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Abstract

We review the use of differential privacy (DP) for privacy protection in machine learning (ML). We show
that, driven by the aim of preserving the accuracy of the learned models, DP-based ML implementations are
so loose that they do not offer the ex ante privacy guarantees of DP. Instead, what they deliver is basically
noise addition similar to the traditional (and often criticized) statistical disclosure control approach. Due
to the lack of formal privacy guarantees, the actual level of privacy offered must be experimentally assessed
ex post, which is done very seldom. In this respect, we present empirical results showing that standard
anti-overfitting techniques in ML can achieve a better utility/privacy/efficiency trade-off than DP.
Keywords: differential privacy, machine learning, federated learning, data utility.

1 Introduction

As long ago as the 1970s, official statisticians [Dalenius(1977)] began to worry about potential disclosure of
private information on people or companies linked to the publication of statistical outputs. This ushered in the
statistical disclosure control (SDC) discipline [Hundepool et al.(2012)], whose goal is to provide methods for
data anonymization. Also related to SDC is randomized response (RR, [Warner(1965)]), which was designed
in the 1960s as a mechanism to eliminate evasive answer bias in surveys and turned out to be very useful
for anonymization. The usual approach to anonymization in official statistics is utility-first: anonymization
parameters are iteratively tried until a parameter choice is found that preserves sufficient analytical utility
while reducing below a certain threshold the risk of disclosing confidential information on specific respondents.
Both utility and privacy are evaluated ex post by respectively measuring the information loss and the probability
of re-identification of the anonymized outputs.

In the late 1990s, in the wake of the explosion of the web and the consequent surge of data collection
and exchange beyond official statistics, privacy protection became a mainstream topic in the computer science
community, which introduced a different angle, namely privacy-first data protection. In this approach, a privacy
model specifying an ex ante privacy condition is enforced using one or several SDC methods, such as noise
addition, generalization or microaggregation [Domingo-Ferrer et al.(2016)]. The parameters of the SDC methods
thus depend on the privacy model parameters, and too strict a choice of the latter may result in poor utility.
Privacy models have the advantage of setting the privacy level by design, without having to empirically evaluate
it. The first privacy model was k-anonymity [Samarati and Sweeney(1998)], which was followed by a number
of extensions, such as l-diversity [Machanavajjhala et al.(2007)], t-closeness [Li et al.(2010)] and others. All
privacy models in the k-anonymity family were designed to anonymize microdata sets, that is, data sets formed
by records that correspond to individual respondents.

Differential privacy (DP, [Dwork(2006)]) is a privacy model that arose later, in 2006, in the cryptographic
community. Unlike k-anonymity, DP was designed to anonymize the outputs of interactive queries to a database.
Given ǫ ≥ 0, a randomized query function κ (that returns the exact answer to a query function f plus some
noise) satisfies ǫ-DP if, for all data sets D1 and D2 that differ in one record and all S ∈ Range(κ), it holds that

Pr(κ(D1) ∈ S) ≤ exp(ǫ)× Pr(κ(D2) ∈ S). (1)

In plain words, the presence or absence of any single record in the database must not be noticeable from the
query answers, up to a factor exponential in ǫ. If each record corresponds to a different individual respondent,
this means that the individual’s information stays confidential. The smaller ǫ, also known as the privacy budget,
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the higher the protection. The amount of noise that κ must incorporate to satisfy DP is inversely proportional
to ǫ and directly proportional to the global sensitivity ∆(f), that is, to how much the output of the query
function f can change due to the addition, deletion or change of a single record in the database. Mild noise
may suffice when f is a rather insensitive function such as the median or the mean, but much larger noise may
be needed for more sensitive query functions such as maxima or minima.

DP has several advantages w.r.t. privacy models in the k-anonymity family and the utility-first approach:

• DP provides a strong privacy guarantee that is largely independent of the attacker’s background knowledge.
In contrast, in k-anonymity an assumption on the attacker’s knowledge is implicit in the choice of quasi-
identifier attributes. However, as noted in [Kifer and Machanavajjhala(2011)] and [Clifton and Tassa(2013)],
DP is not entirely free of assumptions either.

• DP has very nice composability properties. Sequential composition states that, if the outputs of queries
κi, for i = 1, . . . ,m, on non-independent data sets are individually protected under ǫi-DP, then the
output obtained by composing all individual query outputs is protected under

∑
m

i=1 ǫi. This formalizes
the intuition that, the more outputs are accumulated on overlapping data, the weaker is the extant
protection. Parallel composition states that, in the specific case that m query outputs were computed on
m disjoint and independent data sets and protected under ǫ-DP, then the composition of those outputs is
still protected under ǫ-DP.

To understand the practical protection offered by a certain privacy budget ǫ, let us use the connection
between DP and the aforementioned randomized response. Consider RR for a binary attribute, so that the
reported randomized answer is equal to the true answer with probability p ≥ 0.5 and different with probability
1 − p. It is shown in [Wang et al.(2014), Wang et al.(2016)] that, if p = exp(ǫ)/(1 + exp(ǫ)), then binary RR
satisfies ǫ-DP. For example, DP with ǫ = 8 is satisfied by RR with p = 0.9996646, that is, by RR reporting the
true answer with probability practically 1 (which basically amounts to no disclosure protection being offered). In
this sense, the inventor of DP recommends setting ǫ ≤ 1 [Dwork(2011)], so that the practical protection obtained
comes reasonably close to the theoretical privacy guarantee. Actually, one of the DP co-inventors is reported to
have stated that using values of ǫ as high as 14 is pointless in terms of privacy [Greenberg(2017)]. This contrasts
with other parameterized privacy models, for which any value of the privacy parameter is privacy-meaningful.
For instance, with k-anonymity, the re-identification risk is upper-bounded by 1/k for any positive integer k.

The downside of DP in interactive settings is that it limits the number of queries that can be usefully
answered. If m queries are to be answered on the same subject’s data, sequential composition requires
the overall budget ǫ to be split for the m queries. In case of equal splitting, each query has budget ǫ/m,
which entails an m-fold noise increase, with the subsequent utility decrease. Moreover, since noise is cali-
brated to the output sensitivity of a particular query, queries that have higher sensitivity cannot be answered.
See [Clifton and Tassa(2013)] for additional criticisms to DP.

