UC Berkeley Technical Completion Reports

Title

A Cropping Systems Approach to Improving Water Use Efficiency in Semi-Arid Irrigated Production Areas

Permalink https://escholarship.org/uc/item/67r653vq

Author Shennan, Carol

Publication Date

1994-11-01

ANK .

A CROPPING SYSTEMS APPROACH TO IMPROVING WATER USE EFFICIENCY IN SEMI-ARID IRRIGATED PRODUCTION AREAS

By Carol Shennan Principal Investigator Department of Vegetable Crops University of California, Davis

TECHNICAL COMPLETION REPORT

Project number UCAL-WRC-W-783

November 1994

UNIVERSITY OF CALIFORNIA

BERKELEY

University of California Water Resources Center

The research leading to this report was supported by the University of California, Water Resources Center, as part of Water Resources Center Project UCAL-WRC-W-783, by the University of California Salinity/Drainage Task Force, by the University of California Sustainable Agriculture Research and Education Program, by the California Tomato Research Institute, and by the H.G. Holloway Company.

TABLE OF CONTENTS

1.	Technical Completion Report Title Page	i
2.	Table of Contents	ii
3.	Abstract	iii
4.	List of Investigators and Key Words	1
5.	Problem and Research Objectives	2
6.	Methodology	5
7.	Principal Findings and Significance	8
8.	Literature Cited	10
9.	Training Accomplishments and Graduate Information	13
10.	Publications and Professional Presentations	14
11.	Lists of Tables and Figures	17

A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas

ABSTRACT

This recently-completed 3-year field study evaluated the effectiveness of winter cover crop incorporation and surface gypsum applications relative to conventional fallows for maintaining/improving soil physical properties, stand establishment and crop productivity in a cropping system relying on saline drainage water for irrigation. Six amendment/soil cover treatments were imposed on a rotation of tomato-tomato-cotton as summer crops. Drainage water accounted for about 70% of the total water applied over the course of the experiment. Yields of toamtoes irrigated with saline water were maintained relative to non-saline irrigation in year 1, but were decreased by 33% in year 2. Estimated cotton lint yields of plants irrigated with saline drainage water in 1994, following two seasons of drainage water irrigation, were similar to yields of plants irrigated exclusively with non-saline water. Soil surface crust strength, measured by micropenetrometer was lower in gypsum and cover-crop amended plots relative to saline water irrigated fallow plots during the period of cotton seedling emergence in 1994 in the third year of the experiment. Water stable aggregation was increased following cover crop incorporation relative to saline fallows. Following two seasons of saline drainage water reuse, emergence of cotton seedlings was highest in gypsum-amended plots, but considerably lower in cover crop incorporated plots. Mechanisms accounting for poor establishment following cover crop incorporation may include higher incidences of seed and seedling pathogens in plots where cover crop residues had been incorporated into the soil, and stubble-reinforced surface crusts that resulted in interconnected slabs that impeded timely seedling emergence. These findings and increasing soil surface ECe and SAR values during the course of this study point to the need for special management practices for sustained crop production if drainage water is routinely used.

iii

TITLE: A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas

INVESTIGATORS:

Dr. Carol Shennan	Associate Professor, Dep't. of Vegetable Crops, UC Davis (916) 752-7566					
Jeff Mitchell	Vegetable Crops Specialist, Dep't. of Vegetable Crops, Kearney Agricultural Center (209) 891-2660					
Dr. Mike Singer	Professor, Dep't. of Land, Air and Water Resources, UC Davis (916) 752- 7499					
Dr. James Rhoades	Director, USDA-ARS Salinity Lab, Riverside, (909) 369-4810					
Dr. Claude Phene	Past-Director, USDA-ARS Water Management Lab, Fresno (209) 453- 3100					
Doug Peters	Staff Research Associate, Dep't. of Land, Air and Water Resources, UC West Side Research and Extension Center, (209) 884-2411					
Dr. Terry Prichard	Irrigation Specialist, Dep't. of Land, Air and Water Resources, Stockton, (209) 468-2085					
Dr. Robert Miller	Soils Specialist, Dep't. of Land, Air and Water Resources, UC Davis (916) 752-7448					
Don May	Farm Advisor, UC Cooperative Extension, Fresno (209) 456-7285					
Dan Munk	Farm Advisor, UC Cooperative Extension, Fresno (209) 456-7285					

KEY WORDS: brackish water, conjunctive use, drainage, perched water table, subsurface drainage, water quality, water reuse

PROBLEM AND RESEARCH OBJECTIVES:

Intensive irrigation practices developed this century have dramatically increased agricultural productivity in many areas of the western US, notable in the San Joaquin Valley of California (Hess, 1984; Rubatzky, 1985). These practices, however, have also resulted in increased drainage water production, and chemical contamination of groundwater resources (Halberg, 1987; Lamb, 1986). It is generally acknowledged that long-term agricultural production in irrigated areas is dependent on an adequate drainage outflow system (van Schilfgaarde and Hoffman, 1977), and a variety of management strategies are currently being considered to reduce the volume of drainage ultimately requiring disposal or treatment (UC Committee of Consultants on Drainage Water Reduction, 1988; SJV Drainage Program Management Plan, 1990). Reuse of saline drainage water for irrigation is one option proposed. Cyclic reuse, as proposed by Rhoades (Rhoades, 1984), involves the use or non-saline water in rotation with saline drainage water for the irrigation of selected crops differing in their salinity tolerance. The potential for cyclic reuse of saline drainage water for irrigation has been documented for several lower value crops (Rhoades et al., 1988). Higher value crops such as processing tomato, melons, and cotton have also been produced without sustaining significant yield reductions in short-term studies using saline drainage water (Grattan et al., 1987; Shennan et al., 1988). Similarly, we have shown by a combination of field and greenhouse studies that processing tomato quality is generally improved by exposure to moderate salinity following plant establishment (Mitchell et al., 1991a,b). Longer-term experiments indicate that accumulation of soil B over time is the most likely microelement limitation to cyclic drainage reuse, whereas Se accumulation is unlikely to be a problem since Se is readily removed from the root profile by periodic use of good quality water (Shennan et al., 1991). When non-saline (low EC) water is used to irrigate a field previously salinized by drainage water with SAR's > 15, however, soil slaking may occur which can greatly reduce water infiltration rates and create a strong surface crust, resulting in poor stand establishment and decreased crop yields (Biggar et al., 1988;

Shennan *et al.*, 1988). To prevent these problems, management practices that ameliorate the degradation of soil physical properties should be employed to allow sustainable reuse of drainage water.

