
City University of New York (CUNY) City University of New York (CUNY) 

CUNY Academic Works CUNY Academic Works 

Publications and Research City College of New York 

2014 

A Critical Review of Research on Reuse of Mechanically Recycled A Critical Review of Research on Reuse of Mechanically Recycled 

FRP Production and End-of-Life Waste for Construction FRP Production and End-of-Life Waste for Construction 

Ardavan Yazdanbakhsh 
CUNY City College 

Lawrence C. Bank 
CUNY City College 

How does access to this work benefit you? Let us know! 

More information about this work at: https://academicworks.cuny.edu/cc_pubs/484 

Discover additional works at: https://academicworks.cuny.edu 

This work is made publicly available by the City University of New York (CUNY). 
Contact: AcademicWorks@cuny.edu 

https://academicworks.cuny.edu/
https://academicworks.cuny.edu/cc_pubs
https://academicworks.cuny.edu/cc
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/cc_pubs/484
https://academicworks.cuny.edu/cc_pubs/484
https://academicworks.cuny.edu/?
mailto:AcademicWorks@cuny.edu


Polymers 2014, 6, 1810-1826; doi:10.3390/polym6061810 

 

polymers 
ISSN 2073-4360 

www.mdpi.com/journal/polymers 

Review 

A Critical Review of Research on Reuse of Mechanically Recycled 

FRP Production and End-of-Life Waste for Construction 

Ardavan Yazdanbakhsh * and Lawrence C. Bank  

Civil Engineering Department, City College of New York, New York, NY 10031, USA 

* Author to whom correspondence should be addressed; E-Mail: ayazdanbakhsh@ccny.cuny.edu;  

Tel.: +1-212-650-6569; Fax: +1-212-650-6965.  

Received: 25 April 2014; in revised form: 28 May 2014 / Accepted: 4 June 2014 /  

Published: 17 June 2014 

 

Abstract: For the last three decades, fiber reinforced polymer (FRP) composite materials 

have been widely used in major engineering industries. Managing FRP waste is becoming 

an important issue due to the growth in the production of FRP composite materials. In this 

article, the issue of FRP waste management is discussed and the commonly used methods 

for the handling of FRP waste are reviewed. One potentially viable use of FRP waste is in 

the partial replacement of fillers or aggregates in cementitious materials (particularly 

portland cement mortar and concrete). A number of important prior investigations 

performed on the use of FRP waste in concrete and mortar are reviewed. The results from 

most of those investigations suggest that FRP aggregates significantly reduce the strength 

of cementitious materials with little significant effect on durability. Recommendations for 

future research in this area are provided for producing stronger mortars and concretes 

incorporating FRP production and end-of-life waste. 

Keywords: aggregate; concrete; fiber reinforced polymer; filler; mechanical properties; 

recycling; reuse 

 

1. Introduction 

Fiber-reinforced polymer (FRP) composite materials are used extensively and increasingly in major 

industries including aerospace, marine, construction, electrical, automotive, domestic appliances, 

furniture, and sports equipment. FRP composite materials used in these industries typically consist of 

glass, carbon, or aramid fibers, which are either continuous or discreet, encased in a matrix of 
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thermosetting resins that have fiber concentrations typically in the range of 12%–60% by volume [1], 

and inorganic fillers (also known as “extenders”) typically in the range of zero to 20% by volume. 

Some types of polymer composites such as bulk molding compounds (BMC) can contain fillers 

(usually calcium carbonate, talcum, or mica powders) with up to 50% of the composite weight (which 

for BMC materials is close to the volume fraction) [2]. FRP composite materials have important 

advantages over many traditional construction engineering materials (such as steel and concrete, and 

timber (wood) in certain circumstances). Those advantages typically include lower densities (i.e., light 

weight), higher mechanical properties in certain directions, ease of production in different shapes, ease 

of installation, and greater durability in harsh chemical and aqueous environments. Disadvantages 

relative to conventional construction materials typically include higher costs, lower temperature 

resistance and fire performance, lack of standard profiles and parts, lack of accepted material and 

design specifications, and difficulty of recycling. According to the American Composite 

Manufacturers Association (ACMA), one of the first known FRP products was produced less than a 

century ago (in the mid-1930s) in an experimental production of a boat hull using fiberglass fabric and 

polyester resin [3]. The use of FRP components for civil engineering structures started to become 

popular in the mid-1990s [4]. The use of FRP in the marine industry started about six decades ago and 

has led to increasing number of reinforced plastic recreational and working boats, the vast majority 

being fiberglass (glass fiber reinforced polyester). The International Council of Marine Industry 