Nonetheless, due to its convenient properties and strong privacy guarantee, DP was rapidly adopted by
the research community, up to the point that many researchers now consider DP the gold standard in privacy
protection [Edmond(2020)]. Not surprisingly, many works have endeavored to apply DP outside the interactive
setting it was designed for. Unfortunately, they often neglect the assumptions, limitations and prerequisites of
DP.

Such is the case when using DP to anonymize microdata sets. The record corresponding to a respondent
can be viewed as the output of an identity query, that is, a query whose function f merely extracts the
value of a certain record from the microdata set. The global sensitivity ∆(f) of such a single-record query is
typically enormous, because the attribute values in the record can change within their entire domains. Hence, a
correspondingly enormous amount of noise is required for each identity query to enforce DP with a reasonably
safe ǫ. As a result, a DP microdata set is obtained whose records differ very significantly from the corresponding
original records [Soria-Comas et al.(2014)]. In summary, if DP is properly applied, the utility of microdata
releases is seriously decreased. Practical applications of DP for microdata have tried to circumvent this problem
through sloppy implementations or unreasonably high privacy budgets ǫ [Domingo-Ferrer et al.(2021)].

DP has been also used by big companies in the context of microdata collection (rather than release), by locally
anonymizing data under DP at the source respondent’s device. For this to be possible with reasonable utility,
Apple has used ǫ values ranging between 6 and 43 [Greenberg(2017)], and Google use ǫ up to 9 in the RAPPOR
technology [Erlingsson et al.(2014)]. Moreover, to escape the use of sequential composition in continuous data
collection on the same subject, which would exponentially reduce the utility of the data, Apple considered the
data on an individual gathered in different days to be independent [Greenberg(2017)], and Google considered
sequential composition just on values that have not changed from the previous collection [Cyphers(2017)]. Both
approaches are severely flawed, since it is obvious that different pieces of data on the same individual cannot
be viewed as independent [Domingo-Ferrer et al.(2021)].

More recently, DP has been extensively applied to enhance privacy in machine learning (ML). The rationale
is that ML requires huge amounts of training data that are most often personal data and thus need to be
protected. Protecting the individuals’ data used to train ML models or protecting the learned models prior to
releasing them bear many similarities with protecting continuous data collection or protecting data releases,
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respectively. Therefore, the challenges are similar, basically the difficulty of reconciling the strong privacy of DP
with enough data utility (model accuracy in the ML context). However, recent advances in the application of DP
to ML promise DP-protected ML models with minimum accuracy loss and with reasonably safe DP parameters
(and thus with “enough” privacy) [Abadi et al.(2016)]. This seems counterintuitive, given the strong constraints
imposed by DP and the privacy implications of releasing an ML model trained on personal data.

Contributions and plan of this survey

In this survey we critically review the use of DP in ML. Specifically, we focus on the following assertion by the
DP inventor [Dwork et al.(2019)] about the state of the art of DP-based ML:

When meaningfully implemented, DP supports deep data-driven insights with minimal worst-case
privacy loss. When not meaningfully implemented, DP delivers privacy mostly in name.

We will show that DP-based ML implementations are mainly on the non-meaningful side. Not only because
of the use of unreasonably unsafe privacy parameters, but also due to the use of relaxations that should not be
counted as DP. These flaws are motivated by the attempt to salvage utility, i.e. model accuracy, which is of
utmost importance in ML and is often incompatible with strict DP. In fact, in many implementations reported
in the ML literature, the use of DP amounts to little more than adding noise without precise ex ante privacy
guarantees. For this reason, the actual level of privacy achieved must be evaluated empirically, as typically done
in the utility-first approach common in official statistics.

Therefore, in addition to surveying the empirical figures reported by works on DP-protected ML, we also
report our own original empirical results on the practical utility/privacy/efficiency achieved by common imple-
mentations of DP in ML. These show that, as expected, privacy risks in ML models come from fitting too much
the (private) training data (i.e., overfitting). Further, it can be seen that DP not only fails to mitigate overfit-
ting better than standard methods employed in ML for that purpose, but it adds very significant computation
overhead.

Compared to previous related surveys such as [Gong et al.(2020), Yin et al.(2021)], which systematically and
theoretically review the current literature, we offer a critical analysis, both theoretical and empirical, of (the flaws
in) the application of DP to ML. Compared to more practical surveys, such as [Jayaraman and Evans(2019)],
we provide a more up-to-date compilation of works on DP-protected ML (including non-centralized ML appli-
cations of DP such as federated learning), and we also contribute original experimental work reporting practical
accuracy, privacy and computational cost.

The remainder of the paper is organized as follows. Section 2 reviews state-of-the-art strategies used to fit
DP for ML. Sections 3 and 4 review works applying DP to ML, both in centralized and decentralized settings.
Section 5 reports our empirical work. Finally, conclusions are gathered in Section 6.

2 Fitting (or bending) DP for ML

As introduced above, protecting the individuals’ data used to train ML models via DP faces similar difficulties
as protecting continuous data collection: since successive model training epochs are computed on the same (or
at least, not completely disjoint) data, sequential composition applies. For this reason, the effective ǫ grows
with the number of epochs, which, worse yet, is not known in advance. This means that a great amount of
noise needs to be added at each epoch to keep the effective ǫ small, but this comes at the expense of the model’s
accuracy. Moreover, due to the distortion caused by the added noise, the convergence of the model becomes
slower, and thus more training epochs are required and, in turn, more noise per epoch must be added to meet
a certain target ǫ. A vicious cycle ensues from which it is difficult to escape.

The amount of noise added (and hence the utility loss) is also directly proportional to the query sensitivity.
Thus, a way to avoid increasing ǫ is to try to reduce the sensitivity of queries, even if this may sound a bit
contrived. In ML, two sensitivity-reduction strategies are favored:

• Output truncation. It is a standard practice to truncate gradients in order to decrease their sensitiv-
ity [Abadi et al.(2016)], although this may slow down or bias the learning process.

