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Abstract: The construction and building sectors are currently responsible globally for a significant
share of the total energy consumption and energy-related carbon dioxide emissions. The use of
Modern Methods of Construction can help reduce this, one example being the use of cold-formed
steel (CFS) construction. CFS channel sections have inherent advantages, such as their high strength-
to-weight ratio and excellent potential for recycling and reusing. CFS members can be rolled into
different cross-sectional shapes and optimizing these shapes can further improve their load-bearing
capacities, resulting in a more economical and efficient building solution. Conversely, the high thermal
conductivity of steel can lead to thermal bridges, which can significantly reduce the building’s
thermal performance and energy efficiency. Hence, it is also essential to consider the thermal
energy performance of the CFS structures. This paper reviews the existing studies on the structural
optimization of CFS sections and the thermal performance of such CFS structures. In total, over
160 articles were critically reviewed. The methodologies used in the existing literature for optimizing
CFS members for both structural and thermal performances have been summarized and presented
systematically. Research gaps from the existing body of knowledge have been identified, providing
guidelines for future research.
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1. Introduction

Climate change is one of the most critical challenges that the world is facing today.
The building sector plays an important role in the energy consumption and emissions
released from the buildings [1,2]. Normally, a building uses energy throughout its life cycle,
including direct energy used for construction, operation, rehabilitation, and demolition and
indirect energy consumed to produce material used in its construction and installations [3].
According to the 2020 Global Status Report for Buildings and Construction [4], building
construction and operations accounted for the largest share of the total energy consumption
globally (35%) and energy-related carbon dioxide emissions (38%). Large construction
activity is taking place globally to accommodate the migration of the world’s population to
urban areas [3]. A study in the UK [5] stated that if without any action, the greenhouse gas
emissions from buildings would be more than doubling in the next two decades due to
the inefficiencies of the existing building technologies. Such a boom in construction also
provides a significant resource-saving potential from depletion. Reducing the environmen-
tal impacts of construction and improving the energy efficiency of buildings during their
entire life span has become the prime objective throughout the world [6].

Research conducted by McLaren et al. [7] showed that New Zealand needs to reduce
72% of the carbon footprint of the residential housing construction to stay within the in-
ternational climate target of maximum global warming by 1.5 ◦C. Besides, New Zealand
recently announced reducing its net greenhouse gas emissions by 50% within 2030 [8].
Incremental improvements are insufficient, and significant changes are required [7]. These
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efforts include prioritizing retrofitting and renovating existing buildings to reduce oper-
ational energy consumption [7]. For new buildings, efforts should be made to reduce
operational energy and use environmentally friendly materials [7]. The COVID-19 pan-
demic has altered people’s daily life and brought a lot of changes in the sustainability
requirements of the building industry [9]. The three main aspects of residential buildings,
health and safety, environment, and comfort, are anticipated to encounter significant trans-
formations to sustainability [9]. For many people, staying at home due to extensively long
lockdown periods turns into a new lifestyle, which leads to more consumption of resources,
such as energy usage. It highlights the significance of fulfilling rigorous energy-saving
provisions for new houses and retrofitting and improving the energy efficiency of the
building envelopes [10,11].

The type and amount of building materials used in the construction industry substan-
tially impact the carbon footprint [12]. Cold-formed steel (CFS) is considered a suitable
material to build energy-efficient buildings [13]. Steel has a near 100% recycling rate, maxi-
mizing the materials’ efficiency and reducing waste [14,15]. Recycled steel is used in most
steel products, including steel framing, which comprises at least 25% recycled steel [16].
Steel has never been downcycled in the same way as other construction materials, the
recycling material of poorer quality and functioning than the original material [14]. For
example, the fibers shorten when the wood is chopped, while recycling steel preserves
all of its properties on a molecular level, providing more robustness [14]. In addition,
steel profiles have a high strength-to-weight ratio, and less maintenance is required for
steel structures as they are not sensitive to moisture or biological activities [10,14–19]. CFS
members are rolled at ambient temperature from thin gauge steel sheets [20]. They have
many advantages over traditional hot-rolled steel members, such as a higher strength-
to-weight ratio, a highly flexible manufacturing process, and being light weight leads to
easier handling, transportation, and erection [20–27]. CFS sections are used extensively in
roof and wall systems, steel storage racks, and many other similar secondary load-bearing
members [20,21,28–34]. In recent years, using CFS is also a popular choice in modular
construction, which is an alternative way to conventional on-site construction [35–43].

The growing world population and limitations of natural resources have increased
the need for more cost-effective structural systems to implement a sustainable economy
and society [44]. CFS can be rolled to form a great variety of shapes, which provides a
unique opportunity to further increase the load-carrying capacity of these cross-sections
through optimization processes [45–47]. However, CFS members have some drawbacks
concerning its thermal behavior, primarily induced by the high thermal conductivity of the
steel, which can result in a large amount of heat loss or gain through the thermal bridging
and adversely affect the thermal performance of the buildings [18,48]. Hence, in order to
reach a high level of sustainability and energy efficiency, it is important to improve the
design of CFS structures. Further understanding the optimization and thermal performance
could help researchers conduct sustainable design in energy dissipation, structural capacity,
and material cost.

This paper brings together the existing research on the structural optimization of CFS
sections and the thermal performance of CFS framed structures to provide an overview
of how CFS construction can contribute to a more sustainable built environment. In total,
over 160 papers were reviewed, which were published in the literature from the year of
1997 to 2021. The majority of the papers are relevant to structural behavior and structural
optimization of CFS. However, 40 papers were concerning the thermal performance of
CFS members and their thermal insulation. The methodologies used in the existing lit-
erature and their findings are critically analyzed and presented systematically. From the
existing body of knowledge, research gaps were identified, providing recommendations
for future research.
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2. Structural Optimization of CFS Members

Structural optimization usually includes optimization of dimension, shape, and topol-
ogy [49]. Dimensional optimization works on a fixed topology by changing individual
dimensions [49]. Shape optimization requires the use of a shape generation subroutine to
adjust the member’s geometry for improved performance, but the connectivity or topology
may not be significantly altered [49]. Topology optimization provides the most flexibility
in terms of generating an optimal shape within an assigned domain of material connection
and can be changed by adding voids [49].

