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ABSTRACT

This paper addresses the problem of how to evathatejuality
of a model built from the data in a multi-objectigptimization
scenario, where two or more quality criteria muse b
simultaneously optimized. A typical example iscargario where
one wants to maximize both the accuracy and thelsiity of a
classification model or a candidate attribute stliseattribute
selection. One reviews three very different appneacto cope
with this problem, namely: (a) transforming thegaral multi-
objective problem into a single-objective problem bsing a
weighted formula; (b) the lexicographical approaeihere the
objectives are ranked in order of priority; and (hg Pareto
approach, which consists of finding as many nonidated
solutions as possible and returning the set of dmminated
solutions to the user. One also presents a criteakbw of the
case for and against each of these approaches.g&heral
conclusions are that the weighted formula appreasthich is by
far the most used in the data mining literaturs teia large extent
an ad-hoc approach for multi-objective optimizatiaiereas the
lexicographic and the Pareto approach are moreciplad
approaches, and therefore deserve more attenion fine data
mining community.
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1. INTRODUCTION

A crucial issue in data mining is how to evaludte guality of a
candidate model — e.g., a classification model sigch rule set or
a decision tree. This paper addresses an impaatp#ct of this
issue, which is how to evaluate a model’'s qualigytéking into

account multiple quality criteria (objectives) te bptimized. In

this case the quality of a model can be represebted n-

dimensional vector, where n is the number of gualitteria to be
optimized, rather than by a single scalar numbatrltiNdbjective

problems are very common in a number of differeateidnining

tasks and problems. As typical examples, let ustioretwo very

generic scenarios, which are broad enough to refes large

number of data mining projects.

The first scenario involves predictive tasks. Exbasp of
predictive data mining tasks are classificationdrenthe attribute
to be predicted is categorical), regression (whbkeeattribute to
be predicted is continuous) and dependence modeflivhere
there are several categorical attributes to beigtet). Here we

focus on the classification task, which is in gahdhe most
studied in the data mining literature, but the amngaots discussed
here also hold for other predictive tasks.

The knowledge discovered by a data mining algorigfould be
not only accurate but also comprehensible to tlee [Fiayyad et
al. 1996]. Hence, there are a number of classifinaprojects
where the goal is to maximize both the predictiveusacy of the
classification model and the comprehensibility (dinity) of the

classification model, in order to obtain a modekieato be
interpreted by the user. This is the case partiyula the context
of decision tree and rule induction algorithms, ethilend

themselves naturally to the discovery of knowledigea high-

level representation, which can in principle besipteted by the
user — as long as the “complexity” of the modelpitglly

measured by the size of the model, is relativelglbrihis raises
the question of how to evaluate the trade-off betwedhe
accuracy of a model and its size.

Indeed, a common approach in the literature cansiSteporting

the values of both the predictive accuracy andsitmplicity (size)

of different models produced in a set of experiradiieiss et al.
2003], [Chisholm & Tadepalli 2002], [Weiss & Indimka 2000],

[Li et al. 2002]. When reporting these kinds ofules accuracy
and simplicity are usually analyzed separately freach other,
and it is often the case that “model A is more aamithan model
B, but model B is simpler than model A”. For instanwhich one
is a “better” classification model: an easily-imtextable decision
tree with a dozen nodes and accuracy rate (oresteset) of 92%
or a large, non-interpretable decision tree withdreds of nodes
and accuracy rate of 95%7? The answer depends q@rdbiem at

hand and the preference of the user.

The second scenario involves attribute selectidris s one of
the most studied data preprocessing tasks of thmvlkdge
discovery process, where the goal is to selectobatl original
attributes, a subset of attributes that are relefaarthe target data
mining task [Guyon & Elisseeff 2003]. Again, forettsake of
simplicity we focus on attribute selection for thkassification
task, which is the kind of attribute selection mistestigated in
the data mining literature, but the arguments dised here also
hold in general for other kinds of data mining w®sgarticularly
predictive tasks.

In general it is accepted that, in the context afadmining, an
attribute selection method should select an atilsubset that
not only maximizes the accuracy of the classifaatmodel, but
also minimizes the number of selected attributes#@lve memory



space, speed up the classification algorithm, etedyor the size
of the classification model built from the selecttributes (to
improve the simplicity/interpretability of the mdjle

Again, a common approach in the literature congiteporting

not only the predictive accuracy of the model bditim the

selected attributes, but also the number of seleettributes
and/or the size of the classification model buitini the selected
attributes [Yu & Liu 2003], [Kim et al. 2000], [Kavi & John

1998], [Cherkauer & Shavlik 1996]. It is often tlase that
“attribute subset A leads to a more accurate mtde attribute
subset B, but B has a smaller cardinality (numkfeattsibutes)

than A”. This introduces the difficult problem ohalyzing the

trade-off between
minimizing the number of selected attributes, whigkanalogous
to the above mentioned trade-off between a moaeksiracy and
its size.

