maximized are the accuracy and the 
simplicity of a classification model. In the figure, model A is 
dominated by model B and by model D; model C is dominated by 
model D; and model E is dominated by model F. Models B, D and 
F are non-dominated solutions. They form the so-called Pareto 
front.  

Once Pareto dominance has been defined, the next step is to 
understand the crucial differences between a multi-objective 
algorithm based on Pareto dominance and a single-objective 
algorithm. There are two related crucial differences. First, there is 
a difference in the kind of output expected from each of these two 
kinds of algorithm. A multi-objective algorithm should return to 

the user a set of non-dominated solutions, rather than just a single 
solution as in a single-objective algorithm. 

simplicity 
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Figure 1: Examples of Pareto dominance 
 

Second, and related to the first difference, the search performed 
by a multi-objective algorithm should explore a considerably 
wider area of the search space and keep track of all non-
dominated solutions found so far, in order to find as many 
solutions in the Pareto front as possible. Of course, this makes a 
Pareto-based multi-objective optimization algorithm more 
complex than its single-objective counterpart. Some Pareto-based 
multi-objective optimization data mining algorithms are discussed 
in [Kim et al. 2000], [Bhattacharyya 2000], [Pappa et al. 2002].  

3. ARGUMENTS FOR AND AGAINST 
EACH MULTI-OBJECTIVE 
OPTIMIZATION APPROACH 
 
3.1 Arguments For and Against the 
Conventional Weighted-Formula Approach 

 
Argument For – Simplicity 
This approach, discussed in section 2.1, has the advantage of 
conceptual simplicity and easy of use, which probably explains its 
popularity. However, it has several drawbacks, which are 
discussed in the following.  

Argument Against – The “magic number” problem and 
missed opportunities 
The most obvious problem with weighted formulae such as 
formulas (1) and (2) is that, in general, the setting of the weights 
in these formulas is ad-hoc, based either on a somewhat vague 
intuition of the user about the relative importance of different 
quality criteria or in trial and error experimentation with different 
weight values. In other words, each weight seems a “magical 
number”, which often is justified in the literature with suitably 
vague sentences such as “the values of these weights were 
empirically determined”.  

Another problem with weights is that, once a formula with precise 
values of weights has been defined and given to a data mining 
algorithm, the data mining algorithm will be effectively trying to 
find the best model for that particular setting of weights, missing 
the opportunity to find other models that might be actually more 
interesting to the user, representing a better trade-off between 
different quality criteria. In particular, weighted formulas 



involving a linear combination of different quality criteria have 
the limitation that they cannot find solutions in a non-convex 
region of the Pareto front. This point will be discussed in section 
3.3.  

For now, to see the limitation of linear combinations of different 
criteria, consider a hypothetical scenario where we have to select 
the best candidate to the position of data miner in a company, 
taking into account two criteria c1 and c2 – say, their amount of 
knowledge about machine learning and statistics, measured by a 
test and/or a detailed technical interview. Suppose the first 
candidate’s scores are c1 = 9.5 and c2 = 5; the second candidate’s 
scores are c1 = 7 and c2 = 7; and the third candidate’s scores are c1 
= 5 and c2 = 9.5. The choice of the “best” candidate should 
depend, of course, on the relative importance assigned to the two 
criteria by the employer. It is interesting to note, however, that 
although it is trivial to think of weights for criteria c1 and c2 that 
would make the first or third candidate the winner, it is actually 
impossible to choose weights for c1 and c2 so that the second 
candidate would be the winner – assuming that the weighted 
formula is a linear combination of weights, such as formula (1). 
Intuitively, however, the second candidate might be the favorite 
candidate of many employers, since she/he is the only one to have 
a good knowledge about both machine learning and statistics.  

Of course, it is possible to make the second candidate the winner. 
One has to use a non-linear combination of criteria, e.g. the 
formula c1 × c2 – an instance of the generic formula (2), where the 
exponent weights are set to 1. However, in this example one 
would have chosen the formula c1 × c2 a posteriori, i.e., after one 
has learned that the user would prefer the second candidate, rather 
than the other two candidates. If one had asked a search algorithm 
to find the best candidate without this a posteriori knowledge 
about the candidates, one could easily have provided the 
algorithm with a formula involving a linear combination of 
weights (which are more often used in the literature than non-
linear formulas), and in this case one would miss the opportunity 
of finding a candidate such as the second above candidate. In 
other words, it is hard for the user to define the best setting of 
weights a priori, without knowing the results of the research.  

