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Recent clinical work has implicated network structure as critically important in the initiation

of seizures in people with idiopathic generalized epilepsies. In line with this idea, functional

networks derived from the electroencephalogram (EEG) at rest have been shown to be sig-

nificantly different in people with generalized epilepsy compared to controls. In particular,

the mean node degree of networks from the epilepsy cohort was found to be statisti-

cally significantly higher than those of controls. However, the mechanisms by which these

network differences can support recurrent transitions into seizures remain unclear. In this

study, we use a computational model of the transition into seizure dynamics to explore the

dynamic consequences of these differences in functional networks. We demonstrate that

networks with higher mean node degree are more prone to generating seizure dynamics

in the model and therefore suggest a mechanism by which increased mean node degree

of brain networks can cause heightened ictogenicity.

Keywords: network dynamics, epilepsy, dynamical systems, graph theory, EEG

INTRODUCTION

Epilepsy is a serious neurological disorder characterized by the

propensity of the brain to generate spontaneous and recurrent

seizures. Traditionally, seizures have been defined as “a tran-

sient occurrence of signs and/or symptoms due to abnormal,

excessive, or synchronous neural activity in the brain” (1). Very

recently, the international league against epilepsy (ILAE) has fur-

ther refined the definition of epilepsy (2) whereby an individual is

now proposed to have epilepsy if one of the following conditions

is met:

1. Experiencing two unprovoked seizures more than 24 h apart.

2. Experiencing a single unprovoked (or reflex) seizure with a

probability of further seizures similar to the general risk of

recurrence (~60%) if two unprovoked seizures had occurred.

3. An epilepsy syndrome is diagnosed.

It is important to note that epilepsy is a general term to cap-

ture over forty, often diverse, syndromes. However, in each case, the

generation of clinical signs and symptoms are presumed to require

large regions of the brain to be subject to abnormal dynamics and

the initiation, recruitment, and spreading of such dynamics is facil-

itated by the network of synaptic connections between neurons

and between regions of the brain. This is reflected in the recogni-

tion of the ILAE that many epilepsy syndromes are associated with

disruptions to either global or local brain networks (3).

However, a precise definition of global and local brain net-

works is surprisingly non-trivial. In the global case, one can

consider large-scale structural networks as defined by white matter

tracts of axons that connect distal brain regions. These networks

can be estimated non-invasively using diffusion imaging. An

alternative is to examine the statistical inter-relationship between

time series recorded at different locations in the brain, thus, defin-

ing a “functional” rather than a structural network. While to

some extent, functional networks are constrained by the struc-

tural architecture of the brain, they also carry contributions from

the dynamics of brain activity (4). We recently studied func-

tional networks derived from scalp electroencephalogram (EEG)

at rest and demonstrated significant differences between func-

tional networks of people with idiopathic generalized epilepsy

(IGE), their first-degree relatives, and healthy controls (5). Sig-

nificant differences across a number of graph theory measures

highlighted abnormalities in both the epilepsy cohort and their

first-degree relatives. The most significant of these was that the

mean node degree of networks inferred from both people with

IGE and their relatives was much greater than that of controls, but

that no differences were found between patients and their rela-

tives. This observation suggests that differences between patients

and controls cannot be attributed to medication, and thus, altered

functional networks are associated with a propensity to gener-

ate recurrent seizures (i.e., epilepsy). However, abnormalities in

these networks alone are not sufficient to generate seizures (since

they are present in the relatives of people with IGE, whom them-

selves are seizures free) suggesting that the interplay between

functional network structure and the dynamics supported by

them must play an important role in seizure generating capability

(ictogenicity).

The use of mathematical modeling to attempt to address this

and related questions has grown substantially in the past few

years. Particularly at the macroscopic scale, where the average
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response of a mass of neurons is represented by systems of dif-

ferential equations, several studies have derived insight into the

potential dynamic mechanisms that enable seizures associated

with spike-wave discharges to emerge spontaneously from back-

ground activity (6–10). Lopes da Silva et al. (11) proposed a

scenario in which the spontaneous transitions between back-

ground activity and seizure states arise due to bistability, i.e.,

that the background state and seizure state “coexist” and ran-

dom inputs can perturb the brain from one state to another.