The most common method for maintaining soil quality is tillage and incorporations of gypsum into the soil, often at rates from 3 - 5 tons acre-1. Another alternative is the inclusion of a green manure crop. Several studies have shown benefits of green manure incorporation on soil physical characteristics including water infiltration (Cassman and Rains, 1986), aggregation (Macrae and Mehuys, 1985; Patrick et al., 1957; Tisdale and Oades, 1982), water-holding capacity (Macrae and Mehuys, 1985), and porosity (Disparte, 1987). Cover crops may also protect the soil surface from rain or sprinkler drop impact, thereby preventing the formation of soil crusts which often limit infiltration (Disparte, 1987, Stolzy et al., 1960). Organic N input from leguminous cover crops may also reduce the seasonal fertilizer-N requirement (Shennan et al., 1992), reduce soil NO3-, and minimize leaching losses from winter rains and spring preirrigations (Stivers et al., 1990). Improved seedling emergence of crops that follow incorporated cover crops may be achieved due to reductions in soil crust formation in cover-cropped systems (Miller et al., 1989; Shennan et al., 1989). Roberson et al. (1991) recently found significant improvements in macroaggregate slaking resistance in cover cropped versus clear cultivated treatments in a California orchard. Although reference has been made to the potential use of crop residue management in managing salinity (Cassman and Rains, 1986), to date, no research has directly addressed this objective. Many present row-cropping systems in the SJV could benefit from the use of cover crops provided innovative management practices are developed. Our study complements and extends findings from earlier research for non-salinized cover-cropped systems in California to an evaluation of the benefits and constraints of suing winter cover crops in saline drainage water reuse systems.

This project has addressed an important research priority of the Water Resources Center by providing comparative information on alternatives of managing and reducing the volume of agricultural drainage water, and for improving water use efficiency through the conjunctive use of

saline and surface water on crops grown in the San Joaquin Valley's Westside. Reuse of drainage water for agriculture has been identified by the San Joaquin Valley Drainage Project and the USDI Bureau of Reclamation San Luis Drainage Program Unit, which serves over 3000 square miles, as an important component of regional management strategies for drainage water management and sustained agricultural production in the SJV. Considerable work still needs to be directed however, at reducing the constraints on reuse schemes that arise form poor stand establishment. Due to the increasing demands on the State's scarce water resources, and the drought-induced limited supplies of good quality water, the information generated by this study may thus be timely to growers, irrigation districts, and researchers in areas facing restricted supplies of good quality water, and where saline drainage water poses significant problems to agricultural productivity.

The objective of this project is to compare the relative effectiveness of winter cover crop incorporation and gypsum applications in cropping rotations employing cyclic reuse of saline drainage or shallow groundwater for:

- 1. improving/maintaining good soil physical properties, as measured by soil crust strength and water stable aggregates
- 2. improving the emergence and yields of summer crops in the rotation
- 3. reducing the seasonal fertilizer-N requirement of summer crops, and
- 4. to determine the extent to which the C:N ratio of selected N-fixing and winter cereal cover crops, alone or in combination, governs the effects of residue management on soil physical properties and N inputs using cyclic saline drainage reuse as a model system, and
- 5. to determine annual water budgets for the proposed cropping systems

METHODOLOGY:

Experimental Procedures:

A 3-year study has been conducted at the UC Westside Field Station (WSFS), Five Points, California, in which six winter cover crop/fallow treatments are imposed upon a rotation of tomato, tomato and cotton as summer crops. The winter treatments were:

- 1. barley/summer saline
- 2. vetch/summer saline
- 3. barley-legume/summer saline
- 4. gypsum/fallow/summer saline
- 5. fallow/summer saline
- 6. fallow/summer control/fresh

The tomato crops received low EC (0.3 dS m⁻¹) California Aqueduct water for germination and establishment, and saline water from a shallow well (EC = 8.0 dS m⁻¹ and SAR = 19 mmoles l⁻¹) from about the 1st-flower growth stage onwards. Cotton was irrigated with saline drainage water after being established with low EC water. Cover crops were sprinkle-irrigated with about 1.5 - 3 inches of Aqueduct water to ensure good establishment prior to the onset of winter rains. A saline screening nursery has also been conducted during each winter to determine good performing legume and non-legumes in terms of biomass and N-productivity under saline Westside SJV conditions.

The experimental design is a randomized complete block, with four replications and each treatment plot measuring 630m, which is large enough to allow normal field operations. During the growing season of the tomato crops, water was applied weekly by furrow irrigation in quantities sufficient to replace evapotranspirative losses, estimated using reference evapotranspiration values provided by a CIMIS weather station located at the WSFS, and crop coefficient values that have been developed at the site by previous investigations (Phene, 1985). The 1994 cotton crop irrigations were scheduled based on ET demand and plant based observations.

Soil samples of the surface 15 cm were collected at 312 sites in a 6.7 X 7 m grid throughout the experimental field every spring and fall during the cropping cycle to determine 1) total soil carbon, 2) total soil nitrogen, 3) ECe, 4) SAR and water stable aggregates.

The irrigation management approach proposed in this project is designed to minimize the introduction of salt into the cropping area. Irrigating with drainage water will not add salt to the system, but rather, will recycle and concentrate existing salt, thereby reducing the water volume ultimately needing disposal into local or regional systems such as evaporation ponds or agroforestry plantations (SJV Drainage Program Final Report, September 1990).

Measurements:

- 1. To assess the relative effects of cover crops, gypsum application, and winter fallows on soil physical properties (objective 1), the following measurements were made:
 - 1. **soil crust strength** (micropenetrometer)
 - 2. **aggregate stability** (water stable aggregate method)
- 2. Summer crop performance (objective 2) was evaluated by measurement of:
 - 1. seedling emergence rates
 - 2. stand counts
 - 3. plant above ground biomass and tissue N content at crop maturity
 - 4. final fruit/lint yield and quality
- Soil N-fertility (objective 3) and soil chemical properties that may directly influence soil crusting and seedling emergence are evaluated in relation to changes in soil C/N pools by measurement of:
 - 1. **C/N ratio of cover crops** (dry combustion carbon determination and Kjeldahl digestion N-determination
 - 2. **soil organic carbon** (Walkley-Black method)
 - 3. total soil nitrogen (Kjeldahl method)

