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ABSTRACT

It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach

number exceeds a critical value M >
√

5. The reason is that for M �
√

5 the work done to compress the flow in
a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations
without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the
unshocked medium, i.e., for low plasma beta, the resistivity of the magnetic field makes it even more difficult to
fulfill the energetic requirements for the formation of shock with an accelerated particle precursor and associated
compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a
purely perpendicular magnetic field configuration with plasma beta β = 0, which gives a minimum Mach number
of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays,
indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We
discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks,
and shocks in clusters of galaxies.

Key words: acceleration of particles – galaxies: clusters: intracluster medium – shock waves – Sun: coronal mass
ejections (CMEs) – Sun: particle emission
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1. INTRODUCTION

Collisionless shock waves occur in a wide variety of astro-
physical settings, and involve a wide variety of length and en-
ergy scales. Examples are, on the scales of the solar system,
the Earth’ bow shock, and the solar wind termination shock; on
parsec scales, supernova remnants shocks; and on megaparsec
scales, the shocks in clusters of galaxies.

In many cases collisionless shocks are associated with particle
acceleration. It is, for example, generally thought that the origin
of Galactic cosmic rays, with proton energies up to 3 × 1015 eV,
are high-Mach-number supernova remnant shocks (Helder et al.
2012), whereas the ultra-high energy cosmic rays, up to 1020 eV,
are usually associated with relativistic shock waves caused
by active galactic nuclei, or gamma-ray bursts (Kotera &
Olinto 2011).

Low Mach number shocks are also associated with particle
acceleration, but not always. For example, some shocks driven
by coronal mass ejections (CMEs), which have magnetosonic
Mach numbers Mms � 4, are accompanied by Type II radio burst
(e.g., Gopalswamy et al. 2010), whereas others are not. Type II
radio bursts are often considered a sign for particle acceleration.
The solar wind termination shock has a similarly low Mach
number, of around 2.5 (Lee et al. 2009), and is associated
with particle acceleration (e.g., Florinski et al. 2009). On a
much larger scale, some shocks in clusters of galaxies result
in so-called radio relics, elongated structures that emit radio
synchrotron emission (e.g., van Weeren et al. 2010). But not all
cluster shocks identified in X-rays appear to be accompanied
by radio emission. The typical shock velocities in clusters of
galaxies are of the order of a few 1000 km s−1. But due to the
high temperatures, and hence high sounds speeds, of the plasma

in which the shocks propagate, the Mach numbers are modest,
with Mms � 3 (Markevitch & Vikhlinin 2007).

In many cases particle acceleration by shocks is attributed
to diffusive shock acceleration (Malkov & Drury 2001, for a
review). According to the diffusive shock acceleration theory,
elastic scattering of energetic, charged particles on both sides of
the shock causes particles to cross the shock front repeatedly.
Each shock crossing results in an average increase in momentum
of order ∆p/p ∼ Vs/c, with Vs the shock velocity, and c the
speed of light. The scattering of the particles is caused by
magnetic field fluctuations/plasma waves. The interaction of
these particles with the magnetic field fluctuations causes the
accelerated particles to exert a pressure on the upstream plasma
(i.e., the unshocked medium), which results in the formation of
a shock precursor that compresses and slows down the plasma
before it enters the actual shock (which is labeled subshock,
in order to distinguish it from the total shock structure). This
back-reaction of the shock-accelerated particles on the plasma
flow has been observed in situ at the solar termination shock, as
measured by Voyager 2 (Florinski et al. 2009).

The purpose of this paper is to show that particle acceler-
ation, under general assumptions, requires a minimum Mach

number of M =
√

5, and somewhat higher if magnetic fields
are dynamically important (i.e., for low plasma betas, with
β ≡ 8πnkBT/B2 < 1).

Note that the critical Mach number discussed here is distinct
from the so-called first critical Mach number, Mc, which is often
mentioned in the literature on collisionless shocks (Marshall
1955; Edmiston & Kennel 1984; Treumann 2009). The first
critical Mach number concerns the details of the shock formation
process itself in the presence of magnetic fields. The magnetic
pressure component prevents shocks with Mach numbers lower
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than the critical Mach number to heat the post-shock plasma to
temperature where the flow-speed is subsonic. Similar critical
Mach numbers exist for shocks moving through a medium with
pre-existing cosmic rays (Becker & Kazanas 2001).

The critical Mach number discussed in this paper concerns
the overall thermodynamic properties of shocks with a precursor
of accelerated particles. In order to explain it, we draw upon the
two-fluid model of Vink et al. (2010). In this paper it was already
noted that particle acceleration seemed impossible for low Mach
numbers, but the exact Mach number was not given. In addition,
we derive here the critical Mach number for acceleration for
perpendicular shocks with β = 0, and discuss the more peculiar
case when there are pre-existing cosmic rays.

2. A MINIMUM MACH NUMBER FOR DIFFUSIVE
SHOCK ACCELERATION

2.1. The Rankine–Hugoniot Relations Extended
with a Cosmic-Ray Component

Shock jump conditions are governed by the so-called
Rankine–Hugoniot relations (e.g., Zel’dovich & Raizer 1966;
Tidman & Krall 1971), which describe the state of the media
on both sides of the shock, based on the equation of state and
the conservation of mass-, momentum, and energy-flux. These
equations assume, therefore, steady state conditions.

Nonlinear particle acceleration (Malkov & Drury 2001),
however, may change shock-jump conditions in astrophysical
shocks, as the pressure of particles in the shock precursor
compresses the plasma flowing into the shock, and because
the highest energy particles may escape the shock region.
The escape of the highest energy particles does hardly affect
mass- and momentum-flux conservation across the whole shock
region, since only a very small fraction of the particles escape,
but it does violate energy-flux conservation, as the escaping
particles are typically particles that have gained considerable
energy (Berezhko & Ellison 1999). Some of the physics of
nonlinear particle acceleration can be captured by treating
the accelerated particles as a separate component, which is
referred to as a two-fluid model (e.g., Drury & Voelk 1981).
The accelerated particles contribute to the pressure on both
sides of the subshock. Since the length scale associated with
the subshock is small compared to gradient over which the
accelerated particle pressure changes, the accelerated particles
do not change the properties of the subshock directly, as
the pressures of the accelerated particles just upstream and
downstream of the shock are equal. However, the pressure of
the accelerated particles upstream of the subshock results in a
compression and slowing down of the plasma flowing into the
subshock. As a result the Mach number just upstream of the
subshock is smaller than the overall Mach number as measured
far upstream.

Vink et al. (2010) showed that one can incorporate an acceler-
ated particle (cosmic-ray) component in the Rankine–Hugoniot
relations by evaluating the Rankine–Hugoniot relations in three
distinct regions: (0) the (undisturbed) far upstream medium,
(1) in the shock precursor, just upstream of the subshock, and
(2) downstream of the subshock. The solutions allow for en-
ergy to escape from the system, which in kinetic models for
cosmic-ray acceleration is either a result of having particles
remove once they reach a certain maximum momentum (e.g.,
Blasi et al. 2005), or by imposing a maximum length scale to
which particles are allowed to diffuse upstream (Reville et al.
2009).

