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A critique of pure learning and what artificial neural
networks can learn from animal brains
Anthony M. Zador1

Artificial neural networks (ANNs) have undergone a revolution, catalyzed by better super-

vised learning algorithms. However, in stark contrast to young animals (including humans),

training such networks requires enormous numbers of labeled examples, leading to the belief

that animals must rely instead mainly on unsupervised learning. Here we argue that most

animal behavior is not the result of clever learning algorithms—supervised or unsupervised—

but is encoded in the genome. Specifically, animals are born with highly structured brain

connectivity, which enables them to learn very rapidly. Because the wiring diagram is far too

complex to be specified explicitly in the genome, it must be compressed through a “genomic

bottleneck”. The genomic bottleneck suggests a path toward ANNs capable of rapid learning.

N
ot long after the invention of computers in the 1940s, expectations were high. Many
believed that computers would soon achieve or surpass human-level intelligence. Herbert
Simon, a pioneer of artificial intelligence (AI), famously predicted in 1965 that “machines

will be capable, within twenty years, of doing any work a man can do”—to achieve general AI. Of
course, these predictions turned out to be wildly off the mark.

In the tech world today, optimism is high again. Much of this renewed optimism stems from
the impressive recent advances in artificial neural networks (ANNs) and machine learning,
particularly “deep learning”1. Applications of these techniques—to machine vision, speech
recognition, autonomous vehicles, machine translation and many other domains—are coming so
quickly that many predict we are nearing the “technological singularity,” the moment at which
artificial superintelligence triggers runaway growth and transform human civilization2. In this
scenario, as computers increase in power, it will become possible to build a machine that is more
intelligent than the builders. This superintelligent machine will build an even more intelligent
machine, and eventually this recursive process will accelerate until intelligence hits the limits
imposed by physics or computer science.

But in spite of this progress, ANNs remain far from approaching human intelligence. ANNs
can crush human opponents in games such as chess and Go, but along most dimensions—
language, reasoning, common sense—they cannot approach the cognitive capabilities of a four-
year old. Perhaps more striking is that ANNs remain even further from approaching the abilities
of simple animals. Many of the most basic behaviors—behaviors that seem effortless to even
simple animals—turn out to be deceptively challenging and out of reach for AI. In the words of
one of the pioneers of AI, Hans Moravec3:

“Encoded in the large, highly evolved sensory and motor portions of the human brain is a
billion years of experience about the nature of the world and how to survive in it. The
deliberate process we call reasoning is, I believe, the thinnest veneer of human thought,
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effective only because it is supported by this much older
and much more powerful, though usually unconscious,
sensorimotor knowledge. We are all prodigious Olympians
in perceptual and motor areas, so good that we make the
difficult look easy. Abstract thought, though, is a new trick,
perhaps less than 100 thousand years old. We have not yet
mastered it. It is not all that intrinsically difficult; it just
seems so when we do it.”

We cannot build a machine capable of building a nest, or
stalking prey, or loading a dishwasher. In many ways, AI is far
from achieving the intelligence of a dog or a mouse, or even of a
spider, and it does not appear that merely scaling up current
approaches will achieve these goals.

The good news is that, if we do ever manage to achieve even
mouse-level intelligence, human intelligence may be only a small
step away. Our vertebrate ancestors, who emerged about 500
million years ago, may have had roughly the intellectual capacity
of a shark. A major leap in the evolution of our intelligence was
the emergence of the neocortex, the basic organization of which
was already established when the first placental mammals arose
about 100 million years ago4; much of human intelligence seems
to derive from an elaboration of the neocortex. Modern humans
(Homo sapiens) evolved only a few hundred thousand years ago
—a blink in evolutionary time—suggesting that those qualities
such as language and reason which we think of as uniquely
human may actually be relatively easy to achieve, provided that
the neural foundation is solid. Although there are genes and
perhaps cell types unique to humans—just as there are for any
species—there is no evidence that the human brain makes use of
any fundamentally new neurobiological principles not already
present in a mouse (or any other mammal), so the gap between
mouse and human intelligence might be much smaller than that
between than that between current AI and the mouse. This
suggests that even if our eventual goal is to match (or even
exceed) human intelligence, a reasonable proximal goal for AI
would be to match the intelligence of a mouse.