We emphasize that the previous two generic scenarie just a
sample of the many kinds of scenario where a dait@nm

problem involves the simultaneous optimization wb tor more

criteria (objectives). One could easily add to tis¢ scenarios
with several other criteria to be optimized. Fastance, one could
“decompose” the accuracy criterion into the precisand recall
criteria, as it is usual in the information retiéliterature [Baeza-
Yates & Ribeiro-Neto 1999].
surprisingness (unexpectedness) separately fromrame and
simplicity [Liu et al. 1997], [Freitas 1998]. (Thaotivation for
this is clear by considering the following hypotbat rule: IF

(patient is pregnant) THEN (gender is female). Thig is very
accurate and very simple, but it gets a very lowrkmgor

surprisingness.) One could consider the two ohjesti of
maximizing accuracy and minimizing the cost of tit&ributes
used by the classifier [Turney 1995]. A comprehemsiiscussion
about all kinds of multi-objective data mining sagns would
take a far larger space than the available spagehb above list
is, hopefully, enough to show that multi-objecti@ptimization
problems are quite common in data mining.

The remainder of this paper is organized as follo8ection 2
discusses three general approaches to cope witti-objéctive
problems. Section 3 discusses arguments for andsigzach of
those three approaches. Section 4 discusses thtomship
between multi-objective optimization and ROC graphmally,
section 5 concludes the paper.

2. THREE APPROACHES FOR
COPING WITH MULTI-OBJECTIVE
PROBLEMS

2.1 The Conventional Weighted-Formula
Approach: Transforming a Multi-objective

Problem into a Single-objective One

In the data mining literature, by far the most usggproach to
cope with a multi-objective problem consists ofngfrming it
into a single-objective problem. This is typicaligone by
assigning a numerical weight to each objective I(&t&on
criterion) and then combining the values of theghi&ed criteria
into a single value by either adding or multiplyiradl the

maximizing a model's accuracy and

One could measure rule

weighted criteria. That is, the quality Q of a giveandidate

model is typically given by one of the two kindsfofmula:
Q=wxC + WXxC +...+Wxec (1), 0r

Q=¢"xg"x . .xg"" )

where w, i=1,...n, denotes the weight assigned to critgriard n

is the number of evaluation criteria. Let us memtisome

examples of this approach in the context of the twolti-

objective scenarios discussed in the Introduction.

The first scenario involves rule induction algomith for
classification, where it is common to evaluate thality of a
candidate rule by measuring two or more criteria.eXample is:
Q = wy.consistency + wcompleteness 3),
an instance of the general formula structure (ljnkbaing
completeness and consistency into a single meastraile
quality. This formula and its variations are usadseveral rule
induction algorithms [Bruha & Tkadlec 2003], [Furakz &
Flach 2003]. Another example is:
Q = completene¥sx consistency_gafh")  (4),
an instance of the general formula structure (2pdusn
[Kaufmann & Michalski 1999] to produce one of theakiation
criteria used in a lexicographic approach for esxealuation (to be
discussed in section 3.2).

The second scenario involves attribute selectigorighms for
classification, where it is also common to evaldhtequality of a
candidate attribute subset by measuring two or mdteria. An
example is:

Q = ¥ax Acc + Yax (1 - (S + F)/2) (5).
This formula was used by [Cherkauer & Shavlik 19@6ineasure
the quality of a candidate attribute subset in tnibate selection
method following the wrapper approach, where Aamaacy)
was measured by the validation-set accuracy ofciside tree
built with the selected attributes, S was the decisree size and
F was the number of attributes (features) in thelckate attribute
subset. Other examples of attribute selection nuisttfollowing
the wrapper approach and combining two or moréate subset
quality criteria in a weighted formula can be fouimd[Liu &
Motoda 1998].

2.2 The Lexicographic Approach

The basic idea of this approach is to assign diffepriorities to
different objectives, and then focus on optimizthg objectives
in their order of priority. Hence, when two or macandidate
models are compared with each other to choosedbedne, the
first thing to do is to compare their performanceasure for the
highest-priority objective. If one candidate modekignificantly

better than the other with respect to that objectthe former is
chosen. Otherwise the performance measure of theandidate
models is compared with respect to the second tgedAgain,

if one candidate model is significantly better tttha other with
respect to that objective, the former is chosehgemtise the
performance measure of the two candidate modet®ngpared
with respect to the third criterion. The processepeated until
one finds a clear winner or until one has usedhel criteria. In
the latter case, if there was no clear winner, aaresimply select
the model optimizing the highest-priority objective

A well-known algorithm using this approach is th@QZ¥8 rule
induction algorithm [Kaufmann & Michalski 1999] anis



variants. AQ18 uses a “lexicographic evaluation cfiomal
(LEF)” defined by a sequence of pairs 519, (C,t), ..., (G,t,)>,

where each ici=1,...,n, represents the value of a performance

criterion for a given candidate model, and eaghi#i,...,n,
represents the tolerance associated wijthThis tolerance is
specified by a threshold indicating the maximumueathat the
performance criterion; dor a given candidate model is allowed to
deviate from the value of for the best current candidate model.
More precisely, let M and M be two candidate models being
compared, and assume, without loss of generaligt, ¥, has a
better value of,ahan M. If the difference between §4 ¢ value
and Mys ¢ value is greater than, tthen M is immediately
considered better than JMwithout the need to check lower-
priority objectives. Otherwise the difference betwev, and M,

is not considered significant, and in order to celthe best
candidate model one has to use the remaining lpwerity
objectives. In [Kaufmann & Michalski 1999] this appch is
used with a LEF where a predictive accuracy-relatedsure (a
combination of completeness and consistency gainéd as the
highest-priority criterion (9, and rule description simplicity as
the next criterion (£); but of course other criteria could be used.