In Appendix A the results of the extended Rankine–Hugoniot
relations of Vink et al. (2010) are summarized and extended by
allowing also for pre-existing cosmic-rays. The input parameters
of the extended Rankine–Hugoniot relations are the upstream
gas Mach number (Mg,0) and the fractional pressure upstream
in cosmic rays, w0 = Pcr,0/Ptot (Equation (A1)). For the
cosmic-ray component one has to assume an adiabatic index,
4/3 � γcr � 5/3. The extended Rankine–Hugoniot relations
give the downstream pressure contribution of cosmic rays, w2

(Equation (A11)), as a function of the cosmic-ray precursor
compression ratio, χprec (Equation (A2)). Note that like more
elaborate cosmic-ray acceleration models (e.g., Caprioli et al.
2010, for an overview), and the classical two-fluid models
(Drury & Voelk 1981; Becker & Kazanas 2001), the extended
Rankine–Hugoniot relations assume a steady state situation.

2.2. A Minimum Mach Number for Acceleration

The gas flowing into the subshocks behaves like a standard,
classical shock, but due to compression in the cosmic-ray
precursor, the subshock Mach number, Mg,1, is lower than the
upstream Mach number Mg,0. The compression ratio at the
subshock is given by Equation (A12) in Appendix A. Since
the basic parameter of the extended Rankine–Hugoniot relation
is the precursor compression ratio χprec the total compression
ratio for a cosmic-ray accelerating shock is

χtot = χprecχsub =
(γg + 1)M2

g,0χ
−γg

prec

(γg − 1)M2
g,0χ

−(γg+1)
prec + 2

. (1)

According to Equation (1) the total compression ratio can be
larger than that allowed by standard shock jump relation3 as long
as Equation (A13) is obeyed, with ǫ > 0 (see also Berezhko &
Ellison 1999).

The maximum value for the compression ratio can be found
by solving dχtot/dχprec = 0, with χtot given by Equation (1).
This shows that the maximum total compression ratio occurs
for

χprec =
(

(γg − 1)

2γg

M2
g,0

)1/(γg+1)

=
(

1

5
M2

g,0

)3/8

, (2)

with γg = 5/3. By inserting Equation (2) in Equation (1) one
finds the corresponding sub-shock compression ratio

χsub =
γg

γg − 1
=

5

2
, (3)

which, according to Equation (A12) corresponds to Mg,1 =
√

5.
This result was obtained by Vink et al. (2010), but an

important aspect for shocks without pre-existing cosmic-rays
(i.e., w0 = 0) was not recognized: Equation (2) indicates that

the solution becomes unphysical for Mg,0 <
√

5 as it requires a
rarefaction instead of a compression in the cosmic-ray precursor

(χprec < 1). So below Mg,0 <
√

5 the only allowed solution is
one in which there is no cosmic-ray precursor, and for which the
compression ratio is given by the standard Rankine–Hugoniot
relations.

We refer to this critical Mach number as Macc, in order
to distinguish it from the first critical Mach number, Mc

(Edmiston & Kennel 1984), and the related critical Mach

3 See Equation (A12), but in this case changing the subscript “sub” by “tot.”
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Figure 1. Left panel: the curves represent the solutions of the energy-flux escape parameter ǫ as a function of the precursor compression ratio χprec, for various values

of the overall Mach number, with increments of ∆Mg,0 = 0.25. The slopes at χprec = 1 are negative for Mg,0 <
√

5, resulting in negative values of ǫ, which is

unphysical. For Mg,0 >
√

5 one does obtain physical solutions, but energy escape is required (ǫ > 0). Right panel: the behavior of ǫ as a function of total shock
compression χtot (Equation (A15)) for the same Mach numbers as in the left panel. The total, light gray, curve shows a wide range of shock compression ratios, but only
values ǫ � 0 correspond to potentially physical solutions. The colored curves are solutions to the two-fluid model of Vink et al. (2010), with the unphysical solutions
(χprec < 1) indicated with a dotted line. The highest values of χtot of the colored lines correspond to the maximum compression ratios as given by Equation (1). The
compression ratios with ǫ = 0 correspond to the standard Rankine–Hugoniot solutions.

(A color version of this figure is available in the online journal.)

numbers investigated by Becker & Kazanas (2001). As we
will describe below, for shocks moving through a magnetized
medium (Section 2.4), or for a (partially) relativistic cosmic-

ray population (γcr < 5/3, Section 2.3) Macc >
√

5. However,
as we will discuss in Section 2.5, a population of pre-existing
cosmic rays, may result in cosmic-ray acceleration for values
lower than Macc.

The maximum value for the energy flux escape, ǫ, is deter-
mined by solving dǫ/dχprec = (dǫ/dχtot)(dχtot/dχprec) = 0.
For γcr = 5/3 this equation has two possible solutions. One cor-
responds to a minimum of ǫ, with ǫ < 0. This minimum does
not have a physical meaning. The other solution corresponds to
dχtot/dχprec = 0, and is associated with a maximum value of ǫ,
and hence with the maximum of χtot (Equation (2)).

Figure 1 illustrates the properties of the energy flux equation

for shocks with Mach numbers around Mg,0 =
√

5 and
γcr = 5/3, indicating that the accelerated particles are non-

relativistic. The panel on the left shows that for Mg,0 <
√

5 and
χprec > 1 one obtains ǫ < 0, which is unphysical. A solution
with ǫ = 0 is always possible, and occurs for χprec = 1.
This solution corresponds to the standard Rankine–Hugoniot
relations.

The right-hand panel of Figure 1 shows the behavior of
the energy escape (ǫ, Equation (A15)) as a function of total
compression ratio. Note that this figure does not rely on the
details of a two-fluid model, as only the total compression
ratio is used, but an effective adiabatic index γ needs to be
specified. The figure shows that higher compression ratios than
the standard shock-jump conditions are allowed, but only if
there is energy flux escape, i.e., ǫ > 0. But in the context of
a system with precursor compression and a subshock, there is
a restriction on the total compression ratios that are possible,
namely χprec � 1. As a consequence, physical solutions
with higher compression ratios than the standard shock jump

conditions are only possible for Mg,0 >
√

5. These physical
solutions are indicated by solid colored lines.

Figure 2. Solutions to two-fluid model of Vink et al. (2010). The values for the
Mach number correspond to those in Figure 1, except that the orange curves

correspond to Mg,0 =
√

5 + 0.001, in order to show the behavior very close the
critical Mach number.

(A color version of this figure is available in the online journal.)