Associations (ICOMIA) has estimated that there are more than 6 million recreational boats in Europe 

alone [5]. Because FRP composite materials are highly durable, end-of-life disposal has not been a 

major issue to-date. However, the number of the FRP-incorporated vessels and structural members that 

are approaching the end of their service or functional lives is increasing rapidly resulting in a growing 

rate of waste accumulation. Another source of FRP waste is the scrap from the production process of 

FRP materials, parts and sections; in all production processes portions of the raw material and the final 

product are rendered unusable. The total combined volume of end-of-life and production waste 

generated by the glass thermoset composites market in Europe is expected to reach 304,000 tonnes 

(metric tons) by 2015 [6].  

It is predicted that in the U.S. the demand for FRP will climb to nearly 2 million tonnes in 2017 [7]. 

According to the European Composites Industry Association (EuCIA), in 2013 approximately  

1.02 million tonnes of glass fiber reinforced polymer (GFRP) composite materials were manufactured 

in Europe [8]. In 2010, Osmani and Asokan [9] reported that in the United Kingdom alone the annual 

production of GFRP waste was around 55,000 tonnes with an expected annual production increases of 

10%. Most of the production and end-of-life disposal waste is landfilled. According to Osmani and 

Asokan, in the United Kingdom, about 90% of the GFRP waste is landfilled [9].  

Since unlike many of the widely used materials—particularly metals, wood, and concrete—recycling 

and reusing FRP waste is more difficult and expensive. Finding an application for minimally recycled 

FRP waste will be particularly valuable as it reduces the amount of FRP waste disposed of in landfill 

sites and the associated high costs. One of those potential applications is using FRP waste as a partial 

replacement of filler (aggregate) in portland cement mortar and concrete. In this review article, (1) the 

currently used methods for FRP waste recovery and recycling are discussed, (2) past work on 

incorporating recycled FRP in cementitious materials is reviewed, and (3) suggestions are made for 

further investigations to study the viability of using FRP waste in concrete. 
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2. Fiber-Reinforced Polymer (FRP) Waste Management Methods 

FRP waste can sometimes be directly used in construction. For example, the scrap generated from the 

production of glass fibers reinforced polymer (GFRP) reinforcing bars (typically in the form of short 

rebars, or defected rebars with poorly bonded glass fibers) can be used in less-structurally-sensitive 

concrete such as flatwork and slabs on ground. In addition to the direct reuse of FRP waste, there are 

three main ways to manage FRP waste: (1) landfilling, (2) incineration, and (3) recycling. Landfilling 

remains the most popular solution to manage FRP waste [10]. Producing FRP and manufacturing FRP 

members leaves a notable amount of waste. In highly efficient processes such as pultrusion, waste 

(scrap) is in the range of 3%–5%, while in less efficient hand lay-up processes, it typically approaches 

15% [11,12]. In aerospace production, CRFP pre-preg scrap can approach 40% [12]. An average value 

of 10% is reported in [11]. Landfilling costs are predicted to increase sufficiently to discourage waste 

disposal in the future [13]. The high costs of landfilling FRP waste increases the overall cost of FRP 

products. At the time of preparing this article, the cost of FRP waste management (including pickup and 

landfilling the scraps) in the U.S. was in the range of $45–$200 per tonne. In addition, landfilling is the 

least sustainable option. In several European Union countries, including Germany, landfilling regulations 

for FRP waste are very strict [14]. 

Incineration is a less-commonly adopted method for disposal of thermoset polymer composites 

including FRP composite waste [15,16]. Incineration allows some energy recovery from the heat 

produced during the combustion process due to the high calorific value of FRP materials [17]. 

However, the cost of FRP incineration is higher than landfilling. In general, incineration facilities 

charge more for incinerating FRP waste because both the high calorific content and the toxic emissions 

tend to overload the system, meaning they can only process a limited amount of waste [13]. An 

additional problem with the incineration of GFRP is that about 50%–70% of the residue material is 

mineral and is left as ash, which still needs to be landfilled. A co-processing method known as the 

“cement-kiln” method that shares similarities with incineration has been introduced in Germany [14,18]. 

In this method, size-reduced GFRP waste is fed to a cement production kiln as a raw material for the 

production of cement clinker and as a secondary fuel. In the kiln, the organic resin burns, providing 

energy, and the mineral (from the fibers and the fillers) constituent turns into calcium oxide, which is 

the primary component of portland cement, and provides feedstock for the cement clinker. 