2.1. Cross-Sectional Shapes of CFS Members
2.1.1. CFS Single Sections

Figure 1 shows several typical cross-sections of CFS members. As a result of current
trends, CFS sections become thinner and more highly stiffened, which are then more
prone to local and distortional buckling [50,51]. Therefore, more complex shapes are
being created to increase the buckling resistance [28,52,53]. For example, as shown in
Figure 2, more complex shapes are created from simple lipped channels to include multiple
segments, stiffeners, and lips. Substantial research in terms of experimental and numerical
investigations of CFS sections behavior has revealed that adding intermediate web stiffeners
and edge stiffeners enhances the strengths of such sections [54–65].
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2.1.2. CFS Built-Up Sections

The literature has considered different cross-sectional geometries of CFS built-up
sections [66–90]. As can be seen from Figure 3, the built-up channel sections are formed
from two identical lipped channel sections connected face-to-face to form a box section,
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or back-to-back to form an I-section or back-to-back gapped built-up sections. Such
built-up CFS sections can span further and can achieve higher compression and bend-
ing capacities [54,70,76].
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2.2. Structural Behaviour of CFS Members

Previous studies have shown that CFS beams and columns are mainly affected by local,
distortional, and global buckling or interaction between them (Figure 4) [45,54,69,75,91–98].
All buckling modes are dependent on the condition of end supports, different loading
types, and cross-sectional shapes of CFS members [75]. Moreover, the web crippling is
another failure for flexural members of a CFS open section [99–101].
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Figure 4. The buckling modes of CFS lipped channel sections with conditions of (a) local,
(b) distortional, (c) global, and (d) local-flexural interactive buckling.

2.2.1. Current Design Methods

The most commonly used design codes for CFS structures are the North American
Specification, which is also known as American Iron and Steel Institute (AISI) [102], the
Australian/New Zealand Standard (AZ/NZS) [103], and Eurocode [104]. They formally
provide two design methods to predict the axial strength of columns and the flexural
capacity of beams, the long-established Effective Width Method (EWM) and the more
newly developed Direct Strength Method (DSM) [105]. The calculation process in the EWM
may be tedious for complex cross-sectional shapes, while the DSM is much simpler [106].
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2.2.2. Effective Width Method (EWM)

Following AS/NZS 4600:2018 [103], the axial capacity (N∗) is computed by Equations (1)
and (2).

N∗ ≤ ∅cNs = ∅c Ae fy (1)

N∗ ≤ ∅cNc = ∅c Ae fn (2)

where ∅c = capacity reduction factor for compression members, Ns = nominal section
capacity of the compression members, Nc = nominal member capacity of the compression
members, Ae = effective area, fy = yield stress, and fn = critical stress.

fn is determined by,

fn =
(

0.658 λc
2
)

fy, for λc ≤ 1.5 (3)

fn =

(
0.877
λc

2

)
fy, for λc > 1.5 (4)

λc =

√
fy

foc
(5)

where λc = non-dimensional slenderness, and foc = the minimum among the elastic flexural,
torsional, and flexural-torsional buckling stress.

The design bending moment (M∗) of the flexural member is computed by Equations (6)
and (7).

M∗ ≤ ∅b Ms= ∅bZe fy (6)

M∗ ≤ ∅b Mb = ∅bZc fc (7)

where ∅b = capacity reduction factor for bending, Ms = nominal section moment capacity,
Mb = nominal member moment capacity, Ze = effective section modulus.

fc is determined by,

fc =
Mc

Z f
(8)

where Mc = critical moment and Z f = full unreduced section modulus.

2.2.3. Direct Strength Method (DSM)

According to AISI S100-16 [102], the column nominal axial strength (Pn) is determined by

Pn = min(PnD, PnG, PnL) (9)

where MnD, MnG, and MnL are given by Equations (10)–(12), respectively.
The axial strength for distortional buckling (PnD) can be calculated by Equation (10). PnD = Py, if λD ≤ 0.561

PnD = Py

(
PcrD
Py

)0.6
[

1 − 0.25
(

PcrD
Py

)0.6
]

, if λD > 0.561
(10)

where λD =
√

Py
PcrD

is the distortional slenderness and PcrD is the critical distortional
buckling load.

The axial strength for global buckling (PnG) can be calculated by Equation (11).{
PnG = Py 0.658 λG

2
, if λG ≤ 1.5

PnG = Py
0.877
λG

2 , if λG > 1.5 (11)

where λG =
√

Py
PcrG

is the global slenderness and PcrG is the critical global buckling load.
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The axial strength for local buckling (PnL) can be calculated by Equation (12). PnL = Py, if λL ≤ 0.776

PnL = Py

(
PcrL
Py

)0.4
[

1 − 0.15
(

PcrL
Py

)0.4
]

, if λL > 0.776
(12)

where λL =
√

Py
PcrL

is the local slenderness, Py is the squash load, and PcrL is the critical
local buckling load.

The beam nominal bending capacity (Mn) is determined by

Mn = min(MnD, MnG, MnL), (13)

where MnD, MnG, and MnL are given by Equations (14)–(16), respectively.
The nominal moment capacity for distortional buckling (MnD) beams can be calculated

by Equation (14). MnD = My, if λD ≤ 0.673

MnD = My

(
McrD
My

)0.5
[

1 − 0.22
(

McrD
My

)0.5
]

, if λD > 0.673
(14)

where λD =
√

My
McrD

is the distortional slenderness, My is the cross-section first yield
moment (My = S f fy, where S f is the gross section elastic modulus), and McrD is the critical
distortional buckling moment.

The nominal moment capacity for global buckling of beams (MnG) can be calculated
by Equation (15).

MnG = McrG, if McrG < 0.56 My

MnG = 10
9 My

(
1 − 10My

36McrG

)
, if 2.78 My ≥ McrG ≥ 0.56 My

MnG = My, if McrG > 2.78 My

(15)

where McrG is the critical global buckling moment.
The nominal moment capacity for local buckling (MnL) of beams can be calculated by

Equation (16). MnL = My, if λD ≤ 0.776

MnL = My

(
McrL
My

)0.4
[

1 − 0.15
(

McrL
My

)0.4
]

, if λD > 0.776
(16)

where λL =
√

My
McrL

is the local slenderness and McrL is the critical local buckling moment.

2.2.4. Other Methods

Deep Belief Network (DBN) has been demonstrated to be a useful approach for
studying the structural performance of CFS sections [107–110]. DBN is a representative and
effective deep-learning method [107]. Generative model and back-propagation algorithms
are used in the pretraining procedure and fine-tuning stage, respectively, which enables the
excellent ability of DBN to make data regression and prediction work with confined training
samples [107,108]. DBN can be trained to display the high-dimensional data characteristics,
and it is also a fast-learning algorithm to obtain near-optimal parameters [107].

