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Numerous studies suggest that infants delivered by cesarean section are at a greater risk 
of non-communicable diseases than their vaginal counterparts. In particular, epidemio-
logical studies have linked Cesarean delivery with increased rates of asthma, allergies, 
autoimmune disorders, and obesity. Mode of delivery has also been associated with 
differences in the infant microbiome. It has been suggested that these differences are 
attributable to the “bacterial baptism” of vaginal birth, which is bypassed in cesarean 
deliveries, and that the abnormal establishment of the early-life microbiome is the medi-
ator of later-life adverse outcomes observed in cesarean delivered infants. This has led 
to the increasingly popular practice of “vaginal seeding”: the iatrogenic transfer of vaginal 
microbiota to the neonate to promote establishment of a “normal” infant microbiome. 
In this review, we summarize and critically appraise the current evidence for a causal 
association between Cesarean delivery and neonatal dysbiosis. We suggest that, while 
Cesarean delivery is certainly associated with alterations in the infant microbiome, the lack 
of exposure to vaginal microbiota is unlikely to be a major contributing factor. Instead, it is 
likely that indication for Cesarean delivery, intrapartum antibiotic administration, absence 
of labor, differences in breastfeeding behaviors, maternal obesity, and gestational age 
are major drivers of the Cesarean delivery microbial phenotype. We, therefore, call into 
question the rationale for “vaginal seeding” and support calls for the halting of this prac-
tice until robust evidence of need, efficacy, and safety is available.

Keywords: cesarean delivery, vaginal delivery, delivery mode, neonatal microbiome, infant microbiome, 
developmental origins, vaginal seeding

BACKGROUND

Cesarean section (CS) delivery can be a life-saving procedure. However, globally, rates of elective CS 
delivery are increasing. In Organization for Economic Co-operation and Development countries, 
more than a quarter of infants are now born by CS (1). The increasing popularity of elective CS 
delivery has coincided with a rising prevalence in non-communicable diseases, prompting investiga-
tions into a possible causal link between the two.

Abbreviations: CSD, cesarean section delivered; DNA, deoxyribonucleic acid; GBS, group B Streptococcus; IAP, intrapartum 
antibiotic prophylaxis; MRSA, methicillin-resistant Staphylococcus aureus; NEC, necrotizing enterocolitis; NICU, neonatal 
intensive care unit; OECD, organization for economic co-operation and development; PCR, polymerase chain reaction; qPCR, 
qualitative polymerase chain reaction; RNA, ribonucleic acid; rRNA, ribosomal ribonucleic acid; RT-qPCR, real-time qualita-
tive polymerase chain reaction; SES, socioeconomic status; VD, vaginally delivered.
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Epidemiological studies have identified CS delivery as a risk 
factor for neonatal infections. In the US, 64–82% of reported 
cases of neonatal methicillin-resistant Staphylococcus aureus skin 
infections occur in Cesarean section delivered (CSD) infants (2). 
CS delivery has also been recognized as a risk factor for necrotiz-
ing enterocolitis in preterm infants (3). Epidemiological studies 
also suggest that CSD infants experience an increased risk of the 
onset of several chronic immune diseases later in life: a large 
body of research has linked CS delivery with childhood asthma 
(4–6), atopic disease (7–9), allergies (9, 10), obesity (11), type 1 
diabetes mellitus (12), and inflammatory bowel disease (5, 13). 
More recently, CS delivery has been associated with impaired 
cognitive abilities in school aged children (14). It has been widely 
promulgated that such associations are caused by perturbations 
in the early-life microbiome as a consequence of lack of exposure 
to vaginal microbiota at delivery. However, such studies are purely 
associative and are unable to determine causation or mechanism. 
There is, therefore, an urgent need to assess whether these asso-
ciations are causal or reflective of confounding factors, and to 
determine the extent to which the establishment of the early-life 
microbiome is involved. In particular, it is necessary to assess 
whether such studies support the rationale for “vaginal seeding” 
(the transfer of vaginal fluid, and the microbes contained therein, 
to the neonate).

The infant microbiota is foundational for later-life health 
(15). The early-life gut microbiota interact—primarily via the 
production and release of microbial metabolites and degradation 
products—with the developing immune system and contribute 
to immune programming and sensitization (16, 17). Aberrations 
in the establishment of this ecosystem in infants and children 
underpin the risk for immune-mediated diseases, such as asthma 
(18–21), allergies (22–25), and inflammatory bowel disease  
(26, 27), as well as metabolic conditions, such as obesity (28) and 
a variety of behavioral, cognitive, and mental health conditions 
(29). It has been suggested that a decline in exposure to microbes 
during prenatal and early postnatal life has contributed to the 
increase in the prevalence of non-communicable diseases in 
developed nations—the “hygiene hypothesis” (30). Thus, any 
effect of CS delivery on the developing infant microbiome might 
confer risks for later-life morbidity.

In this review, we present a critical evaluation of the current 
evidence for a causal link between CS delivery and neonatal dys-
biosis. For the purposes of this review, we use the term “neonate” 
to refer to infants aged up to 3 days, and the term “infant” to refer 
to infants aged 4 days to 1 year.