Argument Against – Mixing different units of 
measurement 
This problem is particularly serious when the weighted formula 
involves a summation/subtraction (rather than a 
multiplication/division) of terms representing different quality 
criteria, such as formulas (1) and (5). Different model-quality 
criteria often have very different scales in their units of 
measurement. For instance, accuracy and classification model-
size (e.g. the number of decision tree nodes) are measured in very 
different scales. This problem can be dealt with by normalizing 
the different quality criteria so that they refer to the same scale. 
This approach is well-known in the literature and at first glance it 
is a very satisfactory approach. There is, however, a subtle 
problem associated with normalization that is rarely discussed in 
the literature. In essence, the problem is that in general there are 
several different ways of normalizing a quality measure, and the 
decision about which normalization procedure should be applied 
tends to be ad-hoc. This problem can also be understood in the 
context of inductive biases. An inductive bias is any criterion 
(explicit or implicit), except consistency with the data, used to 
favour one hypothesis over another [Mitchell 1980], [Mitchell 

1997]. A normalization procedure is a source of inductive bias, in 
the sense that it tends to favour one hypothesis over others and it 
is not based on consistency with the data – assuming that a 
predictor attribute is normalized without taking into account the 
class values, which is usually the case. It is well-known that an 
inductive bias has a domain-dependent effectiveness, so that any 
inductive bias will be suitable for some application domains and 
unsuitable for others.  

To see an example of the subtle problem associated with 
normalization, consider the previously-mentioned work of 
[Cherkauer & Shavlik 1996] on attribute selection, where the 
quality of a candidate attribute subset was evaluated by formula 
(5). In that formula, the value of S (decision tree size) was 
normalized by dividing the tree size by the number of training 
examples the decision tree was built from. Consider now an 
alternative normalization (not used in the paper): dividing the 
current tree size by the size of the largest tree among all the trees 
generated by the search so far. Both normalization procedures 
produce a value in the range 0..1, as desired, but the two 
procedures might produce quite different values of S to be used in 
formula (5) – which should influence the choice of the weight 
values in formula (5). Which of them is the “best” normalization? 
One cannot mathematically prove that one of them is always the 
best, in the same sense that one cannot mathematically prove that 
an inductive bias is always the best. Hence, ideally the choice of 
the “best” normalization procedure should involve background 
knowledge about the application domain and/or trial and error 
experimentation with different normalization procedures and 
weight values. This tends to be an ad-hoc approach, rather than a 
principled approach.  

Argument Against – Mixing “apples and oranges” 
(non-commensurable criteria) 
This is another subtle problem associated with the weighted-
formula approach, which is often ignored in the literature. Before 
discussing this problem in the context of measuring the quality of 
a model, let us explain the core of the problem by using some 
simple examples and common-sense arguments.  

Common sense tells us that non-commensurable criteria should 
not be added/subtracted to/from each other in a formula. For 
instance, if the salary of a customer is US$ 50,000 and the 
number of dependents (e.g. children) of the customer is 5, it does 
not make sense to add 50,000 + 5. This would produce a 
meaningless quantity. Note that the problem here is not only the 
fact that the two attributes being added have very different scales. 
This problem can be solved by normalizing both attributes into a 
range 0..1, say by dividing the salary and the number of 
dependents by the maximum values of these attributes among the 
customers in the database. This problem was discussed in the 
previous item. In this item we are interested in another problem. 
Even after performing normalization, we still have the problem 
that salary and number of dependents are non-commensurable 
criteria. In other words, they measure very different attributes of a 
customer, and the addition/substraction of these values in a 
weighted formula does not make any sense at all, regardless of 
normalization. It would produce a quantity that would be 
meaningless to the user, which would go against a basic goal of 
data mining, namely that discovered knowledge should be 
ultimately understandable to the user [Fayyad et al. 1996].  



