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Abstract

In the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth.
Over time, the primary tumour may undergo additional mutations that allow for the cancerous
cells to spread throughout the body as metastases. Since metastatic development typically re-
sults in markedly worse patient outcomes, research into the identity and function of metastasis-
associated biomarkers could eventually translate into clinical diagnostics or novel therapeutics.
Although the general processes underpinning metastatic progression are understood, no consis-
tent nor clear cross-cancer biomarker profile has yet emerged. However, the literature suggests
that some microRNAs (miRNAs) may play an important role in the metastatic progression of
several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed
an integrated analysis of mRNA and miRNA expression with paired metastatic and primary
tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic
progression. From this, we successfully built mRNA- and miRNA-specific classifiers that can
discriminate pairs of metastatic and primary samples across 11 cancer types. In addition,
we identified a number of miRNAs whose metastasis-associated dysregulation could predict
mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found
several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-
423. Taken together, our results suggest that cross-cancer metastatic samples have unique
biomarker signatures when compared with paired primary tumours, and that these miRNA
biomarkers can be used to predict both metastatic status and mRNA expression.

1 Introduction

Cancer is a heterogeneous group of disorders marked by uncontrolled cell growth. It is responsible
for a major financial and health burden worldwide. In the evolution of solid tissue cancers, an
individual cell acquires genetic mutations that cause uncontrolled growth and division, forming a
large mass, called a primary tumour. Some primary tumours acquire additional mutations that
allow them to spread throughout the body as metastases. Deleterious genetic mutations disrupt
normal cellular physiology by changing the structure or amount of functional molecules found
within a cell. Of these molecules, RNA can be easily measured through high-throughput assays
such as next generation sequencing (NGS). Since RNA is dynamically expressed within cells as they
undergo the changes that lead to cancer, RNA can be used as a biomarker to potentially inform
cancer diagnosis, prognosis, and treatment. RNA, especially messenger RNA (mRNA), has been
used for disease prediction [14, 1, 37] and surveillance [27, 30], with promising results. MicroRNAs
(miRNA), a class of small non-coding RNAs, have also been used for disease prediction [18], both
individually, and in combination with mRNA [41].

MicroRNAs are often described as “master regulators” because they play an important role in
maintaining gene expression [13]. As such, miRNA dysregulation may cause uncontrolled cellular
proliferation through the silencing of tumour suppressors or the induction of oncogenes [13]. For
example, miR-21, a so-called “oncomiR”, drives a range of cancers by inhibiting the tumour sup-
pressor PTEN [19]. Meanwhile, some miRNAs, including members of the let-7 miRNA family, act
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as tumour suppressors themselves, such that their down-regulation promotes cancer [3]. In addi-
tion to their role in primary tumour development, miRNAs have been found to be associated with
metastasis [20, 6]. With several miRNAs involved in vascular endothelial growth factor signalling
and other key microenvironment pathways, miRNA dysregulation may induce metastases in part
through promoting angiogenesis [24]. Whatever the cause, the identification of miRNA biomarkers
could lead not only to the development of clinical diagnostics, but also novel therapeutics: it may
be possible to develop miRNA-based chemotherapeutics by antagonizing over-expressed oncomiRs,
or by replacing under-expressed microRNA tumour suppressors [8, 40, 33]. Indeed, hundreds of
miRNA-based therapeutics have already been patented [8] (with Miraverson currently in Phase 2
clinical trials for the treatment of Hepatitis C [35]).

The potential diagnostic and therapeutic utility of miRNA biomarkers makes the miRNA-
mRNA regulatory axis an important facet of cancer research. Yet, measuring how miRNA affects
mRNA expression can be difficult because these data are collected by two different applications
of NGS [17]. This results in two data sets that are often analysed independently of one another.
However, when mRNA and miRNA data are collected from the same patient, and normalised
appropriately, it becomes possible to integrate these data into a single analysis. Over the last
decade, The Cancer Genome Atlas (TCGA) has sequenced cancerous and healthy tissue samples,
from over 10,000 unique patients, representing 33 cancer types, making it the largest publicly
available database of cancer transcriptomes [38]. Included in these data are 27 patients for which
they performed mRNA and miRNA sequencing of a primary and a metastatic tumour sample
[9]. This data set, although small, contains four expression assays per patient, providing a unique
opportunity to use a paired study design to understand the role of miRNA-mRNA regulatory axis
in tumour progression.