As the name implies, ANNs were invented in an attempt to
build artificial systems based on computational principles used by
the nervous system5. In what follows, we suggest that additional
principles from neuroscience might accelerate the goal of
achieving artificial mouse, and eventually human, intelligence. We
argue that in contrast to ANNs, animals rely heavily on a com-
bination of both learned and innate mechanisms. These innate
processes arise through evolution, are encoded in the genome, and
take the form of rules for wiring up the brain6. Specifically, we
introduce the notion of the “genomic bottleneck”—the compres-
sion into the genome of whatever innate processes are captured by
evolution—as a regularizing constraint on the rules for wiring up a
brain. We discuss the implications of these observations for gen-
erating next-generation machine algorithms.

At its core, stressing the importance of innate mechanisms is
just a recent manifestation of the ancient “nature vs. nurture”
debate, which has raged since at least the time of the ancient
Greeks (with Plato on Team Nature, and Aristotle on Team
Nurture). Historically, much of this debate has centered on the
acquisition of characteristics, such as intelligence and morality,
traditionally thought to be specifically human, as suggested by the
title of John Locke’s 1689 “Essay on Human Understanding”7; the
term “blank slate,” coined by Locke, has become shorthand for
the importance of nurture. A century later, Immanuel Kant
argued in favor of Nature in his influential “Critique of Pure
Reason”8, the title of which inspired that of the present essay.
More recently, the debate has played out in disciplines such as
cognitive psychology and linguistics. For perhaps historical rea-
sons, the neural network community has, with notable

exceptions9, mainly aligned itself with Team Nurture by focusing
on tabula rasa networks, and conceiving of all changes in network
parameters as the result of “learning” (although in practice, the
community has adopted a more agnostic “whatever-works-best”
engineering approach).

Learning by ANNs
In the earliest days of AI, there was a competition between two
approaches: symbolic AI and ANNs. In the symbolic “good old
fashion AI” approach10 championed by Marvin Minsky and
others, it is the responsibility of the programmer to explicitly
program the algorithm by which the system operates. In the ANN
approach, by contrast, the system “learns” from data. Symbolic AI
can be seen as the psychologist’s approach—it draws inspiration
from the human cognitive processing, without attempting to
crack open the black box—whereas ANNs, which use neuron-like
elements, take their inspiration from neuroscience. Symbolic AI
was the dominant approach from the 1960s to 1980s, but since
then it has been eclipsed by ANN approaches inspired by
neuroscience.

Modern ANNs are very similar to their ancestors three decades
ago11. Much of the progress can be attributed to increases in raw
computer power: Simply because of Moore’s law, computers
today are several orders of magnitude faster than they were a
generation ago, and the application of graphics processors
(GPUs) to ANNs has sped them up even more. The availability of
large data sets is a second factor: Collecting the massive labeled
image sets used for training would have been very challenging
before the era of Google. Finally, a third reason that modern
ANNs are more useful than their predecessors is that they require
even less human intervention. Modern ANNs—specifically “deep
networks”1—learn the appropriate low-level representations
(such as visual features) from data, rather than relying on hand-
wiring to explicitly program them in.

In ANN research, the term “learning” has a technical usage
that is different from its usage in neuroscience and psychology. In
ANNs, learning refers to the process of extracting structure—
statistical regularities—from input data, and encoding that
structure into the parameters of the network. These network
parameters contain all the information needed to specify the
network. For example, a fully connected network with N neurons
might have one parameter (e.g., a threshold) associated with each
neuron, and an additional N2 parameters specifying the strengths
of synaptic connections, for a total of N þ N2 free parameters. Of
course, as the number of neurons N becomes large, the total
parameter count in a fully connected ANN is dominated by the
N2 synaptic parameters.

There are three classic paradigms for extracting structure from
data, and encoding that structure into network parameters (i.e.,
weights and thresholds). In supervised learning, the data consist
of pairs—an input item (e.g., an image) and its label (e.g., the
word “giraffe”)—and the goal is to find network parameters that
generate the correct label for novel pairs. In unsupervised
learning, the data have no labels; the goal is to discover statistical
regularities in the data without explicit guidance about what kind
of regularities to look for. For example, one could imagine that
with enough examples of giraffes and elephants, one might
eventually infer the existence of two classes of animals, without
the need to have them explicitly labeled. Finally, in reinforcement
learning, data are used to drive actions, and the success of those
actions is evaluated based on a “reward” signal.