Figure 2 shows the allowed combinations of the fractional
downstream cosmic-ray pressure w2 and ǫ. It illustrates that
there is a dramatic change in the maximum possible particle
acceleration efficiency going from a Mach number around

Mg,0 = 2.5 to a Mach number very close to Macc =
√

5.
There are other potential effects that may shift the limiting

Mach number to higher values. In Section 2.4, the effects
of plasma-beta is treated. But another factor is non-adiabatic
heating in the precursor. Up to now it was assumed that the
accelerated particles compress the upstream plasma, and heats
it only adiabatically. However, additional heating may occur in
the precursor, for example through Coulomb collisions, wave
damping, or through friction with neutral atoms (Ohira &
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Figure 3. Same as Figure 2, but now for an accelerated particle component
characterized by γcr = 4/3, for logarithmically spaced intervals of the Mach
number.

(A color version of this figure is available in the online journal.)

Takahara 2010; Raymond et al. 2011; Morlino et al. 2013).
This leads to higher values of the critical Mach number. This
can be easily seen by replacing Equation (A4) by

M2
g,1 =

M2
g,0χ

−(γg+1)
prec

(1 + α)
, (4)

with α � 0 a parameter that parameterizes the additional heating
as an additional fraction of the adiabatic heating, resulting in
a lower subshock Mach number. It can be easily seen that
introducing the additional factor 1/(1+α) in Equation (1) results

in increasing Macc by a factor
√

1 + α.

2.3. The Minimum Mach Number for Acceleration to a
Relativistically Dominated Cosmic-Ray Population

In the previous section the limit for particle acceleration was
obtained by assuming that the accelerated particles are non-
relativistic (γcr = 5/3). This gives the lowest limit on particle
acceleration one can obtain. If instead the accelerated particles
are dominated by relativistic particles (γcr = 4/3), Macc needs
to be much higher. Deriving the value for Macc is much more

difficult as the overall equation of state of the two-fluid plasma
depends now on the mixture of thermal particles and accelerated
particles. Instead we give here the numerical value we obtained,
Macc = 5.882.

Figure 3 shows the behavior of energy escape and downstream
cosmic-ray pressure for Mg,0 > Macc = 5.882. It illustrates a
peculiar feature of the solutions for γcr = 4/3 as compared
γcr = 5/3. In the latter case (Figure 2) ǫ > 0 for w2 > 0, up
to maximum possible value for w2. However, for γcr = 4/3ǫ
first becomes negative for w2 > 0, then reaches a minimum,
and then crosses again the line ǫ = 0. In other words for
γcr = 4/3 there are for some Mach numbers three solutions
for ǫ = 0, namely the standard shock solution (i.e., w2 = 0),
a solution that maximizes w2 and for which χsub = 1, and a
point somewhere in between these two limits. These solutions
correspond to the solutions of the two-fluid model of Drury &
Voelk (1981), which assumes energy flux conservation. Macc

corresponds to the Mach number where the two non-standard
solutions coincide, for which the sub-shock compression ratio
is χsub = 5/2 (Equation (3)).

For many astrophysical settings, especially in interplanetary
shocks, for low Mach numbers the adiabatic index for the
accelerated particle population will more closely resemble
γcr = 5/3. We illustrate this in Figure 4, which is not based on
the extended Rankine–Hugoniot relations of Vink et al. (2010),
but on the semi-analytical kinetic solutions of Blasi et al. (2005).
It shows that as the Mach number decreases γcr approaches 5/3.
However, the energy flux reaches ǫ = 0 for Mg,0 ≈ 2.79, with
a corresponding γcr ≈ 1.57, and w0 ≈ 0.15. For lower Mach
numbers ǫ < 0. Figure 5 shows the critical Mach number for
acceleration as a function of the assumed adiabatic index for
cosmic rays.

2.4. Perpendicular, Magnetically Dominated Shocks

The best studied low Mach number shocks are arguably
shocks in the solar system. But these shocks often have a low
upstream plasma-beta (β0 < 1). The presence of significant
pressure from a magnetic field component will make the
flow less compressible, and requires more work to be done
by the shock in order to compress the plasma. As a result,
there will be less energy available for accelerating particles.
Including magnetic fields into the Rankine–Hugoniot solutions
complicates the calculation of shock parameters (Tidman &

Figure 4. Shock solutions as obtained with the kinetic shock acceleration model of Blasi et al. (2005) for a shock velocity of Vs = 10 km s−1, and a maximum
momentum of the accelerated particles of pmax = 100mc. Left: the values for the escape flux, ǫ (multiplied by 10), and w2. Right: effective adiabatic index γcr of the
accelerated particles. The limiting Mach number for this case is Macc ≈ 2.79.
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Figure 5. Critical Mach number as a function of assumed adiabatic index for
the accelerated particle population (4/3 � γcr � 5/3).

Krall 1971), but one can obtain some insights by considering
the limiting case of a strictly perpendicular shock in which all
the upstream pressure is provided by the magnetic field; so
β0 = 0, B0 = B0,⊥ and Pg,0 = 0, and w0 = 0. The relevant
shock equations are given in Appendix B, but here we list the
main points.

For a strictly perpendicular shock with β0 = 0, one
finds for the shock compression ratio at the subshock (see
Equation (B10))

χsub = −
(

M2
A,1 + 5/2

)

+
√

D1, (5)

with

D1 ≡ M4
A,1 + 13M2

A,1 +
25

4
, (6)

with the numerical values valid for γg = 5/3. The subshock
Alfvén Mach number is given by

M2
A,1 = M2

A,0χ
−3
prec. (7)

The maximum compression ratio can be found in analogy
with the procedure that lead to Equation (2), namely by
determining dχtot/dχprec = 0 in the limit of χprec = 1, with

χtot = χprecχsub

= −
(

M2
A,0χ

−2
prec +

5

2
χprec

)

+
√

χ2
precD1. (8)

After some algebra one finds that in the limit χprec → 1, and
MA,0 = MA,1, the solution has to obey the relation

(

8M2
A,0 − 10

)
√

D1 −
(

8M4
A,0 + 26M2

A,0 − 25
)

= 0. (9)

The solution to this equation is MA,0 = MA,1 = 5/2, which
corresponds to a subshock compression ratio of χsub = 5/2
(Equation (5)). So the critical Mach number for acceleration for
a perpendicular shock with β0 = 0 and w0 = 0 is Macc = 5/2.

Equation (B8) in Appendix B is the equivalent of
Equation (A15), and shows which values of the compression
ratio are allowed (i.e., ǫ � 0). The relation between ǫ and
the precursor compression strength around Macc is illustrated in
Figure 6, which is similar to Figure 1.

In order to illustrate the effects of the critical Mach number
on particle acceleration, Figure 7 shows the possible three-fluid

Figure 6. Same as Figure 1 (left), but now for perpendicular shocks with
β0 = 0, and with Mach numbers that include the appropriate critical Alfvén
Mach number MA = 2.5 (orange).

(A color version of this figure is available in the online journal.)

Figure 7. Same as Figure 2, but now for perpendicular shocks with β0 = 0,
and with Mach numbers that include a value close to the critical Alfvén Mach
number MA = 2.5 (orange).