- 4. Budgets of water use for the proposed cropping system (objective 5) were determined by measurement of:
 - 1. precipitation using weather data from the CIMIS station located at the WSFS
 - 2. total amount of non-saline and saline water applied using in-line flow meters
 - 3. evapotranspiration (ET) of winter cover crops prior to canopy closure by interpolation of CIMIS weather station values for bare soil and reference ETo based on % canopy cover of the cover crop. After canopy closure, ET of the winter cover crops will be approximated by ETo.
 - 4. evapotranspiration of summer crops form crop coefficient (ET vs days after planting) curves previously developed for the summer crops at the site
 - 5. soil water storage by neutron probe at 14-day intervals during the winter at depths of 13, 30, 60, 90, 120, 150 180 and 210 cm

Involvement and Responsibilities of Co-investigators:

Dr. Shennan dedicated about 0.05 of her full-time equivalent to this project, supervised the general implementation of the project, and provided technical supervision of a graduate student research assistant, Jeff Mitchell, who managed the field site, collected field samples, and interpreted data generated by the experiment. Jeff Mitchell managed the project and assisted station personnel on a full-time basis during much of the course of the project, particularly during cover crop establishment and incorporation in the fall and spring, respectively. Dr. Singer was a member of Jeff Mitchell's Ph.D. thesis committee and routinely provided pertinent technical advice. Doug Peters, Staff Research Associate stationed at the Westside Field Station, also assisted with the management of the field experiment. Representatives of the USDA Salinity Lab (Dr. James Rhoades), the USDA Water Management Lab (Dr. Claude Phene), and the UC Cooperative Extension (Terry Prichard, Dr. Robert Miller, Don May and Dan Munk) helped develop this project, made recommendations with respect to the sampling/measurement design, analytical and agronomic aspects of the project, and were routinely consulted as major project decisions were considered.

PRINCIPAL FINDINGS AND SIGNIFICANCE:

Winter cover crop growth under Central SJV conditions is quite vigorous, with the barley and barley/vetch mixes averaging about 8000 - 10,000 lbs/acre and the vetch plots yielding 5000 lbs/acre (Figure 1). Changes in soil water storage (0 - 165 cm) under winter fallow and winter cover crops are shown in Figure 2. Net increases in soil water storage during the winter were about 2 inches less under cover cropped conditions than under winter fallow.

The saline drainage water used to irrigate the summer crops has an EC of about 7 dS/m and is quite high in B (Table1). It is likely that the soil salinities that developed during the course of summer irrigations (Figure 5), which reach about 7 dS/m, may have had an adverse effect on plant growth and productivity. Two patterns of yields are seen in the two tomato seasons. In 1992, yields were reduced in plots following cover crop incorporation, perhaps suggesting significant N-immobilization in the cover cropped plots. In 1993, the effects of the saline water irrigations and perhaps of high soil solution boron levels were observed, as yields were reduced by a third in all plots that were irrigated with saline water. Leaf blade boron levels throughout much of the season were in fact higher in plants irrigated with saline water than in plants irrigated with non-saline water. Because boron is often recognized as the element that is most likely to cause toxicity problems when present in small amounts, because the differences between deficiencies and toxicities is small, boron levels in this saline irrigation water may well be a major constraint to the reuse strategy. In both years, fruit soluble solids, an important indicator of fruit quality, were enhanced by use of saline water (Table 3).

Preliminary results show that soil crust strength determined by a micropenetrometer of the top 1 cm was reduced by both the gypsum and cover crop treatments in 1992 (data not shown).

Table 4 shows results of soil water stable aggregate determinations for spring 1992, before saline irrigations were started, and for spring 1994, after two seasons of saline irrigation.

Incorporation of cover crops into the soil seems to maintain aggregate stability to some extent relative to gypsum-amended and unamended fallows.

Figure 6 shows the number of cotton plants that emerged in each treatment per 104 m of plot. While emergence was slightly earlier in the fresh fallow plots, the final stand was actually highest in plots to which gypsum had been applied. The number of cotton plants that emerged in each of the three cover crop incorporated plots was distinctly, and somewhat surprisingly lower. Two mechanisms may account for this observation. First, soil organisms that feed on seeds and seedlings likely exacted a heavy toll in plots where cover crop residue had been incorporated into the soil. Secondly, when soil surface crusts form in cover cropped plots, organic residues (barley stubble and vetch stems) reinforce horizontally and vertically dispersed soil crusts as "rebar" in reinforced concrete, in effect resulting in interconnected surface slabs that impede timely seedlings. The longer seedlings are under such slabs, the more prone they are to pathogens, the weaker they become, and if they emerge at all, they often do not survive long.

We also conducted several screening nursery trials to assess the potential of various winter annuals in terms of biomass and N-productivity under the moderate soil salinities we develop during the course of our irrigation/crop rotation system. Many plants, particularly various *Brassica*, vetch, berseem and *Hedysarum* species, have produced substantial biomass (Table 4).

The following conclusions can be made from the hypotheses that have been tested in this project:

- 1. Cyclic reuse of saline subsurface drainage water for irrigation may conserve good quality water and provide a means of sustaining crop productivity over short terms.
- 2. Soil surface salt and boron accumulation however, may be major constraints to this cropping strategy and will limit productivity if appropriate irrigation/leaching and crop management practices are not followed.

- 3. Special management practices for stand establishment are required in saline drainage water reuse systems including shallow seed placement, keeping the soil surface moist, and using mechanical crust-breaking implements when appropriate.
- 4. Winter cover crop incorporation does not improve stand establishment of subsequent crops in cyclic saline drainage water reuse systems. In our system, cover crop incorporation resulted in interconnected surface crusts that actually seemed to impede timely seedling emergence.
- 5. Cover crop incorporation did however, result in slight improvements in soil water stable aggregation following saline water irrigations relative to bare fallows.
- 6. Surface applications of gypsum may be useful in cotton stand establishment in cyclic saline drainage water reuse systems, though soil aggregate stability may not be improved by the use of gypsum.
- Net increased in soil water storage (0 165cm) during the winter due to rainfall were about 2 inches less than under cover cropped conditions than under winter fallows.

LITERATURE CITED:

- Biggar, J.W., Lauchli, A., D.R. Nielsen, Qualset, C.O. Rains, D.W. and Rolston D.R. 1988. Saline drainage water reuse in the San Joaquin Valley. 1987-88 Technical Progress Report. UC Salinity/Drainage Task Force. pp. 116-126.
- Casman, K.G. and D.W. Rains. 1986. A cropping systems approach to salinity management in California. Ammerican Journal o fAlternative Agriculture. Vo. 1(3):115-121.
- Committee of Consultants on Drainage Water Reduction. 1988. Opportunities for drainage water reduction. No. 1. The UC Salinity/Drainage Task Force and Water Resources Center.

