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Abstract
Many extensions and modifications have been made to standard process monitoring methods
such as the exponentially weighted moving average (EWMA) chart and the cumulative
sum (CUSUM) chart. In addition, new schemes have been proposed based on alternative
weighting of past data, usually to put greater emphasis on past data and less weight on
current and recent data. In other cases, the output of one process monitoring method, such
as the EWMA statistic, is used as the input to another method, such as the CUSUM chart.
Often the recursive formula for a control chart statistic is itself used recursively to form
a new control chart statistic. We find the use of these ad hoc methods to be unjustified.
Statistical performance comparisons justifying the use of these methods have been either
flawed by focusing only on zero-state run length metrics or by making comparisons to an
unnecessarily weak competitor.

Keywords Control chart · Cumulative sum (CUSUM) chart · Exponentially weighted moving average
(EWMA) chart · Mixed control charts · Statistical process monitoring

1 Introduction

Many extensions and modifications have been made recently to standard process monitoring methods such as
the exponentially weighted moving average (EWMA) chart and the cumulative sum (CUSUM) chart. We
find that many of these methods add complications with no benefits in terms of statistical performance. In
addition, new schemes have been proposed based on alternative weighting of past data, usually to put greater
emphasis on past data and less weight on current and recent data. Some of these methods, the homogeneously
weighted moving average (HWMA) chart, the progressive mean (PM) chart, and the generally weighted
moving average (GWMA) chart, have already been studied by Knoth, Tercero-Gómez, Khakifirooz, and
Woodall [2021a] and Knoth, Woodall, and Tercero-Gómez [2021b], and found to be flawed and unnecessary.
We consider in our paper what we refer to as compound charts. These include what are referred to in the
literature as mixed or hybrid charts. In these cases the output of one process monitoring method, such as the
EWMA or moving average (MA) statistic, is used as the input to another method, such as the CUSUM chart.
Increasingly the recursive formula for a control chart statistic is itself used recursively as with the double and
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triple EWMA charts. We find these methods to be ad hoc, unnecessary, inadequately justified, and often
with unreasonable weighting patterns for data where the past data values are given more weight than the
present ones. Past comparisons justifying the use of these methods are either based on zero-state run length
performance instead of the more realistic steady-state performance, on comparisons made to an unnecessarily
weak competitor, or both.
What have been referred to in the literature as “mixed” control charts should not to be confused with the
simultaneous use of more than one control chart such as the use of several cumulative sum (CUSUM) charts
with different reference values or the use of a Shewhart chart in conjunction with a CUSUM chart, as proposed
by Lucas [1982]. Instead, mixed charts involve the use of the control chart statistic of one chart as input
into the control chart statistic or rule of another chart. Riaz et al. [2011a], Abbas et al. [2011], and Abbas
et al. [2015] have proposed using runs rules with EWMA and CUSUM charts. These methods fit into our
framework.
We aim in this article to provide an extensive review of the literature on the compound control charts. We
also show that a proper performance comparison of these charts to the conventional ones shows the added
complications provide no benefits. We evaluate the proposed charts in terms of the more realistic steady-state
performance and the conditional expected delay (CED). We note that with compound charts, a Markov chain
approach is no longer easily derived. We also show that the use of the standard design parameter values of
the conventional methods (e.g. observations’ weights) provides misleading comparisons and conclusions since
these compound approaches change the usual weighting structure on past and current observations.
Most of the papers we review on compound charts have been published in the last five years. We obviously
cannot study the performance of all of these methods, so we chose to study in detail only five of them as
illustrations. These are the mixed EWMA-CUSUM chart proposed by Abbas et al. [2013], the use of runs
rules with CUSUM and EWMA charts, the double moving average (DMA) chart of Khoo and Wong [2008],
the double EWMA (DEWMA) chart of Shamma et al. [1991] and Shamma and Shamma [1992], and the
double PM (DPM) of Abbas et al. [2019].
The paper is organized as follows. In Section 2, we provide an extensive literature review on the proposed
compound charts; namely the recursive EWMA charts, memory-type charts with run rules, MA, PM, HWMA,
and mixed control charts. Afterwards, we provide some basic notation in Section 3. We re-evaluate each of
the mixed EWMA-CUSUM, RR-CUSUM/EWMA, DMA, DEWMA, and DPM methods in Sections 4, 5,
6, 7, and 8, respectively, in terms of their zero- and steady-state performance and their CED behavior. In
Section 9, we provide our concluding remarks.