(A color version of this figure is available in the online journal.)

solutions for the shock conditions and acceleration efficiency,
with the third “fluid” being the magnetic field. These curves are
calculated using the appropriate expression for the efficiency
parameter w2, which is now defined as

w2 ≡
Pcr,2

Pg,2 + Pcr,2 + PB,2

. (10)

The expression for w2 as function of the Mach number, and the
total and subshock compression ratios is

w2 =

(

1 − χ2
prec

)

+ 2M2
A,0

(

1 − 1
χprec

)

1 + 2M2
A,0

(

1 − 1
χtot

) . (11)

Note the similarity with Equation (A11): inserting γ = 2 and
w0 = 0 in that equation and replacing Mg,0 with MA,0 gives the
above expression.

The results in this section, therefore, show that due to a
lower compressibility of plasmas with dominant magnetic field
pressures, more work needs to be done to compress the plasma,
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Figure 8. Solutions for the escape energy flux as a function of the downstream cosmic-ray pressure w2 (similar to Figures 2 and 7), but now with the contribution of
an additional upstream cosmic-ray pressure from pre-existing cosmic rays, w0 = 0.25 (Equation (A15)). The left panel is for a non-relativistic accelerated particle
population (γcr = 5/3), the right panel is for relativistically dominated particles (γcr = 4/3). The Mach numbers differ 0.75 (1.33) times an integer number from the

critical Mach number, Macc =
√

5 for γcr = 5.3 and Macc = 5.882 for γcr = 4/3.

(A color version of this figure is available in the online journal.)

and, as a result, the critical (Alfvén) Mach number for forming
a precursor is higher than for β0 ≫ 1, Macc = 5/2.

It is assumed here that the magnetic field is passive. If,
however, the magnetic field is amplified due to cosmic-ray
streaming, or some turbulent dynamo mechanism, the resulting
value of Macc will be higher, in a similar way as non-adiabatic
heating in the precursor results in larger values for Macc.

2.5. Shocks with Pre-existing Cosmic Rays

In the solutions discussed above we assumed that there
is no population of pre-existing cosmic rays. However, pre-
existing cosmic rays can be incorporated in the extended
Rankine–Hugoniot relations, by specifying the additional pa-
rameter w0 = Pcr,0/P0, as explained in Appendix A. The so-
lutions to the energy flux equation (Equation (A13)) are shown
in Figure 8 for non-relativistic (γcr = 5/3) and completely rel-
ativistic cosmic rays (γcr = 4/3).

These figures show that for w0 > 0 it is possible to
find solutions with ǫ � 0 even for Mg,0 < Macc. However,
some of these solutions are unphysical. For example, the
left most limit of all the curves in the figures correspond
to no-precursor compression (χprec = 1). The continuity of
the cosmic-ray pressure in that case implies that from far
upstream to downstream the cosmic-ray pressure is constant
(Pcr,2 = Pcr,0). But it is impossible to have cosmic-rays take
away energy flux from the system, if there is no cosmic-ray
pressure gradient present.4

It is beyond the possibilities of the extended Rankine–
Hugoniot relations to firmly state what parts of the curves
with w0 > 0 are physically possible. Analytic solutions in the
framework of the two-fluid model and w0 > 0 do exist for the
case of conservation of energy flux (ǫ = 0; Drury & Voelk

4 In fact, this could be a possible, but trivial solution, if the pre-existing
cosmic-rays do not couple to the gas at all. In that case one should not write for

the downstream enthalpy flux H = [Pcr,2 + ucr,2 + Pg,2 + ug,2 + (1/2)ρ2v
2
2 ]v2,

but associate the cosmic rays still with the velocity of the upstream medium, as

there is no coupling, H = [Pcr,2 + ucr,2]v0 + [Pg,2 + ug,2 + (1/2)ρ2v
2
2 ]v2. In

that case no escape flux is necessary for w0 > 0 and χprec > 1. The problem
arises that for χprec = 1, w0 > 0 the cosmic-ray pressure is continuous but
leads nevertheless to an associated change in enthalpy flux, due to the change
in frame velocity (v0 → v2).

1981; Malkov & Voelk 1996; Becker & Kazanas 2001), which
correspond to the zero points in Figure 8. These zero points
are shown as a function of Mach number in Figures 9 and 10,
for respectively γcr = 5/3 and γcr = 4/3. They illustrate the
different behavior for relativistic and non-relativistic accelerated
particles.

For the non-relativistic case (γcr = 5/3), there is never
more than one solution for ǫ = 0, if pre-existing cosmic rays
are present (w0 > 0). For w0 = 0 these solutions require

Mg,0 > Macc =
√

5. The highest values for w2 in case we
take energy flux conservation (ǫ = 0) provides an upper bound
on w2 for solutions with escape (see Figures 2 and 8 (left)).
For completely relativistic cosmic rays (γcr = 4/3) there are
for w0 = 0 two solutions with ǫ = 0 and w2 > 0. This leads
to the bifurcation in χtot and w2 in the top panels of Figure 10
for Mg,0 > Macc. Figure 10 once more illustrates that there
is no solution with w0 = 0 and w2 > 0 for Mach numbers
Mg,0 < Macc ≈ 5.88.

Increasing the pressure in pre-existing cosmic rays (w0 > 0)
changes the character of the solutions, as slowly the bifurcation
disappears, and also viable solutions exist for Mg,0 < Macc ≈
5.88. The reason is that with a higher pressure in pre-existing
cosmic rays, the shock solutions with ǫ = 0 start approaching
the standard Rankine–Hugoniot solutions for a relativistic gas,
which for high Mach numbers approaches the compression ratio
χtot = 7. Note that Figure 10 is similar to the figures in Malkov
& Voelk (1996), showing that the extended Rankine–Hugoniot
relations explored here encompass the two-fluid model with
conservation of energy flux (Drury & Voelk 1981; Malkov &
Voelk 1996; Becker & Kazanas 2001).

3. DISCUSSION

3.1. The Case for a Minimum Mach Number for Acceleration

We showed that the ability to accelerate particles relies a
critical magnetosonic Mach number Macc, which depends on
the presence/absence of perpendicular magnetic fields and
the assumed adiabatic index of the population of accelerated
particles. If there are no pre-existing cosmic rays (w0 = 0), this
critical Mach number is the minimum Mach number for which
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Figure 9. Shock solutions for γcr = 5/3 as a function of Mach number Mg,0 for the case in which no energy is escaping from the system (ǫ = 0), corresponding to
the two-fluid model of Drury & Voelk (1981). Top left panel: the total compression ratio, which follows the standard Rankine–Hugoniot relations for γ = 5/3. Other
panels: the downstream fractional cosmic-ray pressure for increasing values of the pre-existing cosmic-ray fractional pressure: w0 = 0, 0.05, 0.25. The vertical dotted

line indicates the critical acceleration Mach number Macc =
√

5, whereas the horizontal dotted line indicates w0. Note that the total compression ratios can be higher
for ǫ > 0, whereas the maximum values for w2 provide upper bounds for ǫ > 0.

sufficient energy flux is available to accelerate particles. In all
cases the critical Mach number corresponds to a compression
ratio at the sub-shock of χsub = 5/2, corresponding to a

subshock Mach number Mg,1 =
√

5. For non-relativistically
dominated cosmic-rays the critical Mach number lies in the

range
√

5 � Macc � 5/2, depending on whether plasma beta
is large, or very low. The values of Macc are higher if heating
or magnetic field amplification are important, or if the non-
thermal particles have a significant relativistic component. For
completely relativistic cosmic rays Macc ≈ 5.88.