2.3 The Pareto Approach

The basic idea of the Pareto approach is thateadstof

transforming a multi-objective problem into a sigibjective

problem and then solving it by using a single-ofiyec search
method, one should use a multi-objective algoritiensolve the
original multi-objective problem. Intuitively, thspproach makes
sense. One should adapt the algorithm to the proleing

solved, rather than the other way around. In angecdhis

intuition needs to be presented in more formal sermwhich is

done in the following.

Let us start with a definition of Pareto dominangesolution s is
said to dominate (in the Pareto sense) a solutidraad only if §

is strictly better than,swith respect to at least one of the criteria
(objectives) being optimized and & not worse than,swith
respect to all the criteria being optimized. Mathadoally,
assuming — without loss of generality — that atiecia g, i=1,...k,
are to be maximized, a solutiop dominates a solution, § and
only if [I; such that £¢;) > $(¢;) andc;, i=1,...k, s(c) = s(c),
where g(¢) denotes the quality of solution svith respect to
criteria ¢ and k is the number of criteria being optimized. A
solution s is said to be non-dominated if and only if theseno

solution g that dominates;.sNote that the Pareto approach never

mixes different criteria into a single formula - atiteria are
treated separately.

The concept of Pareto dominance is illustratedigufe 1, where
the two objectives to be maximized are the accuracg the
simplicity of a classification model. In the figurenodel A is
dominated by model B and by model D; model C is idated by
model D; and model E is dominated by model F. Med@ID and
F are non-dominated solutions. They form the stedaPareto
front.

Once Pareto dominance has been defined, the neptistto
understand the crucial differences between a mbjgctive
algorithm based on Pareto dominance and a singéstdke
algorithm. There are two related crucial differendeéirst, there is
a difference in the kind of output expected frorteaf these two
kinds of algorithm. A multi-objective algorithm shid return to

the user @etof non-dominated solutions, rather than justrale
solution as in a single-objective algorithm.

sixnplicity

B
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Figure 1: Examples of Pareto dominance

Second, and related to the first difference, trercte performed
by a multi-objective algorithm should explore a siderably
wider area of the search space and keep track lohaa-
dominated solutions found so far, in order to fiad many
solutions in the Pareto front as possible. Of oeutisis makes a
Pareto-based multi-objective  optimization algorithmnore
complex than its single-objective counterpart. Sdtaeeto-based
multi-objective optimization data mining algorithrage discussed
in [Kim et al. 2000], [Bhattacharyya 2000], [Papgieal. 2002].

3. ARGUMENTS FOR AND AGAINST
EACH MULTI-OBJECTIVE
OPTIMIZATION APPROACH

3.1 Arguments For and Against the

Conventional Weighted-Formula Approach

Argument For — Simplicity

This approach, discussed in section 2.1, has thanéage of
conceptual simplicity and easy of use, which prdpakplains its
popularity. However, it has several drawbacks, Wwhiare
discussed in the following.

Argument Against — The “magic number” problem and
missed opportunities

The most obvious problem with weighted formulae hswas
formulas (1) and (2) is that, in general, the sgtof the weights
in these formulas is ad-hoc, based either on a wbatevague
intuition of the user about the relative importarafedifferent
quality criteria or in trial and error experimenat with different
weight values. In other words, each weight seenfsagical
number”, which often is justified in the literaturgth suitably
vague sentences such as “the values of these weigbte
empirically determined”.

Another problem with weights is that, once a forawith precise
values of weights has been defined and given tata dhining
algorithm, the data mining algorithm will be effeely trying to
find the best model for that particular settingnafights, missing
the opportunity to find other models that mightdmtually more
interesting to the user, representing a betteretadtl between
different quality criteria. In particular, weightedormulas



involving a linear combination of different qualityriteria have
the limitation that they cannot find solutions innan-convex
region of the Pareto front. This point will be dissed in section
3.3.

For now, to see the limitation of linear combinatsoof different
criteria, consider a hypothetical scenario wherehaee to select
the best candidate to the position of data minea icompany,
taking into account two criterigg @nd ¢ — say, their amount of
knowledge about machine learning and statisticasoned by a
test and/or a detailed technical interview. Supptse first
candidate’s scores are € 9.5 and £= 5; the second candidate’s
scores are;= 7 and ¢ = 7; and the third candidate’s scores are c

= 5 and ¢ = 9.5. The choice of the “best” candidate should

depend, of course, on the relative importance asdigo the two
criteria by the employer. It is interesting to not®wever, that
although it is trivial to think of weights for ceitia g and ¢ that
would make the first or third candidate the winrieis actually
impossible to choose weights foy and ¢ so that the second
candidate would be the winner — assuming that tleghted
formula is alinear combination of weights, such as formula (1).
Intuitively, however, the second candidate mightthe favorite
candidate of many employers, since she/he is theame to have

a good knowledge about both machine learning aattsts.