- Disparte, A.A. 1987. Effects of root mass density on infiltration among four Mediterranean dry land forages and two irrigated forage legumes. MS Thesis. UC Riverside.
- Grattan, S.R., Shennan, C., May, D.M. Mitchell, J.P. and R.G. Burau. 1987. Use of drainage water for irrigation of melons and tomatoes. California Agriculture. 41(9 and 10):27-28.
- Grattan, S.R. and J. D. Rhoades. 1990. Use of saline groundwater and drainage water for irrigation. In: ASCS Salinity Manual.
- Halberg, G.R. 1987. Agricultural chemicals in groundwater: Extent and implications. American Journal of Alternative Agriculture. Vol. II(1):3-15.
- 8. Hess, C.E. Issues and Options 1984. California Agriculture. 38(10):47.
- Hsiao. T.C. 1990. Winter legumes as potential crops to minimize salinity build-up, deep drainage, and nitrogen fertilization. In. University of California Sustainable Agriculture Research and Education Program Report 1986-1990. pp. 61-62.
- Lamb, C.E. 1986. California groundwater quality. In: National Water Summary 1986.
 U.S. Geological Survey Wter Supply Paper 2325.
- Macrae, R.J., and G.R. Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. In: Advances in Soil Science. Vol. 3. Springer-Verlag, New York.
- A management plan for agricultural subsurface drainage and related problems on the Westside San Joaquin Valley, September, 1990. Ed. E. Imhoff.
- Miller, P.R., Graves, W.L., Williams, W.A. and B.A. Madson. 1989. Cover crops for California. UC Extension Bulletin.
- 14. Mitchell, J.P., Shennan, C., Grattan, S.R., and D.M. May. 1991. Tomato furit yields and quality under water deficit and salinity. J. Amer. Soc. Hort. Sci. 116(2):215-221.
- 15. Mitchell, J.P., Shennan, C., and S.R. Grattan. 1991. Developmental changes in tomato fruit constituents under salinity and water deficit. Physiologia Plantarum. 83:177-185.

- Patrick, W.H. Jr., Haddon, C.B. and J.A. Hendrix. 1957. The effect of longtime use of winter cover crops on certain physical properties of Commerce Loam. Soil Sci. Soc. Proc. 366-368.
- Phene, C.J. 1985. Climate-weather relationships for irrigation management. 1985 Annual Report. Westside Field Station, Five Points, CA. University of California.
- Rhoades, J.D., 1984. New strategy for using saline waters for irrigation. Proc. ASCE Irrigation and Drainage Spec. Conf., Water-Today and Tomorrow. July 24-26, 1984. Flagstaff, AZ. pp. 231-236.
- Rhoades, J.D., N.A. Manteghi, P.J. Shouse and W.J. Alves. 1989. Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal. 53(2):428-433.
- Rhoades, J.D., P. J. Shouse, W.J. Alves, N.A. Manteghi and S.M. Lesch. 1990.
 Determining soil salinity from bulk soil electrical conductivity using different calculation models and parameter estimates. Soil Science Society of America Journal. 54:46-54.
- Rhoades, J.D., Bingham, F.T., Letey, J. Dedrick, A.R., Bean, M., Hoffman, G.J., Alves, W.J., Swain, R.V., Pacheco, P.G. and R.D. Lemert. 1988. Reuse of driang water for irrigation: Results of Imperial Valley Study. I. Hopothesis, experimental lprocedures and cropping results. Hilgardia. Vol. 56. No. 5.
- 22. Rubatzky, V.E. 1985. California: A Horticultural Cornucopia. Hortscience. 20(6):i-ii.
- Shennan, C., Griffin, C. and L.J. Stivers. 1989. The effect of winter covercropping on nitrogen availability in processing tomato production. U.C. Sustainable Agriculture Research and Education Program Annual Report.
- Shennan, C., Grattan, S.R., May, D., and B. Hanson. 1988. Potential for the long-term cyclic use of saline drainage water for irrigation of vegetable crops. 1988-89 Technical Progress Report. UC Salinity/Drainage Task Force pp. 142-150.
- 25. Shennan, C. Stivers, L.J., Jackson, L.E., Van Bruggen, A.H.C., Miller, P.R., and C.J. Griffin. 1990. Winter cover cropping in vegetable production systems. In. Abstracts of

the International Symposium on Agroecology and Conservation Issues in Temperate and Tropical Regions, 9/26-29/90. University of Padova, Italy.

- 26. Stolzy, L.H., T.E. Szuszkiewicz, M.J. Garger, and R.B. Harding. 1960. Effects of soil management practices on infiltration rates. Soil Sci. 89:338-341.
- 27. Tisdale, J.M., and J.M. Oades. 1982. Organic matter and waer-stable aggregates in soils.Journal of Soil Science. 33:141-163.
- van Schilfgaarde, J. and G.J. Hoffman. 1977. Managing salt by drainage in irrigated agriculture. Proc. 3rd National Drainage Symposium. ASES Publication 1-77:84-86.

TRAINING ACCOMPLISHMENTS:

	Trai				
	<u>Undergraduate</u>	<u>MS</u>	<u>PhD</u>	Post-PhD	
Plant Biology			1		
Soil/Water	3*				

* Two undergraduate student assistants were hired during the course of this project to process samples, compile computer data and perform a variety of lab tasks on project samples. In addition, one high school Westinghouse Young Scholars Program student held an internship with Jeff Mitchell and worked on this project.

