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SUMMARY

Fabric and its evolution need to be fully considered for effective modeling of the anisotropic behavior of
cohesionless granular sand. In this study, a three-dimensional anisotropic model for granular material is
proposed based on the anisotropic critical state theory recently proposed by Li & Dafalias [2012], in which
the role of fabric evolution is highlighted. An explicit expression for the yield function is proposed in terms
of the invariants and joint invariants of the normalized deviatoric stress ratio tensor and the deviatoric fabric
tensor. A void-based fabric tensor that characterizes the average void size and its orientation of a granular
assembly is employed in the model. Upon plastic loading, the material fabric is assumed to evolve
continuously with its principal direction tending steadily towards the loading direction. A fabric evolution
law is proposed to describe this behavior. With these considerations, a non-coaxial flow rule is naturally
obtained. The model is shown to be capable of characterizing the complex anisotropic behavior of granular
materials under monotonic loading conditions and meanwhile retains a relatively simple formulation for
numerical implementation. The model predictions of typical behavior of both Toyoura sand and Fraser River
sand compare well with experimental data. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to gravitational deposition and/or compaction processes, naturally occurring materials such as
sand often possess a transversely anisotropic fabric structure which greatly affects the strength and
deformation characteristics of these materials and relevant geostructures, such as footings,
foundations, embankment and dams. In investigating the bearing capacity of model strip
foundations, for example, Azami et al. [1] have found that the difference in bearing capacity for one
case with load being perpendicular to the bedding plane and the other with a parallel load can be up
to 25%. There has been plenty of experimental evidence clearly indicating the key role of fabric
anisotropy in contributing to the complex behavior of sand, such as strength, dilatancy and stiffness
(see, e.g. [2–8]). This has partially fueled the great interest in the past few decades on theoretical
characterization and modeling of fabric anisotropy in sand. Various approaches have been
proposed to address the anisotropic sand behavior, e.g. those involving the use of rotated yield surface
(see, e.g. [9–12]). However, yield surface rotation may not be able to account for the anisotropic nature
of sand related to particle orientation, contact normal and void space distribution properly, as the
magnitude and direction of rotation are typically associated with the initial stress state [13].
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SAND MODEL ACCOUNTING FOR FABRIC EVOLUTION 371
Meanwhile, the employment of fabric tensors derived from the microstructural information of sand
has proved to be efficient in modeling sand behavior (e.g. [1, 14–23]). For simplicity, however,
these studies have ignored the evolution of the fabric anisotropy during the deformation of the
material. While such a simplified approach was successful to a certain extent for its purposes, it is
also to an extent at odd with both experimental and numerical observations. In particular, as
recently discussed by Li & Dafalias [24], ignoring the evolution of fabric anisotropy will inevitably
lead to the loss of a unique critical state line – an intrinsic reference for a given soil established in
the classical critical state soil mechanics.

The macroscopically observed sand behavior is in general a volumetric average of microstructural
responses at particle level (e.g. [25–29]; see also [30]) and thus a fabric tensor at continuum level
can be concretely linked to specific microstructural statistics. Recent microstructural studies with
discrete element method (DEM) have shown that such a soil fabric tensor may experience
significant changes in its magnitude and/or orientation during the loading course. Under sustained
shear, the fabric tensor tends to become coaxial with the loading direction [28, 29] and an
appropriately defined norm of the tensor approaches a constant. Based on these DEM observations
and thermodynamics considerations, a critical state theory taking fabric anisotropy into account was
proposed by Li & Dafalias [24], in which a unique critical state line is recovered.

In this paper, we shall develop a general rate-independent constitutive model for granular materials
considering fabric anisotropy and its evolution, based on the aforementioned anisotropic critical state
theory (ACST) by Li & Dafalias [24]. As entailed in the subsequent sections, the new model
features an explicit yield function expressed in terms of the invariants and joint invariants of the
stress ratio tensor rij and a deviatoric fabric tensor Fij as well as a scalar internal variable H
representing a characteristic shear resistance. Over a typical monotonic loading course, the fabric
tensor is assumed to evolve towards the direction of loading. Based on the proposed framework, a
non-coaxial flow rule is readily derived by which the non-coaxial behavior of stress and strain
response can be explained in a natural way. Simulations by the model compare well with test results
for Toyoura sand reported by Verdugo & Ishihara [31] and Yoshimine et al. [5] and for Fraser
River sand by Uthayakumar & Vaid [7].
2. ANISOTROPIC SAND MODEL WITH FABRIC EVOLUTION

2.1. Yield function

Nemat-Nasser [32] studied the sliding along active shearing planes in a two-dimensional artificial
granular packing and showed that the resistance to sliding is contributed from the isotropic Coulomb
friction as well as the anisotropic distribution of contact normals. Based on this micromechanical
deformation mechanism, we propose the following yield function,

f ¼ R

g θð Þ � He�kh A�1ð Þ2 ¼ 0 (1)

whereR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2rijrij

p
with rij= (σij� pδij)/p= sij/p being the stress ratio tensor, in which σij is the stress

tensor, p =σii/3 is the mean normal stress, δij is the Kronecker delta and sij is the deviator stress; H is a
hardening parameter whose evolution law depends on the stress as well as internal variables including
soil density and fabric; A is a fabric anisotropy variable; kh is a non-negative model constant and g(θ) is
an interpolation function based on the Lode angle θ of rij or sij as follows (personal communication,
Z.L. Wang, 1992)

g θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2ð Þ2 þ 4c 1� c2ð Þ sin3θ

q
� 1þ c2ð Þ

2 1� cð Þ sin3θ (2)

where c=Me/Mc, the ratio between the critical state stress ratio in triaxial extensionMe and that in triaxial
compression Mc. It must be pointed out that the above yield function neglects for simplicity the plastic
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deformation under constant stress ratio rij. This simplification is in line with the scope of the present paper:
highlighting only the new features concerning fabric anisotropy.