By integrating the mRNA and miRNA expression of tumour pairs, we identify a set of metastasis-
associated biomarkers, enriched for canonical cancer pathways, that are capable of accurately
classifying cross-cancer tissue samples as primary or metastatic. Moreover, we identify miRNAs
whose metastatic biomarker profile alone can predict part of the mRNA profile too. Among the
miRNAs capable of predicting cross-cancer metastatic dysregulation, we find several miRNAs pre-
viously implicated in malignancy and metastasis, including miR-301b, miR-1296, and miR-423,
all of which we find correlated with several metastasis-associated genes. As targetable drivers of
mRNA expression, these miRNAs could serve as good candidates for future cancer research.

2 Methods

2.1 Data acquisition

Using the R package TCGAbiolinks [10], we accessed the clinical information for all TCGA pa-
tients to look for individuals who had mRNA and miRNA count data collected for both primary
and metastatic tumour samples. This query identified 27 patients across 11 unique cancers (see
the Supplementary Information for patient characteristics). We then used TCGAbiolinks again to
download the raw count tables for the primary and metastatic mRNA and microRNA samples for
the 27 patients, yielding a total of 108 unique data sets.

2.2 Data normalisation and differential expression analysis

Using the 27 tissue pairs, we processed the mRNA and miRNA data in separate batches. Prior
to normalisation, we removed genes with zero counts in more than half of all samples. Next,
we performed effective library size normalisation of the counts with the DESeq2 package for the
R programming language [2]. Using the DESeq function, we ran a differential expression (DE)
analysis of the mRNA data and the miRNA data separately, comparing primary tumours with
metastases via a paired sample design (by including the unique patient ID as a covariate). The
normalised counts were saved for subsequent classification and regression tasks.

2.3 Classification of tumour metastasis

To test whether mRNA and miRNA expression could serve as biomarkers to classify tumours as
primary or metastatic, we designed a machine learning pipeline with the exprso package for the
R programming language [29]. At each step in the cross-validation procedure, we selected the
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top N = {64, 128, 256} features according to the Student’s t-test, then used these top features to
train a LASSO [12], random forest (RF) [21], or support vector machine (SVM) [26] model on
the training set. For LASSO, each training set underwent an additional 5-fold cross-validation
procedure to tune the hyper-parameter λ, which determines the sparsity of the LASSO model (the
final λ was chosen to minimize the expected error across the 5-folds). Otherwise, we did not tune
any hyper-parameters. We selected all features from the training sets only, making the test sets
truly statistically independent.

For cross-validation, we used a modified Monte Carlo cross-validation (MCCV) procedure,
whereby we randomly sub-sampled the 27 data pairs so that each training set contained 18 pairs.
This design balanced the training set with regard to the tissue of origin so that this covariate
would not bias the discovery of metastasis-specific diagnostic signatures. We repeated the MCCV
procedure for 100 sub-samplings of the data.

2.4 Prediction of mRNA expression

To test whether miRNA expression alone can predict mRNA expression, we designed a regression
pipeline with exprso [29]. This pipeline considered each one of the g = 1...267 differentially ex-
pressed mRNA genes as a unique outcome, treating the m = 1...569 miRNAs as predictors. To
take advantage of the paired sample design, we converted the mRNA outcomes yg and miRNA
predictors xm into new variables:

y∗
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j=1,g, ..., y∗

j=27,g] = [log
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primary
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ymet
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)
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] (1)
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for patients j = 1...27. Thus, we fit 267 models of the form y∗

g ∼ x∗

m=1
+ ... + x∗

m=569
. One could

interpret this model as regressing the log-fold changes (LFC) of all miRNA transcripts against the
LFC of one mRNA gene, allowing us to measure how well miRNA LFCs can predict mRNA LFCs.

At each step in the MCCV procedure, we randomly sub-sampled the data so that each training
set contained 18 observations. Then, we selected the top N = 128 features according to the
univariate correlation coefficient between a single miRNA and the mRNA outcome, using these
top features to train an RF model as above (i.e., without hyper-parameter tuning and with all
features selected from the training set).

2.5 Significance of regression

It can be difficult to assess the regression error of an RF model in absolute terms because the
regression error depends partly on the distribution of the outcome. Even in log space, genes with
higher counts can have more variance (called over-dispersion [5, 32]). For this reason, the LFCs
could have higher variance too. As such, good fits of highly variable genes may have more error
than bad fits of lowly variable genes, owing only to random effects.

Our objective here is to determine whether the observed root mean squared errors (RMSEs)
from “Prediction of mRNA expression” are significantly better than chance. To assess this, we
repeated the MCCV pipeline another 250 times, using permuted instances of the predictors instead.
In other words, we randomly sampled each predictor column-wise at the start of every MCCV step.
This preserves the univariate distribution of a given x∗

m=k, but changes the multivariate distribution
for any combination of x∗

m=k and x∗

m=l. This permutation procedure gives us a null distribution
of RMSEs for each y∗

g. Next, we performed a one-tailed Wilcoxon Rank-Sum test to compare the
distribution of observed RMSEs with the distribution of permuted RMSEs [39]. To control the
false discovery rate, we adjusted the p-values using the Benjamini-Hochberg procedure [4].