2 Literature Review

2.1 Recursive use of the EWMA statistic

A recursive use of the EWMA statistic implies switching the EWMA chart statistic formula into a recursive
function; by which it keeps calling itself as a function input in a repeated manner. Shamma and Shamma
[1992] introduced a double EWMA (DEWMA) chart, while Alevizakos et al. [2021a] introduced a triple
EWMA (TEWMA) chart. Haq [2013] introduced a hybrid EWMA (HEWMA) chart which is equivalent
in structure and concept to the DEWMA chart. Haq [2017] noted that the variance of the chart statistic
derived in Haq [2013] was incorrect, and provided the correct formula. Throughout this section, the DEWMA
chart terminology will also be used to refer to the HEWMA chart since the DEWMA and HEWMA charts
are equivalent.
By expanding the statistics of these proposed charts into weighted averages, one can easily realize that they
are fundamentally flawed in that they give past data values more weight than current values. As discussed by
Lai [1974], for example, the weight given to a particular data value should not increase as the data value ages.
This undesirable characteristic does not adversely affect zero-state run length performance, but it can result
in poor steady-state run length performance. Many other compound charts based on recursive use of control
chart statistic formulas share this property. Virtually all performance comparisons justifying compound
charts are based on the less realistic zero-state performance metrics under the assumption that any process
shift occurs immediately as monitoring begins. Giving more weight to past data values than to current data
values is clearly not reasonable in process monitoring applications.
Performance comparisons of the DEWMA or TEWMA chart with the EWMA chart typically use the same
smoothing parameter for both methods. A more competitive EWMA chart would be one with a weighting
scheme on past data similar to that of the DEWMA or TEWMA chart. Such comparisons then show
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no performance benefits for the DEWMA or TEWMA chart. Mahmoud and Woodall [2010] extensively
re-evaluated the DEWMA chart in comparison with the EWMA chart in terms of the zero-state performance
with adjusted weights and worst-case (inertia-effect) performance. They concluded that the DEWMA chart
shows a significantly weak performance in comparison to the EWMA chart because of the higher weights it
gives to the older observations.
Despite its flaws, the DEWMA approach has been implemented in a number of applications. Zhang and
Chen [2005] investigated the DEWMA chart in comparison with the EWMA chart to identify the range of
shifts where the former surpasses the latter. They additionally provided some design values for the DEWMA
chart. Alkahtani [2013] investigated the robustness of the DEWMA chart under non-normality, and Nawaz
et al. [2021] studied the effect of non-normality on its performance. Raji et al. [2018] evaluated the use of
some robust estimators in monitoring the process location parameters instead of the simple sample mean
under known and estimated process parameters. Ahmed et al. [2020] integrated the DEWMA chart with a
generalized least-squares (GLS) algorithm based on order statistics to develop a robust DEWMA chart to
monitor non-normal processes.
Perez Abreu and Schaffer [2017] used a DEWMA chart to monitor linear drifts/shifts in the quality character-
istic of interest. Asif et al. [2020] incorporated measurement error into the model used with the chart, while
Noor et al. [2020] took a Bayesian approach with it. Noor-ul Amin et al. [2019], Raza et al. [2019], Tariq
et al. [2020], and Haq et al. [2021] incorporated auxiliary information into the DEWMA chart; with Raza
et al. [2019] considering two auxiliary variables. Auxiliary variables are those that are highly correlated with
the variable of interest. It is assumed that the parameters of the distribution of the auxiliary variables are
both known and cannot change over time. In survey sampling literature, such variables are used to increase
the efficiency of the estimators of the population parameters. The required assumptions are unlikely to hold
in process monitoring applications, as discussed by Saleh et al. [2021].
Khoo et al. [2010] proposed a Max-DEWMA chart which is based on the maximum of two DEWMA statistics
to detect simultaneously changes in the process mean and variance. Javaid et al. [2020] evaluated it in the
presence of auxiliary information, while Javaid et al. [2021] evaluated it in the presence of both measurement
errors and auxiliary information. Further, for simultaneous monitoring of the process mean and dispersion,
Teh et al. [2011] proposed a sum of squares DEWMA (SS-DEWMA) chart. In the SS-charts, two chart
statistics are used; one for the process mean and one for the process variance, and the final chart statistic
by which the status of the process is determined is based on the sum of squares of both statistics. Ali and
Haq [2017] and Tariq et al. [2019] developed a DEWMA chart for monitoring only the process variance,
while Aslam et al. [2019a] developed a proportion-DEWMA chart to monitor the process variance under
non-normal or unknown (nonparametric) distributed processes.
Azam et al. [2015] and Adeoti [2018] added a repetitive sampling feature to the DEWMA chart. A repetitive
sampling feature allows for taking additional samples at a given time point when the results of the drawn
sample are indecisive. Shafiq and Musliyar [2018] corrected and recalculated some designs provided incorrectly
in Azam et al.’s (2015) article. Noor-ul Amin et al. [2020] evaluated the DEWMA chart under different
ranked set sampling (RSS) schemes; which are classical RSS, Extreme RSS (ERSS), Median RSS (MRSS),
and Quartile RSS (QRSS). The RSS is a sampling scheme that depends on ranking the collected items
when the actual measurements are difficult to make [McIntyre, 1952]. Riaz and Abbasi [2016] and Raza
et al. [2020a] developed a nonparametric DEWMA chart for monitoring the process location parameter, and
Shafqat et al. [2020] integrated the repetitive sampling technique with it. Chan et al. [2021] developed a
distribution-free DEWMA chart based on the Lepage statistic to monitor simultaneously the process location
and scale parameters.
On the attribute variable side, Zhang et al. [2003a] evaluated the DEWMA chart under Poisson processes.Aslam
et al. [2016a] applied the chart on monitoring processes that use attribute and variable inspection at the same
time. Aslam et al. [2018a] and Alevizakos and Koukouvinos [2019] developed a DEWMA chart to monitor
the parameters of the Conway-Maxwell-Poisson (COM) distribution. This distribution is used to represent
under-dispersed and over-dispersed count data. Alevizakos and Koukouvinos [2020a] and Alevizakos and
Koukouvinos [2021a] used a DEWMA chart to monitor zero-inflated Poisson (ZIP) and zero-inflated binomial
(ZIB) distributed processes, respectively.
Other underlying process distributions were also considered. For example, Alevizakos and Koukouvinos
[2020b], Raza et al. [2020b], and Adeoti [2020] used a DEWMA chart to monitor time between events (TBE)
(gamma-distributed processes), Weibull data, and exponentially distributed processes, respectively. Bizuneh
and Wang [2019] proposed a likelihood ratio based DEWMA chart to monitor the shape parameter of the
inflated Pareto process.
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Further extensions and applications were conducted by Abdella et al. [2016] who used the DEWMA chart
for profile monitoring, and Alkahtani and Schaffer [2012] and Kuvattana [2020] who extended the doubling
concept to the multivariate EWMA chart.
As for the TEWMA chart, Alevizakos et al. [2021b,c] developed a nonparametric version of the chart, while
Letshedi et al. [2021] did the same but with adding an improved modified FIR (IMFIR) feature to the chart
to monitor changes in process location.Alevizakos et al. [2021d] proposed the use of a TEWMA chart to
monitor the TBE (gamma-distributed processes).Chatterjee et al. [2021] used a TEWMA chart for monitoring
process dispersion.
Ali et al. [2021a] developed a conditional expected value (CEV) hybrid DEWMA (CEVHDEWMA) chart for
monitoring the mean of a Weibull distributed process under type-I censoring. The structure/concept of the
HDEWMA chart is equivalent to the TEWMA chart.
We note here that the generally weighted moving average (GWMA) chart of Sheu and Lin [2003] is a
generalization of the EWMA chart. Generally, Mabude et al. [2021] provided an extensive review on GWMA
control charts. These charts were studied by Knoth et al. [2021b] and shown to have no advantages over the
much simpler EWMA chart.
Nevertheless, a recursive use of the GWMA statistic was also proposed and used in different applications
in the literature. For example, Sheu and Hsieh [2009] proposed a double version of the GWMA chart;
namely the DGWMA chart, for detecting mean shifts. Chiu and Sheu [2008] and Chiu and Lu [2015]
evaluated the DGWMA chart under Poisson-distributed processes, while Chen [2020] developed a DGWMA
for monitoring COM-Poisson distributed processes. Huang et al. [2014] developed a sum of squares DGWMA
(SS-DGWMA) chart. Alevizakos et al. [2019] proposed a one-sided DGWMA chart for monitoring TBE data
(gamma-distributed). Lu [2018] proposed a sign-based non-parametric DGWMA chart when the process
distribution is unknown, while Karakani et al. [2019] developed an exceedance test based DGWMA chart.
To illustrate the flaws of these methods, we consider the performance of the the DEWMA and TEWMA
charts in Section 7.

2.2 Memory-type Control Charts with Run Rules

Abbas et al. [2011] were the first to introduce the use of run rules with a memory-type control chart. They
proposed two run rules schemes to be applied on the EWMA chart. Abbas et al. [2015] noted some mistakenly
calculated performance measures in Abbas et al. [2011] and provided the correct figures. By this correction,
they noted a decrease in the strength of this proposed chart from that reported in Abbas et al. [2011]. Khoo
et al. [2016] extended the study of Abbas et al. [2011] by applying a Markov chain procedure to compute the
performance measures. They suggested further run rules schemes than those proposed in Abbas et al. [2011].
Maravelakis et al. [2019] derived double integral equations for computing the performance measures of an
EWMA chart with run rules. Arshad et al. [2017] proposed the simultaneous use of runs rules (nine different
schemes) and auxiliary information when monitoring the location parameter using an EWMA chart.
Riaz et al. [2011b] proposed two run rules schemes for the CUSUM charts. Abbasi et al. [2012] added some
run rules to a scale CUSUM chart designed to monitor the process variability. Adeoti and Malela-Majika
[2020] considered adding some supplementary run rules to the DEWMA chart design structure for monitoring
the process mean. We consider the use of run rules with the CUSUM and EWMA charts in Section 5. Again
we show that these complications add no performance benefits.

2.3 Moving Average Methods

A moving average (MA) control chart is based on the average of the last specified number of observations
[Roberts, 1966]. The MA chart is known to be less sensitive than the EWMA and CUSUM charts for small
shift sizes [Wong et al., 2004, Alevizakos et al., 2020]. Zhang et al. [2004] noted that the derivation of the
ARL formula of the MA chart provided in the literature – especially by Wetherill and Brown [1991] – is
incomplete, and hence the formula is incorrect. Zhang et al. [2004] showed that this incorrect formula could
just lead to an upper bound for the ARL value. They derived another formula, but it was not exact. It just
provides a sharper upper bound for the ARL value. In their opinion, there is no exact formula that can be
found for the ARL metric of the MA charts.
Similar to the DEWMA chart construction, Khoo and Wong [2008] introduced a double MA (DMA) chart.
Alevizakos et al. [2020] noted that the derivation of the DMA chart statistic variance proposed by Khoo and
Wong [2008] is incorrect and provided the correct formula. They re-evaluated the chart as well with the
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corrected variance. They concluded that the DMA chart is more efficient than the EWMA and CUSUM
charts only for the large shift sizes.
Several evaluations were conducted on the DMA chart. For example, Areepong and Sukparungsee [2011] and
Sukparungsee and Areepong [2014] evaluated it under binomial processes, Sukparungsee [2013] under ZIP
processes, and Areepong and Sukparungsee [2015] and Areepong [2016] under ZIB processes. Phantu et al.
[2016] designed it for monitoring a ZIB model when the underlying distribution is the ratio of two Poisson
means. Phantu et al. [2018] extended the latter study to develop a DMA chart to monitor Poisson processes
modeled by an INAR(1) model, while Raweesawat and Sukparungsee [2021] provided some explicit formulas
for calculating its ARL when designed to monitor a ZIP-INAR(1) model. Areepong and Chananet [2021]
considered a DMA chart while monitoring zero-truncated Poisson processes.
Adeoti et al. [2019] proposed the use of a DMA chart to monitor process variability using the sample standard
deviation. Amir et al. [2021] studied the use of the chart when there is auxiliary information. Recently,
Alevizakos et al. [2021e,f] proposed triple MA (TMA) and quadruple MA (QMA) charts, respectively. Yet,
these compound charts give increasingly more weight to past data values relative to the current data values
than the DMA chart, making their use even more inadvisable. We consider the DMA chart performance in
Section 6.