An important inclusion in the yield function in Eq. (1) is a fabric anisotropy variable A that is
defined by the following joint invariant of the fabric tensor Fij and the loading direction tensor nij
(see also [19, 24, 33])

A ¼ Fijnij (3)

where Fij is a symmetric traceless tensor whose norm F ¼ ffiffiffiffiffiffiffiffiffiffiffi
FijFij

p
is referred to as the degree of fabric

anisotropy. For convenience, Fij is normalized such that in critical state, F is unity. For an initially
cross-anisotropic sand sample with the isotropic plane (deposition plane) being the x� y plane and
deposition direction aligning with the z-axis, the initial Fij can be expressed as

Fij ¼
Fz 0 0

0 Fx 0

0 0 Fy

0B@
1CA ¼

ffiffiffi
2
3

r F0 0 0

0 �F0=2 0

0 0 �F0=2

0B@
1CA (4)

where F0 is the initial degree of fabric anisotropy, i.e. the initial norm of Fij. Note that in the above
expression, a coordinate system aligned with the direction of sample deposition has been assumed.
If one chooses a coordinate system which is not aligned with the deposition direction, a
corresponding orthogonal transformation must be carried out. The deviatoric unit loading direction
tensor nij in Eq. (3) is defined as follows [33]

nij ¼ Nij � Nmnδmnδij=3
Nij � Nmnδmnδij=3
�� �� (5)

with

Nij ¼ ∂ef
∂R

∂R
∂rij

þ ∂ef
∂g θð Þ

∂g θð Þ
∂θ

∂θ
∂rij

(6)

where ef ¼ R=g θð Þ. Obviously, nii= 0 and nijnij= 1. Notice that the nij is the deviatoric unit normal to a
yield surface resulting from Eq. (1) with the assumption that A is a constant and not a function of stress
as well (in other words, nij is not normal to the yield surface of Eq. (1)).

The yield function in Eq. (1) has been adopted based on the following considerations: (a) The first

term in the equation, R/g(θ), is a normalized shear stress. While the second term, He�kh A�1ð Þ2 ,
represents a generalized shear resistance, with H denoting a reference shear resistance – the shear
resistance for A= 1. It follows that the actual shear resistance is the H modulated by the actual value

of A via the term e�kh A�1ð Þ2 . As A is a function of the fabric tensor Fij, fabric anisotropy exerts an
impact on the shear resistance. It is evident that, since kh is positive, a larger A, i.e. a more intense
fabric anisotropy in conjunction with more coaxial alignment between nij and Fij will result in a
higher shear resistance, in agreement with the observation by Nemat-Nasser [32]. Noticing that
when kh= 0, the yield function degenerates to a conventional isotropic yield surface in stress space.
(b) At the critical state, according to the ACST [24], nij and Fij become co-directional, and F
reaches its critical state value 1. From Eq. (3), we have A =1. As a result, the yield function in Eq. (1)
becomes an isotropic critical state failure surface in the stress space which is identical to that proposed
by Li & Dafalias [17]. An isotropic critical state failure surface independent of fabric anisotropy has its
physical basis in both experimental and numerical observations [5, 34, 28] and is thermodynamically
consistent as well. From a thermodynamics point of view, at critical state, the work input is completely
dissipated so that there is no further development of frozen energy upon continuously developing shear
deformation [35, 36]. It is to be emphasized that an isotropic failure surface at the critical state does not
mean necessarily the critical state fabric is isotropic. This has been confirmed by recent DEM
simulations as well (e.g. [29, 37, 38]).
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2.2. Elastic moduli and incremental elastic relation

As plastic strain dominates sand deformation, the influence of elastic anisotropy, if any, is considered
negligible. The following isotropic pressure-sensitive elastic relations [17, 19, 24, 33, 39, 40] are
employed:

G ¼ G0
2:97� eð Þ2
1þ e

ffiffiffiffiffiffiffi
ppa

p
; K ¼ G

2 1þ νð Þ
3 1� 2νð Þ (7)

where G and K denote the elastic shear and bulk modulus, respectively, G0 is a material constant, e is
the void ratio and ν is the Poisson’s ratio assumed to be a constant. In conjunction with Eq. (7), the
following hypoelastic relation is assumed for calculating the incrementally reversible deviatoric and
volumetric strain increments deeij and dεev:

deeij ¼
dsij
2G

and dεev ¼
dp

K
(8)

2.3. The elastoplastic stiffness tensor

Substituting Eq. (3) into Eq. (1) reveals that the proposed yield function includes two explicit internal
variables: H and Fij. Within the hypothesis that sand’s stress–strain response is incrementally linear,
the evolution of the two internal variables can be generally expressed as

dH ¼ Lh irh and dFij ¼ Lh iΘij (9)

where rh and Θij which are in general functions of the stress and internal variables including H and Fij

as well as others such as soil density represent the evolution direction for H and Fij, respectively; L
denotes the so-called plastic loading index, otherwise known as plastic multiplier; and hi are the
Macauley brackets such that hLi= L for L> 0 and hLi = 0 for any L≤ 0.