At first glance it could be argued that this is a problem only if the 
different criteria are added/subtracted, but not if they are 
multiplied/divided. Indeed, in some cases the 
multiplication/division of different criteria produces perfectly 
meaningful attributes. In the previous example, one can divide the 
salary of a customer by her/his number of dependents, which 
intuitively would produce a meaningful indicator if we were 
trying to classify customers into, say, “good credit” and “bad 
credit” customers. However, even when using a formula involving 
multiplication/division, the produced quantity may not be 
meaningful to the user in many cases. For instance, dividing (or 
multiplying) salary by age does not appear to produce a very 
meaningful indicator to a user.  

Let us now turn to the problem of mixing non-commensurable 
criteria in a weighted formula evaluating a candidate model. In 
particular, let us consider the problem of mixing accuracy and 
comprehensibility (simplicity) measures into the same formula, 
since these are probably the two model-quality criteria most used 
in data mining. Clearly, accuracy and comprehensibility are two 
very different, non-commensurable criteria to evaluate the quality 
of a model. Actually, comprehensibility is an inherently 
subjective, user-dependent criterion. Even if we replace the 
semantic notion of comprehensibility by a syntactic measure of 
simplicity such as model size, as it is usually done when 
evaluating “comprehensibility”, the resulting measure of 
simplicity is still non-commensurable with a measure of accuracy. 
The crucial problem is not that these two criteria have different 
units of measurement (which can be, to some extent, “reasonably 
solved” by normalization, as discussed earlier), but rather that 
they represent very different aspects of a model’s quality. In 
principle, it does not make sense to add/subtract accuracy and 
simplicity, and the meaningfulness of an indicator 
multiplying/dividing these two quality criteria is questionable. A 
more meaningful approach is to recognize that accuracy and 
simplicity are two very different quality criteria, and treat them 
separately, without mixing them in the same formula.  

3.2 Arguments For and Against the 
Lexicographic Approach 
 
Argument For – Recognizing the non-commensurability 
of different quality criteria  
The lexicographic approach has one important advantage over the 
weighted-formula approach: the former avoids the problem of 
mixing non-commensurable criteria in the same formula. Indeed, 
the lexicographic approach treats each of the criteria separately, 
recognizing that each criterion measures a different aspect of 
quality of a candidate solution. As a result, the lexicographic 
approach avoids the three drawbacks associated with the 
weighted-formula approach discussed in section 3.1 – namely the 
“magic number” problem, the problem of mixing different units 
of measurement and the problem of mixing “apples and oranges”.  

In addition, although the lexicographic approach is somewhat 
more complex than the weighted-formula approach, the former 
can still be considered conceptually simple and easy to use. In 
particular, the lexicographic approach is considerably simpler and 
easier to use than the Pareto approach.  

Argument Against – Introducing a new Ad-Hoc 
Parameter 
As discussed earlier, the lexicographic approach usually requires 
one to specify a tolerance threshold for each criterion. It is not 
trivial how to specify these thresholds in a principled manner. A 
commonplace approach is to use a statistics-oriented procedure, 
e.g. standard deviation-based thresholds, which allow us to reject 
a null hypothesis of insignificant difference between two 
objective values with a certain degree of confidence. Although 
this approach is statistically sound, it should be recalled that it 
still requires the specification of one parameter, the degree of 
confidence. This specification still has a certain degree of 
arbitrariness, since any “high enough” value such as 95% or 99% 
could be used. Of course one can always ask the user to specify 
the thresholds or any other parameter, but this introduces some 
arbitrariness and subjectiveness in the lexicographic approach – 
analogous to the usually arbitrary, subjective specification of 
weights for different criteria in the weighted formula approach.  

3.3 Arguments Against and For The Pareto 
Approach 
 
Argument against – Multiple runs of a single-objective 
optimization algorithm seems “enough” 
It could be argued that we do not need Pareto-based multi-
objective optimization because a data mining algorithm based on 
the conventional weighted formula approach can be used to 
analyse the trade-offs associated with different criteria to be 
optimized. One simply has to run the algorithm multiple times, 
with a different set of weights in each run. However, this 
argument does not seem very convincing, for the reasons 
discussed in the next item.  