Considering the increasing costs, environmental issues, and legislative limitations associated with 

landfilling and incinerating FRP waste, recycling and reusing waste is becoming an increasingly viable 

alternative for managing FRP waste. Recycling FRP can be categorized into two main groups:  

(1) reclaiming the fibers from the polymeric matrix, and (2) mechanical recycling [19]. Fiber 

reclamation consists of recovering the fibers from the FRP, typically by employing an aggressive 

thermal or chemical process to break-down the thermoset matrix so that the fibers can be released and 

collected. Fiber reclamation processes can be attractive options for recycling carbon fiber reinforced 

polymer (CFRP) materials for two reasons: (1) carbon fibers have high chemical stability [10], and 

usually their superior mechanical properties are not significantly affected during reclamation, and  

(2) reclamation processes are costly and have economic justification only for extracting expensive 

filaments such as carbon fibers. Several companies have been reclaiming and reusing high-value 

carbon fiber from CFRP waste [20]. Companies such as Boeing and Airbus have invested in efforts to 
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recycle carbon composites in order to develop methods that are as robust as those for aluminum, steel 

and other metals and achieve high recycling percentages [21]. While recently some successful efforts 

have been made for reclaiming glass fibers from GFRP waste, it is not yet economical to reclaim lower 

cost glass fibers [22–24].  

An overview on carbon fiber reclamation processes is presented by Pimenta and Pinho [19]. Three main 

methods have been used for fiber reclamation: (1) pyrolysis, (2) oxidation, and (3) chemical recycling. 

Pyrolysis is the thermal decomposition of organic molecules in an inert atmosphere (e.g., Nitrogen), and  

is one of the most widespread recycling processes for CFRP. During pyrolysis, the CFRP is heated up 

to 450–700 °C. In this temperature range, the polymeric matrix is volatilized into lower-weight 

molecules, while the fibers are minimally affected and recovered [25]. Oxidation is another  

well-documented thermal process in which the polymeric matrix is combusted in a hot and oxygen-rich 

flow of a gas such as air [10,26]. Compared to pyrolysis, this method has a higher tolerance to waste 

contamination, but can result in shortening and significant strength loss of fibers [19]. In chemical 

recycling (also known as solvolysis), FRP waste is exposed to a reactive material such an acid under 

low temperature (typically less than 350 °C), resulting in the decomposition and separation of the 

polymeric matrix material [27,28]. Chemical methods can, however, cause negative environmental 

impacts if they make use of hazardous materials.  

Mechanical recycling started commercially in the 1970s [14]. There are different types of 

mechanical recycling, though all of them involve breaking down the composite material and 

successively reducing the particle size of recycled materials through shredding, crushing, milling, or 

other similar mechanical process; the resulting scrap pieces can then be segregated, by using sieves 

and cyclones, into powdered products (rich in resin) and fibrous products (rich in fibers) [10,29]. 

Mechanical recycling is the most widely used approach for recycling FRP thermoset polymeric fibrous 

composite materials [28,30]. Finally, there are recycling techniques that can be performed and be used 

for producing specific types of FRP products. For example, Adams et al. [28] developed a method that 

incorporates splitting, crushing, and hot forming of GFRP sheets obtained from boat hulls to create 

new GFRP plates and tubes. They showed that by using their method over 50% of the original 

mechanical properties, such as the Young’s modulus, tensile strength, and interlaminar shear strength, 

can be retained. 

3. Applications of Recycled FRP Waste in Cementitious Materials 

Mechanical processing remains the most commonly-used method for processing the waste from 

FRP composite materials. Mechanically recycled FRP waste has a potential application as filler in 

portland cement mortar and concrete. Limited investigations have been performed on this topic and are 

discussed in this section. 

3.1. Durability and Physical Properties 

Some of the prior studies suggest that the partial replacement of fine aggregates with mechanically 

recycled FRP does not affect the durability of portland cement concrete and mortar negatively. 

Tittarelli and Moriconi [31] investigated the alkali–silica reactivity (ASR) of ground GFRP using the 

chemical method prescribed by American Society for Testing and Materials (ASTM) [32]. The results 
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did not show any potential deleterious reactivity due to the glassy part present in the waste. Moreover, 

good durability of polyester, vinylester and epoxy resins against alkali attack (another durability issue) is 

generally reported in the literature [33]. FRP reinforcing bars (rebars) for concrete reinforcement are a 

well-accepted product in construction for this reason [34]. Also, Tittarelli and Moriconi found that capillary 

water absorption and drying shrinkage of cement-based materials with the GFRP addition resulted in 

significantly lower values than those of the cement-based materials manufactured without the GFRP 