The situation changes in case a pre-existing population of
cosmic rays exist, in the sense that in that case the additional
degree of freedom allows for cosmic-ray acceleration even for
Mach numbers lower than Macc. However, not all the solutions
found with the extended Rankine–Hugoniot relations employed
here, may be physical possible, because in some cases escape
of energy flux is required, even though there are no substantial
pressure gradients in the cosmic rays.

The derivation of Macc in the previous sections is based
on only a few assumptions: like for the general shock-jump
relations, it relies on the plane parallel shock approxima-
tion; it requires steady state conditions; and it requires the
subshock to be governed by the standard Rankine–Hugoniot
relations.

These assumptions are very generic and are common to
most shock and diffusive shock acceleration models. However,
the steady state assumption leaves open the possibility that
particle acceleration is not a continuous phenomenon, but occurs
irregularly or in bursts.

Another, more fundamental, issue is that if one observes the
(sub)shock region in detail the distinction between what is a
precursor and what is the subshock becomes more complicated.
We followed here the convention of diffusive shock acceleration
theories that refer to the main shock as the subshock. However,
in collisionless shock theory the subshock refers to the steep
gradient in density and pressure, as opposed to other quantities,
like magnetic field that may change on slightly larger length
scales. Indeed, collisionless shocks, even with ignoring diffusive
shock acceleration, can have a complex structure (Treumann
2009). They have precompression in a so-called foot region,
a steep shock ramp, a downstream overshoot region, which
corresponds to a compression ratio higher than allowed by the
Rankine–Hugoniot relations, followed by an undershoot region.
Only further downstream the flow relaxes to the standard shock-
jump conditions. The foot region is associated with ions reflected
immediately back upstream by the shock. So the foot region
could also be labeled a shock precursor. But, in the context of
the discussion here, the precursor/foot region should still be

7
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Figure 10. Similar to Figure 9, but now for γcr = 5/3. The left hand panels show the total compression ratio χtot, and the right hand panels the downstream fractional
cosmic-ray pressure w2, for increasing values of w0.

regarded as an integral part of the subshock itself. The reason is
that across the total subshock structure the standard shock-jump
relations are observed. The complex structure, and physical
processes like ion reflection, are a means by which nature forces
the flow to establish a shock and observe the Rankine–Hugoniot
relations. In contrast, shocks with diffusive shock acceleration
do not observe the Rankine–Hugoniot relations, and they can
have compression ratios much higher than the standard shock-

jump relations. This is possible due to the escape of high energy
particles upstream.

Nevertheless, the distinction between an “accelerated particle
precursor” and a “foot region” may not be that sharp. The
distinction is more easily defined if shock acceleration is very
efficient, and the accelerated particle precursor becomes very
extended. But around M = Macc the efficiency is low (Figures 2
and 7), and it may observationally be difficult, or even arbitrary
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to distinguish between a precursor from diffusively accelerated
particles and a foot region.

The appearance of foot regions, ion reflection, and overshoot
regions is usually associated with another critical Mach number,
the so-called first critical Mach number, Mc, which has a range of
1 � Mc � 2.76, depending on the shock obliquity and plasma-
beta (Edmiston & Kennel 1984), Mc = 1 corresponding to
β ≫ 1 and Mc ≈ 2.76 corresponding to perpendicular shocks
with β0 = 0.

Below the first critical Mach number ordinary resistivity is
sufficient to provide the necessary shock steepening, whereas
for supercritical shocks anomalous dissipation mechanisms are
necessary to force the shock to observe the Rankine–Hugoniot
relations. Ion reflection is one of the ingredients by which the
flow manages to acquire the required shock heating. Indeed,
ion reflection is observationally associated with supercritical
shocks, although some subcritical shocks also appear to have
ion reflection and overshoot regions (Mellott & Livesey 1987).
Note that the presence of an overshoot seems to violate the
flux conservation laws (Equations (A2)–(A13)), but this may
be an indication that energy flux is temporarily stored in the
electrostatic oscillations, and therefore the equation of state is
temporarily altered, corresponding to a lower specific heat ratio
γ , and higher compression ratios (Eselevich 1984).

The idea that two critical Mach numbers may operate in
the same Mach number regime is interesting and may have
some observational consequences. For high beta shocks, the
first critical Mach number is very low, Mc ≈ 1, and lies

below the critical Mach number for acceleration Macc =
√

5,
hence Mc < Macc. In contrast, for very low beta, perpendicular
shocks the first critical Mach number is Mc ≈ 2.76, which is
larger than Macc ≈ 2.5. The effects of the two different critical
Mach numbers, Mc and Macc, may therefore be observationally
investigated by exploiting this difference between low and high
beta shocks.

3.2. Comparison to Observations

Observationally the case for whether there is a critical Mach
number for particle acceleration is not so clear. The Earth’
bowshock is generally associated with Mach numbers above
the critical regime (Mms ≈ 5; Bale et al. 2003). The solar wind
termination shock has a Mach number in the range where one
may expect to see critical behavior (Mms ≈ 2.5; Lee et al.
2009). Florinski et al. (2009) made a case for nonlinear particle
acceleration at the solar wind termination shock, as Voyager 2
data indicate the presence of a precursor induced by accelerated
particles. The total compression ratio for that case was χ = 3.1,
which is above the critical value of χtot = 5/2.

CMEs are also associated with particle acceleration, and Type
II radio bursts are considered to be evidence for acceleration.
Gopalswamy et al. (2010) showed that Type II radio bursts are
associated with high velocity/high Mach number CMEs (with
mean velocities of 1237 km s−1) and the radio quiet CMEs with
low velocities (with mean velocities of 537 km s−1). The Mach
numbers of the low velocity CMEs were still relatively high,
with a median of Mms = 2.3 and an average of Mms = 2.7.
The latter value is above the critical Mach number derived here,
and close to the first critical Mach number Mc. But it should be
noted that the errors on the Mach numbers are relatively high
(systematic error ∆M ≈ 0.55; Gopalswamy et al. 2010). Pulupa
et al. (2010) even concluded that the measured Mach numbers
are not well correlated with the occurrence of Type II radio
bursts, whereas there is a strong correlation with velocity.