2.4 The Progressive Mean Approach

Progressive mean (PM) charts, originally proposed by Abbas et al. [2012], are based on the average of
all data values obtained during process monitoring. Thus, each data value is given equal weight. Abbas
[2015] suggested that a PM chart statistic can be looked at as a special case of the EWMA statistic with an
adaptable smoothing parameter (reciprocal of the sample number); and hence can be treated as the Adaptive
EWMA statistic proposed by Capizzi and Masarotto [2003]. Zafar et al. [2021] negated the argument of
Abbas [2015], and stated that the PM chart can neither be considered a special case of the EWMA chart nor
of the AEWMA chart. This is because of the difference between the variances of the chart statistics, and
that the weights are being updated only due to the change of the sample number, not the process status.
This approach showed considerable power to detect changes that occurred when the monitoring starts, but,
as reviewed in Knoth et al. [2021a], it grossly under-performed when dealing with later changes. It should be
noted that the “belief” approach of Nezhad and Niaki [2010] is also based on the average of all the process
data collected. It thus shares the disadvantages of the PM chart. This approach has been used in various
scenarios by by Aslam et al. [2019b], Shawky et al. [2020] and Aslam et al. [2016b, 2017a].
On a recursive basis, Abbas et al. [2019] proposed a double PM (DPM) chart; which weights past data values
more than current values. Riaz et al. [2021a] noted that the variance of the DPM chart statistic derived by
Abbas et al. [2019] was incorrect due to some missing terms. Riaz et al. [2021a] derived the correct variance
and re-evaluated the chart performance. They concluded that the chart based on the correct variance has
much better performance than the older one.
Alevizakos and Koukouvinos [2020c] proposed a DPM chart to monitor mean shifts in Poisson processes.
Abbas et al. [2021a] noted that the variance of the chart statistic derived by Alevizakos and Koukouvinos
[2020c] is incorrect and provided a corrected one. Abbas et al. [2021b] introduced a sign-test based on
nonparametric DPM control charts. Alevizakos and Koukouvinos [2021b] proposed the use of DPM chart to
monitor TBE data which are modeled by a gamma distribution.
Ajadi et al. [2021] developed two multivariate progressive variance (PV) control charts; one uses the trace
and another uses the eigenvalues of the variance-covariance matrix. The charts are evaluated under the
assumption of known and unknown in-control process parameters.
Performance of the DPM approach is considered in Section 8.

2.5 Homogeneously Weighted Moving Average Methods

With the homogeneously weighted moving average (HWMA) approach of Abbas [2018], all past data values
are weighted equally with the most current data value weighted differently. Knoth et al. [2021a] reviewed this
approach and showed that its performance shares the disadvantages of the PM approach.
Double recursive versions (DHWMA charts) were proposed independently by Abid et al. [2020] and Adeoti and
Koleoso [2020]. Alevizakos et al. [2021g] developed another DHWMA chart to improve upon that proposed
by Abid et al. [2020] and Adeoti and Koleoso [2020]. Their justification was that the chart developed by Abid
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et al. [2020] did not exactly imitate the procedure of Shamma and Shamma [1992] in developing the DEWMA
chart. Because the chart developed by Adeoti and Koleoso [2020] has an incorrect variance, Malela-Majika
et al. [2021] provided a corrected formula of the variance of the control chart statistic. Anwar et al. [2021a]
applied the DHWMA chart when there is auxiliary information available. Riaz et al. [2021b] developed a
nonparametric DHWMA chart using the sign test. Alevizakos et al. [2021h] developed a nonparametric
DHWMA chart proposed by Alevizakos et al. [2021g] based on the sign test.
Generally, we note that the DHWMA [Abid et al., 2020, Riaz et al., 2021b] chart and the triple HWMA
chart of Riaz et al. [2021c] are simply reparameterizations of the basic HWMA chart of Abid et al. [2020] and
thus superfluous.

2.6 Mixed Control Charts

In mixed control charts, the chart statistic of one chart is used as input to another control chart. Many of
these types of methods have been introduced since there are many types of charts and many ways of mixing
them.
Abbas et al. [2013] was the first to propose mixing the EWMA and CUSUM charts; where they proposed
using the EWMA statistic as an input in the CUSUM chart statistics. Following, Zaman et al. [2015] proposed
the inverse version of Abbas et al. [2013] chart by which the CUSUM statistics are used as inputs in the
EWMA chart statistic. Generally mixing these two charts has been used extensively. For example, Zaman
et al. [2016] used this mix in monitoring process dispersion, and Zaman et al. [2017] used it in monitoring
the process location and dispersion simultaneously. Ajadi et al. [2016] incorporated headstarts and runs
rules into it. A comparison study of these mixed methods was reported by Nazir et al. [2016]. Abid et al.
[2018] investigated the in-control robustness of this mix of the EWMA and CUSUM under non-normal and
contaminated processes. Hussain et al. [2020] proposed a median version for process location monitoring.
Anwar et al. [2020, 2021b] mixed the two charts with the incorporation of auxiliary information while
Mohamadkhani and Amiri [2020] considered other sampling scenarios. Aslam [2016] mixed these charts for
monitoring Weibull-distributed data. Malela-Majika and Rapoo [2017] developed a distribution free version,
and Osei-Aning et al. [2017] extended the approach to autocorrelated data. Abbas et al. [2018] proposed
mixing an EWMA statistic with a dual CUSUM chart, Riaz et al. [2017] mixed the Tukey EWMA and
CUSUM charts, and more recently, Haq [2021] provided another way to combine the two charts. Ajadi and
Riaz [2017], Riaz et al. [2019], and Zaman et al. [2020] extended mixing the control charts to a multivariate
level. We study the performance of mixing the EWMA and CUSUM charts in Section 3.
Other mixed control charts were also proposed in the literature. Khan et al. [2016], Ahmad et al. [2017],
Taboran et al. [2019], Sukparungsee et al. [2020] and Aslam [2021] mixed the MA and EWMA charts. In this
mix, either the MA statistic is used as input in the EWMA statistic, or inversely the EWMA values are used
in the calculation of the MA statistic. Aslam et al. [2017b] mixed the DMA and the EWMA charts. Following
Lu [2017], Ali and Haq [2018a], Ali and Haq [2018b] and Huang et al. [2020] mixed the GWMA and CUSUM
charts for monitoring the process mean and variance. Mabude et al. [2020] developed a nonparametric scheme
for the two mixed versions from GWMA and CUSUM charts. Aslam et al. [2018b] mixed the DEWMA
and CUSUM charts to monitor Weibull distributed processes, while Nazir et al. [2021] mixed them under
normal, heavy-tailed, and skewed process distributions. Taboran et al. [2021] designed a Tukey mixed MA
and DEWMA chart. Abid et al. [2021a,b] mixed the CUSUM and HWMA charts in both possible orders.
In order to gain the advantage of robustness and efficient detection of small shifts, Abbas et al. [2020]
introduced an EWMA chart under a progressive setup. In this chart, the EWMA and PM charts are
integrated such that the PM chart statistic accumulates the EWMA statistics over time instead of the usual
sample means. They evaluated the chart under normal and many non-normal distributions. Alevizakos et al.
[2021i] noted that the derived chart statistic variance of Abbas et al. [2020] is incorrect and provided the
corrected formula. Ajadi et al. [2020] investigated the robustness of this mixed-type chart, and Ali et al.
[2021b,c] proposed a nonparametric version to it. Riaz et al. [2021d] proposed the use of the PM statistic as
an input into the EWMA chart statistic.
To illustrate the performance of these approaches, the mixed EWMA-CUSUM, or MEC, chart from Abbas
et al. [2013] is considered in Section 4. The complications of these types of compound charts do not lead to
performance advantages over well-designed traditional methods.
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3 Basic Definitions, ARL types and the standard competitor

For simplicity, we consider an independent series X1, X2, . . . following a normal distribution with mean µ and
standard deviation σ. Moreover, the following change point (τ) model

µ =
{
µ0 = 0 , t < τ

µ1 = δ , t ≥ τ (1)

is applied. The standard deviation is assumed to be known, σ = σ0 = 1 (otherwise normalize the Xt), and to
remain constant.
We denote by L (later it becomes more explicit) the run length stopping time, which is the number of observed
Xi values until an alarm is flagged. Its averages for the two situations, τ = 1 and τ = ∞, are referred to
as the zero-state Average Run Length (ARL) values, cf. to Page [1954], Crosier [1986]. Commonly control
charts are designed to exhibit a certain in-control ARL, namely E∞(L) = A for some suitably large number
A. Afterwards, specific out-of-control ARL values are determined, namely E1(L) for specified values of δ, to
fill tables or to create ARL profile diagrams.
Focusing to the simple case τ = 1 in (1) is often misleading. Therefore, we consider as well the conditional
expected delay (CED)

Dτ = Eτ
(
L− τ + 1 | L ≥ τ

)
and, if appropriate, the conditional steady-state ARL

D = lim
τ→∞

Dτ .