The condition of consistency of the yield function (1) can now be written as follows:

df ¼ Nijdrij þ ∂f
∂H

dH þ ∂f
∂A

dA ¼ Nijdrij þ ∂f
∂A

∂A
∂nij

dnij

� �
þ ∂f

∂H
dH þ ∂f

∂A
∂A
∂Fij

dFij

� �

¼ Nij þ ∂f
∂A

∂A
∂nkl

∂nkl
∂rij

� �
drij þ Lh i ∂f

∂H
rh þ ∂f

∂A
∂A
∂Fij

Θij

� �
¼ 0

(10)

in which Nij has been defined by Eq. (6). From Eq. (10), one has the loading index

L ¼ 1
Kp

Nij þ ∂f
∂A

∂A
∂nkl

∂nkl
∂rij

� �
drij (11)

where

Kp ¼ � ∂f
∂H

rh þ ∂f
∂A

∂A
∂Fij

Θij

� �
(12)

is the plastic modulus according to standard terminology in plasticity.
The plastic deviatoric strain increments de p

ij can be written as de p
ij ¼ Lh imij where mij is a unit-norm

deviatoric tensor containing only the information of the direction of de p
ij and will be specified in the

sequel. Based on the additive decomposition of the strain increment dεij ¼ dεeij þ dε p
ij into elastic
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and a plastic parts and the foregoing expression for the plastic strain increment, the loading index can
also be expressed in terms of the total strain increment as

L ¼
Nij þ ∂f

∂A
∂A
∂nkl

∂nkl
∂rij

� �
2G δipδjq � 1

3 δijδpq
� 	� Krijδpq


 �
Nij þ ∂f

∂A
∂A
∂nkl

∂nkl
∂rij

� �
2Gmij �

ffiffi
2
3

q
KDrij

� �
þ pKp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Πkl

dεpq ¼ Πkldεkl (13)

in which

D ¼ dε p
v

dε p
q
¼ dε p

iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2de p

ij de
p
ij =3

q (14)

is the dilatancy. Using Eqs. (8) and (13), by standard procedure in plasticity, one obtains the
incremental stress–strain relation

dσij ¼ Λijkldεkl (15)

with the elastoplastic stiffness tensor

Λijkl ¼ Kδijδkl þ 2G δikδjl � 1
3
δijδkl

� �
� h Lð Þ 2Gmij þ

ffiffiffi
2
3

r
KDδij

 !
Πkl (16)

where h(L) is the Heaviside step function, with h(L> 0) = 1 and h(L≤ 0) = 0.

2.4. Non-coaxial associated flow rule in the deviatoric space

It will be shown that a yield function like Eq. (1) including the joint invariant A naturally produces non-
coaxial deformation for associated flow rule, i.e. the plastic strain rate tensor has different eigenvectors
than those of the stress tensor.

The yield function Eq. (1) can be cast into the following general form:

f ¼ ef rij;Ζi

� 	 ¼ 0 (17)

with Ζi denoting all scalar or tensor-valued internal variables; in the present model, the Zi are H and Fij.
By assuming an associated flow rule in the deviatoric stress space, the plastic deviatoric strain

increments de p
ij can now be written, as mentioned before Eq. (13):

de p
ij ¼ Lh imij; with mij ¼ ∂f =∂rij � ∂f =∂rmnð Þδmnδij=3

∂f =∂rij � ∂f =∂rmnð Þδmnδij=3
�� �� (18)

Notice that mij is normal to the yield surface expressed by Eq. (1), unlike nij of Eq. (5) which is not.
For the yield function Eq. (1), one has:

∂f
∂rij

¼ ∂f
∂R

∂R
∂rij

þ ∂f
∂g θð Þ

∂g θð Þ
∂ θð Þ

∂θ
∂rij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nij

þ ∂f
∂A

∂A
∂nkl|{z}
Fkl

∂nkl
∂rij

¼ Nij þ ∂f
∂A

Fkl
∂nkl
∂rij

(19)

A concrete derivation of the expression of ∂ f/∂ rij is given in the Appendix. Notably, the inclusion of
fabric anisotropy via the joint invariant A in the yield function leads to ∂ f/∂ rij and mij consisting of two
parts. The first part Nij is obviously coaxial with the direction of the stress ratio rij, or equivalently the
direction of the stress σij itself; and the second part involving Fkl which is attributed to fabric
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anisotropy and is in general non-coaxial with rij. This feature naturally addresses the non-
coaxiality issue in soil modeling. It is interesting to note that for a conventional model without
consideration of fabric anisotropy, i.e. without the inclusion of A-dependent terms in the yield
surface expression (1), the neutral stress path dictates Nijdrij = 0, on which no plastic
deformation takes place. For the present model, however, as shown in Eq. (19), along such a
path (∂ f/∂ rij)drij = (∂ f/∂A)Fkl(∂ nkl/∂ rij)drij, which is nonzero in general, rendering a plastic
deformation containing non-coaxial components, which is in line with numerous experimental
reports in the literature.

Nevertheless, the exact definition of neutral path loading is given by (∂ f/∂ rij)drij=0 and will yield no
plastic strain rate at all. This also reveals one inherent weakness of this type of family of models with yield
or loading surfaces that can expand isotropically and applies specifically to sands. During such neutral
loading, which resembles but is not identical to the so-called rotational shear loading, it is shown
experimentally that intense plastic deformations occur which cannot be predicted. To address this
eventuality, additional loading mechanisms were introduced in Wang et al. [41] and Li &
Dafalias [33], but such mechanisms will complicate the formulation and are not considered in
this paper.

As observed by many researchers [5, 42], granular materials may exhibit an appreciable amount of
deformation, which is non-coaxial with the stress during early stage of shearing. Such non-coaxiality,
however, gradually diminishes when shearing proceeds to a high level. Indeed, from Eq. (19), we
see that during non-proportional loading, the principal directions of rij and Fij do not generally
coincide, leading to a portion of plastic strain increment towards the direction of Fij via the
term (∂ f/∂A)Fkl(∂ nkl/∂ rij). As shearing proceeds, Fij gradually evolves towards the loading
direction [24], making the non-coaxial component smaller and smaller. Eventually, when
critical state is approached at a very large strain level, Fij becomes identical to nij resulting in A=1;
hence, the last term of Eq. (1) equals H; consequently, nij=mij and both are coaxial with rij. The
evolution law of Fij accounting for this fundamental feature will be addressed in a subsequent section
in conjunction with a simple example of rotational shear to demonstrate this feature.