Much of the progress in ANNs has been in developing better
tools for supervised learning. A central consideration in super-
vised learning is “generalization.” As the number of parameters
increases, so too does that “expressive power” of the network—
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the complexity of the input-output mappings that the network
can handle. A network with enough free parameters can fit any
function12,13, but the amount of data required to train a network
without overfitting generally also scales with the number of
parameters. If a network has too many free parameters, the
network risks “overfitting” data, i.e. it will generate the correct
responses on the training set of labeled examples, but will fail to
generalize to novel examples. In ANN research, this tension
between the flexibility of a network (which scales with the
number of neurons and connections) and the amount of data
needed to train the network (more neurons and connections
generally require more data) is called the “bias-variance tradeoff”
(Fig. 1). A network with more flexibility is more powerful, but
without sufficient training data the predictions that network
makes on novel test examples might be wildly incorrect—far
worse than the predictions of a simpler, less powerful network. To
paraphrase “Spiderman”14: With great power comes great
responsibility (to obtain enough labeled training data). The bias-
variance tradeoff explains why large networks require large
amounts of labeled training data.

Learning by animals
The term “learning” in neuroscience (and in psychology) refers to
a long-lasting change in behavior that is the result of experience.
Learning in this context encompasses animal paradigms such as
classical and operant conditioning, as well as an array of other
paradigms such as learning by observation or by instruction.
Although there is some overlap between the neuroscience and
ANN usage of the term learning, in some cases the terms differ
enough to lead to confusion.

Perhaps the greatest divergence in usage is the application of
the term “supervised learning.” Supervised learning is central to
the many successful recent applications of ANNs to real-world
problems of interest. For example, supervised learning is the
paradigm that allows ANNs to categorize images accurately.
However, to ensure generalization, training such networks
requires enormous data sets; one visual query system was trained
on more than 107 “labeled” examples (question-answer pairs)15.
Although the final result of this training is an ANN with a cap-
ability that, superficially at least, mimics the human ability to

categorize images, the process by which the artificial system
learns bears little resemblance to that by which a newborn learns.
There are only 107 s in a year, so a child would need to ask one
question every second of her life to receive a comparable volume
of labeled data; and of course, most images encountered by a
child are not labeled. There is, thus, a mismatch between the
available pool of labeled data and how quickly children learn.
Clearly, children do not rely mainly on supervised algorithms to
learn to categorize objects.

Considerations such as these have motivated the search in the
machine learning community for more powerful learning algo-
rithms, for the “secret sauce” posited to enable children to learn
how to navigate the world within a few years. Many in the ANN
community, including pioneers such as Yann Lecun and Geoff
Hinton (https://www.reddit.com/r/MachineLearning/comments/
2lmo0l/ama_geoffrey_hinton), posit that instead of supervised
paradigms, we rely instead primarily on unsupervised paradigms
to construct representations of the world1. In the words of Yann
Lecun (https://medium.com/syncedreview/yann-lecun-cake-
analogy-2-0-a361da560dae):

“If intelligence is a cake, the bulk of the cake is
unsupervised learning, the icing on the cake is supervised
learning, and the cherry on the cake is reinforcement
learning.”

Because unsupervised algorithms do not require labeled data,
they could potentially exploit the tremendous amount of raw
(unlabeled) sensory data we receive. Indeed, there are several
unsupervised algorithms which generate representations remi-
niscent of those found in the visual system16–18. Although at
present these unsupervised algorithms are not able to generate
visual representations as efficiently as supervised algorithms,
there is no known theoretical principle or bound that precludes
the existence of such an algorithm (although the No-Free-Lunch
theorem for learning algorithms19 states that no completely
general-purpose learning algorithm can exist, in the sense that for
every learning model there is a data distribution on which it will
fare poorly). Every learning model must contain implicit or
explicit restrictions on the class of functions that it can learn.
Thus, while the number of labeled images a child encounters
during her first 107 s of life might be small, the total sensory input
received during that time is quite large; perhaps Nature has
evolved a powerful unsupervised algorithm to exploit this large
pool of data. Discovering such an unsupervised algorithm—if it
exists—would lay the foundation for a next generation of ANNs.