2.6 Bipartite graph analysis

We trained an RF model to predict mRNA LFC based on miRNA LFC because RF tends to perform
well for high-dimensional regression tasks while also allowing the analyst to interpret relative
feature importance through “node purity” (see documentation for [21]). Having fit g = 1...267
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models across b = 1...50 MCCV instances, we have a node purity vector which describes the
importance of each miRNA m = 1...569 in fitting mRNA g during MCCV instance b:

nb
g = [nb

g,m=1
, ..., nb

g,m=569
] (3)

Since node purity only describes the relative importance of a feature, we convert the absolute
values of nb

g into a non-parametric rank vector, rb
g, such that the smallest number receives the

lowest rank:

rb
g = rank

(

nb
g

)

(4)

From this, we can calculate the importance of miRNA m for the prediction of gene g by

ig,m =
1

569(50)

50
∑

b=1

rb
g,m (5)

where the importance scores, ig,m, range from (0, 1], with 1 meaning that miRNA m is always the
most important transcript for predicting mRNA g, and 0 meaning it is always the least important.
Using this, we built a bipartite graph of importance where an edge between mRNA g and miRNA
m indicates that its importance score ig,m is among the top 2.5% of all importance scores. We
repeated this for the top 5% and top 10% of importance scores too.

2.7 Gene set enrichment

Using the DE results which compared the paired primary and metastatic tumour samples, we
ranked each mRNA gene based on the following formula:

Rankg = − log
10

(qg) × sign(log
2
(fcg)) (6)

where fc is the fold-change and q the FDR-adjusted p-value as given by DESeq2. We then performed
gene set enrichment analysis on this ranked gene list using GSEA (Version 3.0) [36] in PreRanked

mode with classic enrichment and 1,000 permutations. We calculated enrichment scores for the
MSigDB Hallmarks gene sets (Version 6.1) [36, 22, 23]. Note that the ranks used here differ
from the non-parametric ranks used in “Bipartite graph analysis”.

3 Results and Discussion

3.1 mRNA as a cross-cancer metastasis biomarker

Differential expression (DE) analysis reveals 267 mRNA genes with a significant difference in
abundance between the primary and metastatic pairs. Although these samples derive from several
cancers, the significantly DE genes have a consistent direction of change across all of the involved
cancers. Figure 1 shows the distribution of the relative log-fold change (LFC) of the metastatic
tumour expression over its paired primary tumour expression. Owing to the paired design, we can
infer that these differences likely arise from the evolution of cancer metastasis.
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Figure 1: This figure shows the per-patient log-fold change (LFC) of metastatic expression over
primary tumour expression (y-axis) for the significant differentially expressed (DE) gene (x-axis),
coloured by cancer type. Here, we see that significant DE genes show a consistent expression
signature across the 11 cancer types. Although some cancer types tend to have higher LFCs
than others (e.g., Skin Cutaneous Melanoma), no cancer type deviates extremely from the general
pattern, though individual outliers exist. Indeed, even for the cancer types with the lowest LFCs,
the average LFC direction follows the same average trend as the cancer types with the highest
LFCs. As such, these genes comprise a cross-cancer metastasis signature.

DE analysis identifies genes that associate with the outcome beyond chance. However, it does
not tell us whether the genes would serve as useful biomarkers to differentiate metastatic and pri-
mary samples diagnostically. For this, we tested three classification algorithms with bootstrapped
cross-validation to measure how accurately mRNA biomarkers can classify metastasis. Figure 2
shows the performance of the LASSO, random forest (RF), and support vector machine (SVM)
classifiers. With an average 64.1%, 71.3%, and 70.1% accuracy for the top 64 genes, we can
conclude that it is possible to accurately classify whether a cross-cancer sample is metastatic or
primary based only on its gene expression signature.
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Figure 2: This figure shows the classification accuracy of metastatic status for paired tumour
samples across 100 Monte-Carlo re-samplings (y-axis) for each classification model (x-axis) using
only the mRNA expression. Boxplot colour refers to the top N = {64, 128, 256} features as selected
by Student’s t-test. Although the classifier size somewhat impacts performance, LASSO is always
outperformed by random forest (RF) and support vector machine (SVM) regardless of classifier
size. Empirically, RF appears to perform the best.