2.5. Dilatancy

The dilatancy as defined in Eq. (14) characterizes the volumetric response upon shearing, which is a
unique feature of granular materials like soil. Eq. (14) indicates that the dilatancy defines the flow
rule in the volumetric-deviator space, known to be non-associative. In other words, it does not have
to be linked to the yield function.

Experimental and numerical evidence shows that the dilatancy of a granular material depends on
its density, mean normal stress, fabric anisotropy, as well as the loading direction [5–7, 40, 28].
Manzari and Dafalias [43] and Li and Dafalias [40] have proposed a state-dependent dilatancy
relation that considers the isotropic state parameter only. Li and Dafalias [17, 33] and Dafalias
et al. [19] have included the effect of inherent (and not evolving) anisotropic fabric by modifying
accordingly the location of the CSL in e-p space. In Li and Dafalias [24], the previous works were
generalized to incorporate an evolving fabric tensor towards its critical state value, thus,
introducing an anisotropic version of the state parameter and an ensuing unique CSL. In the
present work, the dilatancy state parameter defined by Li & Dafalias [24] and associated
formulation will be employed. We hereby propose the following fabric-dependent dilatancy
function (c.f., [17, 24, 40]):

D ¼ d1
Mcg θð Þ 1þ R

Mcg θð Þ

 �

Mcg θð Þ exp mζð Þ � R½ � (20)

where d1 and m are two model constants. ζ is the dilatancy state parameter defined by Li & Dafalias [24]

ζ ¼ ψ � eA A� 1ð Þ (21)

where eA is a model parameter. ψ = e� ec is the state parameter defined by Been and Jefferies [44] with e
and ec being the current void ratio and the critical state void ratio corresponding to the current
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mean normal stress p, respectively. In the present work, the critical state line in the e� p plane is
given by [45]

ec ¼ eΓ � λc p=pað Þξ (22)

where eΓ, λc and ξ are material constants and pa (=101 kPa) is the atmospheric pressure. The
relation expressed by Eq. (22) is found to be appropriate for modeling the critical state line of
sand in the e� p plane over a wide range of stress level [45]. It can also overcome some
drawbacks of the commonly used e� ln p relation, i.e. the current relation gives ec = eΓ at p = 0
while the e� ln p relation gives an infinite value of e as p approaches 0.

2.6. Fabric evolution and plastic hardening

It remains practically difficult to quantify soil internal structure and its evolution by physical tests.
Limited knowledge on such evolution has so far primarily been based upon micromechanics-based
approaches such as DEM simulations (see, e.g. [28, 29, 37, 38, 46, 47]) and photoelastic
experiments (e.g. [48]). Based on these as well as traditional macroscopic observations, the
following evolution laws for H and Fij, according to Li & Dafalias [24, 33], are proposed:

dH ¼ Lh irh ¼ Lh iG 1� cheð Þ
pR

Mcg θð Þ exp �nζð Þ � R½ � (23)

dFij ¼ Lh iΘij ¼ Lh ikf nij � Fij

� 	
(24)

where ch and n are two positive model parameters; kf is a new positive model constant
representing the rate of fabric evolution. Note that the hardening law in Eq. (23) has been
modified from the plastic modulus proposed by Li and Dafalias [17] with further inclusion of
fabric anisotropy. The above evolution law of Fij with plastic deformations leads towards
coaxiality with the loading direction nij. Note that including additional terms involving plastic
spin in Eq. (24) may help to address the mechanism of fabric rotation more realistically, as it
has been discussed by Dafalias [49], Nemat-Nasser [32] and Li & Dafalias [24]. This will be
investigated in a future work.

From Eq. (12) in conjunction with Eqs. (23) and (24), it follows that the expression for the plastic
modulus is given by:

Kp ¼ R

g θð Þ
rh
H

þ 2kh 1� Að Þnijkf nij � Fij

� 	h i

¼ R

g θð Þ
G 1� cheð Þ

H

Mg θð Þ exp �nζð Þ
R

� 1


 �
þ 2khkf 1� Að Þ2

� � (25)

As will be shown later, the plastic modulus may become negative to induce softening in dense
samples under drained shear.
3. DATA SIMULATIONS BY THE MODEL

To verify the simulative capability of the present model, we employ the test data for the dry-deposited
Toyoura sand (Gs = 2.643, emax = 0.973, emin = 0.635, D50 = 0.17mm) reported by Yoshimine et al. [5]
and Verdugo & Ishihara [31] and those for the water-pluviated Fraser River sand (Gs= 2.72, emax = 1.0,
emin = 0.68, D50 = 0.3mm) reported by Uthayakumar and Vaid [7] as well as Chillarige et al. [50].
These two groups of data can demonstrate the influence of confining pressure pc, density denoted by
Drc which is the relative density after consolidation, intermediate principal stress parameter b as well
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:370–390
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as the major principal stress direction relative to the vertical direction α on undrained behavior of sand.
All the model parameters are listed in Table I. The elastic parameters (G0 and ν) and those related to the
conventional critical state theory (Mc, c, eΓ, λc and ξ) were calibrated based on the experimental data
directly (see [40, 33, 51] for more detailed discussion), while other parameters were determined
based on trial and error. However, it is noted that most of the model parameters are very close for
these two sands, which is attributable to that their particle constitution, maximum and minimum
void ratios are similar.
3.1. Dry-deposited Toyoura Sand