Note that both the sequence of CED values {Dτ} and the limit D are functions of the shift size δ. For most of
the conventional control charts, the sequence converges rapidly to D. Therefore, the conditional steady-state
ARL D is another valuable and representative performance measure.
For the most part, we use the standard EWMA chart as our benchmark scheme, as proposed by Roberts
[1959]. We use the version with exact control limits, that is, time varying ones. MacGregor and Harris [1990]
acknowledged that these limits introduce some fast initial response properties. So we apply

Z0 = µ0 = 0 , Zi = (1− λ)Zi−1 + λXi , i = 1, 2, . . . , (2)

LE = min
{
i ≥ 1: |Zi − µ0| > cE

√(
1− (1− λ)2i

) λ

2− λ

}
. (3)

In contrast to most of the schemes we review and study in our paper, numerical routines are fully established
to calculate the zero-state ARL, the CED, and the steady-state ARL. Here, we utilize the R package spc
[Knoth, 2021].

4 Mixed EWMA-CUSUM charts

After some early experiments applying runs rules to the EWMA chart [Abbas et al., 2011] and to the CUSUM
chart [Riaz et al., 2011b], as discussed in the next section, these authors introduced in Abbas et al. [2013] an
amalgam of the EWMA and CUSUM charts, in short the MEC chart. In particular, they consider the usual,
see (2), EWMA sequence for i = 1, 2, . . .,

Qi = (1− λq)Qi−1 + λqXi , Q0 = 0

and utilize Qi instead of the original Xi as input for a CUSUM chart, namely

M+
i = max

{
0,M+

i−1 +Qi − ai
}
, M+

0 = 0 ,
M−i = max

{
0,M−i−1 −Qi − ai

}
, M−0 = 0 .

The CUSUM’s reference values are set to ai = a∗σQ,i, where the latter symbol represents the standard
deviation of the statistic Qi, cf. to (3):

σQ,i =

√
λq

2− λq
(
1− (1− λq)2i

)
. (4)

7
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In a similar way the alarm rule is adapted, that is,

LMEC = min
{
i ≥ 1: max{M+

i ,M
−
i } > b∗σQ,i

}
.

For given λq, a∗ values and some in-control ARL level A, the threshold constant b∗ is calculated by running
a Monte-Carlo study. For λq ∈ {0.1, 0.25, 0.5, 0.75}, the out-of-control zero-state ARL for selected shifts is
determined, again by performing Monte-Carlo experiments. The authors chose a∗ = 0.5 and compared the
MEC ARL profiles with the one resulting from a standard CUSUM chart configured with k = a∗. Recall the
simple setup of the classical CUSUM:

C+
i = max

{
0, C+

i−1 +Xi − k
}
, C+

0 = 0 , (5)
C−i = max

{
0, C−i−1 −Xi − k

}
, C−0 = 0 , (6)

LC = min
{
i ≥ 1: max{C+

i , C
−
i } > h

}
. (7)

It is not surprising that MEC chart with all the considered λq values performs better for small shifts. Here,
we propose to compare the MEC design for a given λq with a CUSUM chart, where the k is chosen more
appropriately. By using the asymptotic standard deviation of Qi, the limit of (4)

σQ,∞ = lim
i→∞

σQ,i =

√
λq

2− λq
,

we set k = a∗σQ,∞. Note that the determination of h is much simpler than that of b∗. After applying this
k = k(λq, a∗) rule, we obtained the reference values in Table 1. Note that the trivial choice λq = 1 refers

Table 1: Suitable reference values k for the ARL competition between MEC and CUSUM; alarm thresholds h
for the simple CUSUM (in-control A = 170) are given as well.

λq 0.1 0.25 0.5 0.75 1
k 0.1147 0.1890 0.2887 0.3873 0.5
h 9.8345 7.7120 5.9798 4.8799 4.0133

to the simple CUSUM chart. The values h are calculated by using the function xcusum.crit() from the R
package spc.
For the ARL competition, we look again at the zero-state ARL and the CED with its limit, the conditional
steady-state ARL. In the following figures, we illustrate the CED profiles for two selected shifts, δ ∈ {0.5, 1.5}.
We start with the case δ = 0.5 in Figure 1. For the considered designs, the MEC chart features a slightly
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Figure 1: CED profiles, Dτ = Eτ (L− τ + 1 | L ≥ τ) vs. change-point position τ , for shift δ = 0.5, in-control
(zero-state) ARL is A = 170; the red dash-dotted line in the q = 0.25 diagram refers to the profile k = 0.5
utilized by Abbas et al. [2013].
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better zero-state (i.e., τ = 1) ARL values and slightly lower Dτ values for values of τ ≤ 5. However, one can
conclude that the more complicated MEC scheme does not exhibit better detection performance than the
CUSUM chart. Finally we observe that the reference value k = 0.5 (the respective profile is plotted in the
λq = 0.25 diagram) chosen in Abbas et al. [2013] creates an unfair disadvantage for the family of CUSUM
charts.
Turning to the larger shift, δ = 1.5 in Figure 2, we conclude that the MEC chart is uniformly dominated by
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CUSUM in ARD2013 (k = 0.5)

Figure 2: CED profiles, Dτ = Eτ (L− τ + 1 | L ≥ τ) vs. change-point position τ , for shift δ = 1.5, in-control
(zero-state) ARL is A = 170; the red dash-dotted line in the q = 0.25 diagram refers to the profile k = 0.5
utilized by Abbas et al. [2013].

the respective CUSUM chart. This is not really surprising, because for larger changes the original CUSUM
chart with k = 0.5 performs the best.
From all profiles in Figures 1 and 2 we observe that the CED converges quite quickly to the conditional
steady-state ARL. Therefore, we are free to utilize the latter as a representative delay measure for roughly all
change point positions.
In Figure 3 we present a final ARL analysis of our two MEC designs (λq = 0.1 and = 0.25) together with
their CUSUM chart opponent. Essentially, the simpler CUSUM chart exhibits better or similar ARL results
compared to the MEC chart. For very small δ values, the MEC chart exhibits slightly lower out-of-control
zero-state ARL results, whereas for medium size and large shifts, the CUSUM chart is substantially better.
In case of the steady-state ARL, the CUSUM chart is for all shifts as least as good as the MEC chart while
being much better again for medium size shifts and larger ones.
Finally we want to mention that in the case of the CUSUM chart, the zero-state ARL is equal to the worst
case ARL, where Moustakides [1986] proved optimality (at δ = 2k) for the CUSUM chart. Contrarily, for the
MEC chart the worst case ARL is larger than the zero-state ARL. Refer to Figure 4. The worst-case MEC
ARL is more difficult to determine, because the worst case is characterized by M+

τ−1 = 0 and Qτ−1 � 0 = µ0,
whereas for the zero-state ARL we deploy simply Q0 = 0 (change-point τ = 1). We demonstrate this by
considering a simplified situation. We condition on the first observation X1 = x1 and calculate the ARL for
τ = 2. Next, we plot these values as a function of −4 ≤ x1 ≤ 4 (as long as |x1| ≤ h + k and ≤ b∗ + a∗, it
does not trigger an alarm, respectively; in all cases the right-hand sides are larger than 5). We consider three
different shifts, δ ∈ {0.5, 0.75, 1}. First, we recognize the constant parts of the CUSUM profiles for x1 ≤ k.
Second, the MEC chart branches on the left-hand side reside clearly above the reported zero-state ARL (and
as well above D2). For the CUSUM chart, however, the constant part is at the zero-state ARL level. The
values in Figure 4 were estimated using Monte Carlo simulations. Differently from D2 (plotted in Figures 1
and 2), the first observation X1 is not drawn from N (0, 1) (the in-control model), but set to be just X1 = x1.
In this way, we simulated

`(x1) := E2(L− 1 | L ≥ 2, X1 = x1) = E2(L− 1 | X1 = x1) for −4 ≤ x1 ≤ 4 .
And of course sup−4≤x1≤4 `(x1) = L for the CUSUM chart. In Figure 4 we observe that the respective sup
for the MEC chart might be substantially larger than its zero-state ARL L.
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λq = 0.1, zero-state λq = 0.25, zero-state
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Figure 3: Zero-state and (conditional) steady-state ARL of MEC and CUSUM vs. shift size δ, in-control
(zero-state) ARL is A = 170.

Summing up, we find that for any MEC chart design, we can find a CUSUM control chart that exhibits
nearly the same zero-state ARL, lower steady-state ARL and lower worst case ARL. Thus, the larger efforts
involved in setting up and using a MEC chart do not pay off. A simpler CUSUM chart does the job better
with less effort.