Learned and innate behavior in animals
A central question, then, is how animals function so well so soon
after birth, without the benefit of massive supervised training data
sets. It is conceivable that unsupervised learning, exploiting
algorithms more powerful than any yet discovered, may play a
role establishing sensory representations and driving behavior.
But even such a hypothetical unsupervised learning algorithm is
unlikely to be the whole story. Indeed, the challenge faced by this
hypothetical algorithm is even greater than it appears. Humans
are an outlier: We spend more time learning than perhaps any
other animal, in the sense that we have an extended period of
immaturity. Many animals function effectively after 106, 105, or
even fewer seconds of life: A squirrel can jump from tree to tree
within months of birth, a colt can walk within hours, and spiders
are born ready to hunt. Examples like these suggest that the
challenge may exceed the capacities of even the cleverest unsu-
pervised algorithms.

So if unsupervised mechanisms alone cannot explain how
animals function so effectively at (or soon after) birth, what is the
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alternative? The answer is that much of our sensory representa-
tions and behavior are largely innate. For example, many olfac-
tory stimuli are innately attractive or appetitive (blood for a
shark20 or aversive (fox urine for a rat21). Responses to visual
stimuli can also be innate. For example, mice respond defensively
to looming stimuli, which may allow for the rapid detection and
avoidance of aerial predators22. But the role of innate mechan-
isms goes beyond simply establishing responses to sensory
representations. Indeed, most of the behavioral repertoire of
insects and other short-lived animals is innate. There are also
many examples of complex innate behaviors in vertebrates, for
example in courtship rituals23. A striking example of a complex
innate behavior in mammals is burrowing: Closely related species
of deer mice differ dramatically in the burrows they build with
respect to the length and complexity of the tunnels24,25. These
innate tendencies are independent of parenting: Mice of one
species reared by foster mothers of the other species build bur-
rows like those of their biological parents. Thus, it appears that a
large component of an animal’s behavioral repertoire is not the
result of clever learning algorithms—supervised or unsupervised
—but rather of behavior programs already present at birth.

From an evolutionary point of view, it is clear why innate
behaviors are advantageous. The survival of an animal requires
that it solve the so-called “four Fs”—feeding, fighting, fleeing, and
mating—repeatedly, with perhaps only minor tweaks. Each
individual is born, and has a very limited time—from a few days
to a few years—to figure out how to solve these four problems. If
it succeeds, it passes along part of its solution (i.e., half its gen-
ome) to the next generation. Consider a species X that achieves at
98% of its mature performance at birth, and its competitor Y that
functions only at 50% at birth, requiring a month of learning to
achieve mature performance. (Performance here is taken as some
measure of fitness, i.e., ability of an individual to survive and
propagate). All other things being equal (e.g., assuming that
mature performance level is the same for the two species), species
X will outcompete species Y, because of shorter generation times
and because a larger fraction of individuals survive the first
month to reproduce (Fig. 2a).

In general, however, all other things may not be equal. The
mature performance achievable via purely innate mechanisms
might not be the same as that achievable with additional learning
(Fig. 2a). If an environment is changing rapidly—e.g., on the
timescale of a single individual—innate behavioral strategies
might not provide a path to as high a level of mature performance

as a mixed strategy that relies in part on learning. For example, a
fruit-eating animal might evolve an innate tendency to look for
trees; but the locations of the fruit groves in its specific envir-
onment must be learned by each individual. There is, thus,
pressure to evolve an appropriate tradeoff between innate and
learned behavioral strategies, reminiscent of the bias-variance
tradeoff in supervised learning.

Innate and learned behaviors are synergistic
The line between innate and learned behaviors is, of course, not
sharp. Innate and learned behaviors and representations interact,
often synergistically. For example, rodents and other animals
form a representation of space—a “cognitive map”—in the hip-
pocampus. This representation consists of place cells, which
become active when the animal enters a particular place in its
environment known as a “place field.” A given place cell typically
has only one (or a few) place fields in a particular environment.
The propensity to form place fields is innate: A map of space
emerges when young rat pups explore an open environment
outside the nest for the very first time26. However, the content of
place fields is learned; indeed, it is highly labile, since new place
fields form whenever the animal enters a new environment. Thus,
the scaffolding for the cognitive map is innate, but the specific
maps constructed on this scaffolding are learned.