CS DeLiveRY: eFFeCTS ON THe 
NeONATAL MiCROBiOMe

It is commonly assumed that passage through the birth canal 
seeds the neonatal microbiome with vaginal bacteria. If this is so, 
the effect of CS delivery would be expected to be most apparent in 
the first days following birth, with VD neonates exhibiting higher 
rates of colonization with predominant vaginal bacteria, particu-
larly specific Lactobacillus spp., such as L. crispatus, L. gasseri, L. 
jensenii, and L. iners. Such differences should be most obvious in 

the neonatal skin and oral microbiomes, though some effect on 
the gut microbiome may also be apparent. As time progresses, the 
effect of delivery mode would be expected to become less obvi-
ous, as other microbiome-driving factors, such as breastfeeding 
and environmental exposures come in to play and each microbial 
niche acquires its own unique microbiota.

Previous studies have reported that differences in the gut 
microbiome between CSD and VD neonates do not develop until 
several days after birth (31). Wampach et al. tracked the coloni-
zation and succession of bacteria, archaea, and microeukaryotes 
in the feces of infants born from vaginal (n = 8) or CS delivery 
(n = 7) (31). They found that differences in the gut microbiomes 
of CSD and VD neonates were not apparent until day 5 of life. 
After this time point, they reported depletion of sequences affili-
ated with the phylum Bacteroidetes in CSD infants, resulting in a 
significant increase in the Firmicutes/Bacteroidetes ratio between 
days 5 and 150 compared to VD infants. Considering the large 
number of genera and species contained within these two phyla 
and associated differences in 16S rRNA gene copy number, how-
ever, the biological relevance of this finding is difficult to state.

Numerous studies describing the bacterial microbiota of first 
pass meconium (the first fecal material, passed shortly after birth) 
support the notion that CSD and VD neonates do not differ in 
their bacterial microbiomes in the first few days following birth. 
Hu et al.’s study of 23 neonates (10 of which were delivered by CS), 
reported no significant differences in the meconium microbiota 
of full-term VD and CSD neonates (32). Similarly, Mshvildadze 
et al. reported no significant differences in the meconium micro-
biota of pre-term (23–32 weeks of gestational age) VD and CSD 
neonates (CSD n = 13, VD n = 10) (33). Dong et al. compared the 
vaginal and placental microbiomes of mothers, and meconium 
microbiomes of neonates from one Cesarean delivery and one 
vaginal delivery (34). There were no significant differences in bac-
terial communities in the meconium of the two neonates, which 
were similar to the mother’s placenta regardless of the method of 
delivery. However, given that both meconium and the placenta 
contain a very low biomass microbiome, this similarity may in 
fact be a reflection of the “kitome” [reagent-derived contaminat-
ing bacterial deoxyribonucleic acid (DNA)] (35, 36). In a more 
recent and much larger study, Chu et al. compared the microbial 
composition of 102 VD and 52 CSD neonates at birth across 
multiple body sites (37). Although some minor differences in the 
oral, nares, and skin microbial communities were observed, no 
differences were detected in the community structure or function 
of the meconium microbiome.

On the other hand, there are studies that report data to the 
contrary. In their investigation of the effect of gestational age on 
the neonatal microbiome, Ardissone et  al. found that delivery 
mode had a strong effect on meconium microbiome structure 
(38). In particular, they identified four genera that were associ-
ated with mode of delivery: Leuconostoc spp., Negavicoccus spp., 
Vagococcus spp., and Butyrivibrio spp. Each of these genera were 
found to have a significantly greater relative abundance in CSD 
neonates (p  <  0.05). Neonates are susceptible to Leuconostoc 
bacteremia (39). Of the other three genera noted, Vagococcus 
have been identified in wounds and infected oral habitats, but 
none are biologically relevant in either the neonatal or the adult 
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human gut (40, 41). Thus their recovery might reflect contamina-
tion or incorrect OTU assignment. Importantly, no differences 
in relative abundances of vaginal bacteria were reported between 
groups. In their investigation into the meconium microbiome 
of Chinese neonates, Shi et  al. found that delivery mode was 
the most significant contributing factor to the composition 
of the neonatal microbiome (42). They found that 16S rRNA 
gene amplicons generated from meconium DNA of VD infants 
(n = 8) harbored more sequences associated with Actinobacteria, 
Gammaproteobacteria, and Betaproteobacteria, while the 
meconium of CSD infants (n =  10) contained more sequences 
associated with Deinococcus, Alphaproteobacteria, and Bacilli. 
The authors also went on to demonstrate differences in predicted 
metabolic pathways, although given that their study could only 
detect bacterial DNA, not living bacteria per  se, such metabo-
lomic differences are merely speculative.

An older study by Biasucci et  al. used targeted polymerase 
chain reaction (PCR) coupled with gradient gel electrophoresis 
to identify differences in colonization of selected Bifidobacterium 
spp., Ruminococcus spp., and Bacteroides spp. in VD (n  =  23) 
and CSD (n = 23) neonates at day 3 of life (43). They found that 
Bifidobacterium spp. and Bacteroides spp. were detected in 56.5%, 
and 8.7% of VD infants, respectively, but were absent in CSD 
infants.