2.3. Optimization Algorithms
2.3.1. Stochastic Search Algorithms

GA is found to be the most popular stochastic search algorithms used in the context
of CFS structures. Acceptable results have also been achieved by using other stochastic
methods, such as PSO and SA.
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GA is applicable for searching the entire problem space. However, it is stochastic, and
no guarantee can be made to achieve the global optimal results [49]. Besides, GA is an
unconstrained optimization algorithm, which means any constraint has to be incorporated
directly into the objective function through an augmented Lagrangian approach or penalty
factors [49]. Gatheeshgar et al. [111] indicated that one of the significant advantages of
PSO over GA is that the practical manufacturing and theoretical constraints could be
incorporated easily in the case of PSO. Leng et al.’s study [81] preferred SA more than
GA since it ran only on one design instead of a population and led to computational cost
savings [112].

A direct comparison between the performance of GA, SA, and the gradient-based
steepest descent method was carried out by Leng et al. [113]. For the same computing efforts,
GA and SA provided comparable optimal solutions, while the gradient-based method only
achieved local optima, which was dependent on the initial geometry. However, gradient-
based optimization can be a useful tool to refine solutions obtained at the beginning stage,
as it is computationally efficient and has good convergence.

Other derivative-free algorithms mentioned in the literature on CFS optimization
include the Ant colony-based optimization (ACO) and the artificial neural network (ANN).

2.3.2. Ant Colony-Based Optimization (ACO)

The ACO is inspired by the behavior of ants seeking a path between their colony
and a source of food [49]. The developments of some of the most robust metaheuristics,
such as ACO in recent decades, have enabled the analyst to solve large combinatorial
optimization problems that can be reduced to finding the shortest paths through graph
theory models [114]. Sharafi et al. [114] used this theory-based graphical method for shape
and size optimizations of CFS members.

2.3.3. Artificial Neural Network (ANN)

ANN is a popular machine learning and data mining model and mimics biological
neural networks. An ANN is made up of three parts: a network with a well-organized
topology of linked nodes, a technique for encoding information, and a way for retrieving
information [49]. Several studies available in the literature used ANN to optimize the
cross-sections of CFS members, as discussed in the next section of the paper.

2.4. Existing Studies in the Literature for Structural Optimization of CFS Sections

CFS members may be rolled to nearly any open cross-section to meet specific objec-
tives [20,21,113,115]. However, this flexibility sometimes can make it a hard choice for
cross-section selections [116–118]. With the recent push for lighter and greener buildings,
finding the optimal cross-sectional shape for CFS members is of great interest [112,113,115].
Extensive research has been conducted on the structural optimization of CFS members
subject to different loading conditions. Table 1 summarizes the research works performed
over the last two decades to optimize different cross-sections of CFS members.

A variety of optimization techniques have been used in the earlier research to optimize
CFS members, such as graph theory and ant colony optimization [114], Genetic Algorithms
(GA) [20,50,98,113,117–124], Particle Swarm Optimization (PSO) [21,91,111,125–130], Di-
rect Multi Search Optimization (DMS) [115], the Big Bang-Big Crunch algorithm (BB-
BC) [131], self-shape optimization method [132], parameter-free method [133], Neutral
Dynamic model [23,134,135], Simulated Annealing (SA) [112,113,124,136], the Gradient
Descent Optimization (GDO) [113,122], the Trust-Region Method (TRM) [116], and Whale
Optimization Algorithm (WOA) [37].

These optimization studies can also be split into two groups: (i) optimization without
any constraints on the overall cross-sectional shape (unconstrained shape
optimization) [113–115,121,123,132,137]; and (ii) optimization of the dimensions of a prede-
fined cross-sectional shape (constrained shape optimization) [20,21,50,91,98,112,116–120,122,
124–131,134,136,138–140].The latter one is more practical and easier to manufacture. More



Buildings 2022, 12, 34 8 of 29

recently, nonlinear Finite Element (FE) models have been widely applied in assessing the
accuracy of optimization results [21,119,123,125–128,130,131].

2.4.1. Optimization Objective

A typical engineering design objective in structural optimization is to minimize the
weight of structural members, simultaneously meeting strength and serviceability con-
straints. This objective was pursued by optimizing individual cross-sectional
shapes [114,116,118,123,134–136,138,139]. Adeli and Karim [135] developed a computa-
tional neural network model which guaranteed a local optimum solution. Tian and Lu [138]
performed a combined theoretical and experimental study on the minimum weight and
the associated optimal geometric dimensions of channel columns with and without lips
according to provisions of BS 5950-5 [141]. Tran and Li [116] researched the global op-
timization of CFS channel beams subjected to uniformly distributed transverse loading.
Lee et al. [118] used a micro genetic algorithm (MGA) to find an optimum cross-section of
CFS channel beams under uniformly distributed loads. They indicated that MGAs showed
excellent performance on seeking the minimum weight design of CFS channel beams [118].
Guimarães et al. [123] optimized the shape of singly symmetric CFS purlins to minimize
the cross-sectional area while satisfying the strength requirements. According to their
results, the optimized purlins saved up to 6.6% of steel compared to the reference purlins.
This cost-saving in the material was quite notable for a mass-produced product such as
purlins [123].

Instead of attempting to find the minimum weight for a predefined cross-section shape,
the first traceable work of maximizing the CFS member’s strength for a given amount
of material by changing its shape appeared to be Liu et al. [137]. The optimized CFS
section exhibited up to 300% improvement in strength over the commonly used channel
sections [137].

2.4.2. Optimization of CFS Beams

Ostwald and Rodak [139] analyzed the optimal design of CFS beams with open
shapes subjected to different loading conditions. In their work, the concept of Pareto
optimality was used to solve the multi-criteria optimization problem. The cross-section
area was considered the first objective function, and the beam deflection was considered the
second one [139]. Ye et al. [126] conducted a comprehensive investigation on the practical
optimization of CFS beams using the PSO method, and significant strength improvements
were obtained. To further improve the capacity of the beams, the researchers optimized
a more comprehensive range of cross-sectional shapes, including edge and intermediate
stiffeners and segmentally folded flanges [21]. The optimized folded-flange section revealed
a bending capacity of up to 57% higher than the standard optimized shape with the same
amount of material [21].

Recently, Gatheeshgar et al. [128] optimized CFS beams using the PSO method. Their
results showed that the optimized CFS sections possessed considerable enhancements in
the sectional moment capacity, up to 65% improvement was achieved when compared with
the commercially available ones [128]. Moreover, the researchers [111] incorporated the
optimized CFS members into modular building systems.