This can be interpreted in terms of either state being able to

be reached without a change in underlying constants or slowly

varying parameters of the system. This type of model was used

to demonstrate that the emergence of either focal or generalized

seizure like events could occur due to either specific network dis-

ruptions or to alterations in excitability within apparently normal

network structures (12).

Motivated by a desire to understand the fundamental mecha-

nisms of seizure transitions more clearly, the concept of bistability

has formed the basis of more abstract models of the brain, for

example, the so-called Z6 model (13), which provides a phenom-

enological representation of the critical features of more realistic

physiological models. These abstract models, which we might con-

sider to represent a normal form of the more detailed physiological

representations, have recently been extended to study the role

that explicit network structures have in facilitating transitions into

seizure activity (14, 15).

Here, we build on this previous modeling work to further

understand the role of network topology in the generation of

transitions into seizure dynamics. In order to understand the

potential consequence on ictogenecity of the differences in net-

work structure highlighted by Chowdhury et al. (5), we artificially

construct networks that preserve the values of mean node degree

for each subject. When these networks are used as the connectivity

structure for a bistable dynamic network model, we observe that

networks with higher mean node degree transition more read-

ily to a seizure state. We therefore suggest a mechanism by which

increased mean node degree of brain networks can cause increased

ictogenicity.

MATERIALS AND METHODS

MATHEMATICAL MODEL

Since we focus on the role that network structure plays in tran-

sitions between background and seizure states, we do not con-

sider a detailed model of each node in a network. Instead, the

foundation of our present work is a network of abstract mod-

els that are designed to capture a bistable transition between a

“background” state and a high-amplitude “seizure” state [see, e.g.,

Kalitzin et al. (16)]:

d

dt
Z =

(

a|Z |4 + b|Z |2 + C
)

Z + ε (t ) , (1)

where Z = x + iy is a complex variable (function of time); (a, b)

are real constant coefficients, and C = c + iω is a constant com-

plex coefficient. The term ε(t ) is the complex input to the system,

which incorporates a white noise component to mimic the effects

of exogenous fluctuations.

A network model, where each node has as its basis the system

described in Eq. 1 is then constructed:

d

dt
Zi =

(

a|Zi |
4 + b|Zi |

2 + c + iω
)

Zi +

N
∑

j=1

Gij Zj + εi (t ) (2)

Here, we consider the dynamics of N units, with linear interac-

tion through an adjacency matrix G, where white noise is generated

independently for each node within the network. In the current

work, G is scaled by a factor of 0.1 to preserve transitions between

states.

Model parameters are based upon our previous work (16) so

that each node lies within the bistable regime. This allows tran-

sitions to occur between the steady state (SS), and limit cycle

(LC) attractors, where the LC is considered to represent seizure

dynamics.

CLINICAL EEG RECORDINGS AND CONSTRUCTION OF FUNCTIONAL

NETWORKS

The network measures that form the basis of this study were

inferred from clinical EEG recordings as described in Ref. (5).

In brief, these recordings consisted of 19 channel scalp EEG

obtained using standard 10–20 placing with an average reference,

and sampled at 256 Hz. The recordings were band-passed between

1 and 70 Hz, and notch-filtered between 48 and 52 Hz to exclude

mains frequency interference. The subjects from whom the EEG

recordings were taken are divided into two main groups: 35 peo-

ple with heterogeneous IGE and 40 healthy controls. From each

EEG recording, one artifact-free, eyes-closed, 20 s segment was

extracted representing a“resting state”or“background”EEG activ-

ity. Chowdhury et al. (5) found significant differences between

controls and patients in the 6 and 9 Hz“low alpha”frequency band,

and we therefore focus on that band here. The Hilbert transform

was applied to the band-pass filtered EEG to generate instanta-

neous phase and amplitude estimates. For each electrode pair, the

phase-locking factor [PLF, also known as phase-locking value (17)

or mean phase coherence (18)] was calculated as follows:

C1 = cij =
1

Ns

∣

∣

∣

∣

∣

Ns
∑

k=1

e i∆φij (tk )

∣

∣

∣

∣

∣

(3)

where ∆φij(tk) is the instantaneous phase difference between sig-

nals i and j at the time point tk. The ∆φij(tk) were reconstructed

from the original signals using the Hilbert transform.

