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Power curve of a wind turbine depicts the relationship between output power and hub height wind speed and is an important
characteristic of the turbine. Power curve aids in energy assessment, warranty formulations, and performance monitoring of the
turbines. With the growth of wind industry, turbines are being installed in diverse climatic conditions, onshore and offshore,
and in complex terrains causing significant departure of these curves from the warranted values. Accurate models of power
curves can play an important role in improving the performance of wind energy based systems. This paper presents a detailed
review of different approaches for modelling of the wind turbine power curve. The methodology of modelling depends upon
the purpose of modelling, availability of data, and the desired accuracy. The objectives of modelling, various issues involved
therein, and the standard procedure for power performance measurement with its limitations have therefore been discussed here.
Modelling methods described here use data from manufacturers’ specifications and actual data from the wind farms. Classification
of modelling methods, various modelling techniques available in the literature, model evaluation criteria, and application of soft
computing methods for modelling are then reviewed in detail. The drawbacks of the existing methods and future scope of research
are also identified.

1. Introduction direction, air density (a function of temperature, pressure,
and humidity) and turbine parameters [2]. Much complexity
is involved in considering the effects of all the influencing
parameters properly. It is therefore difficult to evaluate the
output power using the theoretical equation given above.
Power curve of a wind turbine, which gives the output power
of turbine at a specific wind speed, provides a convenient
way to model the performance of wind turbines. A typical
power curve for a pitch regulated wind turbine is shown in
Figure 1. In the first region when the wind speed is less than
a threshold minimum, known as the cut-in speed, the power
output is zero. In the second region between the cut-in and
the rated speed, there is a rapid growth of power produced. In
the third region, a constant output (rated) is produced until
(1)  thecut-off speed is attained. Beyond this speed (region 4) the

Wind energy has emerged as a promising alternative source
for overcoming the energy crisis in the world. Wind power
based energy is one of the most rapidly growing areas among
the renewable energy sources and will continue to do so
because of the growing concern about sustainability and
emission reduction requirements. The uncertain nature of
wind and high penetration of wind energy in power systems
are a big challenge to the reliability and stability of these
systems. To make wind energy a reliable source, accurate
models for predicting the power output and performance
monitoring of wind turbines are needed. The theoretical
power captured (P) by a wind turbine is given by [1]

P= %pchP (A BV,

The power production of a wind turbine (WT) thus
depends upon many parameters such as wind speed, wind

turbine is taken out of operation to protect its components
from high winds; hence it produces zero power in this
region.
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FIGURE 1: Typical power curve of a pitch regulated wind turbine.

The power curve of a WT indicates its performance.
Accurate models of power curves are important tools for
forecasting of power and online monitoring of the turbines.
A number of methods have been proposed in various works
to model the wind turbine power curve. These methods
which use data from manufacturers’ specifications and actual
data from the wind farms have been utilized by many
researchers in various wind power applications [3, 4]. The
literature reviewed reveals that appropriate selection of power
curve models can help in improved performance of wind
energy based systems. This paper presents current status
of research and future directions of different wind turbine
power curve modelling approaches. The need of modelling,
modelling methodology, classification of models, and meth-
ods of evaluation have been discussed. The impact of various
parameters on these curves, the standard procedure for
power performance measurement of wind turbines, and the
need for developing site specific curves is also discussed.
Various models proposed and used in various studies have
been compared critically and finally inferences are drawn.

2. Need of Power Curve Modelling

The power curve reflects the power response of a WT to
various wind speeds. Accurate models of the curves are useful
in a number of wind power applications. The objectives of
modelling the wind turbine power curve have been discussed
here.

2.1. Wind Power Assessment and Forecasting. The WT power
curve can be used for wind power assessment. Wind resource
assessment of a region in terms of wind speed, wind power
density, and wind energy potential is done to identify areas
suitable for wind power development [3]. In this process,
estimation of energy is done by using the available wind data
and wind turbine power curve. Predicting the output power
of the turbine at a candidate site is also required in sizing and
cost optimization studies during the design stage of a wind
energy based system. The accuracy in power prediction is
important as an overestimation can result in poor reliability
and an underestimation can lead to oversizing of the wind
energy conversion system. Wind turbine operators who trade
energy directly to the electricity market also need to forecast
the power output of their turbines accurately, so that they will
be able to deliver the traded amount of power [2].
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Power curves are supplied by the manufacturers in a
tabular or graphical form. However, a generic equation
which represents this curve accurately is required in var-
ious problems of wind power systems. Derivation of an
appropriate function to describe the actual shape of the
curve is a very important task. However, the manufacturer’s
curves are created under standard conditions therefore they
may not represent the realistic conditions of the site under
consideration. The turbine performance at the wind farms
is also not ideal due to wear and tear and aging of turbines.
Another method to model the power curves is to derive them
using the actual data of wind speed and power measured from
the turbines [4]. The data of wind turbines collected by the
SCADA (supervisory control and data acquisition) system
can be utilized for this purpose. This method can incorporate
the actual conditions at the wind farms, thus providing better
accuracy in power prediction.

2.2. Capacity Factor Estimation. The capacity factor of a WT
is defined as the ratio of the average power output to the
rated output power of the generator and is an indicator of
its efficiency [5]. It is used to estimate the average energy
production of a WT required for the sizing and cost optimiza-
tion studies, optimum turbine-site matching, and ranking
of potential sites [5, 6]. The wind turbine power curve
models are used to estimate the capacity factor of a WT. A
comparative analysis of four power curve modelling methods
in estimation of capacity factor of wind turbine generator is
presented in [7].

2.3. Selection of Turbines. The power curve can be used to
make generic comparison between models and can aid in the
choice of turbine from the available options. The selection of
the turbine characteristics which match with the wind regime
of the site helps in optimizing the efficiency of wind energy
system [8].