This form of synergy between innateness and learning is
common. For example, human infants can discriminate faces
soon after birth, and monkeys raised with no exposure to faces
show a preference for faces upon first exposure, reflecting the
contribution of innate mechanisms to face salience and percep-
tion27. In human and non-human primates there exists a specific
cortical area, the FFA (fusiform face area), which is selectively
engaged in the perception of faces; patients with focal loss of the
FFA suffer a permanent deficit in face processing28. However, the
specific faces recognized by each individual are learned during the
course of that individual’s lifetime. Thus, as with place cells in the
hippocampus, the innate circuitry for processing faces may pro-
vide the scaffolding, but the specific faces that populate this
scaffolding are learned. Similar synergy may accelerate the
acquisition of language by children: The innate circuitry in areas
like Wernicke’s and Broca’s may provide the scaffolding, enabling
the specific syntax and vocabulary of any specific language to be
learned rapidly29,30. This synergy between innate and learned
behavior could arise from evolutionary pressure of the sort
depicted in Fig. 2b.

Genomes specify rules for brain wiring
We have argued that the main reason that animals function so
well so soon after birth is that they rely heavily on innate
mechanisms. Innate mechanisms, rather than heretofore undis-
covered unsupervised learning algorithms, provide the base for
Nature’s secret sauce. These innate mechanisms are encoded in
the genome. Specifically, the genome encodes blueprints for
wiring up their nervous system, where by wiring we refer to both
the specification of which neurons are connected, as well as to the
strengths of those connections. These blueprints have been
selected by evolution over hundreds of millions of years, oper-
ating on countless quadrillions of individuals. The circuits spe-
cified by these blueprints provide the scaffolding for innate
behaviors, as well as for any learning that occurs during an ani-
mal’s lifetime.

If the secret sauce is in our genomes, then we must ask what
exactly our genomes specify about wiring. In some simple
organisms, genomes have the capacity to specify every connection
between every neuron, to the minutest detail. The simple worm c.
elegans, for example, has 302 neurons and about 7000 synapses;
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in each individual of an inbred strain, the wiring pattern is largely
the same31. So, at one extreme, the genome can encode a lookup
table, which is then transformed by developmental processes into
a circuit with precise and largely stereotyped connections.

But in larger brains, such as those of mammals, synaptic
connections cannot be specified so precisely; the genome
simply does not have sufficient capacity to specify every con-
nection explicitly. The human genome has about 3 ´ 109

nucleotides, so it can encode no more than about 1 GB of
information—an hour or so of streaming video32. But the human
brain has about 1011 neurons, and more than 103 synapses per
neuron. Since specifying a connection target requires about
log210

11 ¼ 37 bits=synapse, it would take about 3:7´ 1015 bits to
specify all 1014 connections. (This may represent an under-
estimate because it considers only the presence or absence of a
connection; a few extra bits/synapse would be required to specify
graded synaptic strengths. But because of synaptic noise and for
other reasons, synaptic strength may not be specified very pre-
cisely. So, in large and sparsely connected brains, most of the
information is probably needed to specify the locations the
nonzero elements of the connection matrix rather than their
precise value.). Thus, even if every nucleotide of the human
genome were devoted to efficiently specifying brain connections,
the information capacity would still be at least six orders of
magnitude too small.

These fundamental considerations explain why in most brains,
the genome cannot specify the explicit wiring diagram, but must
instead specify a set of rules for wiring up the brain during
development. Even a short set of rules can readily specify the
wiring of a very large number of neurons; in the limit, a nervous
system wired up like a grid would require only the single rule that
each neuron connect to its four nearest neighbors (although such
a nervous system would probably not be very interesting).
Another simple rule, but which yields a much more interesting
result, is: Given the rules of the game, find the network that plays
Go as well as possible33. In practice, the circuits found in animal
brains often seem to rely on repeating modules. There has long
been speculation that the neocortex consists of many copies of a
basic “canonical” microcircuit34,35, which are wired together to
form the entire cortex.