addition. The findings from the investigations of Asokan et al. [35] showed that there was almost no drying 

shrinkage of concrete with addition of ground GFRP waste powder. Tittarelli et al. [36,37] reported that in 

mortars the risk of cracking induced by restrained drying shrinkage and capillary water absorption is 

significantly lower in the presence of GFRP powder. However, there are downsides to utilizing FRP 

waste in cementitious materials. For example, fine FRP particles can reduce the workability of 

concrete due to their high surface area, and in order to maintain the workability a notable change in w/c 

ratio or the addition of a significant amount of superplasticizer is required [38,39]. However, Tittarelli 

and Shah [6] observed that ground GFRP reduced the viscosity of cement paste and did so more 

effectively than fly ash. Tittarelli et al. [36] reported that replacing 5%–10% of sand volume with 

ground GFRP causes an increase in autogenous shrinkage. They also found that the addition of ground 

GFRP delays the setting time of cement paste. Finally, Tittarelli [37] found that the addition of GFRP 

dust improves thermal insulation properties. They also observed that GFRP dust reduces the salt 

crystallization (efflorescence) on the surface of mortar specimens which have been immersed in NaCl 

and Na2SO4 solutions. 

While from these limited studies it appears that finely ground FRP filler does not affect the 

durability of cementitious materials, in order to obtain conclusive results, further durability tests must 

be performed on different types and sizes of recycled FRP waste as well as on the mortars and 

concretes which incorporate them. In addition, rheology investigations should be performed to 

determine the size range of ground FRP that has the most significant effect on the workability of fresh 

cement paste (the matrix material of mortar and concrete). 

3.2. Mechanical Properties 

The main problem caused by using recycled FRP in cementitious materials appears to be associated 

with the mechanical performance. Figure 1 presents results from the key prior investigations that have 

studied the effect of replacing aggregates (fillers) with mechanically recycled FRP on the compressive 

strength of cementitious materials. In this figure, the reduction or increase in the compressive strength 

of the concrete or mortar is plotted against the portion of aggregate in the cementitious material, which 

has been replaced with recycled FRP waste. It is important to point out that in every one of these prior 

investigations some of the materials, characteristics, specifications, and ratios (weight or volume) used 

were different so that the data plotted in Figure 1 is intended to show trends in the behavior. Variables 

in the prior studies included the type of cementitious material (concrete vs. mortar), water to cement ratio 

and mix constituents/proportions of the cementitious material, the type of FRP waste (GFRP vs. CFRP, 

with different fiber contents and resin types), and finally the size of recycled FRP and the aggregate 

that were replaced (fine vs. coarse). A clear trend can be seen in the results from the majority of the 

prior investigations; replacement of aggregates with FRP waste resulted in a significant drop in the 
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strength of the cementitious material. The details of the prior work shown in Figure 1 are discussed in 

what follows.  

Figure 1. The effect of replacing aggregates in cementitious materials with fiber reinforced 

polymer (FRP) waste on the compressive strength of concrete as reported by different 

investigators. (†: glass fiber reinforced polymer (GFRP) waste used in self-compacting 

concrete; ††: GFRP waste used in mortar) [6,31,35,36,38–41]. 

 

3.2.1. Replacement of Fine Aggregates 

Asokan et al. [39] used ground GFRP waste powder that passed 2 mm sieve as a substitute to fine 

aggregate in concrete. Fifty percent of the GFRP waste powder particles was below 18 µm and almost 

90% of the GFRP waste powder particles was below 63 µm. They produced concrete batches with fine 

aggregate replacements of 5%, 15%, 30%, and 50%. They observed a reduction of 60% in compressive 

strength when replacing 50% of the fine aggregate by GFRP. However, the values of w/c ratio for 

control and 50% GFRP batches were 0.5 and 0.71 (for the purpose of maintaining a constant concrete 

workability). Such a reduction in w/c ratio causes an approximately 40% decrease in compressive 

strength [42]. Asokan et al. [35] performed another study in which superplasticizer (2.0% by the 

weight of cement) was used in concrete batches with 5% and 15% replacement of fine aggregates with 

ground GFRP. Although the concrete batches containing GFRP had slightly higher w/c ratios (0.37 and 

0.38 in GFRP-incorporated concrete and 0.34 in the control concrete), they had higher compressive 

strength values compared to control concrete.  