This yields a value between 0 and 1 reflecting the strength of

synchronous activity between each pair of signals. Functional net-

works were then constructed using electrode locations as nodes

and PLF values as connectivity weights. Since the PLF measure

is symmetrical, the resulting functional connectivity networks are

undirected.

NETWORK MEASURES

The derived functional networks were quantified using the follow-

ing graph theory measures: mean degree (MD), degree variance

(DV), and local clustering coefficient (CC). The degree of a node

is defined as the sum of the weights of the edges incident to that
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particular node. The MD and DV are defined as the average and the

variance, respectively, of degrees over all nodes in the network. The

local CC of a node in a network measures how close its neighbors

are to a complete network (graph).

GENERATION OF ARTIFICIAL NETWORKS

We note that the networks used for connectivity in the model in

this study were not directly inferred from patient data, rather “sur-

rogate” networks were prepared, which preserved properties of the

networks studied in Chowdhury et al. (5). Each matrix was orig-

inally based on the functional connectivity matrix inferred from

the aforementioned EEG data. An undirected binary network with

the equivalent value of MD as the original matrix was constructed

by applying a set of thresholds to the original, and choosing the

threshold for which MD was preserved. Further a computational

algorithm was applied (19) in order to randomize the matrix, pre-

serving the degree vector and therefore the MD value. In brief,

the algorithm randomly swaps nodes and recalculates the degree

vector, checking for disparity. For each original matrix, we con-

structed 30 artificial random binary matrices with the same MD

value as the original weighted connectivity matrix. We verified that

the spectrum of the artificial patient and control derived networks

was different, confirming a difference in topology of the artificial

networks.

MEASURE OF BRAIN NETWORK ICTOGENICITY

We measured the “ictogenicity” of each network by performing

simulations using the network as the connectivity matrix for the

mathematical model. Since we calculated this measure of icto-

genicity from model simulations, we could define an appropriate

model state that captured transitions between the non-seizure and

seizure dynamics of the model. In the current work, the model

seizure state was defined as a solution with local maxima and

minima having magnitude >0.5.

For each simulation, of the model Eq. 2, we calculated the time

that each node spent in a LC, normalized to the simulation time.

Averaging over all the nodes, we obtain the probability of any node

to be in a LC and we refer to this probability as the brain network

ictogenicity (BNI).

STATISTICAL ANALYSIS

For comparison of quantitative network measures between groups,

we used a non-parametric Kruskal–Wallis one-way ANOVA test.

Results are declared significant for p < 0.05. For post hoc pairwise

comparisons between groups, a Bonferroni corrected multiple

comparison test was performed with significance level of 0.05.

RESULTS

FUNCTIONAL NETWORKS

Chowdhury et al. (5) reported that the MD of functional networks

derived from people with epilepsy was higher than controls. In

Figure 1, we show the distribution of MD for both epilepsy and

control subjects included in that study. In this study, we focus on

the dynamic consequences of changes in node degree independent

of specific network topology and connectivity weights. We remove

a layer of complexity from these networks by transforming them

into binary (unweighted) networks, while preserving the MD of

networks extracted from the EEG data. Figure 1 demonstrates the

match in value of mean node degree between the original net-

works and the artificially derived alternatives (see Materials and

Methods).

Since the MD is accurately preserved in our artificial networks,

the significant difference in MD between patients and controls is

also maintained, as shown in Figure 2. The use of binary, rather

than weighted networks leads our artificial networks to have higher

DV than the original networks, as demonstrated in Figures 2B,E.

A further reason for this difference is that the networks in Chowd-

hury et al. (5) were normalized to the DV value of 500 surrogate

random networks, while in the present case of binary networks

such normalization is not possible. However, Figures 2B,E show

that a significant difference in DV between epilepsy and control

subject derived networks is preserved.

Figures 2C,F demonstrate a lack of significant difference in

CC between artificial “control” and “epilepsy” networks, in con-

trast to the EEG derived networks. This demonstrates that our

artificially generated networks have removed some specific topo-

logical features of the original data, including those related to

clustering.

FIGURE 1 | Mean node degree values for each subject (blue dots) and each corresponding artificially constructed binary network (red dots).
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FIGURE 2 | Statistical analysis of the differences between the group

mean values of people with epilepsy and healthy controls based on

the MD, DV, and CC measures of the connectivity matrices. (A–C)

represent data from original networks, whereas (D–F) represent data for

artificial networks. (A,D) show MD, (B,E) show DV, and (C,F) show CC.

