
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2005 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

December 2005

A Critical Suggestive Evaluation of CK Metric
Parvinder Sandhu
Guru Nanak Dev Engineering College

Hardeep Singh
Guru Nanak Dev University

Follow this and additional works at: http://aisel.aisnet.org/pacis2005

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Sandhu, Parvinder and Singh, Hardeep, "A Critical Suggestive Evaluation of CK Metric" (2005). PACIS 2005 Proceedings. 16.
http://aisel.aisnet.org/pacis2005/16

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2005/16?utm_source=aisel.aisnet.org%2Fpacis2005%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

183

A Critical Suggestive Evaluation of CK Metric

Parvinder Singh Sandhu
Assistant Professor

Guru Nanak Dev Engineering College
Ludhiana(Punjab) - 141 006 India.

parvindersingh@gndec.ac.in

 Dr. Hardeep Singh
Professor& Head(Computer Science)

Guru Nanak Dev University
Amritsar (Punjab) - 143 005 India

hardeep_gndu@rediffmail.com

Abstract

In the era of Computerization Object Oriented Paradigm is becoming more and more
pronounced. This has provoked the need of high quality object oriented software, as the
traditional metrics cannot be applied on the object-oriented systems. Although CK suit of
metric is the widely accepted metrics but when analyzed, according to their validation
criteria on which these are based, these metrics can’t satisfy certain axioms. This paper gives
the evaluation of CK suit of metrics and suggests the refinements and extensions to these
metrics so that these metrics should reflect accurate and precise results for OO based
systems.

Keywords: CK Metric, Weyukar’s axioms, CBO, LCOM, DIT, NOC.

1. Introduction

The OO paradigm for the software development differs from traditional procedural
counterpart so the traditional metrics can’t be applied on OO software. Opponents of the use
of traditional metrics within the OO paradigm argue that such metrics were originally
designed to go along procedural methodologies and languages, and therefore fail to capture
concepts as inheritance and polymorphism which are unique to the OO paradigm (Lorenz et.
al. 1994; Li et. al. 1995). Moreover Traditional paradigm requires more effort during the
coding and maintenance phases as compared to OO paradigm, which put more emphasis on
the earlier stages of software development, especially on design phase (Henderson et. al.
1991). Krishnan et al. empirically show that higher up-front investment in design helps in
controlling costs as well as in improving quality (Krishnan et. al. 1994). Software metrics are
measures of the attributes of software products and processes. Because of the importance of
knowing quality of the design phase there is the need of metrics that measures the goodness
of design and it provides the designer with improved insight that leads to a higher level of
quality. Chidamber and Kemerer metric & MOOD metric are considered the best OO design
metrics. But The Chidamber and Kemerer (CK) metrics suite is the most criticized, perhaps
due to its popularity.

Even today, there is lack of availability of metrics that measures all aspects of OO systems.
Hence additional metrics are required to measure currently unexplored or partially explored
dimensions of OO systems. Research on metrics for OO software development is limited and
empirical evidence linking the OO methodology and project outcomes is scarce. Recent work

184

in the field has also addressed the need for research to better understand the determinants of
software quality (Basili et. al. 1996).

The organization of the rest of the paper is as follows: In the next section, we discuss
Weyukar’s nine axioms and CK Suit of Metrics with the flaws and the inconsistencies in the
suit that arose when validated against Weyukar’s nine axioms. Section2 we also discussed
about the refinements to the discrepancies in CK suit of metrics .In the In Section 3, we
present the conclusion and finally the reference.

2. CK Suit of Metrics

One of the first suites of OO design measures was proposed by Chidamber and Kemerer
(Chidamber et. al. 1991; Chidamber et. al. 1994). The authors of this suite of metrics claim
that these measures can aid users in understanding object oriented design complexity and in
predicting external software qualities such as software defects, testing, and maintenance
effort. Use of the CK set of metrics and other complementary measures are gradually growing
in industry acceptance. This is reflected in the increasing number of industrial software tools,
such as Rational Rose®, that enable automated computation of these metrics. Even though
this metric suite is widely, empirical validations of these metrics in real world software
development settings are limited. Various flaws and inconsistencies have been observed in
the suite of six class-based metrics as shown under.

2.1 Validation Criteria for CK Metric Suite
Weyuker establishes a standard for software measures in this seminal article. She states the
conditions for a measure as follows:
"All the measures we consider depend only on the syntactic features of the program."
(Weyuker 1988)
The nine properties of measures are (Chidamber et. al. 1994):

Property 1: Non-coarseness
Given a class P and a metric µ another class Q can always be found such that: µ (P) ≠ µ (Q).
This implies that not every class can have the same value for a metric; otherwise it has lost its
significance as a measurement.