Tittarelli et al. [36] used a GFRP powder obtained from a shipyard as an industrial by-product to 

partially replace the natural silica sand in mortars. The GFRP powder composition was about 20% by 

volume of glass fibers and 80% by volume of polyester resin. SEM observation showed that the 

powder comprised polymeric granules surrounding the fibers of a low alkali glass. Replacing 5% and 
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10% of natural silica sand in mortars with a w/c ratio of 0.5 caused significant reductions of 

approximately 40% and 50% in compressive strength, respectively (based on the graphs presented in 

their article). The reductions in flexural strength were approximately 17% and 20%. In another study, 

Tittarelli and Shah [6] observed that replacing 10% of natural silica sand with the GFRP powder in 

mortars with a w/c ratio of 0.50, resulted in a decrease of 50% in compressive strength when wet 

curing was adopted. They observed that when the concrete specimens were dry-cured (as in the open 

air or in the oven), the mechanical penalization due to GFRP dust addition was partially recovered. A 

similar observation was made by Asokan et al. [39]. Tittarelli and Moriconi [31] used the GFRP 

powder as a partial replacement of natural calcareous sand in mortars of higher w/c ratio (0.62). Their 

results show that replacing 20% of sand with the GFRP powder resulted in an approximately 35% 

decrease in the compressive strength (based on the graphs presented in their article). They also used 

the GFRP powder to replace 25% and 50% of sand in self-compacting concrete with a w/c ratio of 0.62 

and observed relatively low values (10% and 15%, respectively) of decrease in compressive strength. 

Correia et al. [38] used the fine particles generated during the production of GFRP products by the 

cutting of pultruded profiles. Ninety-six percent of the GFRP particles were smaller than 63 µm. These 

particles were used as the partial replacement of fine aggregates in concrete. They investigated the 

volume replacement ratios of 5%, 10%, 15%, and 20%, and they used the same amount of 

superplasticizer in control and GFRP batches. Like Asokan et al. [39], they used higher w/c ratios for 

higher GFRP waste content to maintain a constant workability (w/c ratios for the control and 20% 

GFRP were 0.40 and 0.46, respectively). They observed reductions of 48% in compressive strength 

and 47% in splitting tensile strength due to replacing 20% of fine aggregates with GFRP particles. 

These reductions are in part due to the higher w/c ratio in the GFRP mix. 

3.2.2 Replacement of Coarse Aggregates  

Alam et al. [42] used GFRP scrap that was excess from the composite manufacturing process for 

casting waterslides. The GFRP was coated with a thin layer of gel to make it smooth. The long strips 

of the scrap were recycled by simply cutting them into small squares using an abrasive wet tile saw. 

The recycled GFRP was used to replace portions of (25% and 50% by volume) coarse aggregate in 

concrete with a water to cement ratio (w/c) of 0.4. The GFRP particles and coarse aggregate had 

similar maximum particle sizes. However, the GFRP particles had similar sizes while the coarse 

aggregates were well-graded. Replacement of aggregates with recycled GFRP resulted in up to more 

than 50% and 40% decreases in the compressive strength and flexural strength of concrete, 

respectively. The very smooth surface of the GFRP pieces resulted in a poor bond with mortar and was 

an important reason for the significant loss of strength in the concrete. The flat shape and poor 

gradation of the GFRP particles are among other possible reasons for the poor mechanical performance 

of concrete. 

Ogi et al. [43] used recycled CFRP waste as an additional filler in concrete batches with w/c ratio of 

0.45. They crushed CFRP to relatively flat pieces of three different size categories with average length 

by width values of 3.4 mm × 0.4 mm, 9.9 mm × 2.2 mm, and 21 mm × 7.7 mm. The thickness of 

CFRP pieces was in the range of 0.05–0.2 mm. They produced concrete batches with CFRP to coarse 

aggregate weight ratios ranging from 0% to 22% (volume ratios are not reported). The compressive 
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and flexural strength test results showed that the incorporation of CFRP did not affect the mechanical 

properties of concrete significantly. However, it was observed that smaller CFRP particles tended to 

slightly increase the strength of concrete while the larger CFRP particles tended to slightly reduce the 

strength of concrete. One possible reason is that the smaller particles had fibrous shapes (higher aspect 

ratio) (Figure 2); since carbon fibers are very stiff and strong, they can postpone the initiation and 

opening of cracks, and thereby enhance the strength of concrete. 

Figure 2. Recycled CFRF used in concrete by Ogi et al. [43]. Reprinted with permission 

from [43], copyright 2014, Elsevier.  