Argument for – Multiple runs of a single-objective 
optimization algorithm is inefficient and ineffective 
First, it should be noted that multiple runs of a single-objective 
optimization algorithm is an ad-hoc approach, since there is no 
principled, mathematically-sound method to decide which 
weights should be used in each run, nor to decide how many runs 
of the algorithm should be performed. Second, this is an 
inefficient approach [Deb 2001], [Corne et al. 2003], because 
each run will be effectively ignoring the candidate solutions 
evaluated by the previous runs of the algorithm, so that later runs 
can spend a considerable time re-evaluating some solutions that 
had already been evaluated by earlier runs. Third, this is an 
ineffective approach. There is no mechanism to enforce the 
desired property that the solutions discovered by the different runs 
should be as spread as possible along the Pareto front. In addition, 
no matter how many times we run a conventional weighted-
formula algorithm with a linear weighted formula (which is the 
most used kind of weighted formula), it will never find a non-
dominated solution in a non-convex region of the Pareto front, 
such as the solutions indicated by the black circle in Figure 2. The 
figure assumes – without loss of generality – that both objectives 
are to be minimized. (See also Section 3.1, first “Argument 
against” heading.) 
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Figure 2: Example of non-dominated solutions in the non-
convex region of the Pareto front  (shown in black) 

 
Argument against – The Minimum Description Length 
Principle seems “enough” 
It could be argued that, in problems where the objectives to be 
optimized are a model’s accuracy and size, we do not need 
Pareto-based multi-objective optimization, because we already 
have the Minimum Description Length Principle. This principle is 
often used to favour the discovery of knowledge that is both 
accurate and simple [Tuzhilin 2002], [Quinlan & Rivest 1989], 
[Fayyad & Irani 1993]. In essence, this principle recommends 
that, given a set of competing hypotheses (predictive models for a 
given data set), one should choose as the “best” hypothesis the 
one that minimizes the sum of two terms, namely: (a) the length 
of the hypothesis; and (b) the length of the data given the 
hypothesis, i.e., the length of the data when encoded using the 
hypothesis as a predictor for the data. The second term represents 
the length of the encoding of the data instances that are 
“exceptions” to the hypothesis. One characteristic of this principle 
is that both terms (a) and (b) are measured in bits. At first glance, 
this has the nice characteristic that two terms that seemed non-
commensurable (accuracy and size of the hypothesis) have been 
transformed into a common unit of measurement, and have 
therefore become “commensurable”.  

Although the Minimum Description Length Principle seems an 
elegant solution for obtaining commensurability between 
accuracy and simplicity, it introduces another problem, as 
discussed in the next item.  

Argument for – The Minimum Description Length 
Principle comes with a price 
The previously-mentioned commensurability is artificially 
obtained at the following price: the MDL principle introduces the 
problem of how to encode a hypothesis and its data exceptions 
into bits of information. For any hypothesis space with a 
reasonably large size, there will be a large number of different 
ways of encoding hypotheses and exceptions in bits of 
information. Finding a “good” encoding scheme, among so many 
possible encoding schemes, is usually a very difficult task – see 
e.g. [Quinlan & Rivest 1989] – and the value of the previously 
mentioned terms (a) and (b) is entirely dependent on the choice of 
encoding scheme. Actually, one cannot say that one encoding is 
superior to others in general, because each encoding is associated 
with an inductive bias, and it is well-known that the effectiveness 
of any inductive bias is application dependent. Hence, in general 
the choice of the encoding to be used is difficult and typically 

done manually, either taking into account background knowledge 
or in a more ad-hoc fashion involving trial and error – a situation 
that is somewhat analogous to the manual choice of the weights 
for each objective in the weighted-formula approach.  

Pareto-based optimization avoids the problems associated with 
the choice of a good encoding, since it treats the model-quality 
criteria of accuracy and size as two separate quality measures that 
are never mixed into the same formula, respecting the natural 
non-commensurability of these two quality measures.  

In addition, note that the Pareto approach is more generic than the 
Minimum Description Length principle, since the latter is used 
only to cope with accuracy and simplicity, whereas the Pareto 
approach can cope with any kind of non-commensurable model-
quality criteria.  

Argument against – The difficulty of choosing a single 
“best” solution to be used in practice 
A possible criticism of the Pareto approach is that in this approach 
the data mining algorithm returns a set of non-dominated 
solutions, whereas in practice the user will often use a single 
solution. How can one choose the “best” non-dominated solution, 
out of all non-dominated solutions? This seems a difficult 
problem associated with the Pareto approach.  