Of course, it is possible to make the second catelithe winner.
One has to use a non-linear combination of critegi@. the
formula g x ¢, — an instance of the generic formula (2), wheee th
exponent weights are set to 1. However, in thismgta one
would have chosen the formula>cc, a posteriori i.e., after one
has learned that the user would prefer the secandidate, rather
than the other two candidates. If one had askedheack algorithm
to find the best candidate without this a posteriarowledge
about the candidates, one could easily have prdvite
algorithm with a formula involving a linear combtitn of
weights (which are more often used in the litemtthran non-
linear formulas), and in this case one would migs dpportunity
of finding a candidate such as the second aboveidate. In
other words, it is hard for the user to define Hest setting of
weightsa priori, without knowing the results of the research.

Argument Against - units  of
measurement

This problem is particularly serious when the wésghformula
involves a  summation/subtraction (rather
multiplication/division) of terms representing difent quality

criteria, such as formulas (1) and (5). Differenbdal-quality

criteria often have very different scales in theinits of

measurement. For instance, accuracy and clasgficabodel-

size (e.g. the number of decision tree nodes) aa&suared in very
different scales. This problem can be dealt withnloymalizing

the different quality criteria so that they referthe same scale.
This approach is well-known in the literature andirat glance it

is a very satisfactory approach. There is, howewersubtle

problem associated with normalization that is fadiscussed in
the literature. In essence, the problem is thaeineral there are
several different ways of normalizing a quality s, and the
decision about which normalization procedure shdwddapplied
tends to be ad-hoc. This problem can also be utudetsn the

context of inductive biases. An inductive bias sy ariterion

(explicit or implicit), except consistency with thdata, used to
favour one hypothesis over another [Mitchell 1980fitchell

Mixing different

than a

1997]. A normalization procedure is a source ofisitve bias, in
the sense that it tends to favour one hypothess others and it
is not based on consistency with the data — assuming ahat
predictor attribute is normalized without takingaraccount the
class values, which is usually the case. It is ¥metiwn that an
inductive bias has a domain-dependent effectiversesshat any
inductive bias will be suitable for some applicatidomains and
unsuitable for others.

To see an example of the subtle problem associaihl

normalization, consider the previously-mentioned rkvoof

[Cherkauer & Shavlik 1996] on attribute selectiamhere the
guality of a candidate attribute subset was evatlidly formula
(5). In that formula, the value of S (decision treiee) was
normalized by dividing the tree size by the numbégtraining

examples the decision tree was built from. Considew an

alternative normalization (not used in the papéiyiding the

current tree size by the size of the largest treerg all the trees
generated by the search so far. Both normalizapimtedures
produce a value in the range 0..1, as desired, thet two

procedures might produce quite different valueS ¢ be used in
formula (5) — which should influence the choicetlé weight
values in formula (5). Which of them is the “bestirmalization?
One cannot mathematically prove that one of themvigys the
best, in the same sense that one cannot mathellyaticave that
an inductive bias is always the best. Hence, idehl choice of
the “best” normalization procedure should involvackground
knowledge about the application domain and/or taiatl error
experimentation with different normalization prooees and
weight values. This tends to be an ad-hoc appraather than a
principled approach.

Argument Against — Mixing “apples and oranges”
(non-commensurable criteria)

This is another subtle problem associated with weighted-
formula approach, which is often ignored in therkture. Before
discussing this problem in the context of measutirgquality of
a model, let us explain the core of the problemubing some
simple examples and common-sense arguments.

Common sense tells us that non-commensurable iariséould

not be added/subtracted to/from each other in andt@. For

instance, if the salary of a customer is US$ 50,a0d the
number of dependents (e.g. children) of the custamg, it does
not make sense to add 50,000 + 5. This would pmdac
meaningless quantity. Note that the problem hemotsonly the
fact that the two attributes being added have défgrent scales.
This problem can be solved by normalizing bothilaites into a
range 0..1, say by dividing the salary and the rembf

dependents by the maximum values of these attshbartgong the
customers in the database. This problem was disduis the

previous item. In this item we are interested iothar problem.
Even after performing normalization, we still hate problem
that salary and number of dependents are non-cosurerie

criteria. In other words, they measure very differattributes of a
customer, and the addition/substraction of theskiegain a
weighted formula does not make any sense at ahrdéess of
normalization. It would produce a quantity that \ebube

meaningless to the user, which would go againsisickgoal of
data mining, namely that discovered knowledge <shobé

ultimately understandable to the user [Fayyad.€t396].



At first glance it could be argued that this isralglem only if the
different criteria are added/subtracted, but notthky are
multiplied/divided. Indeed, in some cases
multiplication/division of different criteria prodes perfectly
meaningful attributes. In the previous example, care divide the
salary of a customer by her/his number of depeisdemhich
intuitively would produce a meaningful indicator we were
trying to classify customers into, say, “good ctédind “bad
credit” customers. However, even when using a féarmvolving
multiplication/division, the produced quantity magot be
meaningful to the user in many cases. For instadie@ing (or
multiplying) salary by age does not appear to pceda very
meaningful indicator to a user.