Dominguez-Bello et al. compared several body site microbi-
omes from VD (n = 4) and CSD (n = 6) neonates within an hour 
of delivery (44). The very small sample size and considerable vari-
ability in maternal vaginal microbiome are a significant limitation 
in this study. Nevertheless, they found that the microbiome of 
these neonates was homogenous across body sites, regardless of 
delivery mode. Given the likely importance of amniotic fluid in 
pre-natal microbiome seeding (45), this finding is not surprising. 
Unfortunately, the authors did not investigate placental or amni-
otic fluid microbiomes from these mothers, as these may have 
been the true source of the neonatal microbiome. The authors 
further reported that VD neonates harbored microbiomes most 
similar in composition to their mother’s vaginal microbiome, 
while CSD neonates harbored microbiomes most similar in 
composition to their mother’s skin. Given that neonates were 
swabbed within seconds of delivery, and thus it would be coated 
with vaginal fluids, this result is hardly surprising. This does not 
necessarily demonstrate colonization, however. It would have 
been far more informative if these authors sampled at a later time 
point or followed the colonization patterns of these neonates in 
the first few days following delivery to confirm true colonization.

Given recent evidence that microbiome colonization begins 
in utero (45, 46), the “bacterial baptism” of vaginal birth might 
not be as important to microbiome establishment as previously 
assumed. In fact, Martin et al. in a small study of five CSD and 
five VD neonates, demonstrated that the majority of VD infants 
do not acquire their mother’s vaginal lactobacilli through vertical 
transmission, and that Lactobacillus populations do not differ in 
the infant gut according to mode of delivery (47). Conversely, 
Nagpal et al. reported a lower detection rate of lactobacilli in the 
intestinal tracts of CSD neonates than in VD neonates using tar-
geted real-time qualitative polymerase chain reaction (RT-qPCR) 
(48). Although this study also suffered from low numbers of CSD 

neonates (n = 17) compared to VD neonates (n = 134), its use of 
RNA-based methods is a strength as detection should be indica-
tive of live bacterial cells. In a more recent study by Sakwinska 
et al., minimal overlap between maternal vaginal microbiota and 
neonatal fecal and nasal microbiota was reported at 3 days of life, 
regardless of delivery mode (VD n = 34, CSD n = 8) (49). The 
authors concluded that the transfer of maternal vaginal microbes 
do not play a major role in seeding neonatal microbiota.

Interestingly, very few studies have explored the relationship 
between the vaginal microbiome and the neonatal gut microbi-
ome at the species- or strain-level. This is critical, as the bacterial 
baptism hypothesis would predict that the infant gut would be 
transiently colonized with the common vaginal lactobacilli  
(L. crispatus, L. gasseri, L. iners, and L. jensenii) and other vaginal 
commensals (e.g., G. vaginalis, A. vaginae), as opposed to other 
species of lactobacilli which are common in the adult gut. In 
particular, merely reporting on Lactobacillus levels fails to provide 
suitable resolution to assess the evidence for vertical transmission. 
In the aforementioned study by Nagpal et al., the absolute abun-
dance of lactobacilli was lower in CSD vs. VD neonates; however, 
of the common vaginal species, only L. gasseri was detected in 
the neonates (CSD vs. VD: 6 vs. 31%), the other five species being 
typical gut colonizers but not found in vaginal microbiota.

While the majority of evidence suggests that delivery mode 
does not shape the microbiome in the first days of life, most 
of the studies described here involved small numbers of par-
ticipants and differed substantially in the methodologies used to 
generate microbial profiles from samples (Table 1). Of particular 
importance, numerous studies did not appropriately control for 
contaminating reagent-derived bacterial DNA (“kitome”) that 
has now been shown to be ubiquitous in DNA extraction and 
molecular biology reagents (35). Further, appropriately controlled 
studies enlisting large cohorts are required to assess whether CS 
delivery truly disturbs the neonatal microbiome from the time 
of birth.

CS DeLiveRY: eFFeCTS ON THe iNFANT 
MiCROBiOMe

Although most studies report no differences in the microbiome 
of VD and CSD neonates in the first days of life, evidence is 
compelling that differences begin to develop shortly thereafter 
and persist for weeks or months (Table 1).

Bäckhed and colleagues sampled the gut microbiota of 98 
infants, 15 of which were delivered by CS, at 4 days, 4 months, 
and 1-year post-delivery (51). Although a high rate of mother-
to-infant transmission of bacteria was observed, regardless of 
mode of delivery, this transmission was partially compromised 
in infants born by CS. Infants born vaginally were enriched for 
Bacteroides spp. across all time points and Parabacteroides spp. at 
4 days and 4 months. CSD infants harbored higher relative levels 
of Clostridium spp. at 4  months and 1  year. Apart from these 
trends, the infant gut appeared to be highly dynamic throughout 
the first year of life.

Similar findings were reported by Penders et al. in their broad 
study of over 1,000 infants at 1 month of age (52). The authors 
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TABLe 1 | Summary of the methodological approaches used by studies that have compared infant microbiota profiles between cesarean section (CS) and vaginal deliveries.

Study N[cesarean section 
delivered (CSD)]

Bead beating 
step?

Gene 
target/s

Sequencing platform/
bioinformatics pipeline

16S rRNA gene 
region

Primer  
coverage (%)a

Major genera with  
poor coverage

Negative 
controls used?