 

The past work on the properties of FRP waste incorporating cementitious materials is too limited to 

lead to a conclusion about whether or not using mechanically recycled FRP in concrete or mortars is a 

viable option. In addition, to assess such an option, the feasibility of use, and the effect of 

incorporating FRP waste in other composites should be studied in detail. The use of finely ground FRP 

in materials such as FRP, asphalt, engineered wood and polymer concrete has been researched in the 

past [10,17,44–46]. Some studies have shown that using ground FRP as a filler in new polymeric 

composite materials can reduce mechanical performance of the new composite [47], while other 

studies have reported similar or even enhanced properties of polymeric composite materials as a result 

of incorporating mechanically recycled FRP waste. For example, it has been observed that substitution 

of up to 88% of the calcium carbonate filler in sheet molding compounds (SMCs) by fine particulate 

recycled FRP resulted in materials with comparable strength and stiffness [48]. Inoh et al. [49] 

reported that replacing up to 20% of filler in SMC with finely ground SMC does not affect the 

mechanical performance of the composite material. Kojima and Furukawa [50] observed 30% 

improvement in strength when finely ground polymer matrix composite (15–12 µm) was used in its 

own production stream as a replacement for calcium carbonate filler.  

4. Can the Use of FRP Production and End-of-Life Waste in Concrete be Optimized? 

Three filler characteristics affect the mechanical performance of a composite material: (1) strength 

of the filler, (2) Young’s modulus, or in general the stiffness, of the filler, and (3) the filler-matrix 

interface bond strength. Natural aggregates are the strongest component of normal-strength concrete. 

Alexander and Mindess [51] have presented a comprehensive list of the mechanical properties of 

different rocks used as aggregates. The average compressive strength of most rocks is notably above 

100 MPa, while that of hydrated cement paste even with low w/c ratios is below 100 MPa; according 

to Cong et al. [52] the compressive strength of cement paste with w/c ratios in the range of 0.39 down 

to 0.30 is from 70 MPa to 100 MPa. The failure of concrete carrying increasing compressive stress 
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occurs due to the formation and propagation of crack in weakest zones, namely (1) the interfacial 

transition zone (ITZ), which is the most porous portion of cementitious matrix (hydrated cement) 

around aggregates, and (2) the cementitious matrix itself.  

The strength of FRP materials vary widely depending on the type of the composite. For example, 

the strength of BMCs can be as low as 30 MPa due to the low dosage of fiber and high dosage of filler, 

while the strength of FRPs obtained by the Vacuum Assisted Resin Transfer Molding (VARTM) 

method can be higher than 500 MPa when reinforced with glass fibers or 1000 MPa when reinforced 

with carbon fibers [1]. In addition, FRP composite materials containing continuous fibers are 

anisotropic and have different strength values in different directions. For example, the longitudinal 

compressive strength of the commonly used glass-reinforced pultruded vinylester is in the range of 

207–359 MPa while their transverse strength is within 110–138 MPa [53,54]. However, a review of 

the mechanical properties of all types of FRP indicates that the compressive strength values of FRP 

materials in the weakest direction are mostly higher than the compressive strength of cement paste. As 

for stiffness, the compressive Young’s modulus of pultruded glass fiber reinforced vinylester in the 

transverse (least stiff) direction can be as low as 7 GPa which is about half of the estimated 

compressive Young’s modulus of hydrated cement paste. However, the longitudinal compressive 

Young’s modulus of the same FRP is approximately the same as that of hydrated cement paste. 

Therefore, while FRP composite materials are typically weak in shear, it is possible that the 

mechanical properties of FRP are not the main or only cause of the reported significant drop in the 

strength of FRP-waste-incorporated concrete.  

The FRP waste used in most of the experimental studies performed on the properties of  

FRP-incorporated concrete have been in the form of fine powder. An SEM image of such a powder 

from Tittarelli and Shah [6] is shown in Figure 3. The image shows that the polymer particles and the 

broken fibers are mostly separated from each other; in other words, a ground FRP particle cannot be 

regarded as a composite material. When FRP particles are incorporated within the matrix of a new 

material these particles act independently. Approximately 80% of the content of the FRP powder used 

in the studies of Tittarelli and coworkers was polyester resin. Polyester resin has an approximate 

tensile strength of 65 MPa [4] and its compressive strength is roughly twice as high [55], which means 

that although polyester resin is weaker than commonly used natural aggregates, it is nearly as strong as 

hydrated cement. Therefore, the strength of the resin is probably not the major reason for the observed 

significant reduction in the strength of the mortar when the fine aggregate is partially replaced with the 

ground FRP. However, the modulus of elasticity of polyester resin (approximately 3 GPa), and most 

other thermosetting resins is on average more than 10 times lower than that of natural aggregate and 

approximately five times lower than that of cement paste. Therefore, due to the resulting low modular ratio, 

the amount of stress transferred and resisted by resin particles in the concrete is approximately 10 times 

lower than that of natural aggregates and five times lower than that of the cementitious matrix.  