Supervised learning or supervised evolution?
As noted above, the term “learning” is used differently in ANNs
and neuroscience. At the most abstract level, learning can be
defined as the process of encoding statistical regularities from the
outside world into the parameters (mostly connection weights) of
the network. But in the context of animal learning, the source of
the input data for learning is limited only to the animal’s
“experience,” i.e., to those events that occur during the animal’s
lifetime. Wiring rules encoded in the genome that do not depend
on experience, such as those used to wire up the retina, are not
usually termed “learning.” Because the terms “lifetime” and
“experience” are not well defined when applied to an ANN,
reconciling the two definitions of learning in ANNs vs. neu-
roscience poses a challenge.

If, as we have argued above, much of an animal’s behavior is
innate, then an animal’s life experiences represent only a small
fraction of the data that contribute to its fitness; another poten-
tially much larger pool of data contributes to its innate behaviors
and representations. These innate behaviors and representations
arise through evolution by natural selection. Thus evolution, like
learning, can also be viewed as a mechanism for extracting sta-
tistical regularities, albeit on a much longer time scale than
learning. Evolution can be thought of as a kind of reinforcement
algorithm, operating on the timescale of generations, where the

reinforcement signal consists of the number of progeny an
individual generates. ANNs are engaged in an optimization
process that must mimic both what is learned during evolution
and the process of learning within a lifetime, whereas for animals
learning only refers to within lifetime changes.

In this view, supervised learning in ANNs should not be viewed
as the analog of learning in animals. Instead, since most of the
data that contribute an animal’s fitness are encoded by evolution
into the genome, it would perhaps be just as accurate (or inac-
curate) to rename it “supervised evolution.” Such a renaming
would emphasize that “supervised learning” in ANNs is really
recapitulating the extraction of statistical regularities that occurs
in animals by both evolution and learning. In animals, there are
two nested optimization processes: an outer “evolution” loop
acting on a generational timescale, and an inner “learning” loop,
which acts on the lifetime of a single individual. Supervised
(artificial) evolution may be much faster than natural evolution,
which succeeds only because it can benefit from the enormous
amount of data represented by the life experiences of quadrillions
of individuals over hundreds of millions of years.

Although there are parallels between learning and evolution,
there are also important differences. Notably, whereas learning
can act directly on synaptic weights through Hebbian and other
mechanisms, evolution acts on brain wiring only indirectly,
through the genome. The genome doesn’t encode representations
or behaviors directly; it encodes wiring rules and connection
motifs. The limited capacity of the mammalian genome—orders
of magnitude smaller than would be needed to specify all con-
nections explicitly—may act as a regularizer36 or an information
bottleneck37, shifting the balance from variance to bias. In this
regard, it is interesting to note that the size of the genome itself is
not a fixed constraint, but is itself highly variable across species.
The size of the human genome is about average for mammals, but
dwarfed in size by that of many fish and amphibians; the lungfish
of the marbled genome is more than 40 times larger than that of
humans38. The fact that the human genome could potentially
have been much larger suggests that the regularizing effect
imposed by the limited capacity of the genome might represent a
feature rather than a bug.

Implications for ANNs
We have argued that animals are able to function well so soon
after birth because they are born with highly structured brain
connectivity. This connectivity provides a scaffolding upon which
rapid learning can occur. Innate mechanisms thus work syner-
gistically with learning. We suggest that analogous approaches
might inspire new approaches to accelerate progress in ANNs.

The first observation from neuroscience is that much of animal
behavior is innate, and does not arise from learning. Animal
brains are not the blank slates, equipped with a general-purpose
learning algorithm ready to learn anything, as envisioned by some
AI researchers; there is strong selection pressure for animals to
restrict their learning to just what is needed for their survival
(Fig. 2). The idea that animals are predisposed to learn certain
things rapidly is related to “meta-learning” and “inductive biases”
in AI research and cognitive science9,39–41. In this formulation,
there is an outer loop (e.g., evolution) which optimizes learning
mechanisms to have inductive biases that allow us to learn very
specific things very quickly.