2.4. Online Monitoring of Power Curves. Power curves can be
used for monitoring the performance of turbines. For this,
a benchmark curve which represents the performance of a
normally operating turbine is required. This reference curve
can be extracted from measured power output and wind
speed data of wind turbines. The actual curve of the turbine
to be monitored can be compared with this benchmark curve.
The deviations of the actual values from the expected output
can indicate underperformance or faults [1]. The wind power
output of a turbine can be affected by underperformance or
various faults/anomalies of the turbine such as blade faults
and yaw and pitch system faults [4, 9]. Different types of faults
affect the turbine system differently and will cause the power
curve to depart from the expected value in a different way.
Tools which can characterize and quantify these departures
can aid in early identification of faults. Statistical analysis of
the outlier data can give indications of the specific reason of
anomaly. Wind turbine condition monitoring by use of power
curve copula modelling is suggested in [10, 11] and is a topic
of further research. Early recognition of the emerging faults
and timely repair and maintenance of the equipment can help
in improving the performance of wind turbines.
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3. Modelling Issues

A number of aspects require consideration while modelling
the power curves of wind turbines. The selection of model
and methodology adopted depends upon the purpose of
modelling, available data, impact of various parameters on
these curves, and other related issues.

The following important issues should be taken into
consideration while modelling of the power curve.

3.1. Difference in Models. The power curves vary with dif-
ferent manufacturers and models. Therefore the model used
to describe them should also be different [12]. Also, there
is difference between pitch regulated and stall regulated
turbines. Pitch regulated turbines maintain constant output
from the rated to cut-off speed, whereas the stall regulated
turbines have a decreased power output above the rated wind
speeds (stall region).

3.2. Cut-In and Cut-Off Behaviour. The turbine behaviour
near cut-in and cut-off wind speeds can be difficult to model
[8]. These limits are different for different turbine models.
When the power curve is derived using the measured data,
some nonzero and negative values of power outputs below
cut-in speed can be obtained. The cut-oft hysteresis which
occurs during the period between shut down and restart of
turbine affects the productivity of turbine [13]. Hysteresis
effects can be more significant with certain wind patterns and
terrains such as unsteady and gusty winds requiring frequent
starting and shutting down, resulting in considerable loss of
energy production. Power curve correction which takes into
account this behaviour of turbine at cut-off can reduce the
power prediction errors.

3.3. Single versus Group of Turbines. The manufacturers’
curves are suitable for predicting the power output of a
single turbine of a specific type. In a big wind farm a
number of turbines are spread over a wide area. Wind energy
production involves uncertainties due to stochastic nature of
the wind and variation of the power curve [14]. The speed
and direction of wind encountered by the turbines of a wind
farm may not be the same due to variation of wind. Hence,
in a wind farm, power produced by turbines with identical
specifications can also differ, even if the wind speed is the
same. The shadowing effect of turbines causes this difference
as the turbines which operate in wake of other turbines
may get reduced wind speeds [15]. This difference can also
happen due to factors such as wear and tear, aging, and
dirt or ice deposition on blades. With the growth of wind
energy projects it has become essential to develop methods
to monitor the performance of not only a single turbine but
also the wind farm as a whole. Therefore building appropriate
models to obtain the relationship between wind speed and
output power when a group of turbines are deployed on a
wind farm is required.

3.4. Influencing Factors. A number of factors can cause the
power curve to deviate from the theoretical value [1, 2]. The

important influencing factors are given here and need due
attention during modelling.

(i) Wind Conditions at the Site. Wind is highly stochastic in
nature. The wind speed and direction change continuously.
The wind at a particular site is affected by weather phenomena
and topology of the site. The turbulence of wind at a given
location affects the power production [16]. Obstacles like
trees, buildings, and other high structures influence the wind.

(ii) Air Density. The pressure, temperature, and humidity of
site affect the air density [17], hence affecting the power
produced. Effect of varying air density has been considered
for developing site specific curves [18]. It is shown in [2]
that temperature has the highest influence on air density and
considering its effect along with the wind direction resulted
in improved performance of models.

(iii) Extrapolation of Wind Speed. The wind speed changes
with height. This wind shear effect is affected by the roughness
of terrain. The power curve uses the wind speed measured at
the hub height of turbine, but this height varies with different
models and manufacturers, and it is not always possible to
measure the wind speed at this height. A number of methods
have been used in the literature to express the variation of
wind speed with height [12]. Also the wind speed measured
at the masts is different from the speed at the turbine location
and sometimes when the wind speed values at the particular
site are not available the wind speed measurements from a
nearby location are used to determine the wind profile of
this site. The accuracy of conversion of the measured wind
speed to wind speed at hub height and at the turbine location
depends on factors such as the vertical wind profile at the site,
position of masts relative to the turbine, and the method used
for extrapolation.

(iv) Turbine Condition. The power curve is affected by the
condition of turbine and associated equipment. Aging and
wear and tear of turbine, anomalies and faults, blade condi-
tion, yaw and pitch misalignments, controller settings, and
so forth cause the power curve to depart from actual values
(1, 11].

3.5. IEC 61400-12-1 Standard [19]. 1EC 61400-12-1, the com-
monly adopted international standard for power perfor-
mance measurement, is found to be of relevance. The pro-
cedure for measuring the power performance characteristics
of single wind turbines is specified in this standard. It is
the most accepted standard for power curve measurement
of single wind turbines. The standard describes the measure-
ment methodology for the measured power curve which is
determined by simultaneous measurement of wind speed and
power output at the test site. A previous site calibration is
required for certain terrain conditions. The annual energy
production is calculated by applying the measured power
curve to reference wind speed frequency distributions sup-
plemented by sources of uncertainty and their effects. The
standard prescribes derivation of power curve using the hub
height wind speed measured with a cup anemometer in the



suitable measurement sector, but if the wind speed has a
large variation over the rotor swept area then there can be a
significant difference between the hub height wind speed and
wind speed averaged over the whole rotor swept area. The
measurement methods and accuracy of measuring instru-
ments can cause variance in measurements and can lead to
large prediction errors. The impact of other measurement
options such as consideration of rotor equivalent wind speed
in which speed is measured at heights over the full rotor
plane with the use of remote sensing technology (LIDAR and
SONAR) and nacelle based anemometry is a topic of further
research [20].

The IEC standard uses ten-minute averaged data grouped
into wind speed intervals of 0.5m/s (method of bins). This
10-minute averaging of data introduces systematic averaging
errors and short wind fluctuations are killed oft. Wind at a
specific site can be affected by a number of factors such as
topology of the site and obstacles and weather phenomena.
Although the IEC power curve considers the wind condition
of the current site it may not always be appropriate to apply
to the wind conditions of other sites. Research efforts are
therefore required to develop site specific power curves.
These curves can incorporate the wind conditions of the
particular site, thus giving better results [18, 19].