Conclusion

Neonatal studies
Ardissone et al. (38) 52 (33) Yes 16S rRNA Ion Torrent PGM/

Bioinformatics performed 
manually

V4 86.3 None Yesf Delivery mode has 
an effect on the gut 
microbiome of preterm 
neonates

Biasucci et al. (43) 46 (23) Not specified Variousc Targeted qualitative 
polymerase chain reaction 
(qPCR)

Various N/A N/A No Mode of delivery 
is associated with 
differences in the gut 
microbiota composition 
in neonates at day 3 
of life

Chu et al. (37) 157 (52) Yes 16S rRNA 454/QIIME v1.9.0 V5–V3 67.7 Bifidobacterium: 0.6% 
Escherichia/Shigella:  
0.8% Enterobacter: 0%

No Minor differences in the 
microbial communities of 
CSD neonates in some 
body sites, but not in 
meconium

Dominguez-Bello  
et al. (44)

10 (6) Yes 16 S rRNA 454/Bioinformatics 
performed manually

V2 59.7 Bifidobacterium: 15% 
Escherichia/Shigella:  
23% Enterobacter: 21%

No Mode of delivery is a 
strong determinant of 
the skin, oral, and gut 
microbiota composition 
in neonates

Dong et al. (34) 2 (1) No 16S rRNA Genome sequencer  
FLX/Mothur

V3–V5 83.1 Bifidobacterium: 0.6% No Similar bacterial 
communities were found 
in the meconium of CSD 
and vaginally delivered 
(VD) neonates

Hu et al. (32) 23 (10) No 16S rRNA Pacbio RS/QIIME v1.5.0 V3–V4 77.7 None No Meconium microbiota 
is not affected by the 
mode of delivery

Mshvildadze et al. (33) 23 (13) No 16S rRNA 454/RDP pyrosequencing 
pipeline

V1–V2 59.7 Bifidobacterium: 15% 
Escherichia/Shigella:  
23% Enterobacter: 21%

No Meconium microbiota 
is not affected by the 
mode of delivery

Sakwinska et al. (49) 42 (8) Not specified 16S rRNA 454/QIIME v1.8.0 V4–V6 Primers not  
specified

Primers not specified No Although the nasal and 
gut microbiomes of CSD 
and VD neonates vary, 
this is not due to transfer 
of maternal vaginal 
microbes

Shi et al. (42) 18 (10) No 16S rRNA Illumina Hiseq2500/
Bioinformatics performed 
manually

Primers not 
specified

N/A N/A Yesf Mode of delivery 
is associated with 
differences in the gut 
microbiota composition in 
neonates at day 1 of life
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Study N[cesarean section 
delivered (CSD)]

Bead beating 
step?

Gene 
target/s

Sequencing platform/
bioinformatics pipeline

16S rRNA gene 
region

Primer  
coverage (%)a

Major genera with  
poor coverage

Negative 
controls used?

Conclusion

Wampach et al. (31) 15 (7) Yes 16S rRNA, 
18S rRNA

Illumina MiSeq/LotuS V4 86.4 None Noe CSD infants experienced 
a delay in microbial 
colonization and 
succession in the gut, 
which began after day 
5 of life

infant studies
Azad et al. (50) 24 (6) Yes 16S rRNA Illumina SI-Seq/QIIME  

v1.6.0
V5–V7 56.5b Bifidobacterium: 36% 

Bacteroides: 32%
No Mode of delivery is a 

strong determinant 
of the gut microbiota 
composition in infants

Bäckhed et al (51) 98 (15) Yes 16S rRNA Illumina Hiseq2000/
Bioinformatics performed 
manually

Primers not 
specified

Primers not  
specified

Primers not specified No Mode of delivery is a 
strong determinant 
of the gut microbiota 
composition in infants

Chu et al. (37) 60 (22) Yes 16S rRNA 454/QIIME v1.9.0 V5–V3 67.7 Bifidobacterium: 0.6% 
Escherichia/Shigella:  
0.8% Enterobacter: 0% 

No By 6 weeks of age no 
differences between the 
skin, oral, nares, or gut 
microbiota of CSD and 
VD infants

Penders et al. (52) 1,032 (108) Yes Variousd Targeted qPCR Various N/A N/A No Mode of delivery is a 
strong determinant 
of the gut microbiota 
composition in infants

Sakwinska et al. (49) 42 (8) Not specified 16 S rRNA 454/QIIME v1.8.0 V4–V6 Primers not  
specified

Primers not specified No Although the nasal and 
gut microbiomes of CSD 
and VD infants vary, this 
is not due to transfer 
of maternal vaginal 
microbes

aFor domain bacteria, identified using Silva TestPrime.
bPrimers contained too many ambiguities to be analyzed with Silva TestPrime. RDP probe match was used instead.
cTargeted to Bifidobacterium spp., Ruminococcus spp., and Bacteroides spp.
dTargeted to Bifidobacterium spp., E. coli, C. difficile, B. fragilis, and Lactobacillus spp.
eNo extraction controls used, but low yield and negative amplicon samples were discarded.
fNegative extraction controls used for amplification, but not for sequencing.
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observed significantly lower levels of Bacteroides spp. in CSD 
infants, and also found that CSD infants were more often colo-
nized by Clostridium difficile. The biological significance of this 
observation is currently unclear, although it could be interpreted 
to be precursor of dysbiosis. Azad et al. further corroborated these 
finding, reporting significantly lower levels of Bacteroides spp. 
in CSD infants at 4 months of age (50). This study additionally 
identified a decrease in Escherichia–Shigella spp. in CSD infants.

Sakwinska et al. investigated the nasal and stool microbiomes 
of infants born vaginally (n = 34) and by CS (n = 8) at 3 days 
and 3 weeks of life, and compared their composition to maternal 
vaginal, skin, and rectal samples (49). They reported that the 
stool of CSD infants at week 3 was more similar to the maternal 
skin than that of VD infants. In their study, only VD, exclusively 
breastfed infants had gut microbiota dominated by Bifidobacteria 
spp. (which is found abundantly in breast milk and the infant gut 
and is believed to confer health benefits to the host).