The ultimate capacity was the sole optimization criterion in most of the previous re-
search studies, while Ye et al. [125] investigated the seismic performance of CFS elements by
optimizing their geometrical and material properties and also including the post-buckling
behavior to reach the maximum level of energy dissipation. Mojtabaei et al. [131] optimized
CFS beams with maximum flexural strength and minimum deflection under ultimate and
serviceability limit states, respectively. Gatheeshgar et al. [130] optimized CFS lipped
channel beams to maximize their combined bending, shear, and web crippling strengths.
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Table 1. Summary of the relevant research studies available in the literature for structural optimization of CFS sections.

Researcher Year Element Type
Fixed

Amount of
Material

Design
Specification

Constraints Imposed

Optimization
Method

Validated by
FEA ConclusionsGeometric

Requirement

Practical &
Manufactur-

ing
Constraints

Assembly &
End-Use

Constraints

Ye et al. [125] 2018 Beams X Eurocode 3 X X PSO X

The optimized cross-sectional
shapes can dissipate up to 60%

more energy through plastic
deformations.

Mojtabaei et al. [20] 2021

Single and
built-up

beam–column
members

X Eurocode 3 X X GA
Up to 156% gain in the capacity can

be obtained by the optimized
section.

Ye et al. [21] 2016 Beams X Eurocode 3 X X PSO X
The optimized folded-flange

section can obtain up to a 57%
increase in the bending capacity.

Phan et al. [98] 2020 Built-up beam
sections X Eurocode 3 X X X GA Up to an 84% increase in the

ultimate capacity can be achieved.

Ma et al. [119] 2015 Beam–column
members X Eurocode 3 X GA X

Up to 90% gain in capacity can be
achieved for very short columns by

adding strategically placed web
stiffeners or double-fold lips.

Parastesh et al. [50] 2019
Symmetric

beam–column
members

X AISI S100 X X X GA

Up to 63%, 94%, and 122% increase
in the ultimate strength for short,

medium, and long members,
respectively.

Mojtabaei et al. [131] 2019 Beams X Eurocode 3 X X X BB-BC X

Up to 44% higher effective stiffness
and 58% higher bending moment
capacity can be obtained by the

optimized section.

Madeira et al. [115] 2015 Columns X AISI S100 X DMS The two most effective shapes were
presented in the paper.

Ye et al. [126] 2016 Beams X Eurocode 3 X X PSO X

Up to 25% and 75% higher flexural
strength can be achieved for

laterally braced and unbraced CFS
beams.
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Table 1. Cont.

Researcher Year Element Type
Fixed

Amount of
Material

Design
Specification

Constraints Imposed

Optimization
Method

Validated by
FEA ConclusionsGeometric

Requirement

Practical &
Manufactur-

ing
Constraints

Assembly &
End-Use

Constraints

Perampalam et al. [127] 2019 Beams X Eurocode 3 X PSO X
A higher flexural capacity of up to
50% can be obtained compared to

the benchmark section.

Lee et al. [117] 2006 Columns X AISI S100 X
Micro genetic

algorithm
(MGA)

The lipped-channel section was
found to be about 15% more

efficient than the channel section.

Gilbert et al. [132] 2012 Columns X AS/NZS 4600 X X
Self-shape

optimization
method

The rounded shapes can increase
the local buckling strength while
maximizing the global buckling

strength.

Wang et al. [120] 2016 Columns X AS/NZS 4600 X X X GA

The optimized solutions doubled
the axial capacity of the

conventional lipped channel
section.

Leng et al. [112] 2014 Columns X AISI S100 X X X SA
The ‘Σ’-sections were preferred
due to their ability to provide

robust capacity increases.

Leng et al. [113] 2011 Columns X NA GDO, GA and
SA

The capacities of the optimized
sections were found to be more

than double of the original design.

Gatheeshgar et al. [128] 2020 Beams X Eurocode 3 X X PSO X
Up to 65% enhancements in the
capacity were achieved by the

optimized CFS sections.

Li et at. [129] 2016 Beam–column
members X AISI-S100 X X X PSO The optimal lipped channel

sections were 14% more efficient.

Wang et al. [121] 2016 Beam–column
members X AS/NZS 4600 GA

An optimized slim “I” type
cross-sectional shape with a curved

web was typically found for the
fully restrained beams, and a large

open channel section with lip
stiffeners was found for the

unrestrained beams.
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Table 1. Cont.

Researcher Year Element Type
Fixed

Amount of
Material

Design
Specification

Constraints Imposed

Optimization
Method

Validated by
FEA ConclusionsGeometric

Requirement

Practical &
Manufactur-

ing
Constraints

Assembly &
End-Use

Constraints

Tashakori and Adeli [134] 2002 Columns AISI S100 X X X
Neural

dynamics
model

The optimization model resulted in
substantial savings in the weight of

the structure.

Tran and Li [116] 2006 Beams BS 5950-5
Eurocode 3 X TRM

The two design codes, BS 5950-5
and Eurocode 3 provided almost

the same optimized solution.

Ostwald and Rodak [139] 2013 Beams NA X X
Pareto concept
of optimality

The optimal shapes of the
cross-sections under different
loading cases were presented.

Moharrami et al. [122] 2014 Columns X AISI S100 X X GA

The optimized sections have
compressive capabilities that are
more than three times larger than

the original designs.

Dias and
Mahendran [124] 2021 Columns X NA X X SA and GA X

Significant strength and efficiency
enhancements were found in the

optimized sections.

Guimarães et al. [123] 2021 Beams AS/NZS 4600 X X X

The
augmented
Lagrangian

genetic
method

X
The optimized solutions can save

up to 6.6% of steel compared to the
reference purlins.

Gatheeshgar et al. [130] 2020 Beams X Eurocode 3 X X PSO X
The optimized CFS sections were

more effective than the
conventional CFS sections.

Gatheeshgar et al. [37] 2021 Beams Eurocode 3 X X WOA X

Up to 24% of weight reduction was
found using the novel optimization
method without compromising the

capacity.

Gatheeshgar et al. [111] 2020 Beams X Eurocode 3 X X PSO X

The flexural capacity of the
optimized sections was improved

by up to 65% compared to
conventional CFS sections.
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Table 1. Cont.

Researcher Year Element Type
Fixed

Amount of
Material

Design
Specification

Constraints Imposed

Optimization
Method

Validated by
FEA ConclusionsGeometric

Requirement

Practical &
Manufactur-

ing
Constraints

Assembly &
End-Use

Constraints

Tian and Lu [138] 2004 Columns BS 5950-5 X

Sequential
Quadratic

Programming
(SQP)

The optimal C-section showed a
better performance.