Appropriate selection of modelling method is an impor-
tant requirement for during planning and operation stage of
wind based system and helps in improving the performance
of the system. The methods which consider only wind speed
as input may not take into account the variance caused by
various influencing parameters. Methods which consider the
influence of these parameters on the power curve can result
in more accurate models. Wind at a specific site can be
affected by a number of factors such as topology of the site
and obstacles and weather phenomena. It is shown in [18]
that the use of developed site power curves, which used
the knowledge of site and turbine parameters for modelling,
resulted in more accurate energy assessment than the turbine
power curve. The issues discussed above if addressed properly
can result in efficient models of power curves.

4. Wind Speed Modelling

Wind power generated is highly correlated with the wind
speed distribution across the region where the wind farm
is situated and depends upon the type of WT deployed in
the wind farm. The accuracy in prediction of wind energy
can be achieved by modelling the wind speed and power
simultaneously. The wind speed at a site varies randomly and
its variation in a certain region over a period of time can
be represented by different probability distribution functions
(PDE). Selection of appropriate PDF to describe the actual
wind speed distribution of the site is crucial for accuracy in
power prediction.

The most commonly used and accepted distribution is the
two-parameter Weibull distribution [5, 21]. It is a versatile
PDE, is simple to use, and is found to be accurate for most of
the wind regimes encountered in nature. However, Weibull
distribution is not suitable for certain wind regimes, for
example, those having high frequencies of null winds, and
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FIGURE 2: Power curve using actual data for a group of wind turbines
at a wind farm (NREL) [66].

for short time horizons [1, 22]. The Weibull PDF is given

by
o=t (Y e

Another widely used distribution is Rayleigh PDF [18]
in which the shape parameter of (2) is taken as k = 2.
It is a simple PDF and can describe the wind regime with
sufficient accuracy when little detail is available about the
wind characteristics of a site. The wind speed distribution has
also been described in the literature using several other PDFs
which include lognormal, beta, and gamma distributions
[23]. A detailed review of different PDFs for wind speed
modelling and techniques for estimation of their parameters
is given in [22]. Appropriate PDF and parameter estimation
technique should be selected for modelling the wind speed
for a particular site.

5. Power Curve Models Classification

The power curve modelling methods can be classified
into discrete, deterministic/probabilistic, parametric/nonpara-
metric, and stochastic methods or they can be classified on the
basis of data used for modelling.

5.1. Discrete Models. In this method as described in IEC
61400-12 all the wind speeds are discretized into 0.5m/s
bins [19]. The power output for each bin is then modelled.
This is a simple method as it does not require mathematical
functions for describing the curve. Also it takes into account
the nonlinear wind speed-power output relation. However a
large number of data are required in this method to develop
a reliable model.

5.2. Deterministic and Probabilistic Models. A deterministic
power curve model assumes a fixed relation between the
output power and wind speed. But when a fleet of wind
turbines are deployed on a wind farm, turbines of the same
type may produce different amount of power even if the wind
speed is the same (Figure 2). A probabilistic power curve
model incorporates these power variations to characterize the
relationship between wind speed and actual output powers.
Most of the models available in the literature are of determin-
istic nature and are constructed by using the manufacturers’
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power curve data. A probabilistic model proposed in [14]
characterizes the dynamics of output power by a normal
distribution with varying mean and constant standard
deviation. The method given in the paper accommodates
the uncertainty of output power. The probabilistic nature of
wind power output can also be modelled by deriving curves
using actual data of power output and wind speed of turbines
deployed in a wind farm. This method requires a large
number of historical data but results in accurate models
(4, 24].

5.3. Parametric and Nonparametric Models. A parametric
model defines the relationship between input and output
by a set of mathematical equations with a finite number
of parameters. In a nonparametric model, no assumption
is made about the functional form of the phenomenon
under observation. Parametric models of WT power curve
can be built by utilizing a set of mathematical expressions
having a fixed number of parameters, which are usually
collected together to form a single parameter vector 6 =
0,,0,,05,...,0,). Nonparametric models are used when it
is difficult to define the underlying theory upon which the
parametric model can be constructed [24].

5.4. Models Based on Presumed Shape, Curve Fitting, and
Actual Data. The models of power curves can be classified
according to the data being used for modelling. Models of
power curve based on presumed shape of curve utilize only
the cut-in, cut-off, and rated speeds and the rated power
of the selected turbine for calculating the parameters of
expressions used in the model [12, 25, 26]. These ratings are
available from the specifications of the turbines. When the
manufacturer’s power curve data is available, models can be
developed by fitting one or more appropriate expressions
to the actual curve. The parameters of the expression being
fitted to the actual curve are generally calculated by using
the least squares method [4]. The models derived from actual
data of wind farm need the actual wind speed and power
output data from an operational wind farm. If the effect of
the influencing parameters is also included in the model,
then the data of the included parameters is also required.
This data can be obtained from the wind farm’s SCADA sys-
tem.

5.5. Stochastic Models. The stochastic method consists of
characterizing the power performance of wind turbine by
evaluating dynamic response against the fluctuating wind
speed inputs [27, 28]. The dynamic power output is separated
into a deterministic stochastic part in this model. In [29] the
Markov chain theory is used to describe the power output
of WT. The resulting model is independent of turbulence
intensity; however, the effect of other influencing parameters
is not taken into account in this method.

6. Power Curve Modelling Approaches

Various approaches have been used in the literature for
modelling of WT power curve. These methods, their merits,
limitations, and application areas are discussed here.

6.1. Parametric Models. The power delivered by a WT can be
expressed as

0 V<V, V>Vy
P=4qW) v.<v<uw, (3)
P Ve Sv<vy

The relationship between power output and wind speed
of a WT between cut-in and rated speed is nonlinear (region
2 of Figurel). The relation q(v) can be approximated by
various functions using polynomial and other than polyno-
mial expressions. The pitch regulated turbines maintain a
constant power output in region 3 of Figure 1, whereas the
stall regulated turbines have decreased power output in this
region; thus the power in this region for a stall regulated
turbine should not be modelled as a constant. The governing
equations for different approximations of power curve are
given in Table 1.

6.1.1. Polynomial Function Approximation. The nonlinear
wind speed-power relationship, q(v), can be approximated
by various polynomial expressions. Different models using
linear, quadratic, cubic, and higher powers of speed or their
combinations have been used in the literature.

(i) The most simplified model based on a linear curve,
which describes region 2 of power curve by a straight
line, is used in many applications [12, 39-42].