Based on the above discussion, it seems that a better form of FRP waste that can be used as a partial 

replacement of natural aggregates in concrete is larger particles/pieces with rough surfaces in which 

fibers and the polymer matrix are well bonded. Experimental investigations are required to confirm 

this hypothesis as it seems to contradict some findings about incorporating FRP waste particles in 

polymeric materials; according to DeRosa et al. [48], Dzeskiewicz and Ralston [56] found that when 

17.5 wt% BMC recyclate with an average size of 0.25 mm was added to another BMC, tensile strength 
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increased slightly over the base formulation, while when 0.50 mm recyclate was added at 17.5 wt%, a 

15% reduction in tensile strength in the new BMC was observed. However, it is not known if the 

particles of waste BMC used by Dzeskiewicz and Ralston were in the form of composite or separated 

ingredients. If the latter is the case, the waste particles consisted of poorly-bonded agglomerates of 

smaller particle that create weak zones the in matrix of the new BMC. 

Figure 3. GFRP powder used by Tittarelli and Shah [6] and relative SEM image. Reprinted 

with permission from [6], copyright 2014, Elsevier.  

 

To the knowledge of the authors, two studies have been performed on replacing coarse aggregates with 

similar-size or large pieces of FRP (reported in Section 3). In the investigations of Alam et al. [42], the 

excess from the casting of waterslides were used, which were coated with a layer of polymer (“gel-coat”) 

to make them smooth. Figure 4 shows that this smooth surface resulted in a poor bond between the 

pieces of FRP and concrete matrix, and was the main cause of the poor mechanical performance of the 

FRP-incorporated concrete. Since all FRP closed mold processes (such as pultrusion, resin-transfer 

molding (RTM), VARTM) use a release agent to prevent the polymer sticking to the mold upon 

curing, it is likely that this will be a similar issue with recycled FRP from these processes. The other 

investigation on incorporating coarse pieces of FRP in concrete was performed by Ogi et al. [43]. They 

used crushed CFRP with rough surfaces (Figure 2). As can be seen in Figure 2, (1) the FRP particles 

have rough surfaces, and (2) each particle can be regarded as a composite material. As mentioned 

earlier, Ogi et al. did not observe any significant reduction in the compressive strength of concrete due 

to the replacement of natural course aggregate with the CFRP waste. This reinforces the hypothesis of 

the authors of this article that using coarser FRP waste in which fibers and matrix material are bonded 

can provide better mechanical performance. To further assess this hypothesis, similar investigations 

must be performed on FRP waste with different sizes, different fiber types, and different fiber contents. 

Recycling the fiber portion of FRP production waste and using it as aggregate in cementitious 

materials is another possible option to manage the waste from the FRP industry. Producing GFRP parts 

by the pultrusion process results in a significant amount of waste glass rovings and mats (Figure 5). 

Instead of landfilling, which is the common practice in the U.S., the rovings can be recycled and 

reused by (1) melting procedures to produce new glass products [57], or (2) cut into discrete fibers, or 

ground into powder and used in the production of new materials. The use of glass fibers in 

cementitious materials have been commercialized since the 1970s [58]. Glass fibers have been widely 

used in mortars to produce thin sheet architectural components such as building facades and in 

concrete for reducing plastic shrinkage cracking [59]. A main concern with using glass fibers in 

concrete is that they may lose strength (and therefore the reinforcing capacity) rather quickly due to the 
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very high alkalinity (pH ≥ 12.5) of the cement-based matrix [60]. However, alkali-resistant glass fibers 

(AR-glass fibers) have been developed that provide improved long-term durability. Therefore, it is 

important to investigate the resistance of glass rovings currently used (such as Boron-free E-CR glass 

rovings [61–63]) for producing GFRP, and compare it with that of AR-glass fibers. It should be 

mentioned that there are different methods for lowering the alkalinity level of the cementitious matrix 

(e.g., by adding silica fume or metakaolin) to enhance the durability of glass fibers in concrete. Some 

of those methods are outlined in the ACI report on fiber reinforced concrete [58].  

Figure 4. Fractured surface of concrete incorporating pieces of FRP scrap used by  

Alam et al. [42] as a partial replacement of coarse aggregate.  

 

Figure 5. Unused glass rovings and mats after the production of GFRP parts using the pultrusion 

method, from two FRP manufacturers: (a) Strongwell, and (b,c) Creative Pultrusions. 