Lee et al. [118] 2005 Beams AISI S100 X MGA

MGAs showed excellent
performance in seeking the
minimum weight design of

cold-formed steel channel beams.

Liu et al. [137] 2004 Columns X AISI S100 X
A global

optimization
approach

Optimized CFS cross-sectional
shapes showed much higher

strength than commonly used
shapes (up to 300% improvement).

Sharafi et al. [114] 2014 Beam–column
members AS/NZ 4600 X

Graph theory
and ACO
algorithm

A new methodology was presented
for shape and sizing optimizations
of CFS sections by using the graph

theory approach.

Kripka and Chamberlain
Pravia [136] 2013 Columns AISI 2007 [142] X SA

The presence of lips considerably
increased its efficiency, generating
an additional reduction in the total
amount of material (approximately

15%).

Parastesh et al. [46] 2021
Anti-symmetric
beam–columns

members
X AISI S100 X X X GA X

The strength of beam–column
members was significantly

increased by 62%, 92%, and 188%
for the short, medium, and long

length elements, respectively, using
the adopted optimization process.
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2.4.3. Optimization of CFS Columns

A lot of optimization work has also been carried out on CFS columns. Leng et al. [113]
performed an unconstrained shape optimization to maximize the compressive strength of
an open CFS channel section. However, many of the solutions were highly unconventional
and had potential limitations both concerning end-use and cost of manufacturing [113].
In a later study, Leng et al. [112] incorporated the end-use and manufacturing constraints
into the shape optimization to offer more practical design solutions. The SA algorithm was
adopted to optimize the CFS columns with maximum axial capacity, and the capacity of
the optimized cross-sections was found to be only marginally decreased (less than 10%)
from the earlier unconstrained optimized solutions [77].

Madeira et al. [115] investigated the optimal design of CFS columns to maximize
the local-global interactive buckling strength and the distortional buckling strength. Dias
and Mahendran [124] conducted an optimization study of the CFS wall studs using SA
and GA, incorporating sheathing restraints into their analysis. In another relevant study,
Moharrami et al. [122] used a combination of GA and GDO to investigate the optimal
folding of open CFS cross-sections under compression. Gilbert et al. [132] presented and
applied a self-shape optimization method to maximize the strength of singly symmetric
open CFS channel columns.

2.4.4. Optimization of CFS Beam-Column Members

As opposed to the existing large body of knowledge on optimization of CFS members
under pure bending or pure compression, only a few studies are available that investigated
the optimum design of CFS beam–column elements subjected to various combinations of
bending and compression. Parastesh et al. [50] performed a constrained optimization of
symmetrical CFS beam–column members with different lengths under different loading
combinations. They [46] also performed a constrained optimization of non-symmetrical
CFS beam–column members. Mojtabaei et al. [20] conducted a similar study and took the
built-up beam–column members into account.

2.4.5. Structural System-Level Optimization

Phan et al. [98] optimized the CFS portal frames using GA to improve their struc-
tural performance. Compared to the standard lipped channel sections, the optimized CFS
components demonstrated considerable strength improvements (up to 84%) [98]. The
proposed coupled framework using the more efficient CFS cross-sectional shapes opti-
mized for generic applications was shown to be more cost-effective (using up to 20%
less structural material) when compared to the conventional optimization using standard
cross-sections [98].

3. Thermal Performance and Energy Efficiency of CFS Structures

Energy use is an important aspect of long-term sustainability. The operational period
consumes 80 to 85% of the total energy use during a building’s life cycle [3]. For a residential
building, energy is mainly used for heating in winter and cooling in summer. According to
Moradibistouni et al. [143], heating is the principal energy consumption in the houses in
New Zealand and in Australia, accounting for nearly a third of the total energy use. The
burning of fossil fuels and the usage of electricity and water in buildings account for the
majority of carbon emissions [144]. It is critical to boost operational energy efficiency in
order to reduce the environmental impact of climate change [145].

The term “thermal performance” in this paper refers to a building’s ability to adapt
to changes in the outside environment while preserving internal thermal comfort. These
conditions are attained with the least amount of energy used for heating and cooling. The
building’s energy efficiency implies using less amount of energy to maintain the same
room temperature. In this perspective, the thermal performance of CFS structures can
be optimized by minimizing the thermal bridges and lowering thermal transmittance or
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increasing the thermal resistance of the building envelopes [16,146]. The building envelope
has long been seen as the first line of defense towards achieving high-energy-efficient
buildings [147,148]. Insulation materials are commonly used in the building envelope to
reduce heat loss [149].

3.1. Introduction to Thermal Bridge

Although CFS construction offers various benefits and high potential in pursuing
sustainability, it may present some problems regarding its thermal performance because
of the high thermal conductivity of the steel [10,18,48,146]. Steel elements installed in the
building envelope can form thermal bridges, where heat and energy are transferred from
one side of the member to the other [150]. Thermal bridges can significantly increase the
energy demand due to heat dissipation and adversely affect the overall embodied energy
in the structure [151–154]. Roque and Santos [18] demonstrated that neglecting the effect of
heat transfer in steel structures can overestimate the thermal resistance by up to 50%.

If not appropriately addressed, thermal bridges originated by the steel studs can seri-
ously lower the energy efficiency of any CFS building and increase the energy consumption
and associated costs during its operational stage [18]. Except for the increased energy
consumption, the localized heat losses may also influence the buildings’ hygrothermal
performance, leading to construction pathologies, degradation of the building elements,
reduction of indoor air quality, and surface and interstitial condensation phenomena [17].
Furthermore, poor thermal performance may cause condensation, which can cause dis-
comfort to the occupants [150]. These drawbacks are particularly critical in regions with
a large range of variations in the daily temperature [16]. The National Association of
Steel-framed Housing Incorporated (NASH) in New Zealand has planned to conduct a
research programme on delivering the CFS building that can achieve the performance with
international best practice [155]. The New Zealand homes with international best practices
are aimed to perform better, use less energy and provide higher levels of comfort while
significantly reducing the costs associated with cold, wet, under-heated and unhealthy
homes [155].

3.2. Different Methods Used to Estimate the Thermal Resistance/Transmittance

A building component may have homogeneous or heterogeneous layers. An accurate
estimation of the thermal transmittance (U-value) or thermal resistance (R-value) of the
building envelope element is fundamental for a reliable estimation of their thermal per-
formance and energy efficiency [156]. There are several approaches to obtain U-values or
R-values of building elements: analytical, numerical, and experimental [157].