(ii) A quadratic model represents the nonlinear portion
of the curve by an equation of degree 2. q(v) has
been approximated by a quadratic equation in [25] to
describe the relation between output power and wind
speed of a WT. A binomial expression discussed in
[30] has been adopted by many researchers [43, 44]
to determine output power of wind turbines. Regions
2 and 3 of Figurel for a stall regulated WT can be
described by using two different binomial expressions
asin [45].

(iii) Model based on cubic law approximates region 2 of
power curve by cubic law. A model which describes
the nonlinear power-wind speed relationship by a
cubic law is discussed in [46]. This model is used
for power output calculations in [26, 31, 47]. A cubic
expression for region 2 and a linear expression for
region 3 are chosen to describe the power curve in
[48].

The models given above use the WT specifications of
rated power and cut-in, cut-off, and rated wind speed only
to determine the equations for power curve.

(i) A methodology based on Weibull's parameter is
proposed in [6]. This model based on Weibull shape
parameter is used by many researchers [49, 50] for
calculating the power output of WT.

(ii) A linearized segmented model discussed in [24, 51]
carries out a piecewise linear approximation of the
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TABLE 1: Expressions of parametric models.
Model Expressions of P and g Parameters
Linear [12] q(v) =P, ((:,_—1:5)) —
v—v.\
Quadratic [25] qv) =P, < a > _
v, -V,
- 7
1 -
a=———=|v.(v.+v)- 41/51/,M
(Vc - vr) 2v’
2 1 (ve—v, )3
Binomial [30] qw)=(a+bv+cv’)P, b= > 1 4(v. +v,) 62 — —3(v.+v,)
(Vc - Vr) L Vr
r 3
c-—1 _|s Jut )
(Vc — Vr) L v,
a= L
- 3_43
Cubic [31] q(v) =av’ - bP, v, S ve’)
MR
. P,vck
- k_ 4k
Weibull based [6] q(v) = a+bv (ve s v")
b= ———
(vck — Vrk)

Double exponential [32]

P = exp (-7, exp (-vt,))

7, and 7, to be estimated

4PL [1, 33]

1+ ame'’*
P=a| ——
1 + ame/™

0 = (a,m,n, 1)

(1) From manufacturers” curve [33]
a=P
0 = &2Vipl(P=Pyp)

mzn(zpip —1)
Pf’
(Pr_Pip)

2s
(2) Parameters obtained by evolutionary techniques for
SCADA data in (1]

4PL [34, 35]

(A-D)

P=f(v,0)=D+m

6 = (A, B,C,D)

A = minimum asymptote

B = Hill slope

C = inflection point (point of curve where the curvature
changes direction)

D = maximum asymptote

(parameters obtained by evolutionary techniques)

5PL [24, 35, 36]

P=f(»0)=D+ (A-D)

(1+w/0P)°

0 =(A,B,C,D,G)

A = minimum asymptote

B = Hill slope

C = inflection point (point of curve where the curvature
changes direction)

D = maximum asymptote

G = asymmetry factor

(parameters obtained by evolutionary techniques)

curve by using the equation of a straight line. The
resulting curve follows the actual curve more accu-

rately.

(iii) The power curve of wind turbine has also been mod-
elled by other than polynomial functions. The power
curve that is modelled in [52] uses a exponential
equation whereas a double exponential equation is

used in [32].

(iv) A polynomial regression parametric model is devel-

oped from real data as a benchmark method in [53].
Three nonparametric methods are also proposed in
this study.

6.1.2. Approximations Considering Inflection Point on the
Curve. All the polynomial expressions given above do not
take into account the inflection point on the power curves.
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In most real power curves there is an inflection point on
the curve at which its curvature changes sign. Models which
consider this inflection point can describe the actual shape
of the curve more accurately than the above models. A
new formula for power curve interpolation which considers
inflection point on the curve is proposed in [54]. A double
exponential model is proposed in [32] to fit the data in two
inflection zones using a single equation. Functions based
on four- and five-parameter logistic approximations also
consider this inflection point on the curve and are promising
approaches for modelling of power curve.

(i) The shape of a wind power curve can be approximated
by a four-parameter logistics (4PL) function [1, 34]. A
procedure to obtain the parameters of the 4PL func-
tion model modelled from manufactures power curve
data has been proposed in [33]. The four parameters
of the function are obtained directly from the power
curve instead of using an optimization process in this
work. The paper also proposes manufacturer’s power
curve approximation using a three-parameter model.
The power curve is derived from the SCADA data of
wind farms using a 4PL approximation in [1, 4, 24]. It
is shown in [1] that this model can be used for online
monitoring of power curves. Another form of four PL
expression is used for extracting power curve from
actual wind speed and power curve data of a wind
farm in [35]. The method is applied for wind energy
estimation of the selected wind farm site. Literature
reviewed reveals that the four-PL model produces less
errors in representing the power curve than the meth-
ods based on polynomial approximation. However a
4PL curve is symmetric about the inflection point
whereas the power curves are asymmetric. Models
which can incorporate this asymmetry can therefore
produce even better results. Cubic splines can be used
for asymmetric data. A cubic spline is the smoothest
curve that passes through the exact data points. As
the power curves are quite smooth their asymmetry
can be approximated by a cubic spline interpolation
technique [55-57], but the disadvantage with a spline
fit is that it does not represent the random variation
of data.

(ii) A five-parameter logistic (5PL) approximation
includes a fifth parameter (G in Table 1) to control the
degree of asymmetry [58]. This method can model the
asymmetry effectively and can be used for modelling
the WT power curve [36]. A 5PL model however
has the possibility of becoming ill-conditioned; thus
evaluation of parameter vector becomes difficult. A
5PL model derived from the SCADA data of wind
farm is applied for energy estimation of the farm in
[35] and it is shown that it produces less error in the
estimated energy compared to the 4PL model.

6.1.3. Model Based on Curve Fitting of Manufacturer’s Curve.
The power curve models obtained by means of curve fitting
of the manufacturer’s curve are used in several applications.
The characteristic equation of wind generator is fitted with

three binomial expressions for q(v) in [59] to get the accuracy
in fitting. A ninth-order polynomial for power curve fitting
has been used in [60] and it has been found that it gives
accurate correlation with the real data, producing exclusively
positive values for the generated power between cut-in to cut-
oft range. High-order polynomials may produce better fitting
results for a particular set of data; however they may not
represent the variance of data and should be used carefully.
The power curve models by curve fitting of the manufacturer’s
curve are analyzed in [55-57].