5 Runs rule CUSUM and EWMA charts

Riaz et al. [2011b] and Abbas et al. [2011] proposed to impose on the CUSUM and EWMA charts certain
runs rules. The latter are classical improvements to Shewhart type charts to introduce some memory into
these simple and very popular devices. These rules were considered in Dudding and Jennett [1942] and Weiler
[1953], but more familiar references are likely WECO [1956] and Nelson [1984]. Runs rules experienced some
renaissance later on, see, for example, Klein [2000], Khoo [2003] and Koutras et al. [2007]. Regarding their
ARL analysis we refer to Champ and Woodall [1987] and Champ [1992].
In Riaz et al. [2011b], classical 2-of-2 and 2-of-3 rules augment a standard CUSUM control chart as
supplementary rules. Differently, Abbas et al. [2011] established the classical 2-of-2 and a modified 2-of-3 rule
as sole alarm rule for an EWMA control chart. While the former needs alarm and warning limits (denoted
with AL and WL), the latter utilizes only warning thresholds.
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Figure 4: Effective out-of-control ARL, conditioned on first observation X1 = x1 for MEC and CUSUM; three
shifts δ ∈ {0.5, 0.75, 1}; MEC zero-state ARL added as horizontal lines; vertical lines are added at (−k, k).

We start with the two RR-CUSUM schemes in Riaz et al. [2011b]. In both cases, an alarm is triggered if the
standard CUSUM rule triggers a signal, see (7), or two of two (three) consecutive points of C+

i or C−i in (5)
and (6), respectively, reside between the warning limit WL and the alarm limit AL = h. In both publications
— cf. to the corresponding PhD thesis Abbas [2012] — the zero-state ARL was estimated using a Monte
Carlo study. By utilizing the Excel Add-In MCSim [Bois and Maszle, 1997] and 5 000 replications, all the
ARL estimates were determined. Unfortunately, neither in the journal publications nor in the PhD thesis
was the Monte Carlo design sufficiently described in detail. As examples, we picked some results from Table
II/III in Riaz et al. [2011b] and compared them to results of a more extensive Monte Carlo study with 108

replications in Table 2. Moreover, we provided slightly changed alarm limits, AL∗, that ensure the nominal
in-control zero-state ARL of 168. Note that AL∗ =∞ corresponds to applying only the runs rule. Note that
for all shifts δ ≥ 0.75 we clearly confirm the results of Riaz et al. [2011b], whereas we observe a gap between
our values and theirs for the smaller shifts, δ = 0.25 and = 0.5. Using the corrected alarm limits, AL∗, and
the larger “power” of a 108 Monte Carlo study, we repeated the competition between the two RR-CUSUM
control charts and the standard CUSUM chart. From Table 3 we conclude that the k = 0.4933 CUSUM chart
beats all the RR-CUSUM designs. But the main result is that there is no convincing reason to abstain from
using the initial k = 0.5 CUSUM chart, whose out-of-control ARL results are sufficiently small compared to
all considered RR-CUSUM schemes.
Turning to Abbas et al. [2011] RR-EWMA schemes, we observe several particularities. As already mentioned,
the runs rule is deployed standalone. Second, the 2-of-3 rule is more involved. The version for the lower limit
is given by “At least two out of three consecutive points fall below an LSL and the point above the LSL (if
any) falls between the CL and the LSL” [Abbas et al., 2011]. Third in Abbas et al. [2011] and as well in
Abbas [2012], wrong ARL results for the modified 2-of-3 rule were reported. Later, in Abbas et al. [2015],
these values were corrected. Presumably, Khoo et al. [2016] evoked these corrections by writing “While
highlighting some erroneous average run length (ARL) and standard deviation of the run length (SDRL)
computations in Abbas et al. (2011)”. At least, Abbas et al. [2015] explained what happened some years
before: “The reason is being the omitted statement in a simulation code (mistakenly) dealing with the lower
sided limit”. This means that ARL values of a one-sided scheme were reported inadvertently. This led as well
to an incorrect control (alias warning) limit. Fourth, the authors compared the two RR-EWMA schemes
with many other control charts, but not to the standard EWMA chart, cf. to (3). Here, see Table 4, we start
with a comparison of the 2-of-2 EWMA chart with the standard EWMA chart. We match the competitors
by simply using the same value for λ as done in Abbas et al. [2011]. For the standard EWMA we used 170
as nominal in-control ARL. First, we see from Table 4 that the uniformly best out-of-control ARL values
are obtained for the standard EWMA chart with λ = 0.1. We observe for both EWMA schemes, that the
out-of-control ARL decreases with decreasing λ. Finally, setting λ of the standard EWMA to = 0.23, = 0.44
and = 0.61, we obtain designs whose out-of-control ARL values are uniformly smaller than the ones of the
2-of-2 EWMA with λ = 0.25, = 0.5 and = 0.75, respectively.
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Table 2: ARL results from Table II/III in Riaz et al. [2011b] augmented with new results obtained with 108

replications (second line).

δ
WL AL 0.25 0.5 0.75 1 1.5 2 AL∗

2-of-2
3.42 4.8 71.87 25.56 13.54 8.66 5.08 3.68 ∞

73.60 26.68 13.51 8.67 5.08 3.69
3.44 4.6 72.26 25.65 13.50 8.57 5.01 3.61 4.65

73.91 26.70 13.48 8.62 5.01 3.61
3.48 4.4 71.94 25.59 13.50 8.52 4.94 3.52 4.38

74.31 26.73 13.44 8.56 4.94 3.53
3.53 4.2 71.40 25.30 13.33 8.40 4.83 3.42 4.23

73.55 26.51 13.30 8.44 4.84 3.44
2-of-3

3.5 4.44 71.49 25.38 13.40 8.46 4.94 3.54 4.52
73.38 26.52 13.37 8.54 4.95 3.55

3.6 4.19 72.94 25.37 13.35 8.38 4.83 3.42 4.18
74.13 26.61 13.33 8.46 4.84 3.44

3.7 4.08 73.11 25.37 13.31 8.34 4.78 3.38 4.08
74.23 26.62 13.30 8.41 4.79 3.38

3.8 4.03 73.59 25.40 13.28 8.32 4.75 3.35 4.03
74.29 26.64 13.29 8.39 4.76 3.36

Finally, we consider the modified 2-of-3 EWMA chart and focus on one example, namely λ = 0.1 and target
in-control ARL 168. In Table 5, we provide the incorrect numbers from Abbas et al. [2011] and the corrected
ones in Abbas et al. [2015], new ones from another Monte Carlo study with 108 replications for the common
2-of-3 EWMA chart and results for the standard EWMA chart calculated with the R package spc. At the
bottom line we added as well the control limit factors used. We observe again that the standard EWMA chart
exhibits the lowest zero-state ARL numbers. Regarding the comparison for other values of λ, we observe a
similar behavior as for the 2-of-2-EWMA discussed above. Comparing the results of Abbas et al. [2015] and
the ones for the common 2-of-3 EWMA, we acknowledge their similarity. It indicates that the modified 2-of-3
rule could be reduced to the standard one, where the “point above the LSL (if any) falls between CL and the
LSL” condition is dropped.
Khoo et al. [2016] provided a Markov chain approximation technique for the two RR-EWMA charts. However,
there are two differences. First, they considered constant signal limits relying on the asymptotic EWMA
variance λ/(2 − λ). Second, they utilized the standard (they called it non-side-sensitive) 2-of-3 runs rule,
where it is not important anymore, whether the “unobtrusive” EWMA value is on the right side of the center
line. We dealt with this case in Table 5 already. Khoo et al. [2016] investigated further types of RR-EWMA
charts, where for the most complicated one (four runs rules) it was declared “it is found that generally the
four runs rules EWMA schemes outperform all charts under comparison, in terms of ARL”. However, they
applied again the oversimplified approach of equalizing the λ values. If we compare the four runs rule EWMA
charts with λ = 0.1, 0.2, 0.3, . . . , 0.9 to the standard EWMA chart with instead λ = 0.09, 0.18, 0.26, . . . , 0.62,
respectively, then we obtain charts which exhibit lower out-of-control ARL values for all considered [in Khoo
et al., 2016] shifts δ = 0.1, 0.2, . . . 7. In summary, the ad hoc use of runs rules EWMA charts is not worth the
required effort.

6 MA, DMA, TMA and QMA Charts

The moving average (MA) is a well-known filtering technique for time series data. Thus, it is not surprising
that it was proposed as well for doing process monitoring, but only relatively few papers have dealt with it.
Roberts [1966] was presumably the first, whereas Lai [1974] provided some results for moving averages in
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Table 3: Repeating the Riaz et al. [2011b] competition between the 2-of-2, 2-of-3 and the standard CUSUM.