Figures 1 and 2 present two sets of undrained torsional shear test data with b= 0.25 and b = 0.5 for the
dry-deposited Toyoura sand and the corresponding model simulations. The test setup and loading
condition has been described by Yoshimine et al. [5] in detail. Clearly, the model well captures the
trend that larger value of α generally leads to softer (lower shear stress σ1�σ3 at the same shear
strain ε1� ε3) and relatively more contractive sand response. For both the b = 0.25 and b= 0.5 cases,
the simulated shear stress–strain relations and effective stress paths are in good agreement with the
test data when α≥ 30°, while the model simulations are softer and more contractive than the
measured when α≤ 15° (Figures 1 and 2). Better model performance can be obtained if rh is further
assumed to be dependent on A (see e.g. [24]) but additional parameter(s) will be needed.
Meanwhile, it is interesting to have a further comparison of the performance of the present model
with those proposed by Li & Dafalias [17] and Dafalias et al. [19] on the modeling of inherently
anisotropic sand behavior. The predictions made in these two papers have been in excellent
agreement with the test data of Toyoura sand as well. Nevertheless, the present model gives better
performance in predicting the sand behavior at large strain levels with α> 45°. While models in the
two papers mentioned above predict an approximately linear (ε1� ε3)� (σ1�σ3) relation after the
‘quasi-steady state’ in these cases, the current model captures the subtle nonlinear recovery of shear
strength of sand behavior for this stage satisfactorily, due primarily to the consideration of the fabric
evolution with the loading direction in our modeling.
3.2. Wet-tamped Toyoura sand

Figure 3 shows the experimental data and model simulations of wet-tamped Toyoura sand samples
under drained triaxial compression conditions, with the same values of model constants in Table I
Table I. Summary of model parameters for dry-deposited Toyoura sand and water-pluviated Fraser
River sand.

Parameter Symbol Toyoura sand Fraser River sand

Elasticity G0 125 145
ν 0.1 0.2

Critical state Mc 1.25 1.33
c 0.75 0.73
eΓ 0.934 1.021
λc 0.02 0.03
ξ 0.7 0.7

Yield function kh 0.03 0.03

Plastic modulus ch 0.90 0.90
n 3.0 2.8

Dilatancy d1 0.2 0.15
m 5.3 2.0
eA 0.10 0.11

Fabric evolution kf 5.7 5.8
Initial degree of anisotropy F0 0.45 0.45
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(a)                        (b)

(c) (d)

Figure 2. Test data and model simulations for influence of principal stress direction α on undrained behavior
of Toyoura sand at b= 0.5 (data from [5]).

(a) (b)

(c) (d)

Figure 1. Test data and model simulations for the influence of principal stress direction α on undrained
behavior of Toyoura sand at b= 0.25 (data from [5]).
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(c) (d)

Figure 3. Test data and model simulations for the drained behavior of Toyoura sand under triaxial compression
(data from [31]). Initial fabric anisotropy: (a) and (b): F0 = 0.45; (c) and (d): F0 = 0.0.
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used for the undrained loading simulations for samples prepared by dry deposition. Despite the fact the
samples were prepared now by a different method, which might induce a different initial fabric [52],
the simulations in Figures 3(a) and (b) were conducted with an initial fabric norm value F0 = 0.45 as
in the undrained case of Figures 1 and 2 due to lack of any other information. Yet, the simulations
are quite good if not as good as in the undrained case. In order to illustrate the important effect of
initial fabric, Figures 3(c) and (d) show the same simulations using an initially isotropic fabric with
F0 = 0.0 while all other model constants are kept same. Since the fabric evolves towards the same
critical state value, the differences between initially anisotropic and isotropic fabric values disappear
as loading progresses, with the former providing a better overall simulation of the data.

3.3. Water-pluviated Fraser River sand

Comparisons of the model predictions with the test data for water-pluviated Fraser River sand in
undrained torsional shear tests with constant b and α are presented in Figures 4, 5. Again, it is
evident that the influences of loading direction, the intermediate principal stress level, the initial
confining pressure as well as the relative density on the behavior of Fraser River sand as observed
in the experiments by Uthayakumar & Vaid [7] are captured by our model. We notice that the
gradual deviatoric stress increase after the ‘quasi-steady state’ with α≥ 45° is captured by the
present model. Similar to the Toyoura sand case, the model gives better simulations when α≥ 45°
(Figure 4) than other cases. Better model performance for cases with α≤ 30° can be achieved if rh is
assumed to be dependent on A.
4. FABRIC EVOLUTION EFFECTS ON SAND RESPONSE

We shall devote a detailed discussion in this section on the effect of fabric evolution on sand response
under monotonic shear, as reflected from our modeling. In particular the discussion will be focused on
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(c) (d)

Figure 4. Undrained torsional shear test data and model simulations for effect of loading direction α on the
behavior of Fraser River sand (data from [7]).
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the effect of the evolution of the fabric norm and orientation on the anisotropic response, and on
evolving and diminishing non-coaxiality of the plastic strain rate in regards to stress. In doing so,
some additional simulations to the ones shown in the previous section will be exhibited.
4.1. Fabric evolution and anisotropy

Shown in Figure 6 are the model simulations of fabric evolution for Toyoura sand at b = 0.5. As can be
seen from Figure 6(a) and (b), the critical state can be attained only at very high strain level (at about
ε1� ε3 = 120%) when the sand fabric fully adapts to the stress orientation to form a steady anisotropic
structure. Figures 6(a) and (b) are similar to Figures 6 and 7 in Li and Dafalias [24], showing this trend
for a simplified triaxial model at b = 0 or b = 1 in triaxial compression and extension, respectively.