6.2. Parameter Estimation. The parametric models of WT
power curve express the shape of the curve by a set of mathe-
matical equations. Determination of the coefficients of these
equations requires fitting the data to the selected model. The
techniques and algorithms used in various works for param-
eter estimation of power curve models are discussed here.

6.2.1. Techniques for Parameter Estimation

(i) Least Squares Method. The least squares method minimizes
the summed square of residuals to obtain the parameters
of the model and is the most commonly used and accepted
method [4, 24].

(ii)) Maximum Likelihood Method (MLM). Another approach
used in the literature is to determine the parameters of
power curve model by maximum likelihood method. In this
method the parameters of a statistical model are estimated by
maximizing the likelihood function. It was found in [1] that
this method did not perform well in comparison to the least
squares method.

6.2.2. Algorithms for Parameter Estimation. The parameters
of the parametric models especially those using the 4PL and
5PL approximations are difficult to evaluate. The parameter
estimation becomes more difficult when the models are
derived from the actual data of wind turbines. Developing
accurate models of wind turbines and optimization for huge
data sets are a very complicated process. Modern nontradi-
tional solution techniques for parameter estimation enhance
the accuracy, reduce the computational time, and are easy
to implement. Various evolutionary techniques have been
applied for determining the parameter vector 0 of logistic
function based power curve models [4, 24].

6.3. Data Preprocessing. 'The power curve derived from actual
wind speed and power output data of wind turbines uses
SCADA data from the wind turbines. This data is prone
to errors due to measurement, sensor, and communications
system errors. The data is also affected by nonproduction of
turbines when it is shut down by the control system for some
reason other than anomalous operation. SCADA system can
have null entries or erroneous data which can result in
inaccurate models. Hence it is necessary to remove these
misleading entries before using this data for further analyses.
The most common method is to remove the data manually.
These outliers can be identified by visual inspection [11] of
wind speed power output plot and can be removed before



proceeding for development of model. However the method
can lead to inaccurate results as the data from SCADA
system is voluminous and it is difficult to differentiate
between correct and erroneous data. These outliers have been
removed by different statistical methods in various works
before development of models. In [4] the analysis of residuals
together with control charts is used to filter potential outliers.
The outliers can be detected by classical least mean square
(LMS) method which minimizes the sum of the squares over
all the measurements and if a measurement is found to be
far away from the correct value it prevails in the resulting
fitting; however, in this method a single outlier point can
destroy the fitting. In [32] least median of squares method is
used for data preprocessing in which instead of the sum as
in LMS method sum of medians is minimized to identify the
outliers. It is shown that this method is very robust; however
it requires iterative solution. The wind data preprocessing
is done in four steps in [63] which include validity check,
data scaling, missing data processing, and lag removal. In
[64] a probabilistic method developed around a copula-based
joint probability model for power curve outlier rejection is
proposed. A data mining approach to process the raw data
has been proposed in [65]. Appropriate method for data
preprocessing is important requirement for development of
an efficient model.

6.4. Evaluation of Model. After developing the model from
the data, it is important to determine whether this model
appropriately represents the behaviour of the actual data for
the power curve. The evaluation of the developed models
in various applications is done on the basis of a number of
performance metrics. The root mean square error (RMSE),
goodness of fit statistics used by a wide number of researchers,
estimates of the standard deviation of random component in
the data, and a value closer to zero indicate a better fit. The
R-squared statistic is the square of the correlation between
the actual and the predicted values that measures how closely
the fit explains variation in the data. An R-squared value
closer to one indicates a good fit [38]. Other criteria used in
the literature include the mean absolute error (MAE), mean
absolute percentage error (MAPE), the sum of squares error
(SSE), SD (standard deviation), and chi-square R [2, 4, 8, 11,
17]. The most commonly used criteria are given in Table 2.

Selection of appropriate model analyzed on the basis of
suitable criteria is a very important task for improving the
performance of wind power plants. Many models used in the
literature have not been evaluated for goodness of fit with
actual curve data or their suitability for specific applications.
The polynomial models of [54, 57] are compared by observing
the visual fit. Models in [2, 11] are compared by MAE, RMSE,
MAPE, and SD performance metrics; however, suitability of
these models for wind power applications is not evaluated.
Also as these models will ultimately be used in wind energy
applications it is not appropriate to judge their suitability on
the basis of goodness of fit parameters alone, but it should also
be examined how successfully they can be employed for the
particular applications.
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TABLE 2: Model evaluation indices.

Expression
Absolute error (AE) ; .

AE = i) -y, (i
[1] ly m ( ) y a( )|
Relative error (RE) [1] RE = % x 100

Mean absolute error
(MAE) [24]

Mean absolute
percentage error
(MAPE) [37]

1, . .
MAE = N; |ym (l) —Va (l)l

N

1
MAPE = N;

Y () = ¥,(0)
Ya(@)

Root mean square

13 . N2 2
error (RMSE) [24] RMSE = [NZ, (YD) = y,(D)) ]

i=

) Y (el = 7, 0)
R- d [38] R =1-
s Zzl\il (ya(l) — yam(i))z

N = number of data, y,,(i) = ith modelled value, y, (i) = ith actual value, and
Yam (i) = mean of actual value.

6.5. Nonparametric Models. Various nonparametric methods
can be used for modelling of WT power curves. The SCADA
data collected from the wind farms is voluminous and usually
contains errors. It may be difficult to obtain the relation
between input and output using a functional form. Nonpara-
metric methods can be suitable for deriving power curves
from this data. After preprocessing of data, model extraction
can be done using different methods. Nonparametric models
can also incorporate the effect of parameters other than wind
speed on the power curves more easily than the parametric
models. The models can be trained by taking these other
parameters as inputs to the models [17, 18]. Developments
in soft computing techniques offer promising approaches for
power curve modelling. Various advanced algorithms can
be utilized to generate accurate nonparametric power curves
for various applications. Table 3 summarises details of some
nonparametric models from the literature.