3.2.1. Analytical Approach

Analytical formulas are considered to be the most straightforward approach among
these three methods [158]. The generated heat flow transfer is one-dimensional when the
building element is made up of n homogeneous layers (j) that are perpendicular to the heat
flow [159]. According to ISO 6946 [159], the total thermal resistance shall be calculated as

Rtot = Rsi + ∑n
j=1 Rj + Rse (17)

where, Rsi and Rse denotes the theoretical internal and external surface thermal resistances,
respectively (m2·K/W), and Rj represents the thermal resistance of each homogeneous
layer j.

The thermal transmittance (U-values) is determined by

U =
1

Rtot
(18)

When the building component contains heterogeneous layers, the heat flow becomes
two-dimensional instead of one-dimensional. Several methods that can be used to estimate
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the R-value of building elements containing heterogeneous layers have been found in the
existing body of literature.

In the ISO 6946 Combined Method [159], the total thermal resistance of a component
is computed by averaging its upper and lower limits. The upper limit of the total thermal
resistance (Rupper) is evaluated by using the parallel path method. The flanges and the lips
are not considered in this method. Only the web of the stud and the thickness of the web
stud are considered. Figure 5a shows the two main paths and Figure 5b illustrates these
equivalent parallel path circuits for the two paths.
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The upper limit is given by,

1
Rupper

=
fA

Rtot;A
+

fB
Rtot;B

(19)

where, fA and fB denotes the fractional areas of Sections A and B, respectively, Rtot;A and
Rtot;B are the total thermal resistances of each path.

The lower limit of the total thermal resistance (Rlower) is evaluated by using the
isothermal planes method. Figure 6a illustrates an example of a CFS framed wall with three
layers and two sections. Similarly, only the web of the steel stud is taken into consideration
in the heat transfer calculation. Figure 6b illustrates the equivalent series-parallel circuit.
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The equivalent thermal resistance for the thermally nonhomogeneous layer 2 (R2) is
calculated using the parallel path method, given in Equation (20)

1
R2

=
fA

RA2
+

fB
RB2

(20)

After that, the lower limit of the total thermal resistance can be computed as a sum of
the series resistances, given in Equation (21)

Rlower = Rsi + R1 + R2 + R3 + Rse (21)

The total thermal resistance is given by

Rtot =
Rupper + Rlower

2
(22)

Gorgolewski [158] adapted the ISO 6946 Combined Method to a more reliable analyti-
cal U-value calculation approach for CFS buildings. The same calculation method described
in ISO 6946 is used to obtain the upper and lower bounds of the thermal resistance, but
Gorgolewski [158] adopted different weights for the upper and lower resistance values to
compute the total resistance by considering a factor p, which ranges from 0 to 1. The total
R-value is given by Equation (23),

Rtot = pRupper + (1 − p)Rlower (23)

The ASHRAE Zone Method [160] was one of the earliest developed analytical sim-
plified methods for calculating the R-value of a CFS framed wall. It is an improvement
on the parallel path method. Rather than just considering the web thickness, this method
considers a larger zone of impact of the metal thermal bridge within the wall (the lips are
still not ignored) [160]. As shown in Figure 7, Section W is determined by the width of the
steel thermal bridge impact zone, and the remaining portion of the wall is Section CAV.
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The length of Section W, w, shall be determined by Equation (24), where z f is the zone
factor and dthicker is the thickness of the thicker sheathing side.

w = f l + z f dthicker (24)

The thermal resistance values are computed and then combined using the parallel
path method for both paths. Figure 8 is a schematic illustration of the ASHRAE method.
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3.2.2. Numerical Approach

Numerical simulations can be performed with simple two-dimensional (2D) models
or more complex three-dimensional (3D) models. One of the advantages of the numerical
approach is that a quick comparison between several configurations of building compo-
nents is allowed [156]. However, a specific software tool or skills may be required, and
the employed models should be validated using measurements or at least verified by
comparison with benchmark data to ensure that the obtained results are reliable [156].

3.2.3. Experimental Approach

The in situ or laboratory investigations can be crucial for validating numerical and
analytical methods [161]. Laboratory measurements have the advantages of well-controlled
ambient conditions, geometries, setups, and materials but can be very time-consuming and
costly [161].

3.3. Existing Studies on the Thermal Performance of CFS Structures

The thermal bridges formed by the accelerated use of steel have motivated many re-
searchers to put efforts into researching in this field, analyzing thermal performance [150,162],
and its improvement [163–165] or mitigating thermal bridges [48,166], the importance
of flanking thermal losses [17], the importance of the size and shape of steel studs on
the thermal performance [1], numerical simulations of CFS framed walls [146] and CFS
buildings [153], development of analytical methods [156,158] and in situ measurement
methods [161,167] to estimate thermal transmittance, comparisons between different meth-
ods [156,166], thermal insulation [18,157,168,169], the interaction of thermal and sound
insulation [19], and thermal performance and energy efficiency [170–172]. Table 2 summa-
rizes the important research works performed over the last two decades on the thermal
performance of CFS structures.
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Table 2. Summary of the important research papers analyzing the thermal performance of
CFS structures.

Researcher Year Topic
Structural

Member/Building
System

Observations

Santos and
Poologanathan [1] 2021

Importance of stud flanges
size and shape on the

thermal performance of
CFS framed walls

structural member

The R-value decreases when
increasing the flange length and steel
stud’s thickness, and a small flange

indentation size can result in a
considerable increase in R-value

Martins et al. [48] 2015
A parametric study on

thermal bridges mitigation
strategies

structural member

Compared to the reference case,
implementing the mitigation

strategies can reduce the U-value by
8.3%. Optimization of the insulation

layers, such as applying new
insulation materials and combing with

the mitigation approaches, led to a
further decrease of 68%.

Santos et al. [17] 2013

Thermal performance of
CFS framed wall: The
importance of flanking

thermal losses

structural member

The calculated heat flux fluctuated
from 222% to +50% for external and
internal surfaces, respectively, when
losses through flank were assumed

zero as a reference case, thermal
conductivity was equal to

0.30 W/(m2K).

Kempton et al. [166] 2021

Evaluation of thermal
bridging mitigation

techniques and impact of
calculation methods for
CFS frame external wall

systems

structural member

NZS 4214 method showed good
applicability for wall assemblies with

lower R-values. The best way to
minimise thermal bridging effects was
to apply outside frame insulation and

high resistance claddings.

Kapoor and
Peterman [150] 2021

Quantification and
prediction of the thermal
performance of CFS wall

assemblies

structural member

The results showed that increasing
CFS member thickness increased the

overall and component level heat flow
through the assembly while the stud

depth had negligible impact. CFS
member spacing was nonlinearly
correlated with heat flow. Adding

continuous external insulation outside
the stud cavity improved thermal

performance and uniformly reduced
the heat flow through studs

and tracks.