Property 2: Granularity
According to this property there could be a finite number of cases having the same metric
value. Since the universe of discourse deals with at most a finite set of applications, each of
which has a finite number of classes, this property will be met by any metric measured at the
class level.

Property 3: Design details are important
Given two class designs, P and Q, which provide the same functionality, does not imply that
µ (P) = µ (Q). The specifics of the class must influence the metric value. The intuition behind
Property 3 is that even though two class designs perform the same function, the details of the
design matter in determining the metric value for the class.

185

Property 4: Monotonicity
For all classes P and Q, the following must hold: µ(P) ≤ µ(P+Q) and µ(Q) ≤ µ(P+Q) where P
+ Q implies combination of P and Q. This implies that the metric value for the combination
of two classes can never be less than the metric for either of the component classes.

Property 5: Non-equivalence of interaction
∃ P, ∃ Q, ∃ R, such that µ(P) = µ(Q) does not imply that µ(P+R) = µ(Q+R).
This suggests that interaction between P and R can be different than interaction between Q
and R resulting in different complexity values for P+R and Q+R.

Property 6: Non-uniqueness (notion of equivalence)
There can exist distinct classes P and Q such that µ (P) = µ (Q). This implies that two classes
can have the same metric value, i.e., the two classes can be equally complex.

Property7: Permutation of elements
Permutation of elements within the item being measured can change the metric value. The
intent is to ensure that metric values change due to permutation of program statements.

Property 8: Renaming
It requires that when the name of the measured entity changes, the metric should remain
unchanged.

Property 9: Interaction increases complexity
∃ P and ∃ Q such that: µ(P) + µ(Q) < µ(P+Q)
The principle behind this property is that when two classes are combined, the interaction
between classes can increase the complexity metric value.

2.2 Inconsistencies in CK metric suit and their possible solutions

 The CK metrics were validated against Weyukar’s nine axioms and none of the metrics was
found to comply to either of the property 7 about “Permutation of elements” or property 9
about “Interaction increases complexity” of the above Weyuker list of axioms. In support of
non-compliance to property 7 Chidamber & Kermer suggested that “Permutation of
elements” property is meaningful in traditional program design, where the ordering of if-
then-else blocks could alter the program logic (and consequent complexity). In OOD, a class
is an abstraction of the problem space, and the order of statements within the class definition
has no impact on eventual execution or use. For example, changing the order in which
methods are declared does not affect the order in which they are executed, since methods are
triggered by the receipt of different messages from other objects (Chidamber et. al. 1994).
Failure to meet the property 9 suggest that it is probably not applicable to object –oriented
systems where interaction might in fact decrease complexity by rendering classes closer to
the abstractions they are supposed to portray. There are six metrics proposed:

2.2.1 Metric 1: Weighted methods per class (WMC)

186

According to this metric if a Class C, has n methods and c1, c2 …cn be the complexity of the
methods, then WMC(C)= c1 + c2 +… + cn . The specific complexity metric that is chosen
should be normalized so that nominal complexity for a method takes on a value of 1.0. If all
method complexities are considered to be unity, then WMC = n, the number of methods.
WMC break an elementary rule of measurement theory that a measure should be concerned
with a single attribute (Chidamber et. al. 1994). This is also not clear whether the inherited
method is to be counted in base class (which defines it), in derived classes or in both.

2.2.1 Metric 2: Depth of inheritance tree (DIT)
According to this metric Depth of inheritance of a class is “the maximum length from the
node to the root of the tree"[Pressman 2001]. The definition of DIT is ambiguous when
multiple inheritance and multiple roots are present. Consider the class inheritance tree with
multiple roots in figure 1.

Figure 1: A Class Inheritance Tree with Multiple Root

In figure 1 the maximum length from node 5 becomes unclear, as there are two roots in the
design. As the maximum length of class 5 from root 3 is 1 and maximum length of class 5
from root 1 is 2 (Sheldon et. al. 2002).
There is the inconsistency in the theoretical basis and definition of the metric in case of
multiple inheritance. The theoretical basis states that DIT of a class is a measure of how
many ancestor classes can potentially affect that class. The definition measures the maximum
ancestor classes from the class-node to the root of the inheritance tree. The above conflict is
shown in figure 2, where DIT(4)=DIT(5)=2 (Sheldon et. al. 2002).