Another measure for the compression ratio for shocks asso-
ciated with Type II radio bursts is the bandwidth of the radio
emission. The work by Mann et al. (1995) indicates that the min-
imum bandwidth is ∆f/f = 0.16, which, according to Mann &
Classen (1995), corresponds to a minimum shock-compression
ratio of χ = 1.35. This is clearly not in accordance with the
critical Mach number Macc derived in the present paper, which
occurs for a compression ratio of 2.5 or more. However, it is not
clear yet whether the bandwidth is indeed caused by the jump
in the density caused by the shock, or whether density gradients
in the upstream region are responsible. A joint analysis of the
location of the radio emission and optical CME locations seems
to suggest that the radio emission is in general coming from a
region upstream of the shock (Ramesh et al. 2012).

Clearly, the uncertainty of the correlation between Type II
bursts and Mach numbers could be resolved by more precise
measurements of the Mach numbers, rather than the shock
velocity, for those exact locations that emit in the radio. A recent
analysis of Solar and Heliospheric Observatory observations
by Bemporad & Mancuso (2011) shows that more precise
Mach numbers can be obtained, indicating that the highest
compression ratios, χ ≈ 3, are found near the center of the
CME. A problem may remain that for CMEs the plasma beta
is rather low, so that the determination which critical Mach
number determines Type II bursts, Mc or Macc, may be difficult
to distinguish.

For this reason it is very interesting that recently Giacalone
(2012) showed that all shocks that have high enough compres-
sion ratios show evidence for particle acceleration. Interestingly,
this study uses as an indication of a strong shock a compression
ratio of χ � 2.5, which is exactly the compression ratio asso-
ciated with lowest possible value for the critical Mach number

Macc =
√

5 in case of a sonic shock, and Macc = 2.5 for a
magnetically dominated, perpendicular shock.

Apart from Mach number, another factor that appears to
influence the presence or absence of accelerated particles
associated with CMEs is the occurrence of a CME preceding
the event by less than a day (Kahler et al. 1999; Gopalswamy
et al. 2004). This correlation has been attributed to the presence
of non-thermal particle populations created by the first CME
(Laming et al. 2013). Our theoretical results here indicate
that the mere presence of accelerated particles may facilitate
particle acceleration for Mach numbers lower than the critical
Mach number. Note that both effects, the influence on the
jump relations, and the presence of seed-particles, may play
complementary roles.

In this context one should raise the question to what extent
the omnipresent Galactic cosmic rays are important. This
likely depends on the length scale of the coupling between
cosmic rays and the plasma directly up- and downstream of
the shock. If the length scale is much longer than the typical
length scales over which the shock develops, these pre-existing
cosmic rays are likely to not affect the shock structure. For
that reason, for CMEs probably only low energy accelerated
particles are important (keV to MeV energies). So particles
from preceding CMEs are much more important than Galactic
cosmic rays. However, these are subtleties that require further
investigation.

The largest shocks observed in the universe are those in
clusters of galaxies. Many of them are detected as discontinuities
in the X-ray emission (Markevitch & Vikhlinin 2007). These
shocks are caused by infalling subclusters or galaxy groups, or
due to mergers of clusters. Some shocks are detected through

9



The Astrophysical Journal, 780:125 (13pp), 2014 January 10 Vink & Yamazaki

their non-thermal radio emission, clearly indicating that at these
shocks electrons are accelerated (van Weeren et al. 2010; Hoeft
et al. 2011). The radio detected shocks, often called radio relics,
are usually located in the outskirts of the cluster. The shock
velocities can be several thousand km s−1, but due to the high
plasma temperatures, kT ≈ 1–10 keV, the Mach numbers are
usually modest Mms � 3. The radio relics are mostly found in
the periphery of the clusters where the density is lower than
in the center, whereas the magnetic field may be as high as
a few μG. The plasma betas are believed to be β ≈ 1–10
(M. Hoeft 2013, private communication). The lack of radio
emission from many X-ray detected shocks suggest that there
is, indeed, a dependence of radio emission on Mach number,
which could therefore hint at the existence of a critical Mach
number for acceleration. It is usually assumed that the onset of
radio emission happens in the range of 2 < Macc < 3 (Hoeft
et al. 2011).5 This should be contrasted to the first critical Mach
number, Mc, which in clusters of galaxies is likely smaller than
2. Therefore, the critical Mach number derived in the present
paper may be important for the presence or absence of radio
emission from shocks in clusters of galaxies. However, the
derived numbers for Macc were for non-relativistic particles.
The radio emission is caused by relativistic electrons. As long
as the protons are non-relativistic and dominate the population
of accelerated particles, γcr = 5/3, may still be a reasonable
approximation. If protons are accelerated to relativistic energies,
with E > 938 MeV, γcr will decrease toward γcr = 4/3, and
Macc will increase. As discussed in Section 2, it depends on the
spectral energy distribution what the effective specific heat ratio
of the accelerated particles is. But for a significant component
of relativistic protons a limiting Mach number of Macc ≈ 3 is
likely. This could mean that many of the observed relics cannot
accelerate protons to very high energies, and only the highest
Mach number shocks (M > 3) contain significant fractions of
relativistic protons.

Alternatively, the limiting Mach numbers for shocks moving
through a medium containing cosmic rays is more relaxed
(Section 2.5). So evidence for relativistic particles associated
with low Mach number shocks, may indicate the presence of
pre-existing cosmic rays in the intra-cluster medium. As is the
case for CME induced shocks, for clusters the importance for
pre-existing cosmic rays as seed particles for further acceleration
has been pointed out. And also in this case it should be pointed
out that pre-existing cosmic rays may have two, complementary,
effects: it changes the degrees of freedom of the shock system,
allowing for acceleration for lower Mach numbers (the present
work), and it may help as a source of seed particles, which are
injected in the shocked and then experience further acceleration
(Pinzke et al. 2013).

Another effect could be that acceleration becomes discontin-
uous: for

√
5 < M < 3 particles are being accelerated but once

a significant number of protons become relativistic the acceler-
ation efficiency goes dramatically down for some time, and then
start up again. Clearly these effects need to be further investi-
gated, both observationally in shocks close the critical Mach
number, and with more elaborate kinetic shock-acceleration
models.

5 These exact Mach numbers are not easily measured, and either rely on
interpreting the radio spectrum in the context of test particle acceleration, or on
the detection of the shock in X-rays. However, it is not always clear whether
the X-ray detected shock and the shock associated with the radio emission
exactly coincide (Ogrean et al. 2013).

4. CONCLUSION

We presented in this paper a derivation of a critical Mach num-
ber for particle acceleration, Macc. The basic idea is that diffu-
sive shock acceleration is inherently nonlinear, and results in the
compression and slowing down of the upstream plasma, forming
a so-called shock precursor. It turns out that adiabatic compres-
sion in the precursor followed by a shock, as given by the stan-
dard shock jump conditions, cannot be energetically sustained

for Mach numbers smaller than a critical value Macc =
√

5.
This limit is even higher for magnetic dominated plasmas, which
in the extreme case of β0 = 0 and purely perpendicular shock
gives a critical Mach number of Macc = 2.5. In case there is
substantial pre-existing cosmic-ray population the limits on fur-
ther acceleration may be relaxed. This critical Mach number
should not be confused with the so-called first critical Mach
number Mc, which depending on obliquity and β0, lies in the
range 1 � Mc < 2.76 (Edmiston & Kennel 1984).