Let us now turn to the problem of mixing non-comsw@able
criteria in a weighted formula evaluating a cantiidenodel. In
particular, let us consider the problem of mixingc@acy and
comprehensibility (simplicity) measures into themsaformula,
since these are probably the two model-qualityedetmost used
in data mining. Clearly, accuracy and comprehelitsitare two
very different, non-commensurable criteria to eagduthe quality
of a model. Actually, comprehensibility is an inbetly
subjective, user-dependent criterion. Even if welaee the
semantic notion of comprehensibility by a syntactieasure of
simplicity such as model size, as it is usually elowhen
evaluating “comprehensibility”, the resulting measu of
simplicity is still non-commensurable with a measaf accuracy.
The crucial problem is not that these two critdrave different
units of measurement (which can be, to some extexgsonably
solved” by normalization, as discussed earlier), tather that
they represent very different aspects of a modeglality. In
principle, it does not make sense to add/subtractracy and
simplicity, and the meaningfulness of an indicator
multiplying/dividing these two quality criteria guestionable. A
more meaningful approach is to recognize that aoyurand
simplicity are two very different quality criteriand treat them
separately, without mixing them in the same formula

3.2 Arguments For and Against the
Lexicographic Approach

Argument For — Recognizing the non-commensurability
of different quality criteria

The lexicographic approach has one important adgenover the
weighted-formula approach: the former avoids thebfam of

mixing non-commensurable criteria in the same fdamlndeed,
the lexicographic approach treats each of ther@itgeparately,
recognizing that each criterion measures a difteaspect of
quality of a candidate solution. As a result, tleaidographic
approach avoids the three drawbacks associated tith
weighted-formula approach discussed in section-hamely the
“magic number” problem, the problem of mixing difat units
of measurement and the problem of mixing “apples@manges”.

In addition, although the lexicographic approachs@mewhat
more complex than the weighted-formula approach, fodrmer
can still be considered conceptually simple and éasuse. In
particular, the lexicographic approach is considigraimpler and
easier to use than the Pareto approach.

the

Argument Against —
Parameter

As discussed earlier, the lexicographic approachaliys requires
one to specify a tolerance threshold for each ravite It is not
trivial how to specify these thresholds in a prided manner. A
commonplace approach is to use a statistics-odeptecedure,
e.g. standard deviation-based thresholds, whiadwalis to reject
a null hypothesis of insignificant difference beéme two

objective values with a certain degree of configenglthough
this approach is statistically sound, it shouldrbealled that it
still requires the specification of one parametég degree of
confidence. This specification still has a certaiegree of
arbitrariness, since any “high enough” value su£#®%06 or 99%
could be used. Of course one can always ask thetaspecify
the thresholds or any other parameter, but thi®doices some
arbitrariness and subjectiveness in the lexicogcappproach —
analogous to the usually arbitrary, subjective Hjpation of

weights for different criteria in the weighted farta approach.

Introducing a new Ad-Hoc

3.3 Arguments Against and For The Pareto
Approach

Argument against — Multiple runs of a single-objedte

optimization algorithm seems “enough”

It could be argued that we do not need Pareto-baselt-

objective optimization because a data mining atgoribased on
the conventional weighted formula approach can beduto
analyse the trade-offs associated with differeriteca to be
optimized. One simply has to run the algorithm fplét times,
with a different set of weights in each run. Howevéhis

argument does not seem very convincing, for thesoms:
discussed in the next item.

Argument for — Multiple runs of a single-objective
optimization algorithm is inefficient and ineffective

First, it should be noted that multiple runs ofiagke-objective
optimization algorithm is an ad-hoc approach, sititere is no
principled, mathematically-sound method to decidéicty
weights should be used in each run, nor to deade hany runs
of the algorithm should be performed. Second, tisisan
inefficient approach [Deb 2001], [Corne et al. 2ZD03ecause
each run will be effectively ignoring the candidaelutions
evaluated by the previous runs of the algorithmthso later runs
can spend a considerable time re-evaluating somuicsts that
had already been evaluated by earlier runs. Thhi is an
ineffective approach. There is no mechanism to reefahe
desired property that the solutions discoverechieydifferent runs
should be as spread as possible along the Paoetio fin addition,
no matter how many times we run a conventional kteidr
formula algorithm with a linear weighted formulahpeh is the
most used kind of weighted formula), it will neviénd a non-
dominated solution in a non-convex region of theeRafront,
such as the solutions indicated by the black circlgigure 2. The
figure assumes — without loss of generality — thath objectives
are to be minimized. (See also Section 3.1, fiktglument
against” heading.)
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Figure 2: Example of non-dominated solutions in tloa-
convex region of the Pareto front (shown in black)

Argument against — The Minimum Description Length

Principle seems “enough”

It could be argued that, in problems where the cilvjes to be
optimized are a model's accuracy and size, we db need

Pareto-based multi-objective optimization, because already
have the Minimum Description Length Principle. Thiinciple is

often used to favour the discovery of knowledget tisaboth

accurate and simple [Tuzhilin 2002], [Quinlan & Bs$t 1989],

[Fayyad & Irani 1993]. In essence, this principecommends
that, given a set of competing hypotheses (predictiodels for a
given data set), one should choose as the “begidthegsis the
one that minimizes the sum of two terms, namely ttfa length

of the hypothesis; and (b) the length of the daitzery the

hypothesis, i.e., the length of the data when eedagsing the
hypothesis as a predictor for the data. The setemma represents
the length of the encoding of the data instancest tre

“exceptions” to the hypothesis. One characteristithis principle

is that both terms (a) and (b) are measured in Attéirst glance,

this has the nice characteristic that two term¢ seemed non-
commensurable (accuracy and size of the hypothkai® been
transformed into a common unit of measurement, hade

therefore become “commensurable”.