Figure 2: A Class inheritance Tree with Single Root

187

As the class 5 inheritance more classes than class 4, so the DIT value of class 5 should be
greater than that of class 4 but according to present definition of DIT metric the value of DIT
for both classes is same. Hence there is the need to rectify the definition of DIT. The
alternative length of the path is not being considered in case of multiple inheritance. If we
add all the ancestor classes coming in common path to the ancestor classes coming in
alternative paths then that will be the true representation of the theoretical basis of the DIT
metric.

As DITpath1(5) is the value of the maximum length of path of class 5 to root using path 5-3-1 ,
which comes out to be 2. Other alternative path of class 5 to the root is 5-2-1; the value of
DIT in that case can be depicted by DIT path2(5)= 2. So the total DIT value for class 5 can be
calculated as:

DITtotal(5) = DITpath1(5) + DITpath2(5)= 2 + 2 = 4,

which is the true representation of the theoretical basis DIT metric. On the other hand in
case of class 4 there is only one path to the root hence the DITtotal(4)=2. DIT metric states that
as Depth of Inheritance grows, it is likely that the lower-level classes will inherit many
methods, that leads to greater design complexity and potential difficulties when attempting to
predict the behavior of a class. Ultimately deeper Inheritance produces hindrances in
maintenance. On the other hand it states that it is better to have Depth than breadth in the
Inheritance Hierarchy Hence there is contradiction in the statements of DIT metric.

2.2.3 Metric 3: Number of Children (NOC)
According to this metric Number of children (NOC) of a class is the number of immediate
sub-classes subordinated to a class in the class hierarchy. Theoretical basis of NOC metric
relates to the notion of scope of properties. It is a measure of how many sub-classes are going
to inherit the methods of the parent class (Chidamber et. al. 1994). The definition of NOC
metric gives the distorted view of the system as it counts only the immediate sub-classes
instead of all the descendants of the class as illustrated by the figure 3:

Figure 3: Example showing the distorted view of NOC metric

where Both A and B classes have NOC value of two, but there are nine classes that inherits
the properties of class A and a total of seven classes inherit class B’s properties. So the NOC
value of a class should reflect all the subclasses that share the properties of that class.

188

2.2.4 Metric 4: Coupling Between Object Classes (CBO)
According to this metric “Coupling Between Object Classes” (CBO) for a class is a count of
the number of other classes to which it is coupled. Theoretical basis of CBO relates to the
notion that an object is coupled to another object if one of them acts on the other, i .e.
methods of one use methods or instance variables of another (Chidamber et. al. 1994). As
Coupling between Object classes increases, reusability decreases and it becomes harder to
modify and test the software system. But for most authors coupling is reuse, which raises
ambiguity. So there is the need to find out the coupling level that implies the goodness of
design.

Chidamber and Kermerer state that their definition of coupling also applies to coupling due to
inheritance, but do not make it clear if all ancestors are involuntarily coupled or if the
measured class has to explicitly access a field or method in an ancestor class for it to count.
In general the definition of the CBO is ambiguous, and makes its application tough (Mayer
et. al. 1999).
2.2.5 Metric 5: Response For a Class (RFC)
According to this metric Response For a Class (RFC) can be defined as | RS |, where RS is
the response set for the class. The response set for the class can be expressed as:

RS = { M }∪ all i { R i }

where { Ri} = set of methods called by method i and { M } = set of all methods in the class.
The response set of a class is a set of methods that can potentially be executed in response to
a message received by an object of that class. (Henderson et. al. 1991) But here the point to
be noted is that because of practical considerations, Chidamber and Kermerer recommended
only one level of nesting during the collection of data for calculating RFC. This gives
incomplete and ambiguous approach as in real programming practice there exists “Deeply
nested call-backs” that are not considered here. If CK intend the metric to be a measure of the
methods in a class plus the methods called then the definition should be redefined to reflect
this (Mayer et. al. 1999).

As the cardinality of response set is a measure of RFC for that class, hence RFC measures
both internal and external communication by counting the number of methods, internal as
well as external, available to a class. It is able to discriminate between two messages sent to
the same method but from different parts of the class (Henderson et. al. 1996).

2.2.6 Metric 6: Lack of Cohesion in Methods (LCOM)
Consider a Class C1 with n methods M1 , M2 ..., Mn . Let {Ij } = set of instance variables used
by method Mi .There are n such sets {I1},{I2}... {In}. Let P = { (Ii ,Ij) | Ii ∩ Ij = ∅ } and Q =
{ (Ii ,Ij) | Ii ∩ Ij ≠ ∅ }. If all n sets {I1},{I2}... {In}. are ∅ then let P = ∅ [4]. Lack of
Cohesion in Methods (LCOM) of a class can be defined as:

LCOM = |P| - |Q|, if |P| > |Q|
LCOM = 0 otherwise

The high value of LCOM indicates that the methods in the class are not really related to each
other and vice versa. According to above definition of LCOM the high value of LCOM
implies low similarity and low cohesion, but a value of LCOM = 0 doesn’t implies the
reverse (Mayer et. al. 1999).