Roque and
Santos [18] 2017

Effectiveness of thermal
insulation in CFS framed

walls concerning its
position

structural member

A very large fluctuation was observed
in the results. Applying thermal
insulation outside the steel frame
could maximize its performance.

Roque et al. [19] 2019
Thermal and sound

insulation of CFS-framed
façade walls

structural member

By changing the frame’s type and
position in the wall, the difference in
the U-value can reach 82%. The steel

frame also has an impact on the sound
insulation performance of CFS

framed walls
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Table 2. Cont.

Researcher Year Topic
Structural

Member/Building
System

Observations

Lohmann and
Santos [170] 2020

Trombe wall thermal
behavior and energy

efficiency of a CFS frame
compartment:

experimental and
numerical assessments

structural member

The Trombe wall device could
significantly improve the thermal

behavior of a CFS frame compartment
and reduce heating energy

consumption if it was adequately
designed and controlled to mitigate

nocturnal heat losses.

Lupan et al. [163] 2016

Improving the thermal
performance of the wall

panels using slotted steel
stud framing

structural member

A correlation was found between the
perforated geometry of steel profiles
and the amount of heat flow passing
the element. The energy efficiency of

the wall rose with the decrease of
distance between perforation both

vertically and horizontally; location
perforations to the heart profile;
decreased of thickness profile;

increasing the number of rows of
holes and their length; increasing the

dimension of perforation.

Santos et al. [146] 2019

A parametric study on the
thermal transmittance of

internal partition and
external facade CFS framed

walls

structural member

The numerical simulation of a CFS
frame interior partition with thermal

break strips indicated a 24%
U-value reduction.

Santos et al. [156] 2020

Analytical methods to
estimate the thermal
transmittance of CFS

framed walls: calculation
procedures review and
accuracy comparison

structural member

According to the obtained results, the
best accuracy performance was found

in the Modified Zone Method. In
comparison, the worst was found in

the Gorgolewski Method 2.

Atsonios et al. [167] 2018

Two new methods for the
in situ measurement of the

overall thermal
transmittance of CFS

framed walls

structural member

The results showed that the
Representative Points Method was

always accurate while the error of the
Weighted Area Method did not exceed

2% for the cold frame and 5% for
hybrid frame walls.

Gomes et al. [153] 2013

Impact of thermal bridging
on the performance of
buildings using CFS
Framing in Brazil.

building system

When considering metal frames in the
simulation, the thermal peak load
increased by approximately 10%
compared to the reference case.

de Angelis and
Serra [169] 2014

Thermal insulation
performances and thermal

bridges of CFS framed
walls

structural member

The heterogeneity of materials and the
high frequency of metal studs may

overestimate thermal resistance using
available technical data

from manufacturers.

Buzatu et al. [171] 2020

A case study on the
thermal performance and
energy efficiency of CFS

buildings

building system

The study revealed that for the same
level of thermal insulation, the
environmental impact of the

recycled-PET thermal wadding-based
system was smaller than that of the
Mineral Wool (MW)-based system.
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Table 2. Cont.

Researcher Year Topic
Structural

Member/Building
System

Observations

Santos et al. [157] 2019

Thermal transmittance of
CFS framed walls:

Experimental versus
numerical and analytical

approaches

structural member

A good agreement was found between
the results of the 2D FEM and the

analytical ISO 6946 approaches for the
CFS framed wall with only vertical

steel studs.

Gorgolewski [158] 2007
Developing a simplified

method of calculating
U-values in CFS framing

structural member

A new method is proposed, and it was
found that with the proposed method,

the mean error of prediction
compared with finite element

modeling is less than 3%, with a
maximum error of 8% for a range of

52 assessed constructions.

Santos and
Ribeiro [165] 2021

Thermal performance of
double-pane CFS framed
walls with and without a

reflective foil

structural member

Using a reflective foil was a very
effective way to increase the thermal
resistance of double pane CFS walls

without increasing the wall thickness
and weight; the maximum

improvement was around a 21%
increase in the R-value.

Steau and
Mahendran [168] 2021

Elevated temperature
thermal properties of fire

protective boards and
insulation materials for

CFS framed systems

structural member

Several materials such as gypsum
plasterboards, calcium silicate boards,

perlite boards, and rock wool fibre
insulation have been identified as

suitable for use in CFS framing
systems because of their high specific

heat, low thermal conductivity,
reduced mass loss, and low

bulk density.

Beggas and
Zeghiche [164] 2013

The use of slag stone
concrete to improve the
thermal performance of

CFS buildings

building system

The use of slag stone concrete as a
filler material for light steel structures
reduced the heat loss or gain through
these elements compared to ordinary

concrete made with
conventional aggregate.

Santos et al. [162] 2011
Parametric analysis of the
thermal performance of

CFS residential buildings
building system

The parameters with more influence
during the cooling season were the
overhangs and the ventilation. An

optimum building envelope and the
operational solution were specified for

average Csb climate conditions.

Li et al. [172] 2017

Thermal and energy
performance of a

steel-bamboo composite
wall structure

structural member

The results showed that the
steel-bamboo wall had a high thermal
performance with an improvement of

U value by up to 26.1%–48.4%,
indicating a lower heating demand

than common wall structures
in winter.

Because of the considerable number and the significantly reduced thickness of CFS
profiles, along with the strong contrast between its thermal conductivity and the insulation
materials, it is difficult to predict the thermal performance of CFS structures [48,156–159].
According to De Angelis and Serra [169], assessing the thermal performance of CFS build-
ings needs more complicated and extensive research than masonry structures. Most thermal
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analysis studies simplify the problem by assuming one-dimensional heat fluxes through
the envelope [173].

3.3.1. Parametric Studies

A parametric analysis was performed by Santos et al. [162] to assess the thermal
performance of CFS residential buildings. They investigated the impact of a number of
variables, including ventilation rate, thermal insulation level, shade overhangs, window
shading devices, and window glazing. Kapoor and Peterman [150] used 3D steady-state
thermal analysis to investigate the impact of thickness, depth, and spacing of steel studs on
the thermal behavior of CFS wall assemblies. Similarly, Santos et al. [146] evaluated several
parameters and their influences on the thermal transmittance of the wall. The parameters
included the thickness of steel studs, studs spacing, thickness and material of thermal
break strips, inner sheathings panels arrangement, and thickness of EPS external thermal
insulation composite system (ETICS) [146]. More recently, Samiee et al. [174] investigated
the effect of various parameters on the thermal and structural behavior of CFS framed walls
at high temperatures.