Although the Minimum Description Length Principleesns an
elegant solution for obtaining commensurability viextn
accuracy and simplicity, it introduces another peoh as
discussed in the next item.

Argument for — The Minimum Description Length
Principle comes with a price

The previously-mentioned commensurability is arid#ily
obtained at the following price: the MDL princiglgroduces the
problem of how to encode a hypothesis and its dateptions
into bits of information. For any hypothesis spaagéth a
reasonably large size, there will be a large nundfedifferent
ways of encoding hypotheses and exceptions in bits
information. Finding a “good” encoding scheme, amso many
possible encoding schemes, is usually a very diffiask — see
e.g. [Quinlan & Rivest 1989] — and the value of fireviously
mentioned terms (a) and (b) is entirely dependarthe choice of
encoding scheme. Actually, one cannot say thatemmeding is
superior to others in general, because each ergdglimssociated
with an inductive bias, and it is well-known thheteffectiveness
of any inductive bias is application dependent. d¢¢ernin general
the choice of the encoding to be used is diffiantd typically

donemanually either taking into account background knowledge
or in a more ad-hoc fashion involving trial andoerr a situation
that is somewhat analogous to the manual choideeofveights
for each objective in the weighted-formula approach

Pareto-based optimization avoids the problems &ssokc with

the choice of a good encoding, since it treatsntioelel-quality

criteria of accuracy and size as two separate tyuakasures that
are never mixed into the same formula, respectirgg rtatural

non-commensurability of these two quality measures.

In addition, note that the Pareto approach is rgereeric than the
Minimum Description Length principle, since thetéaitis used
only to cope with accuracy and simplicity, wherehs Pareto
approach can cope with any kind of non-commenseraigdel-
quality criteria.

Argument against — The difficulty of choosing a sigle
“best” solution to be used in practice

A possible criticism of the Pareto approach is thahis approach
the data mining algorithm returns a set of non-catsd
solutions, whereas in practice the user will oftese a single
solution. How can one choose the “best” non-donaiailution,
out of all non-dominated solutions? This seems #icdit
problem associated with the Pareto approach.

Arguments for — A better role for the user or a daa-

driven criterion to choose the “best” solution

There are at least two possible answers to thetiqngsosed by
the previous item. The first answer to the problehechoosing a
single “best” solution, which is the answer mostnawonly found
in the multi-objective optimization literature,that it is up to the
user to choose the best solution, by taking intcoaot her/his
background knowledge and preferences. At first gganthis
might seem a not very satisfactory answer, becaus&oduces
some subjectivity into the choice of the best sotutHowever,
this problem is actually less serious than it lodke at first

glance, and this criticism can be rebutted by twints.

First, one should recall that data mining is juse cstep of a
broader knowledge discovery process, and this peoihighly
interactive [Fayyad et al. 1996], [Brachman & Anahf96]

because participation of the user in the processsgential to
improve the chance that discovered knowledge véllagatually
useful for the user. Second, and this is a sulatietphat is often
missed by critics of the Pareto approach, the autiweal

approach for coping with multi-objective problemsiz., using a
weighted formula — is also associated with an irgasubjective
decision, namely the choice of the weight valuesefach of the
different criteria.

With respect to the latter point, the differencetws®en the
weighted formula approach and the Pareto approach be
summarized by the two flowcharts in Figures 3(aj &(b). This
Figure clearly shows that in both approaches tlee mnsist make a
subjective decision. The difference is that inweghted-formula
approach the user has to make the subjective dacidiout the
weight valuesa priori, before the data mining algorithm is run.
Intuitively, this is a very uninformed decision, dagise at this
point the user does not have any computationaltressupport
her/him in the task of analysing the trade-offoaigged with the
different criteria. By contrast, in the Pareto aygwh the user
makes a subjective choice about the best classifigosteriori



after she/he has seen the several non-dominatetiosa returned
by the data mining algorithm. Those solutions cavevide range
of different trade-offs between the criteria beiogtimized, so
that in principle the user is now in a much bepesition to
analyze the trade-offs associated with the diffeiiteria and
choose the best solution by taking into account/hier
preferences.