The y -axis of each panel separates the two groups (control and patients),

and the x -axis represents the group values of the corresponding network

measure. The results are color coded blue for the control group and red

for the epilepsy group (except for panel F, in which the epilepsy group is

colored grey to indicate a lack of statistically significant difference). The

horizontal line and the circle show the variance and the mean value of the

corresponding network measure. The mean values are considered as

statistically significant different if there is no overlap between the lines

within a panel.

MODELING RESULTS

For each value of MD extracted from the epilepsy and control

cohorts, 30 artificial networks were generated, preserving the MD.

These networks were used as the connectivity scheme in the

bistable model as described in Section “Materials and Methods.”

For all simulations of our network model Eq. 2, we fixed model

parameters corresponding to the bistable phase space of a single

node {a, b, c, ω} = {−1, 2, −0.9, 1 + δω}, where δω is a random

number distributed equally in the interval [−0.2, 0.2]. This choice

is made to avoid artificial phase locking because of the equal phase

velocities within our multi-unit configuration. For each network,

30 simulations were performed with random initial conditions.

The resulting dynamics were quantified according to the BNI mea-

sure described in Section “Materials and Methods.”An example of

the calculation of BNI and the effect of changes in node degree is

given in Figure 3.

Four different kinds of dynamics can be seen in Figure 3. In

Figure 3A, the model spends a large portion of the simulation time

in the “background” attractor before transitioning to the seizure

state. Thus, the BNI measurement is low. In contrast, the trajec-

tory of the model in Figures 3B–D moves more quickly into the

“seizure” attractor, and so BNI is higher. In addition, in Figure 3C,

one of the nodes has not transitioned to the trajectory correspond-

ing to the LC attractor in a single node. Rather, this node is being

driven around the corresponding fixed point and therefore the

BNI in this case is lower. It is clear that in this model, BNI provides

a measure of how quickly the trajectory of the system performs an

“escape” from the background to the seizure attractor.

Figure 4 shows BNI calculated from all simulations for artificial

networks derived from the patient and control networks. It can be

seen that BNI is significantly higher in the patient versus the con-

trol networks, and thus, networks with an increased node degree

are shown to have a greater tendency toward seizure activity in this

model.

DISCUSSION

In this study, we used mathematical modeling to investigate the

link between the structure of brain networks and their propensity

to generate seizure dynamics. Building upon previous studies, we

used human EEG data to generate artificial networks preserving

MD values, and thus, “isolating” this property for investigation.

When networks with high MD were used as connectivity matrices

in a model of seizure transitions, we observed significantly more

time in the seizure state, as compared to networks with lower MD.

We therefore provide evidence for a link between certain prop-

erties of network structure (here the MD) and the potential to

generate seizure dynamics.

From the network perspective, MD and DV reflect how well

connected the nodes within a graph are. Thus, networks with high

MD and low DV would tend toward being fully connected, whereas
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FIGURE 3 |Trajectories of four simulations with the Z6 model over

different artificially created networks. The figure contains (A–D) four

simulations with different BNI values (as indicated). The x -axis of each panel

represents the simulation time (arbitrary units) and the y -axis represents the

amplitude of the simulated signal. In each case, all 19 channels are overlaid in

different colors.

networks with high MD and high DV will have an increased num-

ber of “hub-like” nodes. Our randomized networks in the patient

group displayed higher MD and DV than controls and there-

fore fall predominantly into this latter category. This suggests that

“hub-like” nodes can more easily drive the rest of the network into

the seizure state if they themselves enter that state.

Previous modeling studies in the context of temporal lobe

seizures and the hippocampus have suggested a role for hub-like

connectivity in generating hyper-excitability (20). Such structures

have also been shown to be critical for dementia (21), a condition

with which epilepsy is comorbid (22), as well as other patholo-

gies of the brain (23). In a related study, Clemens et al. (24)

performed a resting EEG derived, functional connectivity net-

work analysis of people with juvenile myoclonic epilepsy (JME)

and control subjects. They found no statistically significant dif-

ferences in measures of local and global efficiency of the derived

networks, where “efficiency” relates to the length of the shortest

paths between nodes. We should therefore aim to elucidate exactly

which topological features of networks can contribute to the gen-

eration of seizure dynamics. In future work, we will explore in

more detail the dynamic role of centrality, efficiency, and other

features of network topology (25) on seizure generation in our

model.