In more details, we observe from Figures 6(a) and (b) that A increases steadily with the strain over
the loading course and reaches a unique critical state degree of anisotropy (fabric norm) F = Fc = 1 in
all tests. It is also noticed that F decreases at the initial loading stage when α> 15° (Figure 6(b)) and
subsequently increases towards its critical state value Fc = 1. This is because the fabric tensor Fij

evolves and changes its triaxial-like initial configuration, acquired during sample preparation, to the
one of the applied stress at b= 0.5, and in the process its norm diminishes in order to accommodate
this change; for the small angular deviation of α= 15o such accommodation is not very strong. A
particular case of this process has been observed in a triaxial extension test or a biaxial test by DEM
with compression applied in the horizontal direction, as shown in Figure 6(d) (data from [28]). Note
that the DEM samples were prepared to have an initially cross-anisotropic fabric similar to that of
the real sand with horizontal bedding plane [28]. Under such loading conditions, the fabric tensor
extracted from the DEM data is found to evolve from a triaxial compression-like structure towards a
triaxial extension-like one. In such a process, the fabric norm first decreases to zero before it evolves
towards its critical value of unity, while the principal directions of the fabric tensor do not change.
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Figure 5. Test data and model simulations for the effect of intermediate principal stress ratio b on the
behavior of Fraser River sand (data from [7]).
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Such a special case of change in magnitude of fabric only can be regarded as a special case of fabric
rotation (e.g. Figure 6(d)). Li and Dafalias [24] have also discussed this trend, where also a closed-
form analytical solution of the fabric norm evolution was provided in Eq. (37) of the foregoing
reference. In addition, as the fabric and the stress are non-coaxial at the beginning, the soil fabric
must rotate its principal fabric axes to adjust its internal structure to sustain the external load more
effectively. Under any circumstances, continuous loading and deformation will drive the fabric to
continue to develop such that F retakes its increasing trend and approaches its critical state value at
relatively large deformation (see also the DEM simulations in Figure 6(d)). These are the basic
ingredients of the ACST postulated by Li and Dafalias [24]. Figure 6(c) shows the simulated
relation between stress ratio R and A. For all the loading conditions, R first reaches a peak and then
drops to the same critical state value while A keeps increasing. Same trend is also observed in the
DEM simulations by Li and Yu [53].

Figure 7 shows similar simulations for drained loading. The same trend of initial increase and then
decrease of the stress ratio R is observed, while the anisotropic variable A keeps increasing
monotonically and the void ratio tends towards its critical state value for two loading orientations
α= 00 and α = 900. A new interesting observation is made in Figure 7(c), which shows the evolution
of the plastic modulus calculated from Eq. (25) and shows its variation from positive to negative
and finally to zero values at critical state for the foregoing two orientations.

It is also interesting to have a closer look at the fabric evolution when static liquefaction occurs.
Figure 8 shows the simulated responses of Toyoura sand under triaxial extension (e= 0.866) tests and
the corresponding fabric evolution. This is in fact the case analyzed in Li and Dafalias [24] and briefly
discussed in the previous paragraph, but it deserves special attention and additional discussion due to
its importance and relevance to real experimental data. The fabric tensor is initially triaxial-compression
like due to the sample’s method of preparation; thus, it undergoes only a change of its norm, or
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2014; 38:370–390
DOI: 10.1002/nag



(a) (b)

(c) (d)

Figure 6. Model simulated fabric evolution for Toyoura sand under undrained shear at b= 0.5: (a) evolution
of the anisotropic variable A and stress ratio R; (b) evolution of the degree of fabric anisotropy (fabric norm)
F; (c) relation between R and A and (d) the simulated fabric evolution in biaxial compression tests by DEM

(data from [28]).
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equivalently of its principal values, without any change of its principal directions, which are the same with
the applied load (triaxial compression and extension have same principal directions). In particular, the
value of its major principal component decreases while the value of its minor principal component
increases, which makes the norm F undergo a decrease first until at 7% deviatoric strain. At this point,
all components of the fabric tensor are 0 so that a transient isotropic state is observed (F=A=0). The
above process continues with the increase of strain level. Eventually, the original minor component
becomes the major one, whilst the original major one turns to be the minor one. The overall degree of
anisotropy measured by F shows a slight rebound from zero (see Figure 8(c)). The
discontinuity in the evolution of F does not influence the anisotropic variable A as A increases
continuously from a negative value through zero to a positive one (Figure 8(c)). Nevertheless,
both A and F reach a very small positive value at static liquefaction where p = 0, which is far
smaller than their respective critical state value had liquefaction not occurred. Note that the
aforementioned simulated results are in good agreement with the general trend observed from
DEM simulations in Li [54] and with the corresponding results obtained by the closed-form
solution for the evolution of F and A in Li and Dafalias [24] and shown in Figure 7 of the
aforementioned reference. Figures 8(d) and (e) show the simulated stress path and fabric
evolution in a biaxial compression test by DEM by Li [54] in which static liquefaction is
observed. It can be seen that the degree of anisotropy F is around 0.16 when liquefaction
occurs, which is about 59% of the critical state value (around 0.27 obtained from the DEM
simulation). Note that the major principal stress direction is horizontal (the weakest or minor
principal fabric direction of the material) in the DEM simulations (Figures 8(d) and (e)), which
is similar to the triaxial extension loading condition in laboratory.
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(c)

Figure 7. Model simulated evolutions of fabric and plastic modulus for Toyoura sand under drained triaxial
compression: (a) evolution of the fabric anisotropic variable A and stress ratio R; (b) evolution of the void

ratio; (c) evolution of the plastic modulus.
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4.2. Fabric evolution and non-coaxiality