USER chooses weight
for the different criteria

Run DM algorithm

o

Run Daorith

R Retdt L

non-dominated solution

eturn the best solution

USER chooses
the best solution

v

(b) Pareto apgino

(a) Weighted-formula approach

Figure 3: Two approaches for solving multi-objeetiv
optimization problems

In any case, there is also a second answer tortigem of how
to choose the “best” solution out of all the nonmwilwated
solutions. One can actually violate the principfereturning all

non-dominated solutions and return only the “bestdn-

dominated solution found by the algorithm, accogdio a data-
driven heuristic used by the algorithm. One pofigibis as

follows. Although all non-dominated solutions, bfidition,

have in common the characteristic of not being dated by any
other solution, they are still different from eauther with respect
to the number of solutions that they dominate. Tikatifferent
non-dominated solutions will dominate a differenimber of
(dominated) solutions. This suggests the use afadity measure
that can be used as a “tie-breaking criterion”dtect the “best”
non-dominated solution, out of all non-dominatedusons. In

essence, one can choose the non-dominated soldkiah
dominates the largest number of (dominated) saiat@mong all
solutions generated by the algorithm [Deb 2001].

It should be noted that this approach is a sigaificdeparture
from the “conventional” Pareto approach represetgd-igure
3(b). At first glance, one might criticize this appch as an
unnecessarily complex way of implementing a sirafig@ctive
optimization algorithm, since just a single “optifnaolution is
returned anyway. However, recall that in this applo the
algorithm is still performing a multi-objective seh, looking for
a diverse set of non-dominated solutions spreaplsadhe Pareto
front. The wider exploration of the search spacaldstill be

very beneficial, by finding a non-dominated solutithat could
not be explored by a conventional single-objectatgorithm
using, say, the weighted formula approach.

4. THE RELATIONSHIP BETWEEN
MULTI-OBJECTIVE OPTIMIZATION

AND ROC GRAPHS

ROC graphs are an increasingly popular way of asrady the
performance of a classifier, and they are partitplaseful to
choose the best classifier under different scesanb class
distribution and misclassification costs [ProvosE&wcett 1997],
[Ting 2002]. On a ROC graph, the false positivee réEPR) is
plotted on the X axis and the true positive rateRJ is plotted on
the Y axis. The performance of classifiers can thervisualized
on this graph, as follows. Some classifiers prodacéinary
output — a positive or negative class. These dlassiare
represented by points in the ROC graph. Other ifilassproduce
a numeric output, to which a threshold is appliadorder to
determine if the predicted class is positive or ativg. These
classifiers are represented by curves in the RO@phgr—
corresponding to a continuous series of (FPR, TRiRs as the
threshold values are varied. A ROC graph is ilatel in Figure
4. In a ROC graph, the ideal performance correspdndthe
upper-left point (0,1), and the strategy of randogiessing the
class of an example corresponds to the line y shewn as the
dashed line in the figure.

TP rate
A

1

» FP rate
1
Figure 4: a ROC graph

Let us consider first the case of binary classfiér given point A
in the ROC graph is better than another point B\ ifs to the
northwest of B, that is, if A is better than B witspect to at least
one of the two criteria (lower FPR, higher TPR) akds not
worse than B with respect to any of the two criterif these
conditions hold, then A dominates B, i.e., A isteetthan B
across all class and misclassification cost distidms. An
example is shown in Figure 4, where classifier Andwates
classifier B. Note that this is precisely the difam of Pareto
dominance, i.e., a given point A in the ROC graplbétter than
another point B across all class and misclassifinatcost
distributions if and only if A dominates B in theufeto sense. In
the case of numeric classifiers, a given classiigs better than
another classifier B only when the entire curvelois to the



northwest of B. This is clearly a generalization Béreto
dominance from individual points to continuous @sv In
addition, a classifier is potentially optimal ifduwonly if it lies on
the northwest boundary of the convex hull [Prov&sFawcett
1997]. Note that this boundary is precisely theeRafront in the
context of a multi-objective optimization problemnvolving the
minimization of FPR and the maximization of TPR.

As mentioned earlier, it is clear that if a claigsifA dominates a
classifier B then A is a better classifier. Howe\ulis often the
case that one classifier obtains better performahaa another
only in a limited range of the ROC graph, corregfing to a
limited range of class and misclassification comstributions.
This is what happens, for instance, with clasgsfiérand C in
Figure 4. Both are non-dominated classifiers, lyimghe “Pareto
front” of the ROC graph. In this case, it has beaggested that
one should choose the classifier that has the kigreue of the
area under the ROC curve (AUC) [Ling & Zhang 20(QB}adley
1997]. AUC is a single measure summarizing thegoernce of
a classifier across the entire range of class ibligion and
misclassification costs. However, since the AUQu& a global
measure summarizing performance across a wide rafge
scenarios, it will lead to the choice of a suboplirdlassifier in
many scenarios [Provost & Fawcett 1997]. Henceyaasted out
by Provost & Fawcett, it is important to discovéassifiers that
are spread across the northwest boundary of theezohull,
which corresponds to discover classifiers alongRhaeeto front.
This is clearly an argument supporting multi-objest
optimization algorithms, whose goal is precisely discover
solutions spread across the Pareto front.