• Prior subsampling. The query output (e.g. the gradient or model update) is computed on a random
sample of the private data set rather than on its entirety. The fact that records with extreme values
may not be part of the sample reduces the “expected” query sensitivity. However, subsampling may slow
down the learning process or bias it. Additionally, Dwork indicates in [Dwork(2011)] that subsampling is
insufficient to protect privacy: if an extreme individual happens to be part of the subsample, she or he
may be spotted.

Due to the impossibility of obtaining usable models with safe/small-enough ǫ, strict DP has been rarely
applied in ML [Triastcyn and Faltings(2019), Jayaraman and Evans(2019)]. Instead, relaxations of the DP
definition are used across the board. By far, the most common relaxation is (ǫ, δ)-DP [Dwork et al.(2006)],
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which is satisfied by a randomized query function κ if, for all data sets D1 and D2 that differ in one record and
all S ∈ Range(κ), it holds that

Pr(κ(D1) ∈ S) ≤ exp(ǫ)× Pr(κ(D2) ∈ S) + δ. (2)

δ > 0 is usually called the failure probability, that is, the probability that strict ǫ-DP is not satisfied. However,
a close look at Expression (2) shows that it is possible to satisfy it always while violating Expression (1).
In fact, (ǫ, δ)-DP amounts to ǫ′-DP, for some ǫ′ > ǫ that depends on ǫ and δ (note that ǫ′ must satisfy
exp(ǫ′) × Pr(κ(D2) ∈ S) = exp(ǫ) × Pr(κ(D2) ∈ S) + δ). In [Dwork and Roth(2014)] it is mentioned that one
should take δ ≪ 1/n, where n is the number of records in the database; otherwise, satisfying (ǫ, δ)-DP might be
compatible with leaking a certain number of records. A usual mechanism to satisfy (ǫ, δ)-DP is Gaussian noise
addition [Dwork and Roth(2014)].

Other relaxations of DP are concentrated DP [Dwork and Rothblum(2016)], zero-concentrated DP
[Bun and Steinke(2016)] and Rényi DP [Mironov(2017)]. These variants look at the privacy loss as a ran-
dom variable and bound the tails of its distribution. In so doing, they consider the average rather than the
worst-case privacy loss. The result is a refinement of (ǫ, δ)-DP which turns δ into a real failure probabil-
ity. These variants are not broadly used because, among other reasons, their parameters are hard to inter-
pret [Triastcyn and Faltings(2019)]. In [Jayaraman and Evans(2019)] a table is given that expresses these three
variants in terms of (ǫ, δ)-DP. For a more intuitive discussion, see also [Canonne(2021)].

The common purpose of (ǫ, δ)-DP and the other aforementioned variants is to relax ǫ-DP and thereby require
less noise addition, which in turn should allow more utility preservation. Yet, the price paid is the possibility
of more privacy leakage, as demonstrated in [Jayaraman and Evans(2019)].

For a long time, even relaxed DP remained unachievable in many practical ML settings. Some attempts
led to unreasonably high ǫ values [Shokri and Shmatiko(2015)], which were shown to be ineffective against at-
tacks [Hitaj et al.(2017)]. A major breakthrough in the reduction of the required ǫ was done in [Abadi et al.(2016)]
with the introduction of the moments accountant method for bounding the cumulative privacy loss across the
successive epochs. This method is currently the standard for keeping track of the privacy loss during training due
to its practical implementation in the TensorFlow-Privacy library. In comparison with sequential composition,
the moments accountant method considers that only a fraction of the individual’s training data is employed at
each epoch, which allows tighter privacy bounds. With this method, single-digit ǫ values (barely below 10) can
be reached, which are viewed as very good in ML, that is, preserving some meaningful utility.

3 Applying DP to centralized ML

In centralized ML the learning process is entirely managed by a single entity. This manager may apply privacy
protection to the input of the learning process (by acting on the training data or on the objective function), to
the intermediate results of the learning process (by protecting successive model updates), or to the output of
learning (by protecting the learned model prior to releasing it).

When applying DP to centralized ML, an important distinction is whether the objective function is convex
or not. In the convex case, DP can be applied by adding noise to the objective function. The amount of noise
needed to satisfy DP requires computing the sensitivity of the ML algorithm [Chaudhuri et al.(2011)].

The non-convex case basically amounts to deep learning with neural networks, which is the most popular
approach to ML nowadays. Due to the hidden layers of neural networks, there may be multiple local minima.
As noted in [Jayaraman and Evans(2019)], the sensitivity analysis methods of [Chaudhuri et al.(2011)] cannot
be used in this case. As a consequence, adding DP perturbation to the objective function is not an option in
deep learning. The most popular strategy to achieve DP in deep learning is to add noise to the gradients. The
problem is that in deep learning gradients are unbounded, which entails unbounded sensitivity and unbounded
noise addition to attain DP. We explained in Section 2 that the usual fix is to manually clip the gradients at
each iteration [Abadi et al.(2016)], which bounds sensitivity and also bounds the noise that needs to be added.

As discussed earlier, the standard approach to DP-based ML consists in enforcing (ǫ, δ)-DP by clipping
updates to a fixed threshold C and then adding Gaussian noise with variance C2σ2. The σ parameter is
calibrated to bound the privacy loss in each epoch, and the privacy loss (ǫ) is accumulated via the moments
accountant method [Abadi et al.(2016)]. As introduced in Section 2, setting the ǫ parameter in this way is
difficult and non-intuitive because it requires predicting the number of epochs beforehand, which not only
depends on the training data, but also on the distortion added by the DP mechanism that, in turn, depends on
the privacy parameter. The δ parameter is set to be smaller than 1/n, with n being the number of records in
the data set.