GRADUATE INFORMATION:

Mitchell, J.P.	Ph.D. F1994	Plant Biology	UC Cooperative Extension Specialist		
			Dep't. of Vegetable Crops		
			UC Davis/Kearney Ag Center		

PUBLICATIONS AND PROFESSIONAL PRESENTATIONS:

- Mitchell, J.P. M.J. Singer, T. Prichard, D. Peters, D. May, R.O. Miller, C. Shennan, J.D. Rhoades C.J. Phene. 1995. Effects of organic and inorganic amendments on soil physical properties and stand establishment in cyclically salinized soils. Fourth National Symposium on Stand Establishment of Horticultural Crops. April 23-26, 1995. Monterey, CA. Accepted.
- Mitchell, J.P., Singer, M.J., T. Prichard, D. Peters, D. May, R.O. Miller, C. Shennan, J.D. Rhoades, and C.J. Phene. 1995. Cover crop incorporation and gypsum applications to improve soil physical properties in salinized soils. California Plant and Soil Conference. January 1995. Radisson Hotel, Visalia, CA. Accepted.
- Mitchell, J.P. 1994. Evaluation of row cropping systems options in the Central Valley.
 1994. Vegetable Crops Workshop and Training Conference. UC Davis. Dec. 13, 1994.
- Mitchell, J.P. M.J. Singer, T. Prichard, D. Peters, D. May, R. Miller, C. Shennan, J.D. Rhoades and C.J. Phene. 1994. Effects of organic and inorganic amendments on soil physical properties and stand establishment in saline soils. Agronomy Abstracts. p. 84. 1994 Annual Meeting ASA/CSSA/SSSA. Seattle, WA. November 13-19, 1994.
- Mitchell, J.P. 1994. Cotton stand establishment in saline soils. 1994. Cotton Field Day.
 September 30, 1994. UC West Side Research and Extension Center, Five Points, CA
- Mitchell, J.P., M.J. Singer, D. Peters, D.M. May, T. Prichard, R.O. Miller, D. Munk, C. Shennan, C.J. Phene and J.D. Rhoades. 1994. A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas. UC Salinity/Drainage Task Force Annual Meeting. Sacramento, CA June 1994.
- Mitchell, J. P. Using cover crops to improve soil quality. 1994. In. Proceedings Innovative cropping systems options for West Side growers: Potential roles for cover crops. A workshop and farmer/scientist focus session. University of California West Side Research and Extension Center, Five Points, CA. March 11, 1994.

- Mitchell, J.P. Improving water use efficiency in tomato. 38th Annual Tomato Day. UC Davis Department of Vegetable Crops. Veterans' Memorial Center, Davis, CA. January 12, 1994.
- Mitchell, J.P., M.J. Singer, D. Peters, D.M. May, T. Prichard, R.O. Miller, C. Shennan, C.J. Phene and J.D. Rhoades. Using cover crops to improve soil physical properties and stand establishment in cyclically salinized soils. 1993 Annual ASA/CSSA/SSSA Meeting. Cincinnati, OH. November 7-12, 1993.
- Mitchell, J.P. Use of cover crops and soil amendments when using saline water. Processing Tomato Field Day. UC West Side Research and Extension Center, Five Points, CA July 21, 1993.
- Mitchell, J.P. A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas. Annual Plant Biology Graduate STudent Colloquium. Mee Room, Memorial Unior, UC Davis, April 30, 1993.
- Mitchell, J.P., D. Peters, D.M. May, M.J. Singer, R.O. Miller, T. Prichard, C. Shennan, C.J. Phene and J.D. Rhoades. Cover crops for saline soils. In Proceedings 1993 California Plant and Soil Conference: Agriculture's Changing Role in Resource Management. Radisson Hotel, 500 Leisure Lane, Sacramento, CA. January 25-26, 1993.
- Mitchell, J.P., C. Shennan, D.Peters and R.O. Miller. A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas. In Proceedings of the 89th Annual Meeting of the American Society for Horticultural Science. Honolulu, Hawaii. July 31-August 6, 1992.
- 14. Mitchell, J.P., C. Shennan, D.M. May, T. Prichard and D. Peters. 1992. Using cover crops to improve soil physical properties and stand establishment in cyclically salinized soils. pp. 181-190. In Proceedings of the Third National Symposium for Stand Establishment in Horticultural Crops. Gainesville, FL. November 16-22, 1992.

- Mitchell, J.P. Salinity, cover crops and soil physical conditions: Effects on stand establishment. Quad County Tomato Day 1992. UC Cooperative Extension San Joaquin County, Stockton, CA. January 28, 1992.
- Mitchell, J.P. Salinity, cover crops and soil physical conditions: Effects on stand establishment. UC Cooperative Extension Vegetable Crops Workshop and Training Conference. UC Davis. December 11, 1991.

In addition, manuscripts are currently being prepared as part of Jeff Mitchell's dissertation for submission to the following journals:

- Mitchell, J.P., W.L. Graves, C. Thomsen and C. Shennan. 1994. Cover crops for saline soils. J. Agron. & Crop Science. In preparation.
- Mitchell, J.P., D. Peters and C. Shennan. Water use by winter cover crops. 1994. Journal of Production Agriculture/American Journal of Alternative Agriculture/California Agriculture. In preparation.
- Mitchell, J., M. Singer, D. Peters, T. Prichard, D. May, R. Miller, C. Phene, J. Rhoades and C. Shennan. 1994. A cropping systems approach to improving water use efficiency in semi-arid irrigated production areas. Agricultural Water Management. In preparation.
- 4. Mitchell, J., M. Singer, D. Peters, T. Prichard, D. May, R. Miller, C. Phene, J. Rhoades and C. Shennan. 1994. Effects of organic and inorganic amendments on soil physical properties and stand establishment in cyclically salinized soils. Water Resources Center Contribution. In preparation.

LIST OF TABLES AND FIGURES

1.	Table 1.	Irrigation water quality
2.	Table 2.	Quantities of irrigaiton water applied in 1992 and 1993
3.	Table 3.	Tomato fruit quality
4.	Table 4.	Water stable aggregates (%) 1992 and 1994
5.	Table 5.	Saline Nursery Screening Trial Results
6.	Figure 1.	Winter cover crop growth
7.	Figure 2.	Change in soil water storage during winter cover crop growth period
8.	Figure 3.	Tomato yields (tons/acre) 1992 and 1993
9.	Figure 4.	Boron accumulation in tomato leaf blades 1993
10.	Figure 5.	Soil ECe (0 - 15 cm) Fall 1991 through Fall 1993
11.	Figure 6.	Cotton seedling emergence 1994

Table 1.Irrigation water quality

IRRIGATION WATER QUALITY

	EC (dS/m)	SAR	B (ppm)	NO ₃ N (ppm)
Non-saline	0.5	2	0.2	0. 8
Saline	6. 8	9	6	33

Table 2.Quantities of irrigation water applied in 1992 and 1993

QUANTITY OF IRRIGATION WATER APPLIED

	<u>Non-saline</u>	<u>Saline</u>	Total	Saline as % of Total
19 92	8.6 inches	16.5 inches	25.1 inches	66
19 93	4.6 inches	20.6 inches	25.2 inches	81

Table 3.Tomato fruit quality. Means of four replicates \pm standard errors.