Another important feature of the present model is the non-coaxial flow rule in Eqs. (11)–(14), resulting
naturally from the introduction of an evolving fabric tensor into the yield function and the associative
flow rule assumption for the deviatoric plastic strain rate. As mentioned in Section 2.4, this flow rule
may help to explain the non-coaxial behavior in sand. Indeed, while the soil fabric and the loading
direction can be initially not coaxial to each other, the changes of stresses and the soil fabric are not
always synchronized either. In a typical rotational shearing case, for example, the fabric will tend to
align its major principal axes to be coaxial with that of the loading direction, in an attempt to reach
an optimum internal rearrangement to bear the load. Nevertheless, the change of fabric is always
lagging behind the stress change due to its passive nature, and this leads to non-coaxial stress and
fabric tensor. According to the flow rule as presented in Eqs. (18)–(19), the plastic strain increment
involves a component that does not align with the stress direction (the second term of the right-hand
side of Eq. (19)), and consequently, the phenomenon of non-coaxiality may be handled with ease.

In a torsional shear test, the radial stress σr is always the intermediate principal stress and the radial
strain εr the intermediate principal strain. In this setting, it is convenient to use our model to explain the
non-coaxiality in the z� θ plane. To elaborate on this point and motivated by the approach in Dafalias
et al. [19], we plot in Figure 9 the variation with shear strain of the difference of the angle α(σ) between
the direction of the major principal stress σ1 and the vertical direction, from the angle α(ε) that the
major principal strain ε1 forms with the vertical direction, for Toyoura sand under undrained shear.
Such difference is a measure of non-coaxiality. The simulations match the experimental observation
on non-coaxiality qualitatively well, and few remarks will help to improve our understandings.
When α = 0° or α= 90°, there is only change of the principal values of fabric tensor during the
development of plastic strain, but no fabric rotation is involved. As such, the two sources of plastic
strain increment due to stress and fabric increments will influence its value only, with its direction
aligning with the stress direction during the entire loading course. Thus, the predicted sand response
is generally coaxial, which is consistent with the experimental observation (see also [42]). In all the
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(e)

Figure 8. Model simulated fabric evolution for Toyoura sand in triaxial extension (c) wherein static liquefac-
tion occurs ((a) and (b)) and DEM simulation of fabric evolution in biaxial compression tests (d) and (e)

(data from [54]).
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other cases, when α is between 0° and 90°, coaxiality is assumed for purely elastic stage (below 0.5%
deviatoric strain) due to the employment of isotropic elastic relation in Eq. (7). Beyond this elastic
stage to a relative low strain level (such as 2%), however, a distinct difference between α(ε) and
α(σ) of the order of 4 to 5° on the average is found as shown in Figure 9, which indicates clearly
non-coaxiality. The 4–5° of non-coaxiality after about 2% strain is not very significant from a
practical perspective, but certainly it is important from a theoretical one. Upon further loading, the
fabric tends to rotate towards the direction of stress, and the difference between α(ε) and α(σ)
predicted by the model decreases after the peak, and the non-coaxiality will totally disappear at large
strain levels. This was in fact the conclusion reached in Dafalias et al. [19] where the plots in their
Figure 15, referred only to the residual values, in which case coaxiality was observed and modeled;
the present approach shows the extent of the approximation made in the foregoing reference.
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Figure 9. Test data and model simulations for the non-coaxial behavior of Toyoura sand under undrained
rotational shear with (a), (b) pc= 100 kPa, b= 0 and Drc = 39� 41% and (c), (d) pc= 100 kPa, b= 1 and

Drc= 40%.
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Equivalent to the eventual disappearance of non-coaxiality is the reducing slope of the curves in
Figure 9 after about 6% strain, which measures the non-coaxiality of the strain increment, rather
than strain, in reference to the stress. However, it is observed that with b = 0 (Figures 9(a) and (b)),
the present model predicts that the maximum difference is found in the case of α = 45°, while the
tests results show that this is attained when α= 30°. This may be attributed to the possibility that the
sand fabric in the tested samples is not rigorously cross-anisotropic at the initial state. Nevertheless,
the current model captures the general trend of α(ε)> α(σ) which is frequently observed in sand [5].
Meanwhile, it is emphasized that improved modeling on the rotational shear can be achievable by
including the plastic spin effect in the fabric evolution law in Eq. (20) as shown in Li and Dafalias [24],
and this will be investigated in a future work.

Intimately related to non-coaxiality is the shape of the yield surface and associated neutral loading
path tangentially to it (in fact the yield surface shape is the neutral loading path), since the assumed
associative flow rule will depend on such shape in the deviatoric stress space. Hence, with Figure 10(a)
illustrating the relative orientation of stress and fabric tensor in terms of their principal directions and
angle α, Figure 10(b) shows the shape of the yield surface as given by Eq. (1) and plotted in the
deviatoric π-plane of the stress ratio space, for three cases as indicated in the figure caption. Comparing
cases 1 and 2, one can see a small variation in shape but mainly a change of size; this is due to the
dependence of the ‘size’ of f on A (last term in Eq. (1)), and A depends on the norm and the relative
orientation of fabric and loading direction; then, while the norm is same (same F0) for cases 1 and 2,
the relative orientation is different due to different α, hence different values of A arise. Comparison
now of cases 2 and 3 shows the effect of fabric anisotropy on the shape of the yield surfaces, in
particular between the isotropic fabric for F0 =A=0 and an anisotropic fabric for F0 = 0.9 at α=450.
Observe the normal ‘tensors’ to each one of the two yield surfaces, shown by small arrows at
their intersection point; the difference of these two normal directions is a graphical measure of
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Figure 10. Demonstration of yield surface shapes and associated neutral loading paths for the current model
for Toyoura sand for three cases: Case 1: α= 0° degree of anisotropy: F0 = 0.9; Case 2: α = 45°, degree of
anisotropy: F0 = 0.9; Case 3: F0 = 0.0; Isotropic fabric case, A≡ 0. (a) Definition of α; (b) the obtained yield

surface shapes (neutral loading paths).