There has been one recent study that challenged our current 
understanding of the CS delivery microbiome. Chu and col-
leagues prospectively recruited 81 mother-infant pairs (37). They 
reported that, after adjusting for confounders, mode of delivery 
had no impact on microbial community structure or function 
over multiple body sites (skin, oral, nares, stool) at 6 weeks of age.

In general, initial differences between VD and CSD infants’ 
microbiomes appear to resolve after solid foods are introduced. In 
Wampach et al.’s study, which expanded our current understand-
ing of the infant microbiome into the kingdoms of archaebacteria 
and fungi, differences between CSD and VD infants became less 
pronounced after day 150 (31). The authors’ suggested that this 
change was driven by the introduction of solid foods. This obser-
vation is supported by several other studies which have found 
that introduction of solid food sparks a rapid change in the infant 
gut microbiome toward a more mature gut microbiome, mini-
mizing any initial differences associated with mode of delivery  
(53, 54). A systematic review of seven studies concluded that 
there was a significant difference in the microbiota of CSD infants 
up until 3 months of age, but that this difference disappears after 
6 months (55). Reduced levels of Bacteroides spp. in CSD infants 
may persist up to 4 weeks post-weaning (53).

Despite this post-weaning convergence, a transient difference 
in the infant gut microbiome early in life may nevertheless be 
biologically significant. The early-life gut microbiome plays a 
critical role in the development of the immune system, which 
impacts upon neurodevelopment (56, 57) and risk of later-life 
metabolic and immune-mediated diseases (15, 58, 59). Thus, it is 
vital to clarify the true impact of mode of delivery on the early-life 
microbiome. In particular, when considering potential treatment 
and management strategies, there is a need to elucidate whether 
differences seen in CSD infants are due to lack of passage through 
the birth canal or due to other factors associated with CS delivery.

CONFOUNDiNG FACTORS

There are numerous maternal and medical factors that confound 
the interpretation of studies of the microbiome and health 
outcomes of CSD infants. Here, we will describe the major con-
founding factors in such studies.

Antibiotics
Antibiotics are powerful disrupters of the developing gut micro-
biome. Depending on the type, dose, duration, and timing of 
administration (60), antibiotics can have profound effects on 
the development of the neonatal and/or infant microbiome. All 
mothers delivering by CS are administered intrapartum antibi-
otic prophylaxis (IAP), as is routine for any type of surgery. In 
some countries, IAP is administered after the cord is clamped, 
minimizing direct antibiotic exposure of the neonate. In others, 
antibiotics are given prior to commencement of surgery. For 
those antibiotics which cross the placenta, IAP will likely have a 
devastating effect on the neonate’s microbiota, although it should 
be born in mind that the microbial DNA will remain unaltered 
even if the bacteria are dead. Hence, microbiome studies may 
fail to appropriately recognize the effects of antibiotic exposure 
within the first day or so of life. Mothers delivering vaginally are 
not routinely administered antibiotics, with the notable exception 
of those who are vaginally colonized with Group B Streptococcus 
(GBS). Overall, rates of intrapartum antibiotic use are low in 
vaginally delivering mothers (61).

The effects of IAP on the neonatal gut microbiome are well-
described (62–67). In particular, maternal IAP has been associ-
ated with decreased bacterial diversity in the neonatal gut, as 
well as a decrease in the relative abundance of Actinobacteria, 
Bacteroidetes, Bifidobacteria spp., Bacteroides spp., Parabacteroides 
spp., Atopobium spp., and Lactobacillus spp., and an increase 
in the relative abundance of Proteobacteria, Firmicutes, 
Enterobacteriaceae, Enterococcus spp., and Clostridium spp. These 
perturbations to the neonatal gut microbiome directly overlap 
with those observed in CSD infants (Table 2). Importantly, these 
perturbations are accompanied by a delay in the production of 
immunomodulatory short chain fatty acids (62).

Perinatal antibiotic use has also been associated with increased 
risk of developing numerous morbidities (69), including asthma 
(70–73), allergies (74, 75), and obesity (76). It is vital to consider 
antibiotic use, in particular the specific types of antibiotics used 
and the timing of administration, when comparing the microbi-
ome composition and health outcomes of CSD and VD infants, 
as differences in these infants may be directly attributable to 
differences in antibiotic exposure (Table 2).

Labor
The absence of labor in mothers delivering by elective CS creates 
a completely different biochemical landscape in the maternal 
body. Specifically, labor causes changes in levels of endocrine, 
inflammatory, and contractile factors. These changes might 
influence the maternal microbiome or the establishment of 
the neonatal microbiome. Additionally, labor is often accom-
panied by rupture of the fetal membranes, exposing the fetus 
to maternal vaginal bacteria. Accordingly, previous studies 
have demonstrated a difference in the neonatal microbiome of 
women delivering by elective CS (no labor) compared to those 
delivering by emergency CS (labor) (50).

Both maternal and fetal cytokines influence the developing 
fetal immune system. Malamitsi-Puchner et  al. investigated 
cytokine concentrations in maternal, fetal, and neonatal blood 
after vaginal delivery (labor) and elective Cesarean delivery (no 
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TABLe 2 | Genera of bacteria reported to be differentially abundant in [Bäckhed et al. (51), Sakwinska et al. (49), Penders et al. (52), Tun et al. (68), and Azad et al. (50)] 
cesarean section delivered (CSD) infants compared to vaginally delivered (VD) infants across five studies.