Santos et al. [17] analyzed the effect of flanking thermal losses on the thermal perfor-
mance of a CFS framed wall, concluding that flanking heat loss must be taken into account.
The influence of steel stud size and shape on the thermal performance of CFS members
was studied by Santos and Poologanathan [1]. They found that the R-value decreased as
the flange length and steel stud thickness increased [1].

3.3.2. Thermal Transmittance Estimation Methods

Santos et al. [157] evaluated the U-value of three distinct CFS framed walls using the
Heat Flow Meter technique, 2D and 3D FE simulations, and the ASHRAE zone method,
respectively. For the CFS wall with only vertical steel studs, they found good agreement
between the results of the 2D FEM and the analytical ISO 6946 method [157].

Santos et al. [156] estimated the U-values of 80 different CFS framed wall models
using six analytical methods. The analytically determined U-values were compared to
numerically obtained U-values from THERM [156], a 2D FE program. All of the investigated
analytical methods performed well in terms of their accuracy, and the Modified Zone
Method was found to be the most suitable method [156].

3.3.3. Thermal Bridge Mitigation Strategies

Many researchers assessed mitigation methods of the thermal bridge in CFS structures.
The ones most found in the literature were continuous external insulation [16,150,153,166],
the use of thermal break strips [16,146], and the use of slotted steel studs [16,48,163].
Martins et al. [48] discussed how to optimize a CFS framed wall model through mini-
mizing thermal bridges. Implementing those mitigation strategies reduced the thermal
transmittance by 8.3% [48].

The most effective way to reduce energy usage and hence greenhouse gas emissions is
to utilize proper insulation materials [175,176]. Mineral wool is the most common thermal
insulation material used within the steel frame [177]. Using an ETICS with expanded
polystyrene (EPS) is also relatively common [10].

Unlike traditional construction, the thermal performance of CFS buildings is highly
dependent on the thermal insulation used in such buildings [16,171]. Roque and Santos [18]
showed that the location of thermal insulation in CFS framed facade walls has a huge impact
on its thermal performance. Moreover, they indicated that if more insulation materials
are utilized to lower the need for operational energy, the trade-off between embodied and
operational energy must be taken into account [18,178]. Moradibistouni et al. [143] used a
life cycle assessment approach to find the most effective level of insulation with a focus
on the effect of the national energy profile in New Zealand. Some researchers investigated
the optimization of insulation layers, such as finding the optimal thickness of insulation
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materials [143,175], making use of new insulation materials [48], or innovative insulation
systems [179].

The use of thermal break on the external side of the CFS studs also allows the system
to meet the appropriate energy performance standards [16]. Santos et al. [146] calculated
the U-value of a CFS framed partition wall with thermal break strips using numerical
simulation and discovered a decrease of 24% compared to the reference example.

An alternative solution to mitigate thermal bridges is using slotted studs, in which
staggered longitudinal penetrations are placed into the web of the stud during production.
The slots allow the thermal energy to travel a longer journey, reducing the heat or cold that
reaches the flange on the stud’s opposite side [16]. Because of the additional manufacturing
costs and lowered structural load capacity caused due to the presence of web penetrations,
this solution has gained limited application [16].

3.3.4. Interaction between the Thermal and Sound Insulation Performance

Roque et al. [19] found that the steel frame can have a significant impact on the
sound insulation performance of CFS framed walls. Khan and Bhattacharjee [180] stud-
ied the interaction between the building envelope’s thermal and noise insulation per-
formance. The results obtained show the adverse effect of independent thermal and
noise insulation optimization on the building envelope walls’ overall noise insulation and
thermal performances.

3.3.5. Passive Solar Design

A Trombe wall (TW) is a passive solar device that can be installed on the facade of a
building to absorb solar heat, heating, and cooling internal rooms while enabling natural
ventilation to improve thermal and energy performances [170]. Lohmann and Santos [170]
investigated a Trombe wall’s thermal behavior and energy efficiency in a CFS frame using
in situ measurements and numerical simulations. According to their research, the Trombe
wall device might dramatically improve the thermal behavior of a CFS compartment while
also lowering the heating energy consumption. For example, a 27% reduction in heating
energy was found for an office 18 ◦C set-point due to the TW device [170].

4. Summary and Recommendations

CFS construction is widely perceived as a vital contributor to sustainability and green
construction. The optimization of CFS members is a critical research subject, given the
current increase in CFS use, the appearance of more complicated cross-sectional shapes,
continuous manufacturing improvements, and the ever-increasingly important quest for
economical and sustainable building solutions. The application of CFS structures has
significantly increased over the last few years. As a large proportion of the total energy
used in a building is consumed by heating and cooling, the thermal bridge formed by the
high thermal conductivity of steel in CFS members has also attracted many researchers’
interests. Combining structural and thermal performances could provide insightful advice
to engineers, architects, and other building professionals to conduct sustainable design for
CFS buildings. This paper reviews the existing studies on the structural optimization of
CFS sections and the thermal performance of CFS structures. In total, over 160 articles were
critically reviewed, which were published in the literature from the year of 1997 to 2021.

It is found that a large number of studies have been conducted on how to optimize the
cross-section of CFS for better structural behavior. In order to get more practical solutions,
more and more constraints are considered in the optimization process. More recently,
the CFS sections’ loading conditions have changed from pure bending/compression to
combined loading scenarios, and different optimization techniques have been applied
during the optimization process. GA is found to be the most popular stochastic search
algorithms used in the context of CFS structures. However, the study on structural system-
level optimization is rare.
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The prediction and quantification of the thermal performance of CFS structures are
generally agreed to be challenging. Applying appropriate insulation is always considered
as the most effective way to reduce the thermal bridge and energy consumption. Except
for using insulation materials, the potential of optimizing the cross-sectional shape of CFS
and CFS systems to further improve their thermal performance has been found in the
existing literature.

For future research, the effort could be put into developing combined strategies to
improve the thermal performance of CFS structures. For instance, applying insulation
materials or installing new systems that take advantage of solar energy could be combined
with optimizing the cross-sectional shape of CFS members to achieve a higher level of
thermal resistance. Besides, more system-level optimization studies could be conducted
rather than just research on the CFS members. Although studies can be found regarding
the optimization of CFS members for better structural behavior, or thermal performance
improvement of CFS framed walls, the research on optimization from both perspectives at
the same time is not widespread. Therefore, it is also recommended that future research be
focused on optimizing CFS structures to consider both embodied energy and operational
energy to fulfill the research gap.
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