To summarize, ROC Graph-based analysis of classifier
performance can be regarded as a particular casehef more
general principle of Pareto dominance

5. CONCLUSIONS

This paper has presented a critical review of thd&éerent
approaches for coping with multi-objective problenms data
mining, namely: (a) the “conventional” approachtrainsforming
a multi-objective problem into a single-objectiveneo via a
weighted formula; (b) the lexicographical approaahd (c) the
Pareto approach. The weighted formula approachyisab the
most popular approach in the data mining literattitewever, a
careful analysis of this approach has revealedragvbacks. One
of these drawbacks is that it mixes different nommensurable
model-quality criteria into the same formula. Inrtgaular, this
has the disadvantage of producing model-quality smess that
are not very meaningful to the user, going agatihstprinciple
that in data mining discovered knowledge shouldnbé only
accurate but also comprehensible to the user [Fagyal. 1996].

This and other drawbacks of the weighted-formulpraach are
avoided by the lexicographic approach and the Baapproach.
The latter two approaches are more principled agres for
coping with multi-objective optimization problems idata
mining.

With respect to the influence of the user in theuhereturned by
the data mining algorithm, the lexicographic apptoaan be
considered as an intermediary approach betweemwéighted-
formula and the Pareto approach, as follows. Asudised earlier,
in the weighted-formula approach the user has th# f

responsibility for specifying the weights (definirie relative
importance of each of the objectives to be optidiize priori,
before she/he has knowledge about the solutionidates to be
explored by the algorithm. By contrast, in the Raapproach the
user does not need to specify any weight nor ahgrdiorm of
assigning different priority to different objectseThe algorithm
will search for all non-dominated solutions, imflic considering
that all objectives have “the same priority”, amdyoafter the set
of non-dominated solutions is returned by the atgor the user
will have to choose one particular solution, a poeti. Finally,
the lexicographic approach allows the user to assiifferent
priorities to different objectives in a kind glalitative fashion,
i.e., the user just has to say, for instance, ‘@bje A is more
important than objective B”, without having to sifg¢he precise
guantitativevalue of weights for objectives A and B. Hence, the
user’s task becomes considerably simpler.

In any case, the lexicographic approach sharesthgthveighted-
formula formula the characteristic that a singlduson is

returned to the user. This has the advantage gilisity but the

disadvantage of missed opportunities (i.e., the msisses the
opportunity of analysing the trade-off of differemin-dominated
solutions) discussed earlier.

The Pareto approach is sometimes criticized as gbein
“unnecessarily complex”. However, in the discusgioesented in
section 3.3 several arguments against the Pargimagh were
found wanting and were rebutted by counter-argusénts true
that the Pareto approach is considerably more aom(ih terms
of designing and running the data mining algorithiman the
other two approaches. However, this disadvantagemse
compensated by its several advantages — in patjcaloiding
multiple runs of the algorithm, avoiding ad-hoc cfieation of
parameters and returning to the user a very infovenaet of non-
dominated solutions.

The Pareto approach’s property of returning a detnan-

dominated solutions not only offers the user a mcurce of
information about the trade-offs between differemadel-quality
criteria, but also has other potential applicationdata mining. In
particular, the diversity of solutions in the Parétont naturally
lends itself to the use of those solutions in theaton of an
ensemble of models (e.g., classifiers). Severahrigces for
generating an ensemble of models rely on a kimdmdomization
— e.g. random subsets of data. By contrast, thet®approach
offers the interesting alternative of performing explicit search
for diverse, non-dominated models, and all the dominated
discovered models can be immediately used to coenpativerse
ensemble of models.

Of course, multi-objective optimization it a panacea. There
are scenarios where a problem that is, at firshagaa multi-
objective problem can be effectively casted asnglsiobjective
problem. An example is the “two-objective” problemhere a
company wants to identify customers satisfying tsiteria, viz.:
a) having a high probability of churning, and bpresenting a
high revenue for the company. At first glance thight look like
a two-objective scenario. However, in this scendtie two
objectives are very related, and they can be dffgt
transformed into a single objective by multiplyitieem, which
will compute the expected revenue loss due to ¢hgrn



However, it should be noted that in these scenadlitbough a
multi-objective optimization algorithm might not Inecessary, it
might still offer some benefits associated with faet that its
search considers a diverse set solutions. For nosta
[Bhattacharyya 2000] addressed a problem wherdwdarephone
provider wanted to identify churners satisfying tweo above-
mentioned criteria. The author developed a Parased multi-
objective optimization method to solve the two-ahijge
optimization problem, obtaining good results — ewufprming
more conventional single-objective algorithms.

In any case, we emphasize that, similarly to sévether
technigues in data mining, the effectiveness ofedéht multi-
objective optimization approaches strongly depemds the
application domain. For instance, recall that tegidographic
approach requires the user to specify a priorigeang for the
objectives. This can be natural and desirable iesapplications,
but may be unnatural or undesirable in other appbos. In
addition, the computational complexity associatéith the Pareto
approach might make it cumbersome in some appicsiti

As a general conclusion of the discussion presentétis paper,
both the lexicographic approach and the Paretooagprare more
principled approaches to cope with multi-objectol@ta mining
problems than the conventional weighted-formula reagh.
Hence, the former two approaches deserve moretiatiefiom
the data mining community. In particular, much maverk is
needed to compare these three approaches, bothicaitpi(in a
large number of different data sets and differemgnarios) and
theoretically, since projects comparing two or mareilti-
objective approaches are rare in the data minfagpliure.
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