In Table 1 we survey the performance of several highly cited works following this approach. Note that the
variation in the accuracy obtained for the same data set is caused by the different learning models, number
of epochs and train/test sets employed by the various works. Thanks to the use of the moments accountant
method, ǫ values are single-digit, although they often reach 8 or above. However, contrary to the widespread
opinion in the ML community, ǫ ∈ [1..10) cannot truly be regarded as safe. For the DP condition (1) to really
express small influence of any single record on the DP output, the value of ǫ must be small, “say, 0.01, 0.1,
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Table 1: DP for centralized deep learning: a comparison of recent works

Reference (cites) Data set Size Original acc. DP parameters DP accuracy Relative accuracy loss

Abadi et al. 2016 [Abadi et al.(2016)] (2,924) CIFAR10 50,000 86% ǫ = {2, 4, 8}; δ = 10−5 {67%,70%,73%} {22.1%,18.6%,15.1%}

Abadi et al. 2016 [Abadi et al.(2016)] (2,924) MNIST 60,000 98.3% ǫ = {0.5, 2, 8}; δ = 10−5 {90%,95%,97%} {8.4%,3.3%,1.3%}

Papernot et al. 2017 [Papernot et al.(2017)] (657) MNIST 60,000 99.18% ǫ = {2.04, 8.03}; δ = 10−5 {98%,98.1%} {1.19%,1.1%}

Papernot et al. 2017 [Papernot et al.(2017)] (657) SVHN 600,000 92.8% ǫ = {5.04, 8.19}; δ = 10−6 {82.7%,90.7%} {10.9%,2.3%}

Hynes et al. 2018 [Hynes et al.(2018)] (68) CIFAR10 50,000 92.4% ǫ = 4; δ = 10−5 90.8% 1.72%

Rahman et al. 2018 [Rahman et al.(2018)] (142) CIFAR10 50,000 73.7% ǫ = {1, 2, 4, 8}; δ = δ = 10−5 {25.4%,45%,60.7%,68.1%} {65.5%,38.9%,17.6%,7.6%}

Rahman et al. 2018 [Rahman et al.(2018)] (142) MNIST 60,000 97% ǫ = {1, 2, 4, 8}; δ = δ = 10−5 {75.7%,87%,90.6%,93.2%} {21.9%,10.3%,6.6%,3.9%}

Papernot et al. 2021 [Papernot et al.(2021)] (53) MNIST 60,000 99% ǫ = 2.93; δ = 10−5 98.1% 0.9%

Papernot et al. 2021 [Papernot et al.(2021)] (53) CIFAR10 50,000 76.6% ǫ = 7.53; δ = 10−5 66.2% 13.6%

Huang et al. 2019 [Huang et al.(2019)] (82) Adult 48,842 82% ǫ = {0.1, 0.5, 1.01, 2.1}; δ = 10−3 {55%, 75%, 76%, 77%} {32.9%, 8.5%, 7.3%, 6.0%}

or in some cases, ln 2 or ln 3” [Dwork(2011)]. In Section 1, we showed that ǫ = 8 in strict DP amounts to no
confidentiality at all in the binary randomized response equivalence. On top of that, all works use values of δ
which are very close or even larger than 1/n. This implies that strict DP is not satisfied with a high probability.
For such weak privacy parameters, the theoretical guarantees of DP are so diminished that, as stated by the
DP inventor [Dwork et al.(2019)], one can hardly call the outputs DP-protected at all.

This lack of protection is formally demonstrated in [Yeom et al.(2018)], where the authors define the theoret-
ical upper bound on possible leakage in ML for DP guarantees against membership inference attacks (MIAs). In
such attacks, an adversary aims to identify the presence or absence of a record in the data set, which is exactly
what DP aims to obfuscate. Thus, MIAs are the natural way to evaluate the practical guarantees offered by
DP in ML [Jayaraman and Evans(2019)]. In [Yeom et al.(2018)] the authors define the adversary’s advantage
as the difference between the adversary’s true and false positive rates in MIAs, and prove that, if the model
satisfies ǫ-DP, then the adversary’s advantage is upper-bounded by eǫ − 1. For values of ǫ > 1, the adversary
advantage may be well above 1, which means that the theoretical guarantee does not provide real protection.
As our experiments will show, avoiding ML model overfitting turns out to be more effective against MIAs.

If the theoretical guarantees of DP do not hold, an empirical confidentiality assessment should be carried
out (e.g. by mounting inference attacks). In this respect, [Jayaraman and Evans(2019)] shows that differential
privacy relaxations with weak privacy parameters have a practical leakage commensurate with the amount of
noise they add for a given ǫ, rather than with the ǫ value itself. This also means that, in practice, protecting
ML via DP relaxations boils down to plain noise addition, a 40-year old technique criticized for its poor
privacy/utility trade-off [Paass(1988), Tendick(1991)].

Unfortunately, most works using DP relaxations in ML fail to offer empirical privacy assessments, because
any formulation and parameterization connected to DP is often viewed as private enough.

On the other hand, thanks to very relaxed (and unsafe) implementations of DP, the works surveyed in
Table 1 often achieve moderate accuracy losses. Yet, for the most difficult tasks, losses are 20% or higher, which
is dubiously acceptable if one wants ML to stay useful.

4 Applying DP in decentralized ML

Decentralized machine learning (DML) allows training an ML model by a community of peers holding private
local data sets. The most popular architecture of DML is federated learning (FL) [Konečný et al.(2016)], in
which a single server (called model manager) orchestrates the learning process. The model manager sends an
initial model to all peers (called clients), who compute model updates on their own private data and return the
updates to the model manager. The manager aggregates the updates and re-distributes the new model. Com-
munication iterations carry on until the model converges. Other DML forms exist, such as fully decentralized
machine learning (FDML) [Tang et al.(2018)], in which all peers may be managers of their own models and
clients for other’s models.

DML (and FL specifically) favors privacy because the clients do not need to upload their own private data
to the manager. However, the updates returned by the clients to the manager may still leak their private
data [Blanco-Justicia et al.(2021)]. Moreover, as it happens in centralized ML, the learned model may also
leak private data on the participating clients. To prevent such leakages, DP has been employed –again– as the
gold standard to protect clients’ data. According to how DP is enforced in FL, three types of approaches and
subsequent privacy guarantees can be distinguished.