We discussed the critical Mach number, Macc, in connection
with observational evidence for particle acceleration at low
Mach number shocks, such as in the solar system or in clusters
of galaxies, and in conjunction with first critical Mach number.
There is indeed observational evidence for a Mach number
dependence of particle acceleration with Mach number, which
agrees with the idea that between Mach numbers of 2–3
the acceleration properties of shocks change. However, the
observational evidence is not precise enough to judge whether
there is indeed a critical Mach number range for acceleration√

5 < Macc < 2.5, or whether the observed phenomenology
of solar system shocks is governed by the first critical Mach
number Mc.

For shocks in clusters of galaxies, there is some indication
that Mach numbers above 2–3 are needed to create a population
of radio synchrotron emitting electrons. It is pointed out that
the critical Mach number, Macc, increases if the energetics of
the accelerated particles are dominated by relativistic particles,
which could mean that there is a strong limit on the number
fraction of relativistic protons in cluster shocks with Mach
number M < 3.
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The writing of this paper was stimulated by discussions during
the JSI Workshop “Nature’s Particle Accelerators,” held in 2012
October. I thank the organizers for inviting me to this stimulating
workshop. I also thank Matthias Hoeft for discussions on shocks
in clusters of galaxies.

APPENDIX A

THE EXTENDED RANKINE–HUGONIOT RELATIONS
INCLUDING PRE-EXISTING COSMIC RAYS

Vink et al. (2010) described a version of the Rankine–
Hugoniot relations extended with a component of accelerated
particles. Like the Rankine–Hugoniot relations it evaluates the
mass, momentum, and enthalpy flux, but with some modifica-
tions: Instead of applying the relations to two regions (upstream
and downstream of the shock) the relations are evaluated at three
specific locations: (0) the (undisturbed) far upstream medium,
(1) in the cosmic-ray shock precursor, just upstream of the sub-
shock (i.e., the actual gas shock), and (2) downstream of the sub-
shock. The standard Rankine–Hugoniot relations only consider
(0) and (2). Unlike the standard Rankine–Hugoniot relations we
allow energy flux to escape from the overall system, which is a
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standard outcome of kinetic models of cosmic-ray acceleration
(Caprioli et al. 2010, for an overview). The system can be closed
using the condition that the gas pressure does have a shock-jump
at the sub-shock, but the cosmic-ray pressure (Pc) is continuous
across the shock, which is a necessary consequence of diffusive
shock acceleration (see, for example, the Appendix of Becker
& Kazanas 2001), i.e., Pcr,1 = Pcr,2. It is important to note that
in the context of this model the continuity of cosmic-ray pres-
sure across the subshock is what sets the cosmic-ray component
apart from the gas component.

For a given upstream gas Mach number Mg,0, and an assumed
adiabatic index, γcr, for the cosmic-ray component, the extended
Rankine–Hugoniot relations give a range of solutions that can
be parameterized by the cosmic-ray precursor compression ratio
χprec ≡ ρ1/ρ0. The standard Rankine–Hugoniot shock jump
solutions are retrieved for χprec = 1.

Here we summarize the solutions presented in Vink et al.
(2010), but augmented with an additional parameter, namely the
upstream cosmic-ray pressure (Pcr,0). We do this by extending
the use of the fractional cosmic-ray pressure,6

w ≡
Pcr

Pg + Pcr

, (A1)

to the upstream region. The subscript “g” refers to the gas
(thermal) component. So w in Vink et al. (2010) is now labeled
w2 and the upstream quantity is w0.

The conservation of mass flux (ρv) and momentum flux
(Pcr + Pg + ρv2) throughout the whole shock system can be
made dimensionless by dividing pressure by the upstream ram
pressure ρ0V

2
s , with Vs(= v0) the shock velocity, and using the

compression factors

χprec =
ρ1

ρ0

=
v0

v1

, χsub =
ρ2

ρ1

=
v1

v2

,

χtot = χprecχsub =
ρ2

ρ0

=
v0

v2

, (A2)

which express mass flux conservation.
To make momentum flux conservation dimensionless it is

convenient to use the definition of the gas Mach number

Mg,0 ≡

√

ρ0V 2
s

γgPg,0

=
Vs

csound

, (A3)

Mg,1 ≡

√

ρ1v
2
1

γgPg,1

=
v1

csound

= Mg,0χ
−(γg+1)/2
prec , (A4)

with Equation (A4) indicating that we assume that the compres-
sion of the gas in the precursor (region 1) is purely adiabatic.

The dimensionless pressures Pi (i = 0, 1, 2) are then given
by the following relations

P0 ≡
Pg,0 + Pcr,0

ρ0V 2
s

=
1

γgM
2
g,0

(

1

1 − w0

)

, (A5)

6 This is denoted N in Drury & Voelk (1981). Note that Becker & Kazanas
(2001) uses the upstream cosmic-ray Mach number, defined as

Mcr,0 =
√

ρ0V 2
s /γcrPcr,0. The relation between w0 and Mcr,0 is

w0 = 1/(1 + γcrM
2
cr,0/γgM

2
g,0).

P1 ≡
Pg,1 + Pcr,1

ρ0V 2
s

=
1

γgM
2
g,0

(

1

1 − w0

)

+

(

1 −
1

χprec

)

,

(A6)

Pg,1 ≡
Pg,1

ρ0V 2
s

=
χ

γg

prec

γgM
2
g,0

, (A7)

P2 ≡
P2

ρ0V 2
s

=
1

γgM
2
g,0

(

1

1 − w0

)

+

(

1 −
1

χtot

)

, (A8)

Pg,2 ≡
Pg,2

ρ0V 2
s

= (1 − w2)P2 =
χ

γg

prec

γgM
2
g,0

+

(

1 −
1

χsub

)

1

χprec,
,

(A9)

Pcr,2 = Pcr,1 = w2P2. (A10)

Equation (A9) follows from the relation P2 = P1 + (1 −
1/χsub)ρ1v

2
1 , which is similar to Equation (A8).

The fractional pressure of cosmic-rays downstream w2 can
be derived from combining Equations (A8) and (A9),

w2 =
1 − (1 − w0)χ

γg

prec + (1 − w0)γgM
2
g,0

(

1 − 1
χprec

)

1 + (1 − w0)γgM
2
g,0

(

1 − 1
χtot

) . (A11)

Setting w0 = 0 (i.e., no upstream cosmic rays) gives the
expression found by Vink et al. (2010), and its asymptotic
approximation (Mg,0 → ∞, w0 = 0) is w2 ≈ (χtot −
χsub)/(χtot − 1).