189

Consider the example in figure 4 (a) the value of LCOM is 8 (as | P | =9 and | Q | = 1).
Whereas in figure 4 (b) the value of LCOM is also 8 (as | P | =18 and | Q | = 10), but figure 4
(a) example is more cohesive than figure 4 (b) example. So the above said definition of CK
metric for LCOM is not able to distinguish the more cohesive class from the less ones. This is
simple violation of the basic axiom of measurement theory, which tells that a measure should
be able to distinguish two dissimilar entities. So this deficiency offends the purpose of metric.

(a) (b)

 Figure 4: Two examples of (a) Less cohesive class and (b) Densely cohesive Class
In another test of validity of the LCOM metric consider the example of figure 5:

I1 = {a, b, c, d, e}
I2 = {a, b, e}
I3 = {x, y, z, d, e}
I4 = {x, y, z, d}

Figure 5: Example for the calculation of LCOM

Consider a class supporting the first three sets then |P| = 2, |Q| = 1⇒ LCOM = 1 implies less
cohesion but when considering a class that supports all four sets then |P| = 3, |Q| = 3 ⇒
LCOM = 0 implies high cohesion. But this is just the reverse that we are expecting when we
analyze the above sets as I1 and I2 are a pair of cohesive methods as are I3 and I4 and the
good design recommends the formation of two classes, not one (Henderson et. al. 1996).

Table 1: Evaluation of the Chidamber and Kemerer metrics against Weyukar’s nine
axioms (Chidamber et. al. 1991)

Weyukar’s nine axioms CK
Metrics 1 2 3 4 5 6 7 8 9
WMC Y Y Y Y Y Y N Y N
DIT Y Y Y Y N Y N Y N
NOC Y Y Y Y Y Y N Y N
RFC Y Y Y Y Y N N Y N

LCOM Y Y Y Y Y Y N Y N
CBO Y Y Y Y Y Y N Y N

2.3 A New Measure for LCOM
For solving the above problems this paper recommends the two alternatives, one version is
the amendments in the basic CK metric of LCOM, denoted by LCOMnew1 and other version is

190

the new formula for the LCOM which considers the number of data members of the classes,
number of classes and the number of data members, denoted by LCOMnew2.

 …………………….(1)

where “η(Mi)” is the number of data variables that ith method is using, “m” are the total
number of methods and “a” is total number of data variables used by the methods.
According to Second version is the modified form of existing CK metric for LCOM as that
metric is not considering the relative importance of the elements of set P and set Q used in
calculating the LCOM of a class. First component of this version is representing the
normalized weightage of the “{ (Ii ,Ij) | Ii ∩ Ij }” constituents of the methods considered. The
second component represents the normalized weightage of the “{ (Ii ,Ij) | Ii ∩ Ij ≠ ∅ }”
constituents of the methods in the class. As the | Ii ∩ Ij | is the number of data variables
shared by the two methods ,on the other hand, | Ii U Ij | is the union of variables of both the
methods. The basis of LCOMnew2 is same as that of the LCOM metric.

 …………...(2)

To verifying the correctness of the LCOMnew1and LCOMnew2 lets consider the six graded
examples of figure 6. Examples (A) and (B) of Figure 6, should clearly be divided into two as
they have very less cohesiveness. At the other extreme, example (F) is maximally cohesive in
which all methods access all attributes. The intermediate parts (C–E) show various degrees of
cohesion. The values of the two proposed versions of LCOM are given in Table 2.

Figure 6: Six graded examples (the values of the three versions of LCOM are given in
Table 2). Parts (A) and (B) should clearly be divided into two. At the other extreme,
part (F) is maximally cohesive in which all methods access all attributes. The
intermediate parts (C–E) show various degrees of cohesion.

191

Table 2: Values of two proposed versions of LCOM from Equations 1 & Equation 2 for
the examples of Figure 6

Version

(A) (B) (C) (D) (E) (F)

LCOMnew1

0.67

0.21

0.133

0.083

0.167

0.00

LCOMnew2

0.22

0.1

-0.013

-0.0625

-0.33

-0.5

By analyzing the table 2, is clear that the LCOMnew1 gives the least value zero for the
maximum cohesive example (F) and for other examples the values of LCOMnew1 is in
accordance with the cohesiveness level. The values calculated using LCOMnew2 are also
verified as the value decreases from (A) to (F) as the cohesiveness increases from (A) to (F).