6.5.1. Neural Networks. Artificial neural networks (ANN)
inspired by biological nervous system emulate the natural
intelligence of human brain [67] and can learn the nonlinear
relationship between input and output data sets by use of acti-
vation function within the hidden neurons. Neural networks
are used to estimate power generation of turbines at a wind
farmin [17]. A separate multilayer perception (MLP) network
for each turbine uses ten-minute averages of wind speed
and direction from two meteorological towers as inputs and
power generated by the turbine as the output. A comparative
analysis of regression and ANN models for WT power curve
estimation is done in [61] and it is shown that neural network
models perform better than the regression models. However
ANN has a black box approach and it is difficult to develop
an insight about meaning associated with each neuron and
weight [68]. ANN based multistage modelling has been used
in [62] to model the wind turbine power curve. The wind
speed and air density are used as inputs in the first stage and
the normalized power output obtained from this stage, wind
speed data turbulence intensity, is used to train the second
ANN stage. It is claimed that this method has produced
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TABLE 3: Details of some nonparametric models from various studies.

Data set Model
Structure/transfer
Ref.
Interval Data Number of Model Parameters function (TF)/training
values
method
Total 4347 1. .
4] 10 min SCADA data Training 3476 NN k = 100 Eucl1'd1an distance
100 WTs . metric
Testing 871
12 WTs (i) Separate MLP
(wind speed and .. Number of hidden layers network for each WT
P y
direction from Training =1 (ii) Training-pattern
[17] 10 min 1500 patterns for ANN .
two cach WT Number of hidden layer mode
meteorological neurons = 8 (iii) TF-hyperbolic (all
towers) layers)
(8] . Measured data . Fuzzy Number of cluster Eii))(é?};tractive
100kW WT clustering centers = 8 .
clustering
Data set 1 Total 1008 )
generated with  Training 50% (i) Feed f.orward back
method in [9] Testing 50% propagation
Total 4388 (ii) Training:
Data set 2 Training 50% ANN Number of hidden layer stenberg—Marquardt
. 0 neurons = 5 (iii) TF: hidden layer
10 mi Testing 50% .
[24] min transig
Total 2208 : .
Data sets 3, 4, . o (iv) TF: output layer
and 5 Training 50% purlin
Testing 50%
Data sets As above Fuzzy Number of cluster Fuzzy C-means
1-5 as above clustering centers = 8
Number of cluster
Fuzzy centers
clustering Typel=3 CCEL
Type2=6
(i) Training-gradient
descent
SCADA (three MLP Number of hidden layers (ii) TF: hidden
2ZMW WTs) NN =2 layer-sigmoid
(m(_)del type L: (iii) TF: output
NVIVIledl speec12 - 3 279660‘% layer-linear
. odel type 2: raining 60% 3
(2] 10 min wind speed and ~ Validation 40% k-NN Typelk =150 —
L Type2k =3
direction, .
temperature) (i) FIS structure Sugeno
type
(ii) Training-hybrid
learning
ANEIS (iii) Membershlp
functions
Input space-generalized
normal

Output space-linear
(iv) Number of MFs = 3

better results compared to the parametric, nonparametric,
and discrete models.

6.5.2. Clustering Methods. Clustering is grouping of similar
data into classes or clusters. A wind farm having many wind
turbine generators has variable power outputs due to varia-
tion of wind speed. Efficient power curve can be found by

applying clustering methods. Power curve characterization
by cluster centre, fuzzy C-means, and subtractive clustering
methods is done in [69]. Fuzzy clustering applies the concept
of fuzzy sets to cluster analysis and belongingness of each
point of data set to a group is given by a membership function.
The method has the advantage of adapting noisy data. Fuzzy
C-means clustering uses fuzzy partitioning to partition a
collection of vectors into ¢ fuzzy groups and finds a cluster
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centre ¢; in each group. The performance of FCM depends
upon the initial cluster centres. The method proposed in [70]
to decide the number of clusters and their initial values for
initializing iterative optimization based clustering algorithms
isused in [8] to set up cluster centre fuzzy logic (CCFL) model
of power curve. This cluster estimation method is used as a
basis for identifying fuzzy models and the effect of number of
cluster centres and cluster neighbourhood distance on RMSE is
calculated. On comparison of CCFL model with polynomial
model fitted by least square method it is concluded that
the RMSE obtained with the fuzzy logic method is much
lower than that obtained with the least square polynomial
model.

6.5.3. Data Mining. Data mining refers to extracting or
mining knowledge from large amounts of data [71]. Devel-
opments in data mining offer promising approaches for
modelling power curves of wind turbines. Selection of appro-
priate data mining method and algorithm is important to
get accurate, stable, and robust power curve. Data driven
nonparametric models using multilayer perception (MLP),
random forest, M5P, boosting tree, and k-nearest neighbour
(k-NN) algorithms are developed in [1] along with the 4PL
parametric models. Performance of these models for online
monitoring of the power curves was analyzed and the least
square 4PL parametric and k-NN models were found to be of
high fidelity to be used as reference curves for monitoring of
power curves. Control chart approach is used for detecting
the outliers and indicating the abnormal conditions of the
turbine. However in another study [2] the performance of k-
NN was found to be poor. Different data mining algorithms,
namely, MLP, REP tree, M5P tree, bagging tree, and k-
nearest neighbour algorithms, are used to build models for
power prediction and online monitoring in [4]. Principle
component analysis and k-NN algorithm are used for data
reduction and filtering of outliers is done by residual and
control chart approach. In [2] four data mining techniques,
namely, bagging, M5P algorithm, REP tree algorithm, and
M5 rules, were used for constructing the nonparametric
power curve models. Model trees are type of decision trees
with linear regression functions at the leaves and are applied
for modelling the power curves in a few applications [2,
24]. Much detail of these models is not given in these
studies. More information on model trees can be found in
(72, 73].

6.5.4. Adaptive Network-Based Fuzzy Inference System
(ANFIS) Model. Adaptive network-based fuzzy inference
system (ANFIS) is a fuzzy inference system implemented
in the framework of adaptive networks and thus integrates
the best features of fuzzy systems and neural networks [68].
A fuzzy inference system using fuzzy if-then rules is based
on human knowledge and reasoning processes. In ANFIS,
tuning of nonlinear signal relations can be done by con-
structing a set of fuzzy rules with appropriate membership
function parameters tuned in a training phase [67].
Application of ANFIS for wind turbine power curve
monitoring is proposed in [2]. This method of modelling
is compared with earlier best performing methods, namely,
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ANN, CCFL, and k-NN methods, found in the liter-
ature. Effect of including direction of wind and ambient tem-
perature on the prediction error is evaluated. Data for pitch
regulated turbines is used for the modelling.