TOMATO FRUIT QUALITY

19 92	BRIX	pН	BOSTWICK	
freshwater following fallow saline water following gypsum saline water following fallow saline water following barley saline water following barley+vetch saline water following vetch	5.0 ± 0.1 5.1 ± 0.1 5.4 ± 0.1 5.4 ± 0.0 5.4 ± 0.1 5.4 ± 0.1 5.2 ± 0.3	4.37 ± 0.03 4.38 ± 0.01 4.39 ± 0.04 4.41 ± 0.03 4.38 ± 0.03 4.39 ± 0.02	17.7 ± 0.32 17.4 ± 0.12 16.5 ± 0.35 15.5 ± 0.28 16.8 ± 0.31 16.6 ± 0.16	
19 93	BRIX	рH	BOSTWICK	

Table 4.Water stable aggregates (%) 1992 and 1994

Treatment	1992	1994
Fresh fallow	35.5	33.5
Saline/gypsum fallow	35.9	18.7
Saline fallow	34.0	17.5
Saline/barley	39.4	28.8
Saline/barley-vetch	38.9	22.9
Saline/vetch	36.5	25.0

Contrasts		p-values
cover crop vs saline	0.0195	0.0001
fresh vs saline	ns	0.0001

Table 5.Plant height, plant weight and % cover for selected legume and non-legume
species grown under saline soil conditions (about 8 dS m⁻¹ in surface 15 cm) in
1991 - 92, 1992 - 93 and 1993 - 94, and under non-saline conditions in 1993 -
94. Data for saline trials are means of either one, two or three years of data that
are based on three replicates per each year.

					SALINE	SALINE	FRESH	SALINE	FRESH	SALINE	FRE8H
	SCIENTIFIC NAME	ACCESSION	GRAVES COLLECTION NUMBER	LIFE CYCLE DURATION	NUMBER OF YEARS	PLANT HEIGHT CM	PLANT HEIGHT CM	PLANT WEIGHT KG/HA	PLANT WEIGHT KG/HA	X COVER	% Cover
	Atripiex canescens	Marana 476816		perennial	1	30	15	727		43	51
2	Agropyron elongatum			perennial	2	49		5551		69	01
3	Atriplix nummulana	Oldman Sait Bush		perennial	1	13	14			5	50
	Brassica cannata	Ethiopian mustard		annuai	3	166	192	16975	153 53	100	100
	Brassica juncea	Indian mustard 77-1352		annuai	3	147	170	21440	21464	100	100
	Brassica juncea	Indian mustard 77-12854		annuai	3	132	170	22180		100	100
	Bressica nigra	Black mustard		annuai	1	142		7813		100	
	Festuca arundinacea	Sierra		perennial	2	49		3886		97	
	Hordeum brachyantherum	Meadow barley		nommai	1	13 46	5			35	15
	Hedysarum carnosum	T-465		perenniai perenniai	1	40 61		3859		100 42	
	Hedysarum coronanum	T-115		perenniai	3	48	59	2942	3469	42 87	100
	Hedysarum coronanum	Sulla	НС-6	perennial	2	50	00	3124	5405	97	
14	Hedysarum coronanum		HC-249	perennial	-	•••	78		7814		100
15	Hedysarum coronanum		HC-252	perenniai			73		10116		100
16	Hedysarum coronarium		T-456	perenniai			73		9312		100
	Hedysarum coronanum		T-8113	perennial			64		7433		100
	Hedysarum coronanum		HC-862	perennial			64		6293		100
	Hedysarum carnousm		HC-857	perennial			59		4371		85
	Hedysarum coronanum		T-115	perenniai			59		3469		100
	Hedysarum coronanum Hordeum vulgare	Rodau	T-8114	perenniai	2	00	54		5138		98
	Lupinus nanus	Banley Gilpin	LUNA	annuai	3	98 13	78	10241	6280	98	100
	Medicago arborea	MR504540	MRU-3		1	13		1489		33 52	
	Medicago citans	MC4989736	MECI-2		2	37		2768		97	
	Mediciago cilians	MC498753	MECI-3		3	31	41	2003	4588	96	100
	Medicago cilians	MC368928	MECI-1		3	24	40	2126	4036	89	100
28	Medicago cilians		MECI-852		í	36		1178		100	
29	Medicago citaris		MECI-841		1	23				67	
	Medicago calans		MECI-372		1	23				92	
	Medicago citaris	N #2 407020	MECI-825		1	18				67	
	Mediciago discoformis	MD487333	MEDI-1		2	19				76	
	Medicego dolata Medicego dolata	MD495293 MD5704	MEDO-1 MEDO-2		1 1	15 13		2554		73 65	
	Medicago doltata	495293	MEDO-49		1	48		3629		100	
	Medicago discoformis	487333	MEDI		1	23		3023		83	
	Medicago dolata	5704	MEDO-5		1	23		1298		100	
	Melilotus indica	MI9059045		bienmai	1	8		,200		30	
40	Medicago attorais	cv Harbinger	MML-1		3	36	48	4390	6650	90	100
	Medicago laciniata	ML498888	MLA-17		2	28				89	
	Medicago laciniata	ML498874	MLA-16		2	22				78	
	Medicago laciniata	ML495293	MLA-14		2	22				77	
	Medicago laciniata	ML498871	MLA-15		1	15		1432		68	
	Medicago laciniata	ML498851 ML5668	MLA-13		2	18		2641		90	
-	Medicago lacinista Medicago lacinista	498889	MLA-19 ML-18		2	21 28				82 100	
	Medicago tacinista	498852	ML-14		1	20 28				100	
	Medicago minima	MM498986	MM-14		2	18				84	
	Medicago minima	GR-548	MMI-4		1	13		1462		57	
53	Medicago minima	MM499005	MM-15		2	18	29	2137	3646	85	98
54	Medicago minima	GR-129	MMI-6		1	13		1219		40	
56	Medicago minima	GR-585	MMI-9		1	13		1438		70	
	Medicago minima	MM499020	MMR-16		2	14				67	
	Medicago minima	GR-451R	MMI-2		2	21		2450		68 65	
	Medicago minima	CD 126	MMI-1		1	8				55	
	Medicago minima Medicago mumx	GR-126 cv Zodiac	MMI-8 MMU-1		1	5	10	3474	1513	32 71	100
	Medicago murex Medicago murex	sepo	MRU-2		3	21 13	43	3174	4543	33	i W
	Medicago murex	Papaponto	MRU-3		1	13	30		3379		58
	Medicado polymorpha	SCO 9001	MP-5	annual	3	42	59	5684	4929	98	100
	Vedicago polymorpha	MP4932931378530	MP-12	annual	2	29	46	3240	8300	93	100