δ
WL/k AL/h 0.25 0.5 0.75 1 1.5 2

2-of-2
3.42 ∞ 74.12 26.88 13.68 8.84 5.31 4.00
3.44 4.65 74.12 26.75 13.51 8.64 5.04 3.63
3.48 4.38 74.13 26.69 13.42 8.54 4.93 3.52
3.53 4.23 74.05 26.63 13.35 8.47 4.86 3.45

2-of-3
3.5 4.52 73.87 26.64 13.43 8.58 4.99 3.58
3.6 4.18 73.96 26.58 13.32 8.45 4.83 3.43
3.7 4.08 74.23 26.62 13.30 8.41 4.79 3.38
3.8 4.03 74.29 26.64 13.29 8.39 4.76 3.36

standard CUSUM
0.50 4.002 74.31 26.65 13.29 8.39 4.75 3.34
0.4933 4.045 73.86 26.48 13.25 8.39 4.76 3.36
0.49 4.067 73.64 26.40 13.23 8.39 4.77 3.37
0.48 4.134 72.96 26.16 13.18 8.39 4.80 3.39

Table 4: Table II of [Abbas et al., 2011] and standard EWMA ARL results.

EWMA w/ and w/o runs rule
δ λ = 0.1 λ = 0.25 λ = 0.5 λ = 0.75

0.00 169.87 169.99 169.48 169.99 169.68 169.98 169.71 170.02
0.25 54.58 53.98 73.48 74.54 94.82 99.53 110.78 118.63
0.50 19.80 18.92 26.63 26.46 37.99 41.20 49.06 58.77
0.75 10.59 9.79 12.95 12.63 17.41 19.22 23.29 29.29
1.00 6.94 6.16 7.95 7.48 9.88 10.51 13.07 15.90
1.50 4.11 3.28 4.35 3.76 4.73 4.51 5.58 6.15
2.00 2.98 2.16 3.10 2.41 3.12 2.69 3.34 3.21

LS/cE 2.145 2.2145 2.184 2.6282 2.034 2.7241 1.830 2.7493

general. Then Wong et al. [2004] provided some guidelines to apply MA control charts. Essentially, the latter
authors found that the detection performance of MA charts to be quite similar to that of EWMA charts.
They claimed as well that the MA principle is more popular than EWMA in several fields such as finance.
However, later on Khoo and Wong [2008] introduced the so-called double MA (DMA) chart. It is based on
the following equations with w representing the window size:

Mi =
{

1
i

∑i
j=1 Xj , i ≤ w

1
w

∑i
j=i−w+1 Xj , i ≥ w

, Di =
{

1
i

∑i
j=1 Mj , i ≤ w

1
w

∑i
j=i−w+1 Mj , i ≥ w

.

Beginning with i ≥ w, the ordinary MA statistics Mi sum the most recent w observations with equal weight
1/w. In contrast, the double MA statistic involves more data points. Namely starting with i ≥ 2w − 1 it
sums the most recent 2w − 1 observations with triangular weights 1/w2, 2/w2, . . . , (w − 1)/w2, w/w2, (w −
1)/w2, . . . , 1/w2. Obviously, the data point in the middle of the window is given the same weight as the ones
in the MA sum, whereas the others get smaller weights. Straightforwardly, Khoo and Wong [2008] proposed
the control limits µ0 ± L

√
V ar(Di). However, they made a mistake while calculating the variance term.

Alevizakos et al. [2020] spotted it and provided correct formulas. Here, we want to consider only the case
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Table 5: Zero-state ARL values for modified 2-of-3 EWMA from Table III of Abbas et al. [2011], Abbas et al.
[2015] and a further Monte Carlo study for the common 2-of-3 EWMA, and for standard EWMA (R package
spc); λ = 0.1.

modified 2-of-3 2-of-3 standard
δ (2011) (2015) 108 spc

0.00 167.32 167.09 166.36 168.00
0.25 34.37 53.71 53.70 53.59
0.50 14.04 19.37 19.40 18.83
0.75 8.13 10.40 10.42 9.75
1.00 5.71 6.83 6.84 6.14
1.50 3.78 4.01 4.02 3.27
2.00 3.20 2.96 2.96 2.15

LS/cE 1.807 2.158 2.158 2.4098

i ≥ 2w − 1, where Khoo and Wong [2008] gave an overly simple result.We have

V ar(Di) =



1
w2 , Khoo and Wong [2008],

1
w2

[
1 + 2

w2

∑
w≤j1<j2≤2w−1

(j1 − j2 + w)

]
, Alevizakos et al. [2020],

1
w2

[
1 + 2

w2

w−1∑
j=1

j2

]
= 1
w2

[
1 + (w − 1)(2w − 1)

3w

]
, summing squared weights.

Some tedious algebra shows that the two last two expressions are equivalent. Alevizakos et al. [2020] provided
a few comparisons between MA, DMA, EWMA and CUSUM charts. Unfortunately, the opponents are
chosen in either an unfair (take the same w for MA and DMA charts) or in an arbitrary way with EWMA
and CUSUM charts. Here, we match MA(w1), DMA(w2) and EWMA(λ), aiming at roughly the same final
variance of the plotted statistic. Thus, starting with some w2 for the DMA chart, we determine

σ2
D = 1

w2
2

[
1 + (w2 − 1)(2w2 − 1)

3w2

]
, w1 =

[
1
σ2
D

]
, λ = 2σ2

D

σ2
D + 1 .

Here [·] denotes rounding to the next integer.
Now we re-arrange some zero-state ARL results from Tables 3 and 4 in Alevizakos et al. [2020] in blocks in
Table 6. Additional values (for w2 = 6 and for w1 ∈ {6, 7, 9}) were estimated with Monte-Carlo simulations
(107 replications). The EWMA chart values were determined with the R package spc. To make comparisons
between the MA and DMA charts easy (EWMA is left out for the moment), we bolded the smaller ARL per
block and δ. From the results we conclude that the simpler and older MA chart performs for the most part
better than the DMA chart.
Wong et al. [2004] stated: “For zero state [ARL], it was found that among all MA charts (with different values
of w) with the same in-control ARL, the chart with the largest w is always the quickest in detecting any finite
shift. In other words, no optimal chart within the class of MA charts can be found.” Similar patterns could be
observed for the DMA chart [slight deviations in Table 3 of Alevizakos et al., 2020, are probably Monte Carlo
artefacts]. To avoid arbitrariness, one has to move away from the zero-state ARL competition. For instance,
Wong et al. [2004] followed an old design principle, “the steady state run length will be considered”, which we
apply here as well considering the CED. Here, we pick the configurations from the last block of Table 6 and
determine {Dτ}100

τ=1, see Figure 5. The results for the MA and DMA charts were obtained again by Monte
Carlo simulations (107 replications), whereas the EWMA values were calculated with xewma.arl() from
the R package spc. The CED profiles of the three control charts mirror the ordering of the corresponding
zero-state ARL results. We can briefly summarize the four diagrams in Figure 5 with two statements. It is
easy to find a MA control chart which performs overall better than any given DMA control chart. Second,
the steady-state ARL of the DMA chart could be substantially larger than the zero-state ARL (see δ = 2 and
= 3).
To complete this steady-state ARL comparison, we utilize D100 as proxy (motivated by the stable convergence
patterns in Figure 5) and conduct an investigation concerning setups minimizing the steady-state ARL for a
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Table 6: Zero-state ARL of DMA(w2), MA(w1), and EWMA(λ); nominal in-control ARL of 370.

δ
0 0.2 0.4 0.6 0.8 1.0 1.25 1.5 2 3

w2 = 2 371.5 250.2 119.4 57.7 29.7 17.4 9.7 6.3 3.4 1.7
w1 = 3 369.8 244.7 109.4 51.1 26.4 15.4 8.8 5.7 3.1 1.6
λ = 0.545 370.0 246.0 114.0 54.0 28.3 16.4 9.4 6.1 3.3 1.6
w2 = 3 370.3 218.0 90.5 40.8 21.6 12.9 7.7 5.4 3.3 1.7
w1 = 4 370.5 222.4 92.0 42.3 21.5 12.6 7.3 4.9 2.8 1.6
λ = 0.380 370.0 212.0 84.5 37.8 19.8 11.9 7.3 5.0 3.0 1.6
w2 = 4 369.6 198.9 75.3 33.6 18.1 10.9 7.1 5.1 3.3 1.6
w1 = 6 370.8 193.8 71.8 31.4 16.5 10.0 6.3 4.4 2.7 1.5
λ = 0.293 370.0 189.7 69.5 30.6 16.4 10.2 6.5 4.6 2.8 1.6
w2 = 5 369.7 186.0 65.5 29.6 15.9 10.2 7.0 5.2 3.3 1.6
w1 = 7 370.8 183.2 65.5 28.6 15.2 9.4 6.0 4.3 2.7 1.5
λ = 0.239 370.0 173.6 60.5 26.7 14.6 9.3 6.1 4.4 2.8 1.6
w2 = 6 370.6 172.4 60.0 26.8 15.0 9.9 6.9 5.2 3.2 1.5
w1 = 9 370.4 166.7 56.6 24.8 13.6 8.6 5.7 4.1 2.6 1.5
λ = 0.202 370.0 161.4 54.4 24.3 13.6 8.8 5.9 4.3 2.7 1.5

given shift, the results are given in Figure 6. For the MA and DMA charts, we picked values w up to 80 and
60, respectively, and estimated the CED at τ = 100, namely D100, by using a Monte Carlo simulations with
107 replications. From the resulting profiles (D100 vs. w) we observe a couple of facts. Only for δ = 0.2 (which
is a more of an academic choice) and to lesser extent for δ = 0.4, the optimum w values are substantially
large. Second, the DMA curves increase more profoundly than for the MA chart in case of medium and
large shifts. This signals trouble for these shifts if one aims at optimizing the DMA chart for small shifts. It
should be noted that all MA minima are smaller than their DMA counterparts. Thus, if one is interested
in minimizing the steady-state ARL at a single shift δ, then the MA chart will beat the DMA chart for all
settings we considered. The optimal choices of w for the MA and DMA charts are marked and collected in
the Table 7 together with the respective λ values of the EWMA chart. From these configurations, we select
the ones for δ = 0.6 and δ = 1.5 to demonstrate the steady-state ARL behavior over a range of shifts. The