In the first approach the noise addition required for DP is performed locally by each client, either by
applying perturbations to the updates resulting from training the local model, or by using DP stochastic gradi-
ent descent (DP-SGD) during training [Abadi et al.(2016)]. This approach, known as local differential privacy
(LDP) [Naseri et al.(2022)], protects the clients’ single data points (records) by making their contribution to the
learned model unnoticeable. Some works using this approach are [Pihur et al.(2018)] and [Truex et al.(2020)];
big companies such as Google, Apple and Microsoft also employ this method to systematically collect data of
their users [Ding et al.(2018), Erlingsson et al.(2014), Thakurta et al.(2017)]. Nevertheless, since quite often
all the data points of a client refer to the client herself (e.g. fitness or health measurements over time),
they may be highly correlated; hence, LDP may not offer client-level privacy, but just instance-level pri-
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Table 2: DP for federated deep learning: a comparison of recent works

Reference (cites) Data set —Clients— Original accuracy DP parameters DP accuracy Relative accuracy loss

Geyer et al. 2018 [Geyer et al.(2018)] (668) and

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) MNIST (non-i.d.d.) 100 97% ǫ = 8; δ = 10−3 78% 19.6%
Geyer et al. 2018 [Geyer et al.(2018)] (668) and

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) MNIST (non-i.d.d.) 10,000 99% ǫ = 8; δ = 10−6 96% 3%

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) MNIST (i.i.d.) 100 97% ǫ = 8; δ = 10−3 86% 11.3%

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) MNIST (i.i.d.) 10,000 99% ǫ = 8; δ = 10−6 97% 2%

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) APTOS 2019 100 70% ǫ = 8; δ = 10−3 60% 14.3%

Triastcyn & Faltings 2019 [Triastcyn and Faltings(2019)] (71) APTOS 2019 10,000 72% ǫ = 8; δ = 10−6 68% 5.5%

Naseri et al. 2022 [Naseri et al.(2022)] (41) MNIST 100 98% ǫ = 3; δ = 10−5 82% 16.3%

Naseri et al. 2022 [Naseri et al.(2022)] (41) CIFAR10 100 93% ǫ = 3; δ = 10−5 79% 15%

vacy [Triastcyn and Faltings(2019)]. In scenarios with clients holding correlated data points, this approach
can barely be called DP at all: making the presence or absence of a certain data point (instance) unnoticeable
does not offer any privacy to the client if that data point is highly correlated to the rest of data points in the
client’s data set.

The second approach is more in line with the DP guarantee, and its goal is to hide the presence of any
single client in the training process [Geyer et al.(2018)]. This method is known as central differential pri-
vacy (CDP) [Naseri et al.(2022)] and provides client-level privacy guarantees. With CDP, the FL aggregation
function is perturbed by the model manager to bound the influence of any single client’s data on the model
parameters. This means that clients need to entrust the manager with their exact model updates, and rely
on the manager to correctly perform the perturbation. Assuming trust in the model manager goes against the
purpose of privacy protection, even though it is still better than sharing entire data sets in clear form. Some
works using this approach are [Geyer et al.(2018)] and [McMahan et al.(2018)].

A third approach is described in [Zhu et al.(2020)]. Each client trains her local model and never reveals it to
the manager. When asked to make a prediction on an instance, every client computes a label with her respective
local model; then the client adds noise to her label; finally, clients engage in secure multiparty computation to
perform a voting among the noise-added labels, so that the majority label is taken as the final label for the
instance. This approach achieves instance-level Rényi DP thanks to the noise added to local labels, and also
client-level Rényi DP thanks to the voting.

As in centralized ML, DP relaxations are used systematically in FL, with (ǫ, δ)-DP being the most usual
choice. The σ parameter is calibrated to bound the privacy loss in each communication round (which requires
setting the number of rounds beforehand), and the privacy loss (ǫ) is accumulated via the moments accountant
method [Abadi et al.(2016)]. The δ parameter is set according to the number of clients participating in the
learning process, so that δ stays well below 1/|clients|.

In Table 2 we survey the empirical results reported by works employing DP in FL. Deep learning models
are the most usual in FL. Hence, we focus on deep learning methods offering (ǫ, δ)-DP and client-level privacy,
which, as argued above, is the most interesting and challenging type of privacy. To simulate a FL scenario, these
works split the records in the evaluation data set across a number of simulated clients. The records held by a
client are assumed to describe such client and, therefore, are considered non-independent data. According to
how records are distributed across clients, we can differentiate between independent and identically distributed
(i.i.d.) data and non-i.i.d. data, with the latter being the most realistic in FL settings [Zhu et al.(2021)]. Since
results are highly dependent on the number of clients, we report figures on the same data set for various numbers
of clients, when available.

By examining the DP parameters and accuracy values listed in Table 2 we can extract the following conclu-
sions:

• The values of the privacy parameter ǫ are on the unsafe side, like in Table 1 on centralized ML. Therefore,
the arguments presented in Section 3 for DP-protected centralized ML also apply to DP-FL.

• The number of participating clients has a major impact on the model accuracy for a given privacy level. In
general, if the number of clients stays below 1,000, the impact on the model accuracy is significant, up to
the point that the model hardly converges [Geyer et al.(2018)]. Even though DP-FL almost matches the
accuracy of non-private FL when the number of clients is around 10,000, this configuration is only realistic
for scenarios involving mobile services deployed by big companies such as Google [Hard et al.(2018)] or
Apple [Ramaswamy et al.(2019)]. However, FL is employed in many occasions in much smaller configu-
rations, for example in medical applications [Brisimi et al.(2018)]; unfortunately, resorting to DP-FL to
address the privacy requirements of such configurations can lead to unacceptable accuracy loss.

• The fact that in FL the data might be non-i.i.d. among clients is particularly challenging for privacy,
because the different distributions of the local data of the various clients may render some clients easily
distinguishable. Consequently, it takes more effort (noise) to hide their contribution to the model, as
shown in [Triastcyn and Faltings(2019)].

In summary, DP-FL only seems to offer competitive accuracy (but still weak privacy guarantees), when the
number of clients is exceedingly high and data are i.i.d. among clients. On the one side, these assumptions are
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Table 3: Baseline results (no protection)

Data set Training loss Testing loss Training accuracy Testing accuracy Training time (s) Attacker’s advantage

Adult 0.2797 0.3685 0.8696 0.8444 46 0.131

MNIST 0.0066 0.0782 0.9986 0.9808 60 0.577

CIFAR10 0.0505 3.4429 0.9836 0.6743 88 0.642

CIFAR10-TL 0.0015 0.8154 1.0 0.8517 43 0.467

often unrealistic. On the other side, if there is a great number of clients and their private data are similarly
distributed, clients already enjoy some natural privacy protection because they are “hidden in the crowd”, in
which case resorting to non-private FL might be safe enough and certainly simpler.