386 Z. GAO ET AL.
non-coaxiality because the normal for the isotropic case 3 will be coaxial with the stress, while
the normal for the anisotropic case 2 will not.

Another result of anisotropy and resulting non-coaxiality can be seen if one observes what happens at
the intersection points of the three yield surfaces with the axis r1 in Figure 10(b). For cases 1 and 3, the
normal to the yield surface at the corresponding intersection point with axis r1 (not shown for clarity) is
parallel to the axis indicating coaxiality, which for case 1 is the result of α =0 (fabric tensor and stress
are coaxial) while for the case 3 is simply the result of isotropy. However, it is clear from the plot of
Figure 10(b) that the corresponding normal for case 2 will deviate from axis r1, and such deviation is a
measure of non-coaxiality because of anisotropic fabric tensor being non-coaxial with the stress tensor
even at the triaxial compression state which exists on axis r1.
5. CONCLUDING REMARKS

A three-dimensional elastoplastic constitutive model has been proposed to describe the anisotropic
behavior of sand. The model is characterized by the following key features:

1. It is constructed within the framework of ACST recently presented by Li and Dafalias [24]. Being
a totally new theory different from the classic one, the ACST emphasizes the role of fabric on the
characterization of sand response at critical state. It states that Critical State is reached when in
addition to critical values for the stress and void ratios, the soil fabric must also reach a critical
state value properly associated with a loading direction.

2. It employs a void-based fabric tensor and a physically based fabric evolution law to account for
the influence of void sizes and orientations and their change during shear on the sand behavior,
dilatancy in particular. To the knowledge of the authors, no previous soil model had ever
incorporated a fabric tensor evolving towards a unique critical state value. The physical
significance of the fabric evolution law is that the fabric will evolve to accommodate the applied
stress and increase the sand resistance to shear during the loading process, as well as the impact
on the soil dilatancy and plastic hardening.

3. It introduces an explicit anisotropic yield function expressed by the direct and joint isotropic
invariants of the stress tensor and fabric tensor, on the physical basis that the shearing resistance
of the soil consists of contributions from the isotropic inter-particle friction and the fabric
anisotropy, and that the dissipation rate is dependent on the soil fabric.

4. A non-coaxial but associative flow rule in the deviatoric stress space that can naturally account
for the non-coaxial behavior of initially anisotropic sand samples under monotonic loading is
employed, in regards to a yield surface – plastic potential that includes joint invariants of stress
and fabric tensors. Such a non-coaxial flow rule helps to explain the physical mechanism underlying
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the non-coaxial behavior in sand in a natural yet reasonable way, rather than being arbitrary and
phenomenological as in many existing studies. Evidently, the employment of a fabric-dependent flow
rule and consideration of fabric evolution with plastic deformation is emphatically important for
modeling the transition of sand response from being non-coaxial at the beginning of loading when
the fabric and stress are notably non-coaxial to being coaxial at critical state when the fabric
is co-directional with loading. Never has this feature been reported in the existing studies.

The model has been used to simulate a series of undrained test results for the dry-deposited Toyoura
sand [5] and water-pluviated Fraser River sand [7], as well as drained test for moist-tamped Toyoura
sand [31], under various combinations of principal stress directions, intermediate principal stress
values, confining pressure and densities. The model simulations compare well with the test results
under different loading paths with a single set of parameters. The new model demonstrates excellent
predictive capabilities in capturing such complex behaviors of sand as phase transformation, static
liquefaction as well as critical state. It is emphasized that the evolution of fabric anisotropy is a natural
process and plays a key role behind the complex behavior of sand, and should be carefully considered
in the modeling of sand in the future. Future work will be focused on modeling the behavior of sand
under more complex loading conditions, which are of important engineering significance, such as
reverse loading and principal stress rotation.
NOTATION
A

Copyright © 2013
anisotropic variable

b
 intermediate principal stress parameter

D
 dilatancy equation

Drc
 relative density after consolidation

e, ec
 void ratio and critical state void ratio

eij
 deviatoric strain

eeij, e

p
ij
 elastic and plastic deviatoric strain
Fij
 deviatoric void fabric tensor

f
 yield function

G
 elastic shear modulus

H
 hardening parameter

g(θ)
 interpolation function for the critical state stress ratio

K
 elastic bulk modulus

Kp
 plastic modulus

Mc, Me
 critical state stress ratio in triaxial compression and triaxial extension

p
 mean stress

pc
 consolidation pressure before shear

R
 stress ratio

rij
 stress ratio tensor

sij
 deviatoric stress tensor

α
 angle between the major principal stress and direction of deposition

δij
 Kronecker delta

ε1, ε2, ε3
 major, intermediate and minor principal strain respectively

εq, εeq, ε

p
q
 total, elastic and plastic deviatoric strain respectively
εr
 radial strain

εv, εev, ε

p
v
 total, elastic and plastic volumetric strain, respectively
εz
 vertical strain

θ
 Lode angle of the stress tensor

ν
 Poisson’s ratio

σ1, σ2, σ3
 major, intermediate and minor principal stress, respectively

σij
 stress tensor

σr, σz
 radial and vertical stress

ψ
 state parameter
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APPENDIX. PARTIAL DERIVATIVES USED IN THE CONSTITUTIVE RELATION

The expression for ∂f
∂rij can be obtained according to the chain rule for partial derivatives based on Eq. (1),
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with
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The expression for ∂f
∂H is

∂f
∂H

¼ �e�kh A�1ð Þ2 (A7)
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