The model employed in this study provides an abstract rep-

resentation of the epileptic brain. It preserves the potential for

transitions between “background” and “seizure” dynamics as pos-

tulated in the bistable perspective of generalized seizures (11). This

simplified approach allows one to focus upon the role that net-

work structure plays in the propensity for dynamic transitions.

Indeed, this approach has been used with success in terms of

estimating transition frequencies (26), exploring the key dynamic

components for intermittent transitions (15) and examining the

role of specific connection topologies in small networks (14). An

interesting extension to the current work would be to assess the

interplay between intrinsic node dynamics and network structure.

This could be achieved by using abstract models with richer bifur-

cation structures (15, 27), or by employing neural mass models of

specific epileptiform dynamics (8, 10, 28, 29).

We built artificial networks preserving MD so as to focus on

the implications of changes in this property, with respect to the

process of transitions from SS to LC. Precise analysis of the model

Eq. 2 leads to the conclusion that the behavior of the system in

these terms may depend on several factors such as (a) noise level,

(b) initial conditions, (c) connection strength, and (d) network

topology. As the main goal was to examine the influence of net-

work topology, we removed the influence of all other factors by

setting appropriate noise levels, randomly sampling initial condi-

tions, and using binary instead of weighted networks. In future

work, we will consider the effects of adding larger variance noise

into the model, in order to facilitate recurrent transitions. In addi-

tion, we can expand upon the approach by analyzing weighted

networks. We envisage that the addition of these kinds of het-

erogeneities will lead to a richer repertoire of model dynamics,

and therefore, might be useful in further stratifying the effect of

network topology on dynamic transitions.

Benjamin et al. (14) examined escape times into seizure dynam-

ics in a similar model applied to networks with a small number of

nodes. In that case, it was possible to derive analytic expressions
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FIGURE 4 | Statistical analysis of the significant differences between

control and patient groups based on the mean BNI measure. The y -axis

separates the two groups, while the x -axis represents the mean BNI value.

The horizontal line and the circle represent the variance and the mean value

of BNI, respectively.

for escape times depending on the topology of networks. How-

ever, the complexity of this problem grows significantly as larger

networks are considered. Here, in order to link directly with clini-

cal data, we used a model with 19 nodes to represent EEG sensor

space. Rather than focusing on explicit network structure, we were

able to correlate changes in BNI with properties of the network,

e.g., the MD. This provides an avenue to explore the seizure gener-

ating potential of more complex networks and could be extended

in future work to include other graph theoretic measures, such as

the CC, which has also been shown to vary significantly between

people with IGE and controls (5, 27).

We used functional connectivity as the basis for the networks

applied to our model, reflecting the nature of the available clin-

ical data. This approach means that our model is not a direct

representation of brain regions interacting over large scales via

axonal connections, though such a model can be built in a patient

specific way using diffusion data (29, 30). Rather, our model pro-

vides an abstract representation of the resting state of the brain,

as projected onto the level of EEG. Networks derived from this

projection are thought to be constrained by structural connectiv-

ity, though they are not a direct reflection of it (4). Functional

networks by definition represent nodes that are evolving similarly,

and therefore, capture a potentially important means by which

information can be exchanged between brain regions (31). We

should therefore consider that the “connections” of such networks

can facilitate the emergence of pathological dynamics through

synchronization, and we demonstrate here that this can lead to

greater seizure generating potential in the epileptic brain.

On the other hand, functional networks can be viewed more

simply as transformations of time series data recorded from sub-

jects, i.e., as mappings from multivariate time series onto a static

topological network that reflects a combination of structural and

dynamic contributions for that instance of time. From this per-

spective, our modeling approach gives us a tool with which to

interrogate data from people with epilepsy and compare these

with control subjects. We therefore aim to explore further whether

properties of the BNI derived from functional networks can be

used as a marker in the clinical setting. We postulate that in

some instances BNI may be able to distinguish between networks

that appear similar when examined by traditional graph theoretic

measures.
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