To complete the set of equations we give here the
sub-shock compression ratio, which is simply the standard
Rankine–Hugoniot relation, applied to the gas component in re-
gion 1 (Malkov & Drury 2001; Becker & Kazanas 2001; Blasi
et al. 2005):

χsub =
(γg + 1)M2

g,1

(γg − 1)M2
g,1 + 2

. (A12)

Equations (A2)–(A12) are sufficient to predict all shock
relations, and cosmic-ray contributions, for a given value of the
main variable, χprec, the precursor compression ratio. In case
that w0 = 0, or w2 ≫ w0, w2 provides a direct measure for the
cosmic-ray acceleration efficiency. But in order to see whether
the solutions are physically possible we need to evaluate whether
the enthalpy flux ([P + u + (1/2)ρv2]v) is either conserved, or
energy is leaking out of the system by escaping cosmic rays. In
dimensionless form (i.e., dividing enthalpy by (1/2)ρ0V

3
s ) we

can express enthalpy (non-)conservation as

{

γg

γg − 1
Pg,2 +

γcr

γcr − 1
Pcr,2 +

1

2

1

χtot

}

1

χtot

=
{

γg

γg − 1
Pg,0 +

γcr

γcr − 1
Pcr,0 + (1 − ǫ)

1

2

}

, (A13)

with ǫ � 0, with ǫ = 0 indicating enthalpy conservation (cf.
Berezhko & Ellison 1999; Malkov & Drury 2001).7

7 We take here that the escaping energy flux cannot exceed the free energy

flux of the system ((1/2)ρV 3
s ).
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If we write for convenience8

G0 ≡ w0

γcr

γcr − 1
+ (1 − w0)

γg

γg − 1
,

G2 ≡ w2

γcr

γcr − 1
+ (1 − w2)

γg

γg − 1
, (A14)

Equation (A13) can with the help of Equation (A8) be rewritten
as

ǫ = 1+
2

γgM
2
g,0

(

1

1 − w0

)[

G0 −
G2

χtot

]

−
2G2

χtot

+
1

χ2
tot

(2G2 −1).

(A15)

APPENDIX B

SHOCK SOLUTIONS FOR PERPENDICULAR SHOCKS

In the limit of an upstream plasma that is dominated by
magnetic pressure, i.e., β0 ≈ 0 and w0 = 0, one can ignore
the upstream gas pressure Pg,0 and precursor gas pressure
Pg,1 in Equations (A8) and (A13), but instead one has to
introduce the pressure caused by the perpendicular magnetic
field component. Hence, the momentum flux conservation
equation for a perpendicular, magnetically dominated, shock
is approximated by

B2
⊥,0

8π
+ ρ0V

2
s = P1 +

B2
⊥,1

8π
+ ρ1v

2
1 = P2 +

B2
⊥,2

8π
+ ρ2v

2
2, (B1)

with P = Pg + Pcr referring to particle induced pressure only
(thermal and non-thermal).

These equations can be normalized using the Alfvén Mach
number MA,0 ≡ Vs/VA = Vs/(B⊥,0/

√
4πρ0), using the relation

P0 =
P0

ρ0V 2
s

=
1

2M2
A,0

. (B2)

Here and in what followsP refers to the total pressure, including
the contribution of the magnetic field. Using the above relations,
we find that

P2 =
1

2M2
A,0

+

(

1 −
1

χtot

)

. (B3)

The pressure of the accelerated particles is on both sides of
the subshock assumed to be equal, hence Pcr,2 = Pcr,1 =
w2(P2 +B2

⊥,2/(8π )), with w2 defined in Equation (10). Together
with Equation (B1) this means that

Pcr,1 = Pcr,2 = w2

[

1

2M2
A,0

+

(

1 −
1

χtot

)

]

. (B4)

Assuming only adiabatic compression of the magnetic field,
with B⊥,1 = χprecB⊥,0 and B⊥,2 = χtotB⊥,0,9 and using the
fact that Pcr,1 = Pcr,2 one can relate the downstream thermal
pressure to the pressure in the precursor, which gives

Pg,2 =
χ2

prec − χ2
tot

2M2
A,0

+
1

χprec

(

1 −
1

χsub

)

. (B5)

8 In principle the adiabatic index of the cosmic rays upstream may differ
from that downstream, but we assume the cosmic rays are characterized by a
unique number, 4/3 � γcr � 5/3.
9 Note that magnetic field amplification may be important for strong Mach
number shocks (see Helder et al. 2012; Schure et al. 2012, for observational
and theoretical reviews).

Comparing this with Equation (B3) shows that this should be
equal to

Pg,2 = P2 −
χ2

tot

2M2
A,0

− Pcr,2

= −
χ2

tot

2M2
A,0

+ (1 − w2)

[

1

2M2
A

+

(

1 −
1

χtot

)]

, (B6)

which states that the downstream thermal pressure is the
total pressure minus the partial pressures of the magnetic
field and the accelerated particles (Equation (B4)). Combining
Equations (B6) and (B5) one arrives at Equation (11), given in
the main text.

Finally, in order to complete the set of equation one needs to
know the compression factor of a perpendicular, β0 = 0, shock
as a function of Alfvén Mach number.

In order to determine the shock compression ratio for a
perpendicular shock with β0 = 0 one has to solve the enthalpy
flux equation,

1

2
ρ2v

3
2 + G2P2v2 + v2

B2
⊥,2

4π
= (1 − ǫ)

1

2
ρ0V

3
s +

VSB
2
⊥,0

4π
. (B7)

Substituting Equation (B1) into Equation (B7), one can find the
following expression for energy escape

ǫ = 1 +
2

M2
A,0

−
2χtot

M2
A,0

−
G2

χtotM
2
A,0

(

1 − χ2
tot

)

−
2G2

χtot

(

1 −
1

χtot

)

−
1

χ2
tot

, (B8)

with G2 as defined under Equation (A15). This equation is
the equivalent for Equation (A15), but now for perpendicular
shocks, with β = 0.

The standard Rankine–Hugoniot solution, corresponding to
ǫ = 0, can be found by solving the following cubic equation

(G − 2)χ3 +
(

M2
A + 2

)

χ2 − G
(

2M2
A + 1

)

χ + (2G − 1)M2
A = 0,

(B9)
where the subscripts have been dropped, as this is a general
shock-jump condition for a perpendicular shock with β0 = 0.
Equation (B9) has one trivial solution, χ = 1, which helps to
transform the cubic equation into a quadratic equation, which
has one non-negative solution

χ =
−

(

M2
A + G

)

+
√

D

2(G − 2)
= −

(

M2
A +

5

2

)

+
√

D, (B10)

with

D ≡ M4
A −18G2M

2
A +8G2M2

A +8M2
A +G2 = M4

A +13M2
A +

25

4
,

(B11)
with the numerical values found by using γ = 5/3, which gives
G = 5/2. Asymptotically χ → 4 for MA → ∞, which is the
shock jump condition for a strong shock.

This solution can also be used for the subshock, using
G = γg/(γg − 1) = 5/2 and the Alfvénic Mach number at
the sub-shock (cf. Equation (7)),

M2
A,1 =

1

2

ρ1v
2
1

B2
⊥,1/8π

= M2
A,0χ

−3
prec. (B12)

12
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