When LCOMnew1 and LCOMnew2 are applied to the figure 4 examples then LCOMnew1 =0.7,
LCOMnew2= 0.124 for figure 4(a) example and LCOMnew1= 0.417, LCOMnew2= 0.078 for the
example of figure 4(b).

When we consider 3 sets of example of figure 5 the LCOMnew1 and LCOMnew2 values are
0.164 and 0.047 respectively, but when we consider 4 sets then the LCOMnew1 and LCOMnew2
values are 0.16 and 0.059 respectively.

3. Conclusion
As the two proposed versions are able to alleviate the problems that are there with CK metric
of LCOM. CK metric of LCOM measure is not very discriminating (i.e. it again fails
Weyuker’s basic first axiom (Weyuker 1988)) for low cohesive structures as reflected in the
example of figure 5, where it has produced extreme contrast values. But second proposed
version is able to solve the problem by indicating high value of LCOMnew2, when we consider
the four sets as compared to the value when three sets are considered. But the second version
is able to solve the problem completely by producing the values 0.059, when we consider the
four sets and 0.047, when we consider three sets of example of figure 5, showing the
superiority over the first version. As clear from the values of LCOMnew1, the first proposed
version is able to solve the problem of figure 5 partially but not fully.

As the value of LCOMnew2 for problem of figure 4 (a) which is less cohesive is 0.124 as
compared to 0.078 value for more cohesive problem of figure 4 (b), that shows that the
second version is able to discriminate the less cohesive candidate from the more cohesive
ones that, the CK metric of LCOM is not able to do. The first version is also able to
discriminate the less cohesive candidate from the more cohesive ones by producing higher
value of LCOMnew1 for less cohesive problem.

Hence the second version is able to solve both the problems that the original CK metric of
LCOM was not able to solve so it can become the true candidate of the rectified version of
CK metric as far as the cohesiveness of a class is concerned.

192

4. References

Basili, V., Briand, L., and Melo, W. “A Validation of Object Oriented Design Metrics as
Quality Indicators,” IEEE Trans. Software Engineering., vol. 22, 1996, pp. 751-761.

Chidamber, S.R., and Kemerer, C.F. “A Metric Suite for Object Oriented Design,” IEEE
Trans. Software Engineering, Vol. 20, 1994, pp. 476-493.

Chidamber, S.R., and Kemerer, C. F. “Towards a Metrics Suite for Object Oriented Design,”
Proc. Conf. Object Oriented Programming Systems, Languages, and Applications
(OOPSLA’91), vol. 26, no. 11, 1991, pp. 197-211.

Henderson-Seller, B., and Constantine, L. L. “Coupling and Cohesion (towards a valid
metrics suite for object oriented analysis and Design”, Object Oriented Systems, 3, 1996, pp.
143-158.

Henderson-Sellers, B. “Some metrics for object oriented software engineering,” In J. Plotter,
M. Tokoro, and B. Meyer, editors, TOOLS 6: Technology of Object-Oriented Languages and
Systems, Englewood Ciffs, N. J., 1991, Prentice Hall TOOLS Conference Series, pages 131-
139.

Krishnan, M. S., Kriebel, C. H., Kekre, S., and Mukhopadhyay, T. “An Empirical Analysis
of Productivity and Quality in Software Products,” Management Science, vol. 46, 2000, pp.
745-759.

Li, W., Henry, S., Kafura, D., and Schulman, R. “Measuring Object- Oriented Design,”
Journal of Object Oriented Programming, July-August 1995, pages 48-55.

Lorenz, M., and Kidd, J. Object – Oriented Software Metrics, Prentice Hall, Englewood
Cliffs, N. J.,1994

Mayer, T., and Hall, T. “Critical Analysis of Current OO Design Metrics”, Software Quality
Journal, 8, 1999, pp. 97-110,

Pressman, R. “ A Practitioner’s Approach to Software Engineering,” Mc-grawhill
Publications, 2001, pp. 658-662.

Sheldon, F. T., Jerath, K., and Chung, H. “Metrics for Maintainability of Class Inheritance
Hierarchies”, Journal of Software Maintenance, issue 3, May 2002, pp. 147-160.

Weyuker, E. “Evaluating software complexity measures,” IEEE Trans. Software Eng., 14,
1988, pp. 1357–1365.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2005

	A Critical Suggestive Evaluation of CK Metric
	Parvinder Sandhu
	Hardeep Singh
	Recommended Citation

	Microsoft Word - 158.doc