64	Medicago polymorpha	MP292428	MP-11	annual	3	38	50	3074	8283	100	100
	Medicago polymorpha	MP292418	MP-10	annual	2	22	59	1817	4929	97	100
	Medicago polymorpha	MP197539	MP-8	annual	3	33	48	4017	7193	82	100
	Medicago polymorpha	MP9041018	MP-3	annuai	2	22	53	2804	7400	63	100
68	Medicago polymorpha	Santiago	MP-2	annuai	2	33	50	2714	4604	99	100
69	Medicago polymorpha	cv Serena	MP-1	annuai	2	32	45	3926	5507	100	100
70	Medicago polymorpha	MP283656	MP-9	annuai	3	31	45	2871	7331	96	100
71	Medicago polymorpha	MP493293	MP-13	annual	3	30	48		8300	92	100
72	Medicago polymorpha	Circle Valley	MP-14	annual	3	30	50	2048	8283	83	99
73	Medicago polymorpha	TAH		annual	1	46	44	4695		100	100
74	Medicago polymorpha	cv Serena	MP-1	annual	1	41				100	
78	Medicago ngidula	MR441949			1	10		1489		52	
79	Medicago rigidula	MR441996	MERI-6		1	8				7	
94	Medicago rigidula	MR441950			1	10				42	
76	Medicago rugosa	Paragosa	MERU-11		1	23				52	
77	Medicago rugosa	GR-67	MRU-5		1	18				55	
81	Medicago scutellata	Sava	MS-3		2	36		2377		100	
82	Medicago scutellata	Snail 9041678	MS-2		2	44				100	
83	Medicago scutellata	cv Kelson	MS-1		2	44	55	4099	7008	91	100
86	Medicago tomata	cv Rivoli	MTO-1		3	38	44	4219	7172	99	99
84	Medicago truncatula	Parabinger	MTR-1	annual	2	38		2662		100	
87	Medicago truncatula	Jemalong	MTR-4	annuai	3	32	44	6318	7198	85	100
88	Medicago truncatula	Paraggio	MTR-2	annuai	3	30	44	2391	5775	82	100
89	Medicago truncatula	Sephi	MTR-3	annuai	3	28	46	2975	6240	85	100
90	Medicago truncatula	cv Borong	MTR-8	annua	1	43		4588		100	100
95	Pisum sativum	Field pea		annual	1	28				17	
96	Secale cereaie	Merced rye		annual	3	135	170	10505	12063	99	100
97	Triticum æstivum	Wheat		annuai	3	85	102	8308	10756	96	100
98	Trifolium alexandrium	Berseem clover		annual	3	45	52	3794	3369	96	100
99	Tnfolium balansae	ov Paradana	TB-1		2	33	48	1333	9378	91	100
38	Tnfolium hirtum	No Ca Rose	TH-4	annual	1	23				67	
100	Trifolium hirtum	Hykon	TH-1	annual	3	27	35	2102	3984	89	90
101	Trifolium hirtum	Kondinin	TH-2	annuai	1	23		2386		58	
102	Tnfolium hirtum	TX RH-18	TH-6	annuai	2	27	30		3613	69	95
103	Tnfolum hirtum	Wilton	TH-5	annuai	2	26	28	3885	2829	69	98
104	Trifolium incamata	Flame	TI	annua	2	29				74	
105	Tofolium resupinatum	cv Maran			1	43				83	
106	Trifotium resupinatum	Kyambro			1	33				100	
108	Trifolum subterranean	Koala	TSB-3	annual	2	26		842		77	100
109	Trifolum subterranean	T-43F	TSB-11	annual	2	21				78	100
110	Trifokum subterranean	Rosedale	TSB-2	annua	2	19				61	
111	Tnfokum subterranean	Trikkala	TSY-2	annual	2	18				75	
112	Trifolium subterranean	T-400	TSB-10	annua	2	18				58	
113	Trifolium subterranean	T-41060	TSB-13	annual	2	15				52	
114	Trifolium subterranean	Lansa	TSY-2	annual	1	8				43	
116	Trifolium subtermaean	cv Nuba		annual	1	36				100	
117	Tnfolium subterranean	cv Koala	TSB-3	annual	1	33		842		91	
-	Tnfolium subterranean	cv Clare	TS-1	annuai	1	28				92	
	Tnfolum subterranean	T-45A	TSB-12	annuai	2	18				69 67	
120	Trifolium vesiculosa	Arrowleaf	TV-1		2	49		2269		92	
	Triticosecale	Triticale		annuai	3	117	142	10233	12228	97	100
	Vicia benghalensis	Purple vetch	V-3	annuai	3	50	62	3131	8495	79	98
	Vicia blanchfleur		V-1	annual	1	23	61	532	3669	27	94
	Vicia dasycarpa	Lana vetch	V-4	annual	3	59	60	5734	6629	98	100
	Vicia faba	Horsebean		annuai	1	46		1057	3465	40	100
	Vicia namoi	Namoi vetch	V-2	annual	3	61	58	4284	7652	98	100
128	Vicia sativa	2541			1	41	50		4604	100	100
								2000	A / 70		