Genus intrapartum  
antibiotic  

prophylaxis (iAP)

Cesarean section delivery

4 days 3 weeks 1 month 4 months 1 year

Bäckhed et al. Sakwinska et al. Penders et al. Tun et al. Bäckhed et al. Azad et al. Bäckhed et al.

Actinomyces ↓
Aggregatibacter ↑
Anaerococcus ↑
Anaerostipes ↑
Bacillus ↑
Bacteroides ↓(63)a, (64)b, (66)d ↓ ↓ ↓ ↓ ↓ ↓
Bifidobacterium ↓(64)b, (65)b, (67)c ↓ ↓
Bilophila ↓
Blautia ↑
Brevundimonas ↑
Butyrivibrio ↑
Capnocytophaga ↑
Citrobacter ↑
Clostridium ↑(63)a (67)c ↑ ↑
Collinsella ↓(63)a ↓
Comamonas ↓
Cronobacter ↑
Deinococcus ↑
Delftia ↑
Enterobacter ↑
Enterococcus ↑(63)a ↑
Escherichia–Shigella ↑(64)b ↓ ↓
Eubacterium ↑
Faecalibacterium ↑(63)a ↑
Granulicatella ↑
Haemophilus ↑
Klebsiella ↑
Lactobacillus ↓(67)c

Macrococcus ↑
Parabacteroides ↓(63)a ↓ ↓
Paraprevotella ↑
Propionibacterium ↓
Proteus ↑
Providencia ↑
Pseudomonas ↓
Rothia ↑(63)a ↑
Staphylococcus ↑ ↓
Stenotrophomonas ↑
Streptococcus ↑(63)a (64)b ↑
Veillonella ↑(63)a

↓(64)b
↑

aAntibiotic not specified.
bAmpicillin.
cAmpicillin and gentamycin.
dVarious antibiotics.
↑ indicates a significant increase in relative abundance in CSD infants compared to VD infants. ↓ indicates a significant decrease in relative abundance in CSD infants compared to 
VD infants. These disturbances are compared with disturbances associated with IAP as reported in six studies (62–67).
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labor) (77). They found that vaginal delivery was associated 
with an increase in circulating cytokines up to 4  days post-
partum, probably due to the consequences of labor, which is 
known to be pro-inflammatory and did not occur in the elective 
CS group.

Differences in levels of inflammatory and immune-mediating 
cytokines in CSD infants (due to absence of labor) may account 
for some of the observed differences in neonatal microbiome 
colonization and health outcomes. This possibility is supported 

by a number of studies showing that elective Cesarean delivery, 
but not emergency Cesarean delivery (where often the labor 
process has commenced), is associated with an increased risk of 
asthma (78), celiac disease (79), and psychosis (80). Interestingly, 
while fecal bacterial richness and diversity are lower among 
infants born by elective Cesarean delivery compared to those 
born vaginally, they are also higher in infants born by emergency 
Cesarean delivery compared to those born vaginally (50). This 
phenomenon remains to be explained.
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Breastfeeding
Breast milk contains a number of important nutritional compo-
nents, as well as bacteria, which have repeatedly been shown to 
markedly influence the infant gut microbiome (52, 63, 81–86); 
this, in turn, modifies host gene expression and immune develop-
ment via the production of bacterial metabolites and systemic 
exposure to bacterial products (84–86). Source tracking studies 
have shown that 27% of an infant’s gut microbiota is vertically 
derived from its mother’s breast milk, while an additional 10% is 
sourced from the skin around the areola (87). Additionally, breast 
milk is rich in prebiotics, such as human milk oligosaccharides, 
which are metabolized by certain members of the gut microbiota 
and modify the composition of the infant gut microbiome and 
metabolome (88).

Cesarean section deliveries are associated with increased 
risk of a range of sub-optimal breast feeding parameters. These 
include a delay in breast feeding (89), a shortened duration of 
breastfeeding (90), sub-optimal breastfeeding behavior (89), and 
a reduced volume of breast milk consumption in the first 5 days of 
life (91). Given the microbial and immune modulatory properties 
of human breast milk, it is highly likely that differences in feeding 
practices between CSD and VD infants might account for some of 
the microbial and epidemiological differences observed in these 
groups. This phenomenon would also explain, in part, why differ-
ences in infant gut microbiome diminish with weaning.

Maternal Obesity
Maternal obesity is a known risk factor for Cesarean delivery 
in both developed and developing countries; the OR for obese 
women having a CS delivery compared with women of normal 
weight is 2.01–2.36 (68, 92–97). High maternal BMI is associated 
with an increased risk for failed labor, which in turn increases 
labor duration and ultimately leads to CS delivery (68, 92, 98).

Obesity and high-fat diets have repeatedly been correlated 
with aberrations to the gut microbiome in humans (99–102). 
Maternal obesity alters the maternal gut microbiome during 
pregnancy (103, 104), and the milk microbiome during lactation 
(105, 106), both of which are likely to influence both pre- and 
post-natal microbiome colonization patterns and immune devel-
opment in the offspring. Importantly, Chu et al. demonstrated an 
association between maternal high-fat diet and distinct changes 
in the neonatal gut microbiome at birth, which persisted through 
4–6 weeks of age (107).