6.5.5. Joint Probability of Wind Speed and Power. Another
approach of modelling is to consider the joint probability
distribution of power and wind speed instead of considering
the implied function of the two variables. Considering joint
probability of the two variables instead of their individual
probabilities can incorporate measures of uncertainty into
performance estimates [11]. SCADA wind speed and power
measurement data from wind turbines are used to estimate
bivariate probability distribution functions and construct
power curve using copula modelling technique in [10]. The
application of empirical copulas is proposed to approximate
the complex form of dependency between active power and
wind speed. Usefulness of copula analysis for turbine condi-
tion monitoring and early recognition of faults is suggested
in this paper. It is shown that different fault modes produce
different signatures in R, R?, and chi® statistics and can be
used to identify the type of turbine fault.

6.5.6. Wavelet Support Vector Machine. Wavelet analysis is a
technique to analyze the nature of signals and is a promising
tool for nonstationary signals. In support vector machines
the data is mapped into higher-dimensional feature space
via nonlinear mapping. The power curve of WT is used for
wind power prediction in [37]. A novel wavelet support vector
machine based model for wind speed prediction is proposed
in this paper and its performance is found to be effective for
short time prediction.

A number of works in literature also include comparative
analyses of various parametric and nonparametric methods
(2, 8, 57, 74]. Seven different functions have been compared
in [75] for modelling the power curves of six different
turbines. In [53] four models are developed from available
operational power output data. The polynomial regression
based parametric model is used as a benchmark model. Three
nonparametric methods in addition to the above methods,
namely, locally weighted polynomial regression, cubic spline
regression, and a penalized spline regression model, are
proposed in this study.

7. Selection of Modelling Method

A number of models and modelling methodologies have been
proposed in various works for modelling of WT power curve.
The choice of appropriate model and methodology adopted
for a specific application is important and is a difficult task.
The model selection for a particular application is done on
the basis of availability of data, complexity of model, desired
accuracy, and type of turbine and its power curve. On the
basis of reviewed literature the following points are identified
for selection of modelling methodology.

(i) Wind power curve models required for initial wind
resource assessment need handy methods for estima-
tion of energy. Wind power output calculation and
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energy estimation which are done during designing
of wind based systems need a power curve model
with fair degree of accuracy. When only specification
values (cut-in, cut-off, and rated speeds and the
rated power) for a wind turbine are available, the
polynomial models based on presumed shape can
be used. These models can also be used as a handy
tool for calculation of wind turbine output during
design stage of wind farms because of the simplicity of
calculations. When the manufacturers’ curve data is
available it is preferable to fit a polynomial function to
the data as it results in better accuracy. These models
are thus suitable for modelling of single turbines
for predicting power for small systems where fairly
accurate accuracy is desired.

(ii) For power prediction and selection of turbines for
designing of large wind based systems a very good
accuracy is required as oversizing can result in loss
of revenue and undersizing can hamper the reliability
of the system. Accurate prediction is also required for
wind farm operators for energy trading. The 4PL and
5PL functions may therefore be used for these appli-
cations to develop models from the manufacturers’
curve data.

(iii) When the SCADA data from a nearby wind farm is
available and it is desired to assess the power output
of a prospective wind farm with good accuracy having
a group of turbines or when the models is to be used
for online monitoring of curves, it is appropriate to
extract model from SCADA data of the wind farm
with appropriate extrapolations. These models can be
derived using the 4PL and 5PL parametric methods
or one of the nonparametric methods such as ANN
or ANFIS. The models can also incorporate the effect
of other influencing parameters in the models. Choice
of parameters depends upon terrain, wind conditions,
obstacles, correlation of parameters, and so forth. The
copula method of defining the power curve using a
joint probability distribution function of wind speed
and power can be used for condition monitoring
applications.

8. Discussions and Prospects

Various methods of modelling of WT power curve have been
reviewed. Several methods of modelling have been proposed
and used in various studies (Figure 3). A summary of note-
worthy contributions is given in Table 4. The salient features
of these models are summarised in Table 5. The inferences
drawn, the deficiencies, and the suggestions proposed are
given below.

(i) Most of the parametric models used in the literature
use polynomial approximations to model wind power
curve models. These models are mostly used for
predicting power output of turbines for sizing and
cost optimization applications. These models do not
consider the inflection point on the power curve
accurately and can result in large prediction errors.

1

However they are simple to use and can be utilized for
predicting power during initial resource assessment
and designing of small systems if very good accuracy
is not desired. 4PL and 5PL parametric models can
follow the actual shape of the power curve more
accurately. These novel methods can result in reduced
power prediction errors and can be applied for power
and energy assessment during design of large systems
and forecasting of power for energy trading where
good accuracy is a crucial requirement.

(ii) The deterministic methods which use manufacturer’s

data for modelling are suitable for single turbines and
not appropriate for modelling a group of turbines. The
probabilistic methods which consider the variation of
both power and wind speed are suitable for modelling
power curve for a fleet of turbines.

(iii) Power curve models extracted from actual data of

wind farms can incorporate actual conditions at a site
and are suitable for modelling a group of turbines.
These curves can be derived from the available data
by parametric and nonparametric methods.

(iv) The parametric models derived from actual wind

farm data used in the literature include linear seg-
mented and 4PL and 5PL models. Nonparametric
methods used are neural networks, clustering meth-
ods, data mining, ANFIS, and copula models. Data
mining techniques can offer good results as the data
available from the wind farms is voluminous and
frequent updating of data is easier. ANN and ANFIS
models perform well for power prediction and online
monitoring applications. These curves derived from
actual data can help in minimizing power prediction
errors.

(v) The 4PL and data mining technique based models

extracted from actual data of wind farms have been
analyzed in the literature for their application in
online monitoring. It is indicated that the monitoring
of the power curves can be used to detect anomalies
and statistical analysis of the outlier data can give
indications of the specific reason of anomaly. Appli-
cation of 5PL model for online monitoring of curve is
not yet researched.

(vi) The wind power output of a turbine can be affected by

various faults/anomalies or underperformance of the
turbine, such as blade faults and yaw and pitch system
faults. Different types of faults affect the turbine sys-
tem differently and cause the power curve to depart
from the expected value in a different way. Tools
which can characterize and quantify these departures
can aid in early identification of faults. Likely link
between copula statistics and WT faults/anomalies
is indicated in the literature should be investigated.
Further research should also focus on considering the
joint probability distribution of these variables.