Arguments for – A better role for the user or a data-
driven criterion to choose the “best” solution 
There are at least two possible answers to the question posed by 
the previous item. The first answer to the problem of choosing a 
single “best” solution, which is the answer most commonly found 
in the multi-objective optimization literature, it that it is up to the 
user to choose the best solution, by taking into account her/his 
background knowledge and preferences. At first glance, this 
might seem a not very satisfactory answer, because it introduces 
some subjectivity into the choice of the best solution. However, 
this problem is actually less serious than it looks like at first 
glance, and this criticism can be rebutted by two points.  

First, one should recall that data mining is just one step of a 
broader knowledge discovery process, and this process is highly 
interactive [Fayyad et al. 1996], [Brachman & Anand 1996] 
because participation of the user in the process is essential to 
improve the chance that discovered knowledge will be actually 
useful for the user. Second, and this is a subtle point that is often 
missed by critics of the Pareto approach, the conventional 
approach for coping with multi-objective problems – viz., using a 
weighted formula – is also associated with an important subjective 
decision, namely the choice of the weight values for each of the 
different criteria.  

With respect to the latter point, the difference between the 
weighted formula approach and the Pareto approach can be 
summarized by the two flowcharts in Figures 3(a) and 3(b). This 
Figure clearly shows that in both approaches the user must make a 
subjective decision. The difference is that in the weighted-formula 
approach the user has to make the subjective decision about the 
weight values a priori, before the data mining algorithm is run. 
Intuitively, this is a very uninformed decision, because at this 
point the user does not have any computational result to support 
her/him in the task of analysing the trade-offs associated with the 
different criteria. By contrast, in the Pareto approach the user 
makes a subjective choice about the best classifier a posteriori, 



after she/he has seen the several non-dominated solutions returned 
by the data mining algorithm. Those solutions cover a wide range 
of different trade-offs between the criteria being optimized, so 
that in principle the user is now in a much better position to 
analyze the trade-offs associated with the different criteria and 
choose the best solution by taking into account her/his 
preferences.  

 
 
  USER  chooses weights  
  for the different criteria 
 
 
    Run DM algorithm                         Run DM algorithm 
 
 
 
   Return the best solution                   Return ALL  
                                                    non-dominated solutions 
 
 
 
                                                            USER chooses  
                                                            the best solution 
 
 

(a) Weighted-formula approach      (b) Pareto approach 

Figure 3: Two approaches for solving multi-objective 
optimization problems 
 
In any case, there is also a second answer to the problem of how 
to choose the “best” solution out of all the non-dominated 
solutions. One can actually violate the principle of returning all 
non-dominated solutions and return only the “best” non-
dominated solution found by the algorithm, according to a data-
driven heuristic used by the algorithm. One possibility is as 
follows. Although all non-dominated solutions, by definition, 
have in common the characteristic of not being dominated by any 
other solution, they are still different from each other with respect 
to the number of solutions that they dominate. That is, different 
non-dominated solutions will dominate a different number of 
(dominated) solutions. This suggests the use of a quality measure 
that can be used as a “tie-breaking criterion” to select the “best” 
non-dominated solution, out of all non-dominated solutions. In 
essence, one can choose the non-dominated solution that 
dominates the largest number of (dominated) solutions among all 
solutions generated by the algorithm [Deb 2001].  

It should be noted that this approach is a significant departure 
from the “conventional” Pareto approach represented by Figure 
3(b). At first glance, one might criticize this approach as an 
unnecessarily complex way of implementing a single-objective 
optimization algorithm, since just a single “optimal” solution is 
returned anyway. However, recall that in this approach the 
algorithm is still performing a multi-objective search, looking for 
a diverse set of non-dominated solutions spread across the Pareto 
front. The wider exploration of the search space could still be 

very beneficial, by finding a non-dominated solution that could 
not be explored by a conventional single-objective algorithm 
using, say, the weighted formula approach.  