5 Empirical results

As argued in the previous sections, the theoretical privacy guarantees of DP should not be taken for granted in
the current implementations of DP-based privacy-preserving ML. In line with what is done in the SDC literature,
privacy and utility should be evaluated ex post by empirically measuring the resistance against membership
inference attacks and the accuracy of the models. In this section we report the results of such an empirical
evaluation on three data sets commonly employed in the data privacy and ML literature (Adult, MNIST, and
CIFAR10) in four different ML settings: i) a multi-layer perceptron for Adult, ii) a shallow convolutional model
for MNIST, iii) a deep convolutional model for CIFAR10, and iv) a second deep model using transfer learning
for CIFAR10.

The experiments were run on an AMD Ryzen 7 5800X with 16 GB of RAM and an NVIDIA GeForce RTX
3070 GPU with 8 GB of VRAM, using Windows 10, Python 3.8.10, and CUDA 11.2. We used TensorFlow
2.5.0 to build the deep learning models and the TensorFlow-Privacy 0.6.2 implementations of the moments
accountant DP training algorithm and the membership inference attacks.

Next, we describe the model architectures used in each of the experimental settings. The model architecture
for the Adult data set consisted of two fully connected layers of 40 units each, with ReLU as activation function,
and an output layer with two neurons. For the MNIST data set, we used a model consisting of a convolution
layer with 12 channels, kernel size 3, and ReLU activation, followed by a max pooling layer and the output
layer, with 10 neurons. For the CIFAR10 data set, the model architecture included 2 sets of convolution and
max pooling layers, with 20 and 50 channels respectively, kernel size 5, and ReLU activation, followed by a
fully connected layer of 500 neurons with ReLU activation and the output layer with 10 neurons. For the
CIFAR10 data set with transfer learning (CIFAR10-TL), the architecture was composed of the bottom layers
of DenseNet-201, trained on the ImageNet data set, with frozen weights, followed by a fully connected layer
of 256 neurons with ReLu activation, and the output layer with 10 neurons. All settings used the categorical
cross-entropy loss function and the Adam optimizer, with learning rate 1.5 × 10−4, batch size of 100, and 50
training epochs.

To evaluate privacy, we used the standard black-box membership inference attack implementation in TensorFlow-
Privacy, which is based on the works by Shokri et al. [Shokri et al.(2017)], and Salem et al. [Salem et al.(2018)].
We ran all implemented attack specifications, using slices including data from all classes, data from each single
class, correctly classified data points, and incorrectly classified data points. As proposed in [Yeom et al.(2018)],
the attack performance (i.e., the inverse of privacy protection) was reported as the maximum attacker advan-
tage (i.e., the difference between the adversary’s true and false positive rates in MIAs) obtained throughout all
attack specifications and slices. Note, however, that attack-based privacy figures are limited to showing a lower
bound on the information leakage since they measure the effectiveness of a particular attack. This contrasts
with DP guarantees, which provide an upper bound on the possible leakage [Jayaraman and Evans(2019)]. As
discussed in Section 3, the upper bound for the adversary’s advantage is eǫ − 1, which means that for ǫ > 1 the
adversary’s advantage may be well above 1.

For the sake of reproducibility, the code of our experiments is available at https://github.com/ablancoj/dp-mia.

Baseline results Table 3 reports baseline results for the four experimental settings with no protection. We
see that, for the three settings other than Adult, the attacker’s advantage was around or over 0.5. Also, we see
that that in these three cases there was a big gap between the training and validation losses. Such results are in
line with previous studies [Yeom et al.(2018)], which directly connect the generalization gap (i.e., the difference
between training and testing losses or accuracies) to the vulnerability against both membership and attribute
inference attacks.

Results using anti-overfitting To test the relationship between the (excessive) fitting of ML models to the
(private) training data and their vulnerability against membership attacks, we next tested the performance of
models when trained using anti-overfitting methods, namely dropout and L2-regularization. Dropout layers in
neural network architectures randomly suppress connections between neurons at each training epoch according

7

https://github.com/ablancoj/dp-mia


Table 4: Results for the four experimental settings with different anti-overfitting techniques

Data set Dropout L2 regularization Training accuracy Test accuracy Training time (s) Attaker’s advantage

Adult

0.25 ✗ 0.8627 0.8457 53 0.132

0.50 ✗ 0.8522 0.8492 51 0.116

0.75 ✗ 0.8353 0.8453 51 0.085

0.25 ✓ 0.8246 0.8235 59 0.063

0.50 ✓ 0.8225 0.8255 59 0.071

0.75 ✓ 0.7897 0.8137 60 0.069

MNIST

0.25 ✗ 0.9885 0.9847 61 0.454

0.50 ✗ 0.9768 0.9837 46 0.188

0.75 ✗ 0.9503 0.9805 36 0.214

0.25 ✓ 0.9659 0.9725 48 0.196

0.50 ✓ 0.9552 0.9758 52 0.189

0.75 ✓ 0.9314 0.9714 67 0.183

CIFAR10

0.25 ✗ 0.8762 0.7336 92 0.596

0.50 ✗ 0.7000 0.7368 94 0.227

0.75 ✗ 0.4840 0.4796 92 0.132

0.25 ✓ 0.6869 0.7178 97 0.099

0.50 ✓ 0.6048 0.6730 101 0.136

0.75 ✓ 0.4569 0.4756 101 0.111

CIFAR10-TL

0.25 ✗ 0.8770 0.8611 51 0.275

0.50 ✗ 0.7729 0.8414 50 0.120

0.75 ✗ 0.6038 0.7785 49 0.135

0.25 ✓ 0.8177 0.8427 59 0.132

0.50 ✓ 0.7542 0.8206 58 0.159

0.75 ✓ 0.6300 0.7882 59 0.125

to some parameter. On the other hand, L2-regularization adds a term to the loss function that penalizes the
model when it overfits the training data. These two techniques are used to obtain models that generalize better
to unseen data, and their use is pervasive in machine learning.