Table 7: Optimal (to minimize D100) choices of w and λ for MA, DMA and EMWA; in-control ARL is 370.

δ 0.2 0.4 0.6 0.8 1 1.25 1.5 1.75 2 2.5 3
w1 76 35 20 13 9 7 5 4 3 2 2
w2 44 22 12 8 6 4 3 3 2 2 2
λ 0.02 0.04 0.07 0.10 0.14 0.20 0.26 0.32 0.38 0.53 0.69

two EWMA values, 0.07 and 0.26, are quite common choices (note that for all calculations we used three
digits, that is, the actual λ = 0.069 and = 0.255). The same is true for the MA chart [w1 = 20 and = 5 Wong
et al., 2004, considered values up to w1 = 30] and DMA [w2 = 12 and = 4 Wong et al., 2004, dealt with
values up to w2 = 15]. For these two settings, we determined the steady-state ARL (again using D100 and
Monte Carlo simulation, except for the EWMA chart). The resulting profiles are given in Figure 7. The three
schemes are clearly ordered. For all shifts δ, the EWMA chart is the best and the MA chart is the second
best scheme. In particular for the δ = 0.6 designs, the three curves clearly begin to diverge for increasing
values of δ. Given the specific weighting patterns of the DMA chart, this is not surprising.
In summary, the DMA control chart design should not be used. This statement is valid as well for the even
more complex triple MA [Alevizakos et al., 2021e] and quadruple MA [Alevizakos et al., 2021f] charts. Note
that the computation of the variance of the respective statistics is a voluminous task resulting in various
theorems in Alevizakos et al. [2021e,f]. That is, we obtain complex charts with demanding setup procedures
and cumbersome Monte Carlo studies to evaluate these schemes. All three charts, DMA, TMA and QMA,
exhibit the undesirable weighting pattern that the highest weight is set into the center of their respective
windows, whereas the most recent data values get very low weights. This delays the detection of changes that
happen later than instantly at the startup.
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Figure 5: CED profiles of DMA(w2), MA(w1), and EWMA(λ), i. e. Dτ = Eτ (L − τ + 1 | L ≥ τ) vs.
change-point position τ , for four shifts δ; in-control (zero-state) ARL is A = 370.

7 DEWMA and TEWMA Charts

The first use of two EWMA statistic iterations were proposed by Shamma et al. [1991] and Shamma and
Shamma [1992]. However, they did not made such an impact as the later equivalent proposals by Zhang et al.
[2003b] and Zhang and Chen [2005]. The more recent papers focused on the simpler case, where the smoothing
constants of both EWMA series are the same, whereas the previous publications dealt with the more general
case. Despite the critical statements regarding double EWMA (DEWMA) control charts in Mahmoud and
Woodall [2010], DEWMA charts gained quite some popularity in the SPM literature. Therefore it is time to
clarify in a different way that DEWMA charts are inferior to the simpler EWMA charts.
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Figure 6: D100 profiles of MA and DMA vs. w for various shifts δ ∈ {0.2, 0.4, . . . , 2}, optimal choice w per
shift marked with •; in-control (zero-state) ARL is A = 370.
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Figure 7: Steady-state ARL (D100) profiles of MA, DMA and EWMA vs. δ; in-control (zero-state) ARL is
A = 370.

To begin, we introduce some notation. Note that we deal with the more popular case, where both EWMA
equations are based on the same λ. Then, writing λ̄ := 1− λ, we have the following equations:

Z
(1)
0 = µ0 , Z

(2)
0 = µ0 .

Z
(1)
i = (1− λ)Z(1)

i−1 + λXi ,

Z
(2)
i = (1− λ)Z(2)

i−1 + λZ
(1)
i

= λ2
i∑

j=1
(i− j + 1)λ̄i−jXj + iλλ̄iZ

(1)
0 + λ̄iZ

(2)
0 .
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From the above publications, we obtain for the variance of Z(2)
t

σ2
i = λ4 1 + λ̄2 − (i2 + 2i+ 1)λ̄2i + (2i2 + 2i− 1)λ̄2i+2 − i2λ̄2i+4

(1− λ̄2)3
, (8)

σ2
∞ = λ4 1 + λ̄2

(1− λ̄2)3
. (9)

Then by using (8), the run-length of the DWMA chart is

LDE = min
{
i ≥ 1: |Z(2)

i − µ0| > cDEσi

}
.

Obviously, setup, deployment and analysis of the DEWMA chart is more complicated than for the EWMA
chart. Monte Carlo analyses are required. For the EWMA chart and DEWMA chart competition, Zhang
and Chen [2005] (and many others) picked the same λ for the EWMA chart as for the DEWMA chart. This
rather oversimplified and inappropriate approach is omnipresent in the literature, unfortunately. Mahmoud
and Woodall [2010] went a different way. They proposed to set the EWMA chart λ in such a way that
for a given DEWMA design the weighting patterns of both competing charts feature the same maximum
value. Here, we again aim at the same asymptotic variance, that is, choose λE so that λE/(2− λE) is equal
to the respective DEWMA value in (9). For example, starting with DEWMA(λ = 0.1) we get (roughly)
to EWMA(λ = 0.05). Mahmoud and Woodall [2010] determined the smaller 0.03874 EWMA smoothing
constant. It turns out that aiming at equal asymptotic variances leads to larger values of λ than aiming at
equal maximum weights. We will see in a moment that the slightly smaller change yields competitive EWMA
designs with respect to the zero-state ARL.
Next, we present in Table 8 some results of Table 4 in Zhang and Chen [2005] for an in-control ARL value

Table 8: Fragments of Table 4 in Zhang and Chen [2005] and some more accurate numbers (labelled 108 and
spc); zero-state ARL of DEWMA (upper block) and EWMA (lower block); in-control ARL 200.

shift δ/
√

5
0 0.1 0.2 0.3 0.4 0.5 1 1.5 2

ZC2005 200.0 57.5 20.1 10.7 6.8 4.7 1.6 1.1 1.0 λ = 0.1
108 199.9 57.3 20.4 10.7 6.7 4.7 1.6 1.1 1.0 λ = 0.1

ZC2005 200.1 69.2 24.0 12.4 7.8 5.4 1.9 1.2 1.0 λ = 0.1
ZC2005 200.2 57.5 20.2 10.7 6.9 4.8 1.7 1.1 1.0 λ = 0.05

spc 200.0 56.9 20.4 10.7 6.8 4.8 1.7 1.1 1.0 λ = 0.05

of 200. Zhang and Chen [2005] compared the λ = 0.1 results, for example, and concluded “The DEWMA
mean chart performs better than the EWMA mean chart when the process mean shifts are smaller than one
half of the process standard deviation”. Of course, EWMA(λ = 0.1) exhibits larger zero-state ARL values
for roughly all considered shifts. Doing the comparison, however, more appropriately, we compare with the
EWMA chart with λ = 0.05 and see from Table 8 that the zero-state ARL values are roughly the same as
the DEWMA chart values in the top part of the table. It remains unclear, why Zhang and Chen [2005] did
not spot this fact.
Knowing that further decreasing the value of λ we would achieve even better zero-state ARL values of the
EWMA chart for all shifts, we turn to more important properties such as CED and conditional steady-state
ARL. Taking again the pair DEWMA(λ = 0.1) and EWMA(λ = 0.05), we calculated the CED for all
instances in Table 8 and provide the resulting curves for four shifts in Figure 8. From the curves in Figure 8
we learn that the zero-state (τ = 1) values are roughly equal as we know from Table 8, whereas for later
changes the EWMA chart always exhibits lower CED values. The larger the shift, the more pronounced
is the difference. For both control charts, the CED series stabilizes sufficiently quick so that we could use
D100 as the conditional steady-state ARL and as representative delay for changes after τ = 30. Next we
present the resulting values in Table 9. Note that we added results for triple EWMA (TEWMA) following
Alevizakos et al. [2021a], all calculated with 108 replications, smoothing constant λ = 0.13 (to achieve the
same asymptotic variance as DEWMA with λ = 0.1), and a control limit factor L = 1.91 (in-control ARL
200). For details regarding the exact variance etc., we refer to Alevizakos et al. [2021a]. Given the steady-state
ARL results, we conclude that the EWMA chart easily dominates the DEWMA chart. From the weighting
patterns in Knoth et al. [2021a] for the DEWMA chart (and TEWMA) we would expect this steady-state