 

4. THE RELATIONSHIP BETWEEN 
MULTI-OBJECTIVE OPTIMIZATION 
AND ROC GRAPHS 
ROC graphs are an increasingly popular way of analyzing the 
performance of a classifier, and they are particularly useful to 
choose the best classifier under different scenarios of class 
distribution and misclassification costs [Provost & Fawcett 1997], 
[Ting 2002]. On a ROC graph, the false positive rate (FPR) is 
plotted on the X axis and the true positive rate (TPR) is plotted on 
the Y axis. The performance of classifiers can then be visualized 
on this graph, as follows. Some classifiers produce a binary 
output – a positive or negative class. These classifiers are 
represented by points in the ROC graph. Other classifiers produce 
a numeric output, to which a threshold is applied in order to 
determine if the predicted class is positive or negative. These 
classifiers are represented by curves in the ROC graph – 
corresponding to a continuous series of (FPR, TPR) pairs as the 
threshold values are varied. A ROC graph is illustrated in Figure 
4. In a ROC graph, the ideal performance corresponds to the 
upper-left point (0,1), and the strategy of randomly guessing the 
class of an example corresponds to the line y = x, shown as the 
dashed line in the figure.  
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Figure 4: a ROC graph  
 

Let us consider first the case of binary classifiers. A given point A 
in the ROC graph is better than another point B if A is to the 
northwest of B, that is, if A is better than B with respect to at least 
one of the two criteria (lower FPR, higher TPR) and A is not 
worse than B with respect to any of the two criteria. If these 
conditions hold, then A dominates B, i.e., A is better than B 
across all class and misclassification cost distributions. An 
example is shown in Figure 4, where classifier A dominates 
classifier B. Note that this is precisely the definition of Pareto 
dominance, i.e., a given point A in the ROC graph is better than 
another point B across all class and misclassification cost 
distributions if and only if A dominates B in the Pareto sense. In 
the case of numeric classifiers, a given classifier A is better than 
another classifier B only when the entire curve of A is to the 



northwest of B. This is clearly a generalization of Pareto 
dominance from individual points to continuous curves. In 
addition, a classifier is potentially optimal if and only if it lies on 
the northwest boundary of the convex hull [Provost & Fawcett 
1997]. Note that this boundary is precisely the Pareto front in the 
context of a multi-objective optimization problem – involving the 
minimization of FPR and the maximization of TPR.  

As mentioned earlier, it is clear that if a classifier A dominates a 
classifier B then A is a better classifier. However, it is often the 
case that one classifier obtains better performance than another 
only in a limited range of the ROC graph, corresponding to a 
limited range of class and misclassification cost distributions. 
This is what happens, for instance, with classifiers A and C in 
Figure 4. Both are non-dominated classifiers, lying in the “Pareto 
front” of the ROC graph. In this case, it has been suggested that 
one should choose the classifier that has the highest value of the 
area under the ROC curve (AUC) [Ling & Zhang 2002], [Bradley 
1997]. AUC is a single measure summarizing the performance of 
a classifier across the entire range of class distribution and 
misclassification costs. However, since the AUC is just a global 
measure summarizing performance across a wide range of 
scenarios, it will lead to the choice of a suboptimal classifier in 
many scenarios [Provost & Fawcett 1997]. Hence, as pointed out 
by Provost & Fawcett, it is important to discover classifiers that 
are spread across the northwest boundary of the convex hull, 
which corresponds to discover classifiers along the Pareto front. 
This is clearly an argument supporting multi-objective 
optimization algorithms, whose goal is precisely to discover 
solutions spread across the Pareto front.  

To summarize, ROC Graph-based analysis of classifier 
performance can be regarded as a particular case of the more 
general principle of Pareto dominance.  

5. CONCLUSIONS 
This paper has presented a critical review of three different 
approaches for coping with multi-objective problems in data 
mining, namely: (a) the “conventional” approach of transforming 
a multi-objective problem into a single-objective one via a 
weighted formula; (b) the lexicographical approach; and (c) the 
Pareto approach. The weighted formula approach is by far the 
most popular approach in the data mining literature. However, a 
careful analysis of this approach has revealed its drawbacks. One 
of these drawbacks is that it mixes different non-commensurable 
model-quality criteria into the same formula. In particular, this 
has the disadvantage of producing model-quality measures that 
are not very meaningful to the user, going against the principle 
that in data mining discovered knowledge should be not only 
accurate but also comprehensible to the user [Fayyad et al. 1996].  

This and other drawbacks of the weighted-formula approach are 
avoided by the lexicographic approach and the Pareto approach. 
The latter two approaches are more principled approaches for 
coping with multi-objective optimization problems in data 
mining.  