SALNURTB XLS

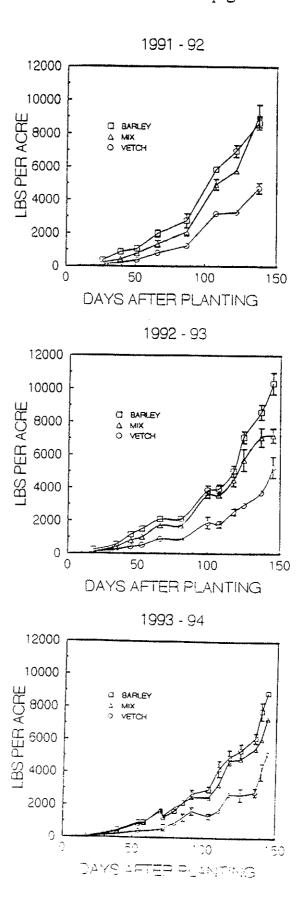
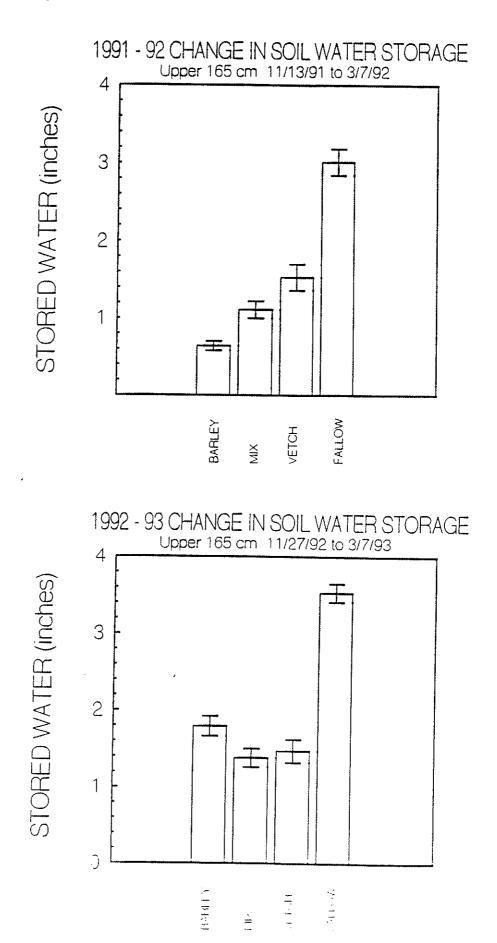
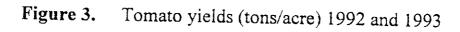
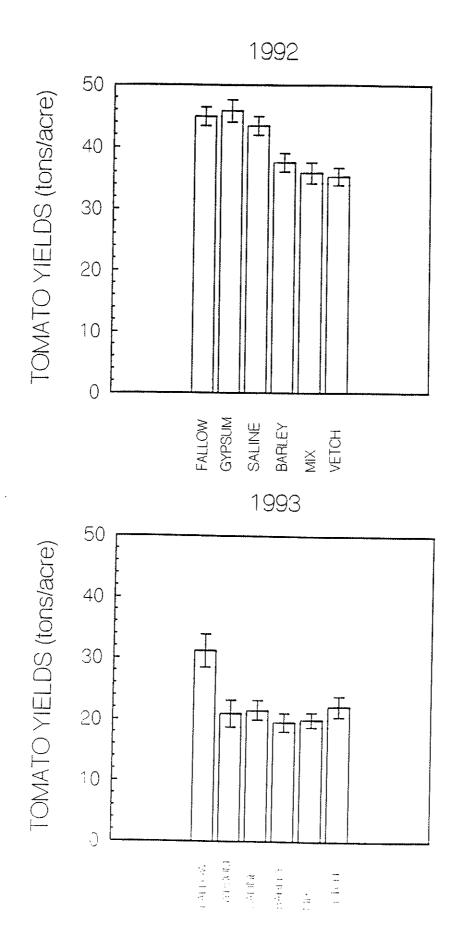
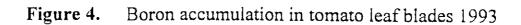
LSD

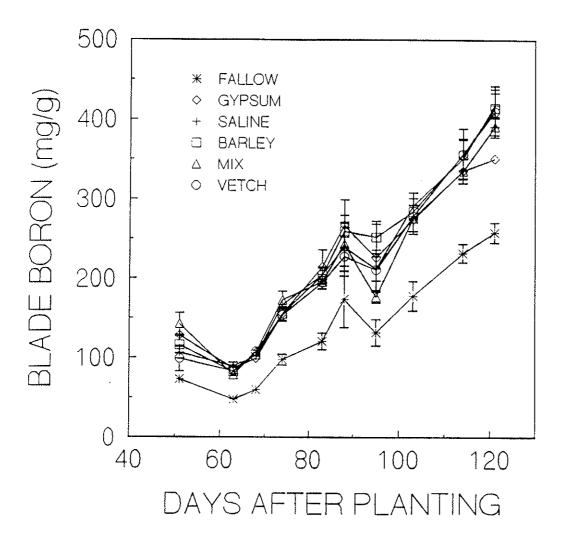
15

15

3632

Figure 1. Winter cover crop growth


Figure 2. Change in soil water storage during winter cover crop growth period

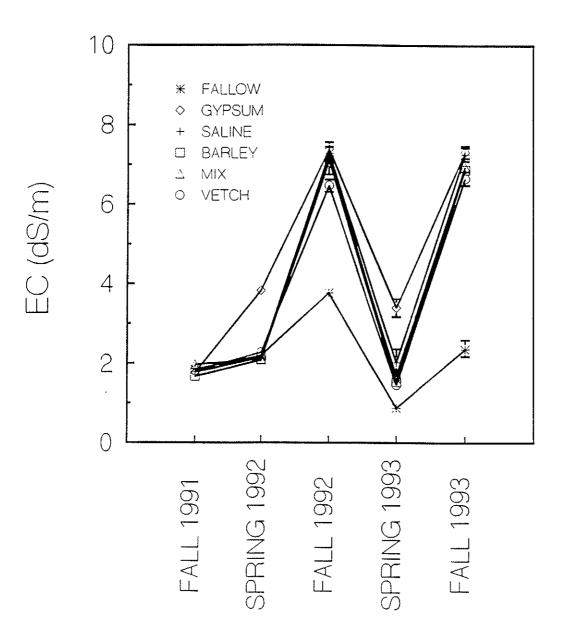
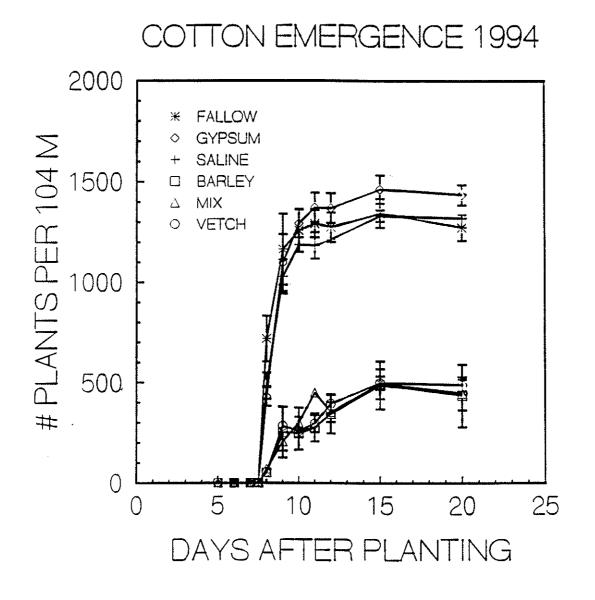



Figure 6. Cotton seedling emergence 1994. Each value if a mean of 4 replicates for the total number of seedlings emerged along 104 meters of bed. Standard errors of the means are shown when they exceed the height of the symbol.