Table 4 shows the results for different combinations of dropout rates and L2-regularization in the four
experimental settings. Some highlights of the comparison between Tables 3 and 4 follow. For the Adult data
set, training the model with 75% dropout rate and no L2-regularization reduced the attacker’s advantage by
approximately 35% while still improving the test accuracy with respect to the baseline. The same parameters
reduced the attacker’s advantage by 67% for the MNIST data set, while again improving the test accuracy. In
the CIFAR10 case, 25% dropout rate and L2-regularization improved the test accuracy by more than 4% and
reduced the attacker’s advantage by 84%, from 0.642 to 0.099. Finally, when using transfer learning to classify
CIFAR10, 25% dropout rate and L2-regularization reduced the attacker’s advantage by 71%, while incurring a
test accuracy reduction of less than 1%.

These results confirm that reducing model overfitting successfully increases the protection against member-
ship inference attacks while improving in most cases the generalization capabilities of trained models (which is
actually the goal of anti-overfitting methods). Note also that applying dropout and L2-regularization did not
have a meaningful impact on the training times. We also see that employing transfer learning (plus some mild
anti-overfitting) is an effective method to obtain good accuracy in difficult tasks while keeping disclosure at bay,
because the model will be less fitted to the (private) training data.

Results using DP Next, we empirically evaluated the protection against membership inference attacks
afforded by DP when applied to the baseline models. Table 5 shows the results for the four experimental
settings when trained under (ǫ, δ)-DP, in particular DP-SGD using the moments accountant, as done in all the
surveyed works. The value for delta was fixed at δ = 10−6, which is one order of magnitude smaller than that
used in related works and more in line with its original formulation, that is, δ ≪ 1/n, where n is the number of
records. The value of ǫ was set to reproduce the settings commonly employed in the ML literature (in the range
[2, 8]), as well as safer configurations (in the range [0.1, 1]) and weaker configurations (in the range [8, 1000]).
The batch size for the Adult data set was set to 48, and to 100 for the rest of the experimental settings (note
that TensorFlow-Privacy requires the batch size to divide the data set size). The gradients were clipped at
a maximum norm 2.5 in all cases, and the noise multiplier σ was computed using the TensorFlow-Privacy
compute noise function for several target ǫ values. Table 5 also shows the noise multiplier σ and the effective
ǫ value computed by the moments accountant method after the training process was finished. As we discuss
below, getting the desired ǫ is not trivial and, for extreme values, it may not even be possible.

At a first glance, it is clear that DP significantly reduced the attacker’s advantage compared to the baseline
results for all ǫ values. The reduction was in line with the results obtained with anti-overfitting techniques.
However, the (test) accuracy was also highly impacted: even for the weakest values of ǫ, test accuracies were
lower than those obtained with a reasonable amount of anti-overfitting. This suggests that, even though the
smallest distortion added by DP was enough to counter practical membership attacks, such a distortion was
more harmful for the learning process than the meaningful changes introduced by anti-overfitting techniques.
In fact, since anti-overfitting changes were specifically tailored to enable the model to generalize better, they
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Table 5: Results for the four experimental settings using differential privacy

Data set Target ǫ σ Computed ǫ Training accuracy Test accuracy Training time (s) Attacker’s advantage

Adult

0.1 14.3098 0.1120 0.7498 0.7535 774 0.083

0.5 3.0864 0.5000 0.8076 0.8016 784 0.078

1 1.7217 0.9999 0.8186 0.8090 741 0.082

2 1.0674 2.0000 0.8225 0.8190 781 0.077

4 0.7767 3.9969 0.8201 0.8132 790 0.062

8 0.6223 7.9999 0.8228 0.8201 850 0.099

16 0.5172 15.922 0.8250 0.8201 778 0.061

100 0.3320 97.440 0.8294 0.8234 754 0.071

1,000 0.2183 484.87 0.8318 0.8283 854 0.079

MNIST

0.1 11.9929 0.1120 0.8388 0.8514 2,555 0.201

0.5 2.6130 0.4999 0.8912 0.9009 2,308 0.17

1 1.4877 0.9999 0.8990 0.9086 2,460 0.153

2 0.9675 1.9851 0.9052 0.9110 2,457 0.165

4 0.7327 3.9161 0.9085 0.9154 2,311 0.169

8 0.5922 7.9737 0.9114 0.9172 2,459 0.19

16 0.4958 15.953 0.9154 0.9208 2,312 0.179

100 0.3234 97.604 0.9172 0.9217 2,311 0.191

1,000 0.2155 482.07 0.9294 0.9337 2,312 0.188

CIFAR10

0.1 13.1337 0.1120 0.2624 0.2662 3,796 0.12

0.5 2.8456 0.4999 0.3166 0.3160 3,832 0.12

1 1.6022 0.9999 0.3753 0.3777 3,830 0.10

2 1.0134 2.0000 0.4110 0.4068 3,821 0.13

4 0.7533 3.9718 0.4177 0.4181 3,791 0.15

8 0.6070 7.9956 0.4399 0.4397 3,819 0.09

16 0.5065 15.936 0.4502 0.4435 3,918 0.12

100 0.3277 97.520 0.4895 0.4857 4,093 0.12

1,000 0.2169 483.49 0.5109 0.4988 4,255 0.1

CIFAR10-TL

0.1 13.1337 0.1120 0.6535 0.6535 1,605 0.112

0.5 2.8456 0.4999 0.7723 0.7577 1,620 0.124

1 1.6022 0.9999 0.7979 0.7911 1,627 0.16

2 1.0134 2.0000 0.8149 0.8030 1,618 0.123

4 0.7533 3.9718 0.8247 0.8086 1,615 0.14

8 0.6070 7.9956 0.8327 0.8169 1,728 0.128

16 0.5065 15.936 0.8385 0.8180 1,652 0.143

100 0.3277 97.520 0.8493 0.8280 1,612 0.136

1,000 0.2169 483.49 0.8615 0.8377 1,614 0.128

also produced the same effect as DP-ML, namely to make the model more agnostic about the (private) training
data. On the other hand, the accuracy losses for safe values of ǫ (1 or less) were unacceptable, which seems
to indicate that “true” DP is unsuitable to achieve privacy protection while preserving usable accuracy in ML.
To make things worse, note that the training times for DP are much higher than those of the baseline and the
anti-overfitting scenarios.