(vii) Applications of advanced algorithms for developing

improved parametric and nonparametric methods
need to be explored.
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TaBLE 5: Comparison of modelling methods.
Dat ired . . -
Models foi ;i)ec?;llirrelg Merits Demerits Applications
Pol ial .
n:)o)(lir;;)s ma (i) Do not follow curvature of
. N QT s power curve Suitable for power prediction
(linear, (i) Simplicity .. . . - .
. VoVpVpand B . (ii) Accuracy is poor and energy estimation during
quadratic, . (ii) Limited data required . L
. . . of turbine .. (iii) Sometimes more than one initial resource assessment
binomial, cubic, (iii) Parameter calculation is easy . ..
and Weibull expression are used to and designing of small systems
based) describe the shape of curve
(i) Requires manufacturer’s
power curve data Suitable for power prediction
Manufacturer’s Manufacturer’s (i) Need less data (ii) Fairly accurate and energy estimation during
curve fitting curve (iii) Many expressions may be  initial resource assessment
required for accurate and designing of small systems
representation of curve
Cubic splines Manufacturer’s (i) Exact fit M Var.lance of data is not Power prediction
curve taken into account
Manufacturer’s (i) Consider inflection point on Online monitoring;
curve; hence shape of curve is . further research on power
curve, actual (i) Asymmetry of curve not .. . .
4PL model . represented more accurately than prediction during design and
data of wind . modelled . H
farm the earlier models power forecasting applications
(ii) One expression is required is required
Manufacturer’s (i) Consider inflection point on Further research on power
curve and asymmetry of curve is . o prediction during design and
curve (i) Parameter estimation is . .
5PL model modelled more accurate than the ; power forecasting and online
actual data of - difficult L S
wind farm earlier and 4PL models monitoring applications is
(ii) One expression is required required
Wind power assessment for
. izi fe ing,
Actual dataof (i) Found to be accurate than other . SIZIng apd povwer forecasting
ANN . (i) Black box approach and online monitoring
wind farm methods C .
applications, suitable for
group of turbines
Wind power assessment for
. . izi d fe ting,
. Actual dataof (i) More accurate than the (i) Accuracy depends on the SIzIIg ZC power forecasting
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FIGURE 3: Wind turbine power curve models.

(viii) Appropriate evaluation of the developed models is

a very important requirement in modelling. The
right choice of an evaluation metric is important
and depends on the data and analysis requirements.
Models developed in the literature have used differ-
ent performance metrics. The reviewed articles do
not highlight the reason of preferring a particular
criterion for evaluation. Different statistical measures
can have different interpretations and appropriate
selection of error metrics is crucial for analysis of
the models. Moreover these models will ultimately be
used in wind energy applications; therefore it is not
appropriate to judge their suitability on the basis of
goodness of fit parameters alone, but it should also
be examined how successfully these models can be
employed for the particular applications.

(ix) Power curves of wind turbines provided by the

manufacturers are used for power prediction in most
of the wind energy applications. These curves are

developed under standard test conditions. The IEC
61400-12-1 is the most accepted standard for power
curve measurement of single wind turbines. The wind
conditions at the practical sites can be different from
those at the test site. IEC curve may not always
represent the wind conditions of other sites. Further
research should focus on development of site specific
power curves.

(x) The discrete model prescribed in IEC 61400-12 is
simple, but a large amount of data is required to
develop a reliable model.

(xi) The stochastic model that is proposed in some works
is independent of turbulence intensity but does not
include the effect of other influencing parameters.

(xii) Future works should also include the effect of various
influencing parameters on the power curves.
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9. Conclusions

Accurate modelling of WT power curves is crucial for
successful design and operation of any wind energy conver-
sion system. This paper presented an overview of different
approaches used for modelling of wind turbine power curve.
There are several methods of modelling which have their own
advantages and disadvantages. Polynomial approximation
based power curve models which have been used widely are
simple to use and can be utilized for predicting power during
initial resource assessment and designing of small systems.
The four- and five-parameter logistic function based power
curve models which consider the inflection point on these
curves are promising methods which can help in reduction of
power prediction errors and improved performance in online
monitoring of these curves. Also most of the models in earlier
works are developed from manufacturers curves of wind
turbines. However, the manufacturer supplied curves are
turbine specific and represent their behaviour under standard
test conditions. They can be applied for power prediction
of single turbines and for sites with steady winds. Improved
models are required which can represent the conditions at
large wind farms with a group of turbines installed and sites
having complex terrains. Power curves derived from actual
wind speed and output power data from wind farms can take
into account various site specific factors resulting in better
models. A wind farm’s SCADA data is a valuable resource
which can be exploited for this purpose. Nonparametric
methods of power curve modelling used in the literature
include neural networks, clustering, data mining, ANFIS, and
copula models. The nonparametric methods are suitable for
extracting models from large data. Moreover, these models
can incorporate the effect of parameters other than wind
speed on the power curves more easily than the parametric
models. Literature survey reveals that ANN and ANFIS
nonparametric methods perform well among other models
for power prediction and online monitoring applications.
Further research should focus on development of site specific
power curves. Future models should be able to minimize the
prediction errors and should be suitable for online monitor-
ing of turbines. Methods which can quantify the power curve
departures from expected values for identification of turbine
faults should be explored. As the power output of wind tur-
bines is strongly dependent on wind speed of a potential wind
farm site, selection of appropriate wind speed model along
with the power curve model is an important requirement
for accurate prediction of wind farm output. Different wind
speed modelling techniques have also been reviewed briefly
in this paper. It can be concluded that selection of appropriate
model, solution technique, and proper algorithms for a
particular application is important for efficient modelling
and can contribute significantly to developing reliable and
efficient wind energy based power system.
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Nomenclature

Power output of wind turbine (W)
Wind speed (m/s)

: Area swept by the rotor blades (m?)
Air density (kg/m’)
Tip speed ratio
Pitch angle (degree)

: Power coeflicient of wind turbine
Shape parameter Weibull PDF
Scale parameter Weibull PDF
Cut-in wind speed of turbine (m/s)

>3 T
€

8 OB ET

w

=
N

: Rated wind speed of turbine (m/s)
: Cut-oft (or furling) wind speed of turbine
(m/s)
: Rated power of wind turbine (W)
1, The efficiency of WTG and the
corresponding converter
0: Vector parameter of parametric models.
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