Mother-to-child transmission of obesogenic microbes contin-
ues to disrupt microbiome patterns into early childhood. Galley 
et al. found that the gut microbiomes of toddlers born to obese 
mothers of high socioeconomic status (SES) clustered away from 
those of toddlers born from lean high SES mothers (108). In par-
ticular, children born to obese mothers had differences in abun-
dances of Faecalibacterium spp., Eubacterium spp., Oscillibacter 
spp., and Blautia spp., all of which have been correlated to diet 
and body weight in previous studies.

Interestingly, a recent study published by Mueller et al. reported 
that maternal obesity-associated differences in the neonatal 
microbiome are dependent on delivery mode (109). They found 
that the fecal microbiota of VD infants (n = 18) was disturbed 
by maternal obesity (n = 5) on day 2 of life. This association was 

not evident in CSD neonates (n = 56, 26 of which were obese or 
overweight). While the authors suggest that their results indicate 
that an altered microbiome is transferred to offspring of obese 
mothers during vaginal delivery, it is also possible that their 
results reflect differences in IAP between groups. Importantly, 
the meconium microbiota at day 2 of life (often the time of the 
first bowel movement) is likely to reflect the fetal gut contents 
in  utero, which is likely to be influenced by maternal diet and 
health status. Thus, we would expect to see differences based on 
maternal pre-pregnancy BMI—regardless of delivery mode. It is 
possible that antibiotic administration during pregnancy (n = 11 
in the CSD group, none reported in the VD group) and delivery 
(no antibiotic use during delivery reported in the VD group) 
could mask these differences.

Similarly, Tun et al. found that maternal obesity perturbs the 
infant microbiome in a delivery mode-dependant manner (68). 
They reported that VD infants (n = 708) born to overweight or 
obese mothers had a statistically higher abundance of several 
genera (e.g., Bacteroides spp., Megasphaera spp., Blautia spp., 
and Oscillospira spp.) and reduced abundance of others (e.g., 
Haemophilus and Veillonella), compared to those born from 
normal weight mothers. Among infants born after emergency 
CS delivery, Coprococcus spp. and Ruminococcus spp. were more 
abundant in infants born to overweight or obese mothers than 
normal weight mothers. Importantly, CS delivery was found to be 
associated with a twofold increase in risk of obesity in the infant, 
but this association disappeared after adjustment for co-variables, 
such as maternal obesity and IAP.

Transmission of aberrant or obesogenic microbiota from 
obese mothers could potentially explain some of the microbial 
and metabolic differences reported in infants born by CS vs. 
those born vaginally. However, this potential mechanism remains 
unproven, as the ability to induce an obese phenotype via transfer 
of obesogenic microbiota has only been demonstrated in animal 
models thus far (102).

Gestational Age at Delivery and Neonatal 
intensive Care Unit (NiCU) exposure
Rates of CS delivery increase with decreasing gestational age at 
delivery (110). Preterm infants differ from their full-term coun-
terparts in terms of their gut microbiota (38, 111–113), immune 
development (114, 115), and health outcomes (116–118). 
Arboleya et  al. reported that aberrations to the gut microbiota 
of preterm infants in the first 3 months of life are coupled with 
a difference in metabolically active short chain fatty acid levels 
in stool. Although not tested in this particular study, it would be 
expected that such differences would result in altered immune 
development among preterm infants.

Preterm infants also experience different nutritional and 
environmental exposures after birth. The NICU environment is 
likely to influence the microbiome, so duration of residence and 
the environmental microbiome of the unit are likely to have a 
significant impact (119). Infants residing in the NICU also expe-
rience differences in nutrition (formula and donor breast milk are 
common) and antibiotic administration (120). Thus, gestational 
age and the influence of exposure to the NICU must be accounted 
for in studies comparing CSD and VD infants.
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inter-individual variation
The human microbiome is tremendously variable, both in terms 
of inter-individual and intra-individual variation (121–126). 
Thus, any study wishing to define microbial differences in 
two populations must take into account baseline variability in 
individual microbiomes, as well as temporal changes within an 
individual. Studies that compare the microbiomes of infants born 
by CS or vaginal delivery must have sufficient power to account 
for variation in the maternal microbiome, as this is likely to exert 
a large influence on an infant’s microbiome through breastfeed-
ing and physical contact. Large cohorts are thus required with the 
ability to control variables, such as home environment, presence 
of pets, and exposures to other microbiome-altering factors 
including hygiene and maternal/infant diet.

POSTNATAL vAGiNAL SeeDiNG

As discussed above, although the data are supportive of a differ-
ence in the early-life microbiome of infants born via CS vs. vagi-
nal delivery, the evidence that this is due to the mode of delivery 
(i.e., differences in exposure to vaginal microbiota during birth) 
is unconvincing and lacking in critical data. Nevertheless, the 
perception among the public and medical health professionals 
alike is that CS delivery deprives the infant of exposure to vaginal 
microbiota and this leads to neonatal dysbiosis and increased risk 
of poorer health outcomes. As a consequence, attempts have been 
made to correct the problem—even though the “problem” may 
not exist and the benefits of exposure to any individual bacterial 
species have not been determined.