In fact, a suboptimal privacy/utility trade-off is not the only issue faced when using DP-SGD. The choice
of hyperparameters to train a model under DP is a challenging task, as we discuss in the what follows. The
compute noise function in TensorFlow-Privacy allows computing the noise multiplier σ required to achieve a
certain target ǫ, given a fixed δ, the size of the training data set, the batch size, and the expected number of
training epochs. This noise multiplier is then used to compute the noise added to each of the model gradients
at each training epoch. Then, the get privacy spent function returns the effective ǫ value computed by the
moments accountant after the training is done. However, as introduced in Section 2, if a model is trained until
convergence (as is usually the case), the computation of the noise multiplier is unreliable —if the model is finally
trained for more epochs than expected, the final effective ǫ will be greater than intended, which means that
more noise should have been added at each training epoch to achieve the target ǫ. But, in turn, adding more
noise might require more training epochs for the model to converge. On the other hand, if the model converges
before the number of epochs specified when computing σ, the effective ǫ will be smaller than intended, which
means too much noise was added during training, with the subsequent potential (and unnecessary) loss of model
accuracy.

The above-described pitfalls of hyperparameter choice are exemplified in Table 6. In this experiment we
trained a model to classify CIFAR10 until convergence, that is, until the training loss did not significantly
change for 3 consecutive epochs. The target privacy budget ǫ was set to 0.1. We initially computed the required
noise multiplier σ by using compute noise and specifying 10 training epochs. The model turned out to converge
in 72 epochs, with a computed effective ǫ = 0.2704. Next, we re-computed σ by specifying 72 training epochs
and we trained again until convergence. However, since the amount of noise added per epoch had changed, so
did the epochs needed to attain convergence: just 12 epochs were needed this time. This required repeating
the process until an effective ǫ = 0.0999 was obtained, which was deemed close enough to the target ǫ = 0.1.
This trial and error process is similar to the utility-first approach traditionally followed by official statisticians
since the 1970s, well before privacy models and DP were introduced: choose noise parameters, protect the data
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Table 6: Iterative process to obtain the desired ǫ value of 0.1

Target training epochs σ Epochs to converge ǫ Test accuracy

10 5.92 72 0.2704 0.25

72 15.75 12 0.0878 0.1

12 6.478 85 0.2681 0.26

85 17.10 40 0.0966 0.15

40 11.75 48 0.1179 0.18

48 12.87 28 0.0999 0.12

using an SDC method with those parameters, and check if the protected data are accurate and private enough
according to some requirements.

Furthermore, DP-SGD does not scale well for complex models, as it causes their accuracy to cap at ap-
proximately 1 over the number of classes (i.e., random guessing). This can be sometimes solved by leveraging
transfer learning. In that case, the bottom layers (or feature extractor) are already trained using some public
data set, and only the top layers (the classifier) are trained using DP-SGD.

Finally, the DP-SGD algorithm requires gradients to be clipped before any noise is added to them on a
per-training-instance basis, which eliminates the performance gains of using GPUs to process the training data
in batches. Whereas the microbatches variable in TensorFlow-Privacy can be adjusted to treat the training
instances in bigger batches, which reduces the training time, it does so at the cost of a greater accuracy loss
compared to the baseline results. Giving up batches explains why the training times of DP-SGD reported in
Table 5 are 15 to 40 times longer than those of the baseline and anti-overfitting experiments reported in Tables 3
and 4.

Even if the experiments reported in this section are for centralized ML, the conclusions reached can be
expected to be valid for FL as well. Note that guaranteeing privacy in FL can be even more challenging,
because membership attacks may be easier if the clients’ local data are non-i.i.d.

6 Conclusions

The ML research community have embraced DP as the gold standard for privacy protection. Yet, none of the
related works in the literature employs the original formulation of DP, but relaxations of it, such as (ǫ, δ)-DP
and others. On top of that, the privacy parameters used are quite far from what is considered theoretically
“safe” (i.e., ǫ ≤ 1 and negligible δ w.r.t. the population size). For such loose implementations, the privacy
guarantees of DP do not hold, and what is done can only be viewed as old plain noise addition, which at best
provides ex post protection depending on the amount of noise added for a given ǫ, rather than on the ǫ value
itself. This renders it rather pointless to claim use of the DP privacy model and comes close to the (often
criticized) utility-first paradigm used in SDC for decades. Thus, the use of the “differential privacy” label by a
lot of works whose implementations offer an actual privacy very far from truly sound DP can only be regarded
as deceptive. To aggravate the matter, most of those works systematically omit empirical privacy analyses,
because they consider any relaxation and parameterization of DP to be privacy-preserving enough.

In spite of all the aforementioned DP “twisting and bending”, the practical accuracy/privacy trade-off of
DP-ML is worse than that of standard methods used in ML to mitigate overfitting. Our experiments indicate
that the latter provide comparable practical protection, better accuracy and significantly lower learning cost
than DP-based ML. On the other hand, even with DP relaxations and adjusted privacy accounting methods,
using theoretically sound privacy parameters (ǫ ≤ 1) is still infeasible, due to the unacceptably high accuracy
loss they entail. This makes “true” DP unsuitable for protecting ML models with usable accuracy.
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[Erlingsson et al.(2014)] Ú. Erlingsson, V. Pihur, and A. Korolova. 2014. RAPPOR: Randomized aggregatable
privacy-preserving ordinal response. In In Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security. 1054—-1067.

[Geyer et al.(2018)] R. C. Geyer, T. Klein, and M. Nabi. 2018. Differentially private federated learning: A
client level perspective. arXiv preprint arXiv:1712.07557. In NIPS 2017 Workshop: Machine Learning on
the Phone and other Consumer Devices.

[Gong et al.(2020)] M. Gong, Y. Xie, K. Pan, K. Feng, and A. K. Qin. 2020. A survey on differentially private
machine learning. IEEE Computational Intelligence Magazine 15, 2 (2020), 49–64.

11

https://differentialprivacy.org/flavoursofdelta/
https://www.accessnow.org/differential-privacy-part-3-extraordinary-claims-require-extraordinary-scrutiny/
https://news.microsoft.com/on-the-issues/2020/08/27/statistical-noise-data-differential-privacy/


[Greenberg(2017)] A. Greenberg. 2017. How one of Apple’s key privacy safeguards falls short. Wired (7 sep
2017).

[Hard et al.(2018)] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, , and D. Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604.
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