With respect to the influence of the user in the result returned by 
the data mining algorithm, the lexicographic approach can be 
considered as an intermediary approach between the weighted-
formula and the Pareto approach, as follows. As discussed earlier, 
in the weighted-formula approach the user has the full 

responsibility for specifying the weights (defining the relative 
importance of each of the objectives to be optimized) a priori, 
before she/he has knowledge about the solution candidates to be 
explored by the algorithm. By contrast, in the Pareto approach the 
user does not need to specify any weight nor any other form of 
assigning different priority to different objectives. The algorithm 
will search for all non-dominated solutions, implicitly considering 
that all objectives have “the same priority”, and only after the set 
of non-dominated solutions is returned by the algorithm the user 
will have to choose one particular solution, a posteriori. Finally, 
the lexicographic approach allows the user to assign different 
priorities to different objectives in a kind of qualitative fashion, 
i.e., the user just has to say, for instance, “objective A is more 
important than objective B”, without having to specify the precise 
quantitative value of weights for objectives A and B. Hence, the 
user’s task becomes considerably simpler.  

In any case, the lexicographic approach shares with the weighted-
formula formula the characteristic that a single solution is 
returned to the user. This has the advantage of simplicity but the 
disadvantage of missed opportunities (i.e., the user misses the 
opportunity of analysing the trade-off of different non-dominated 
solutions) discussed earlier.  

The Pareto approach is sometimes criticized as being 
“unnecessarily complex”. However, in the discussion presented in 
section 3.3 several arguments against the Pareto approach were 
found wanting and were rebutted by counter-arguments. It is true 
that the Pareto approach is considerably more complex (in terms 
of designing and running the data mining algorithm) than the 
other two approaches. However, this disadvantage seems 
compensated by its several advantages – in particular, avoiding 
multiple runs of the algorithm, avoiding ad-hoc specification of 
parameters and returning to the user a very informative set of non-
dominated solutions.  

The Pareto approach’s property of returning a set of non-
dominated solutions not only offers the user a rich source of 
information about the trade-offs between different model-quality 
criteria, but also has other potential applications in data mining. In 
particular, the diversity of solutions in the Pareto front naturally 
lends itself to the use of those solutions in the creation of an 
ensemble of models (e.g., classifiers). Several techniques for 
generating an ensemble of models rely on a kind of randomization 
– e.g. random subsets of data. By contrast, the Pareto approach 
offers the interesting alternative of performing an explicit search 
for diverse, non-dominated models, and all the non-dominated 
discovered models can be immediately used to compose a diverse 
ensemble of models.  

Of course, multi-objective optimization is not a panacea. There 
are scenarios where a problem that is, at first glance, a multi-
objective problem can be effectively casted as a single-objective 
problem. An example is the “two-objective” problem where a 
company wants to identify customers satisfying two criteria, viz.: 
a) having a high probability of churning, and b) representing a 
high revenue for the company. At first glance this might look like 
a two-objective scenario. However, in this scenario the two 
objectives are very related, and they can be effectively 
transformed into a single objective by multiplying them, which 
will compute the expected revenue loss due to churning.  



However, it should be noted that in these scenarios, although a 
multi-objective optimization algorithm might not be necessary, it 
might still offer some benefits associated with the fact that its 
search considers a diverse set solutions. For instance, 
[Bhattacharyya 2000] addressed a problem where a cellular-phone 
provider wanted to identify churners satisfying the two above-
mentioned criteria. The author developed a Pareto-based multi-
objective optimization method to solve the two-objective 
optimization problem, obtaining good results – outperforming 
more conventional single-objective algorithms.  

In any case, we emphasize that, similarly to several other 
techniques in data mining, the effectiveness of different multi-
objective optimization approaches strongly depends on the 
application domain. For instance, recall that the lexicographic 
approach requires the user to specify a priority ordering for the 
objectives. This can be natural and desirable in some applications, 
but may be unnatural or undesirable in other applications. In 
addition, the computational complexity associated with the Pareto 
approach might make it cumbersome in some applications. 

As a general conclusion of the discussion presented in this paper, 
both the lexicographic approach and the Pareto approach are more 
principled approaches to cope with multi-objective data mining 
problems than the conventional weighted-formula approach. 
Hence, the former two approaches deserve more attention from 
the data mining community. In particular, much more work is 
needed to compare these three approaches, both empirically (in a 
large number of different data sets and different scenarios) and 
theoretically, since projects comparing two or more multi-
objective approaches are rare in the data mining literature.  
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