The widely cited and influential study of Dominguez-Bello and 
colleagues sought to address the lack of vaginal bacterial exposure 
in CSD neonates using a practice that they termed “vaginal 
seeding” (127). Vaginal seeding involves the use of a gauze swab 
to transfer maternal vaginal fluid, and the microbes contained 
therein, to a neonate immediately following CS delivery. To test 
the effectiveness of this procedure, the authors recruited 18 moth-
ers delivering either vaginally (n = 7) or by CS (n = 11). Four of 
the CSD neonates were exposed to their mothers’ vaginal fluid 
following birth. The authors reported a partial restoration of the 
neonatal microbiome (mainly the skin and oral microbiome, less 
so the gut microbiome) in these four infants after vaginal seeding, 
with exposed neonates exhibiting microbiomes similar to those 
of their VD counterparts.

This study had several major weaknesses. Importantly, all 
mothers delivering by CS received IAP, while only one mother 
who delivered vaginally was exposed to antibiotics. Additionally, 
all CS deliveries were elective (no labor), a limitation which the 
authors themselves acknowledged. It is also important to note 
that differences in maternal pre-pregnancy BMI and gestational 
weight gain were not accounted for in this study. The limitation 
of the small sample size in this study was exacerbated by the 
fact that there were several missing samples at each time point. 
Given the high level of baseline inter-individual variation that 
was evident, the perceived differences in the vaginal fluid exposed 
group (n = 4) may be purely coincidental and the data are very 
unconvincing. In fact, swabs of the neonate’s hands immediately 
following birth revealed that only 3 of the 7 VD neonates had skin 

microbiomes dominated by Lactobacillus, while 1 of the 2 CSD 
neonates sampled at birth also had a Lactobacillus-dominated 
skin microbiome, as did all three of the swabbed neonates sam-
pled at birth. This is in line with previous reports from Martin 
et al., showing that passage through the vagina rarely transfers 
Lactobacillus to the infant (47). Remarkably, the primers used in 
this study were not reported, making it impossible to judge the 
bacterial coverage of the study.

The premise of this study was based on the assumption that 
the health consequences and microbial disruptions of CS delivery 
are due to a lack of exposure to vaginal microbes during delivery. 
As described in this review, there are a multitude of factors that 
might contribute to the Cesarean delivery phenotype, and very 
little evidence to support the theory that exposure to maternal 
vaginal microbes during delivery is important. Despite the 
absence of strong supporting evidence for this concept, the notion 
that replicating the vaginal seeding process will help to mitigate 
the perceived risks of CS delivery by restoring the natural micro-
bial homeostasis of the infant has gained considerable traction. 
Alarmingly, the practice of vaginal seeding has become main-
stream in some areas, and is often performed without the knowl-
edge or guidance of health care professionals. This practice carries 
a serious risk of transferring opportunistic pathogens (including 
viruses and fungi) to newborns which might be asymptomatic in 
the mother (most notably, GBS) (128). We agree with and support 
the recent guidelines from the American College of Obstetricians 
and Gynecologists and the Danish Society of Obstetrics and 
Gynecology with respect to vaginal seeding in the management 
of CS delivery (129, 130).

If evidence is eventually provided that vaginal seeding does 
play a role in the formation of the early-life microbiome, it may 
be more beneficial to employ the more controllable and phar-
macologically safer method of probiotic administration to help 
promote normal neonatal microbiota. Probiotics are already 
being trialed to correct dysbiosis preceding NEC in preterm neo-
nates with some success (131, 132), and probiotic formulations 
of vaginal bacteria are already commercially available. If such an 
approach is shown to be warranted and potentially beneficial, it 
could have significant safety and therapeutic advantages over the 
maternal vaginal seeding procedure trialed by Dominguez-Bello 
and colleagues.

CONCLUSiON

There is certainly a transient difference in the gut microbiota of 
infants born by Cesarean delivery compared to their VD counter-
parts. While this difference appears to be corrected after weaning, 
it may have lifelong impacts on the development of the immune 
system. This might underpin the increased incidence of asthma, 
allergies, and autoimmune diseases seen in CSD infants later in 
life. However, given the numerous and significant confounding 
factors present in studies comparing the microbiota after CS 
and vaginal delivery, it is impossible to say with any certainty 
that it is the act of delivering vaginally itself which confers this 
optimal microbiota, or what species/genera of bacteria might 
be responsible. Differences in antibiotic administration, labor 
onset, maternal body weight and diet, gestational age, and 
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breastfeeding frequency and duration undoubtedly contribute 
to differences observed between CSD and VD infants. Further, 
it is likely that differences between CSD and VD infants do not 
develop until several days after birth. Given recent evidence that 
infant microbiome colonization begins in utero, it may be that 
the importance of “bacterial baptism” of vaginal birth has been 
significantly over-estimated.

There is a high level of conflicting evidence surrounding this 
topic. To truly assess the impact of delivery mode on the neona-
tal microbiome, large scale studies are needed in which mothers 
delivering by CS are paired with BMI-matched vaginally deliver-
ing controls who also receive the same intrapartum antibiotics 
and who follow similar breastfeeding patterns, combined with 
strain-specific high-resolution microbiome studies to confirm 
microbial sources of origin. Although numerous studies have 
demonstrated an association between CS delivery and altered 
microbiome establishment, no studies have confirmed causal-
ity; the substantial differences in the methodology that exists 
between studies, including lack of appropriate controls and 

species-level resolution, further confounds our ability to define 
this apparent association. Health practitioners should not bow 
to popular pressure to perform vaginal seeding in the absence 
of data on need, effectiveness, and appropriate protocols for 
ensuring safety.
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