 

(a) (b) (c) 

Using ground glass fibers/mats in concrete and mortars is another potential FRP waste management 

option. As mentioned earlier, Tittarelli and Moriconi [31] investigated the alkali–silica reactivity of 

finely ground GFRP and did not find any potential deleterious reactivity due to the glassy part present 

in the waste. Rajabipour et al. [64] used scanning electron microscopy (SEM) with X-ray energy 

dispersive spectroscopy (EDS) capability, as well as the ASTM C1260 [65] mortar bar method to 

investigate the role of glass particle size on their alkali silica reactivity in cementitious matrices. They 

observed that for particles smaller than 0.6 mm, the ASR is minimal and insignificant. Based on these 

findings it is expected that the use of ground waste glass rovings and mats will not cause ASR in 

cementitious materials.  
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Finally, while using recycled waste in any form may reduce the performance of new materials 

incorporating the waste, this by itself is not necessarily the crux of the issue in the authors’ opinion. 

For example, the strength reduction in concrete caused by the partial replacement of aggregates with 

recycled FRP can be compensated for by changing concrete mix proportions. In our opinion, the major 

issues associated with the use of recycled waste in new materials are (1) the unknown properties of the 

source material that has been recycled, and (2) the potentially high variation in the properties of 

recycled materials supplied to a concrete production plant. Since a recycling plant receives waste 

materials from different, and possibly changing, sources, the batch-to-batch compositions of the 

recycled materials can be different. That results in higher variations in the properties and performance 

of the materials incorporating waste.  

This issue can be resolved or mitigated in three ways: (1) using waste with known properties before 

combining it with the waste from other sources; and (2) developing criteria and procedures for 

characterizing the properties of the recycled waste materials.  

The first method is implementable mostly on production waste. An example is recycling the waste 

glass rovings from the production of pultruded FRP (Figure 5). The properties of these fibers are 

known by the manufacturer and the waste rovings can be recycled (e.g., by grinding to powder), before 

being stored and mixed with other types of waste, to produce fillers with constant quality. In the 

second approach, a set of material tests are selected and performed on the recycled waste to  

(a) measure the physical and geometric properties, (b) determine the types and amounts of impurities, 

(c) characterize the composition. Then, based on performance tests on the waste-incorporated 

composite material, a set of limits on the material test results will be established, which if not exceeded 

the waste is regarded as usable for producing the new composite material. FRP waste can be examined 

by (a) visual observations to find the amounts of different visible impurities, (b) optical and electron 

microscopy to determine the portions of fiber, polymeric matrix materials, smaller impurities, and 

voids, and (c) spectroscopy and diffraction methods, such as XRD, XRF, Raman spectroscopy, etc., to 

determine the constituents and types of fibers, matrix materials, and impurities.  

5. Conclusions  

The critical review and discussion presented in this article leads to a number of important conclusions: 

• Landfilling FRP waste is still the easiest and cheapest method for managing FRP waste in most 

countries, including the U.S. However, environmental regulations are becoming tighter and it is 

expected that landfilling FRP will become more restricted, as it already is in several countries, 

including Germany. 

• The most researched application of mechanically recycled FRP waste is its use as a partial 

replacement of fillers in new FRP composite materials. This usually reduces the mechanical 

properties of the new composite material. 

• Partial replacement of aggregates in concrete and mortars is another potential application of 

mechanically recycled FRP. The few investigations performed on this topic suggest that 

recycled FRP fillers do not notably affect the durability of cementitious materials, but 

significantly reduce their mechanical properties. 
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• In most of the experimental studies on the mechanical properties of FRP-waste-incorporated 

concrete and mortars, finely ground FRP particles have been used as a partial replacement of 

aggregates. Finely ground FRP waste particles consist of poorly bonded pieces of polymer 

resin and fibers. Since polymer resin particles have a low stiffness, if the FRP waste has a high 

resin content, it can significantly reduce the strength of concrete or mortars.  

• It was hypothesized that using larger FRP aggregates with rough surface will have a much 

smaller adverse effect on the mechanical properties of cementitious materials. In some types of 

FRP waste, this will require removing the gel coat or release agents from the material surface in 

order to improve the bond between the FRP pieces and the cement matrix. However, this option 

might not be feasible. 

• To determine if using FRP waste in concrete is a viable option, further investigations must be 

performed on both durability and mechanical properties. In addition, for use in structural 

concrete, the fire resistance and mechanical performance of the FRP-waste-incorporated 

concrete at high temperatures should be investigated. 
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