The importance of innate mechanisms suggests that an ANN
solving a new problem should attempt as much as possible to
build on the solutions to previous related problems. Indeed, this
idea is related to an active area of research in ANNs, “transfer
learning,” in which connections pre-trained in the solution to one
task are transferred to accelerate learning on a related task42,43.
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For example, a network trained to classify objects such as ele-
phants and giraffes might be used as a starting point for a net-
work that distinguishes trees or cars. However, transfer learning
differs from the innate mechanisms used in brains in an impor-
tant way. Whereas in transfer learning the ANN’s entire con-
nection matrix (or a significant fraction of it) is typically used as a
starting point, in animal brains the amount of information
“transferred” from generation to generation is smaller, because it
must pass through the bottleneck of the genome. Passing the
information through the genomic bottleneck may select for wir-
ing and plasticity rules which are more generic, and which
therefore are more likely to generalize well. For example, the
wiring of the visual cortex is quite similar to that of the auditory
cortex (although each area has idiosyncrasies44. This suggests that
the hypothesized canonical cortical circuit provides, with perhaps
only minor variations, a foundation for the wide variety of tasks
that mammals perform. Neuroscience suggests that there may
exist more powerful mechanisms—a kind of generalization of
transfer learning—which operate not only within a single sensory
modality like vision, but across sensory modalities and even
beyond.

A second observation from neuroscience follows from the fact
that the genome doesn’t encode representations or behaviors
directly or optimization principles directly. The genome encodes
wiring rules and patterns, which then must instantiate behaviors
and representations. It is these wiring rules that are the target of
evolution. This suggests wiring topology and network architecture
as a target for optimization in artificial systems. Classical ANNs
largely ignored the details of network architecture, guided per-
haps by theoretical results on the universality of fully connected
three-layer networks12,13. But of course, one of the major
advances in the modern era of ANNs has been convolutional
neural networks (CNNs), which use highly constrained wiring to
exploit the fact that the visual world is translation invariant45,46.
The inspiration for this revolutionary technology was in part the
structure of visual receptive fields47. This is the kind of innate
constraint that in animals would be expected to arise through
evolution48; there might be many others yet to be discovered.
Other constraints on wiring and learning rules are sometimes
imposed in ANNs through hyperparameters, and there is an
extensive literature on hyperparameter optimization. At present,
however, ANNs exploit only a tiny fraction of possible network
architectures, raising the possibility that more powerful,
cortically-inspired architectures remain to be discovered.

In principle, the circuits underlying neural processing could be
discovered by experimental neuroscience. Traditionally, neural
representations and wiring were inferred indirectly, through
recordings of activity49. More recently, tools have been developed
that raise the possibility of determining wiring motifs and cir-
cuitry directly. Local circuitry can be determined with serial
electron microscopy; there is now an ambitious project to
determine every synapse within a 1 mm3 cube of mouse visual
cortex50. Long-range projections can be determined in a high-
throughput manner using MAPseq51 or by other methods. Thus
the details of cortical wiring may soon be available, and provide
an experimental basis for ANNs.

Conclusions
The notion that the brain provides insights for AI is at the very
foundation of ANN research. ANNs represented an attempt to
capture some key aspects of the nervous system: many simple
units, connected by synapses, operating in parallel. Several sub-
sequent advances also arose from neuroscience. For example, the
reinforcement learning algorithms underlying recent successes
such as AlphaGo Zero33 draw their inspiration from the study of

animal learning. Similarly, CNNs were inspired by the structure
of the visual cortex.

But it remains controversial whether further progress in AI will
benefit from the study of animal brains. Perhaps we have learned
all that we need to from animal brains. Just as airplanes are very
different from birds, so one could imagine that an intelligent
machine would operate by very different principles from those of
a biological organism. We argue that this is unlikely because what
we demand from an intelligent machine—what is sometimes
misleadingly called “artificial general intelligence”—is not general
at all; it is highly constrained to match human capacities so tightly
that only a machine structured similarly to a brain can achieve it.
An airplane is by some measures vastly superior to a bird: It can
fly much faster, at greater altitude, for longer distances, with
vastly greater capacity for cargo. But a plane cannot dive into the
water to catch a fish, or swoop silently from a tree to catch a
mouse. In the same way, modern computers have already by
some measures vastly exceeded human computational abilities
(e.g., chess), but cannot match humans on the decidedly specia-
lized set of tasks defined as general intelligence. If we want to
design a system that can do what we do, we will need to build it
according to the same design principles.
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