18



The Case against GWMA Charts A Preprint

δ = 0.2
√

5 δ = 0.5
√

5

0 20 40 60 80 100

20

21

22

23

24

25

26

27

τ

D
τ

DEWMA, λ = 0.1
EWMA, λ = 0.05

0 20 40 60 80 100

4

5

6

7

8

9

10

11

τ

D
τ

DEWMA, λ = 0.1
EWMA, λ = 0.05

δ = 1
√

5 δ = 2
√

5

0 20 40 60 80 100

1

2

3

4

5

6

7

τ

D
τ

DEWMA, λ = 0.1
EWMA, λ = 0.05

0 20 40 60 80 100

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

τ

D
τ

DEWMA, λ = 0.1
EWMA, λ = 0.05

Figure 8: CED profiles of DEWMA(λ = 0.1) and EWMA(λ = 0.05), i. e. Dτ = Eτ (L− τ + 1 | L ≥ τ) vs.
change-point position τ , for four shifts δ; in-control (zero-state) ARL is A = 200.

Table 9: Augmenting Table 4 in Zhang and Chen [2005] with some steady-state ARL results, for DEWMA
with Monte Carlo simulation (108 replicates) and for EWMA with the R package spc; in-control ARL 200;
TEWMA (107 replicates) numbers are added too.

shift δ/
√

5
0 0.1 0.2 0.3 0.4 0.5 1 1.5 2

TEWMA – 67.4 27.9 18.3 14.6 12.6 8.5 7.0 6.1 λ = 0.13
DEWMA – 66.1 26.4 16.4 12.4 10.3 6.3 4.9 4.1 λ = 0.1
EWMA – 64.6 25.7 15.3 10.8 8.4 4.0 2.8 2.2 λ = 0.05

ARL deficiency. Summing up, the DEWMA (and even more the TEWMA) control chart designs are not
worth the required effort. It is easy to find an EWMA design which features about the same zero-state ARL
values and much better steady-state ARL results. From Mahmoud and Woodall [2010] we know that the
EWMA chart exhibits better (lower) worst-case ARL results as well.

19



The Case against GWMA Charts A Preprint

8 DPM Charts

Abbas et al. [2012] introduced the progressive mean (PM) chart. Afterwards, dozens of derivatives appeared.
In Knoth et al. [2021a] it was demonstrated that the PM is not an appropriate control chart design. However,
in Abbas et al. [2019] similarly to the (D)EWMA and (D)MA charts, the double PM (DPM) chart was
proposed. Later, in Riaz et al. [2021a] the variance term used for constructing the alarm rule was corrected.
Following the more recent paper, we describe the DPM design as follows.

PM statistic: Pt = 1
t

t∑
i=1

Xi ,

DPM statistic: Dt = 1
t

t∑
i=1

Pi .

PM run-length: LP = min
{
t ≥ 1: |Pt − µ0| >

(
LP /t

0.5)/tp } ,
DPM run-length: LD = min

{
t ≥ 1: |Dt − µ0| >

(
LD σD;t

)
/tp
}
.

The exponent p of the curve bending factor 1/tp was set to p = 0.2 in Abbas et al. [2012]. However, in Riaz
et al. [2021a] p was taken from {0.35, 0.40, 0.45, 0.50} (for PM and DPM). The variance of Pt is just 1/t
which explains the t0.5 above in LP . The variance of DPM’s Dt is much more complicated. As mentioned,
Riaz et al. [2021a] corrected the old term in Abbas et al. [2019] and provided the following term

σ2
D;t = 1

t2


t∑

k=1

 t∑
j=k

1
j

2
 = (2t−Ht)/t2

with the harmonic number Ht =
∑t
k=1 1/k. The above simplification follows from some well-known identities

for the partial sums of Ht and H2
t and, of course, tedious algebra. By using its approximation

Ht = ln t+ γ + 1
2t −

1
12t2 +O

(
1
t4

)
the term used for σD;t is just

σ2
D;t ≈

(
2t− ln t− γ − 1/(2t) + 1/(12t2)

)
/t2

with the Euler-Mascheroni constant γ = 0.57721 56649 01532 . . . Note that this approximation is excellent.
However, these mathematical developments can distract one from the actual problems with the DPM approach.
For an in-control ARL of 200, we pick LP = 6.415 and LD = 2.596 from Table 1 and 2 in Riaz et al. [2021a].
“Our” competitor is an EWMA chart with λ = 0.05. First, we present in Table 10 some zero-state ARL
results taken from Riaz et al. [2021a], new ones with more replications (108) and EWMA results by deploying
the R package spc. Riaz et al. [2021a] concluded from a graphical counterpart of our Table 10 that it “is

Table 10: Zero-state ARL numbers from Table 1 and 2 in Riaz et al. [2021a], p = 0.35; EWMA1 with λ = 0.05
as common design and EWMA2 (λ = 0.007) as a special one; in-control ARL 200.

shift δ
0 0.25 0.35 0.5 0.75 1 1.5 2

PM 198.26 47.14 32.03 21.39 13.39 9.74 6.25 4.57
108 197.86 46.80 32.09 21.40 13.52 9.78 6.24 4.58
DPM 201.43 31.90 21.55 13.70 8.05 5.46 3.22 2.23
108 197.50 31.65 21.40 13.69 8.02 5.46 3.20 2.23

EWMA1 200.00 48.82 29.83 17.15 8.99 5.68 3.04 2.02
EWMA2 200.00 30.01 18.43 10.77 5.82 3.80 2.17 1.54

obvious from these graphical displays that the DPM chart takes an edge over EWMA, DEWMA, PM, HWMA,
and DHWMA chart”. From Table 10 we can see, however, that this is an incorrect statement because one
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could simply decrease the λ value to beat the DPM chart uniformly. However, for PM, DPM and EWMA
charts with variance adjusted limits (the one we apply here), we have to consider the CED series and, if
applicable, its limit. From the shifts in Table 10 we consider δ ∈ {0.35, 0.75, 1, 2} and change-point positions
up to τ = 100 (in-control ARL 200). In addition to Table 10, we present results as well in Figure 9 for p = 0.2
and = 0.5 in order to illustrate the impact of tuning p. Essentially, decreasing p leads to decreased zero-state
ARL, while for late changes the ordering is reversed. The p = 0.35 curves of the PM and DPM charts are
bold lines. From all four cases we conclude straightforwardly that for τ ≥ 30 the CED Dτ of the DPM chart
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Figure 9: CED profiles of PM, DPM and EWMA(λ = 0.05), i. e. Dτ = Eτ (L−τ+1 | L ≥ τ) vs. change-point
position τ , for four shifts δ; in-control (zero-state) ARL is A = 200.

is substantially larger than of the PM and EWMA charts. Even more, the DPM control chart is not able
to detect delayed changes — it is not too presumptuous to conjecture that DPM’s CED series grows in an
unbounded way. Only for τ ≤ 5 (roughly zero-state) it is usable at all. In Knoth et al. [2021a] the authors
showed that the PM chart is not a good choice. From Figure 9 we can see that the DPM chart is even worse.

9 Conclusions

We find the lines of research on compound charts outlined in our paper to be misguided. It is very important
for any monitoring method, for example, to be based on a weighting scheme that emphasizes the present data
values more than the past data values. This rules out use of the DEWMA, triple EWMA, double MA, triple
MA, quadruple MA and double PM charts. In addition, PM and HWMA charts should not be used based
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on their poor steady-state run length performance. The extra complications of the GWMA chart are not
justified by any improved performance relative to the simpler EWMA chart. Overall the added complexity of
the various proposed compound methods is not justified by improved performance.
There is an implicit assumption in the literature reviewed here that any shift in the process, however small, is
to be detected as quickly as possible. In an increasing number of applications the focus should be on detecting
changes of practical importance, not just those resulting in statistical significance. More information can be
found in Woodall and Faltin [2019].
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