Using the DE results, we can also test whether higher-level pathway enrichments distinguish
metastatic from primary tumours. From a gene set enrichment analysis (GSEA) of the MSigDB

Hallmarks gene sets, we found 33 pathways that were significantly enriched or depleted (FDR-
adjusted p-value < 0.05). Figure 3 shows the enrichment scores for these pathways, a number of
which have a well-known involvement in metastatic processes, including epithelial mesenchymal
transition, G2M checkpoint, angiogenesis, and several proliferative signalling pathways. Taken
together, our results show that significant differences exist between the mRNA expression profile
of primary and metastatic tumours, and that these differences are conserved across multiple cancer
types. These differences not only have predictive value, but also reflect cellular processes that are
known to drive metastatic progression.
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Figure 3: This figure shows the normalised enrichment scores from a gene set enrichment analysis
(GSEA) of the mRNA differential expression (DE) results which compare metastatic samples with
paired primary tumours. Using the MSigDB Hallmarks gene set, we find 29 enriched and 4
depleted pathway (FDR-adjusted p-value < 0.05). Each bar represents a pathway that is coloured
by statistical significance, with a darker shade of red corresponding to a smaller p-value. Many of
the pathways enriched here are involved in canonical cancer pathways.

3.2 microRNA as a cross-cancer metastasis biomarker

DE analysis uncovered no miRNA transcripts with a significant difference in abundance between
the primary and metastatic pairs. We found this surprising considering the literature strongly
suggests that miRNAs have an important role in cancer metastasis. Given our small sample size
of 27 pairs, it is possible that this analysis was under-powered to detect DE miRNA transcripts.
However, we did find several hundred significantly DE mRNA genes despite the larger FDR penalty
applied to those results. One explanation for this finding is that miRNAs could have roles specific to
the type of cancer undergoing metastasis, thus precluding the discovery of a cross-cancer signature.
Alternatively, miRNAs may have more variance in general, necessitating larger sample sizes.

Although we found no significantly DE miRNA transcripts, it is still possible that a multivari-
ate contribution of miRNA signatures could meaningfully differentiate metastatic from primary
tumours. If so, we could interpret the predictive contribution made by the modelled miRNA
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transcripts directly. As above, we tested three classification algorithms with bootstrapped cross-
validation to measure how accurately miRNA biomarkers can classify metastasis. Figure 4 shows
the performance of the LASSO, RF, and SVM classifiers. Despite the absence of significantly
DE miRNA transcripts, we observed appreciable accuracy with the RF and SVM models. With
an average 64.9% and 64.1% accuracy for the top 64 genes, we can conclude that it is possible
to classify with moderate accuracy whether a cross-cancer sample is metastatic or primary based
only on its miRNA expression signature. However, the miRNA signature does not discriminate
the groups as well as the mRNA gene expression signature. These results agree with the existing
literature which suggests miRNA signatures can be used to classify cancer, including malignancy
[18].

Figure 4: This figure shows the classification accuracy of metastatic status for paired tumour
samples across 100 Monte-Carlo re-samplings (y-axis) for each classification model (x-axis) using
only the mRNA expression. Boxplot colour refers to the top N = {64, 128, 256} features as selected
by Student’s t-test. Similar to Figure 2, classifier size somewhat impacts performance. However,
LASSO fails to classify tumour status. Although random forest (RF) and support vector machine
(SVM) do classify metastatic status based on miRNA expression, using mRNA expression works
better.

Given that both mRNA and miRNA expression can accurately classify metastasis, we also tested
whether the combination of these two feature sets further improves performance. However, we did
not see any improvement over using mRNA expression alone (see Supplementary Information).
This finding is consistent with the existing literature [41].

3.3 microRNA as a predictor of mRNA expression

Based on our understanding of how miRNA transcripts can act directly to regulate mRNA abun-
dance, it seems plausible that we could accurately model mRNA expression in terms of miRNA
expression. As such, we designed another cross-validation scheme to measure how accurately we
can predict gene LFC based only on miRNA LFC, assessing significance through a permutation-
based procedure. For this, we use a RF model because it tends to perform well for high-dimensional
regression tasks while also allowing the analyst to interpret relative feature importance through
“node purity”.

Figure 5 shows a bipartite graph that highlights the most important connections between
miRNA and mRNA expression (with importance defined in “Bipartite graph analysis”). For this
graph, the presence of a mRNA gene node indicates that its metastatic dysregulation can be
predicted by miRNA dysregulation (FDR-adjusted p < 0.05). Twenty-eight genes satisfy this
criteria, as presented in Table 1. We interpret this to mean that the expression of these mRNA
are somehow linked to, and possibly influenced by, the expression of the associated miRNAs.
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Figure 5: This figure shows the top associations (edges), as ranked by node purity, between miRNAs
(blue nodes) and mRNAs (pink nodes). Included in this figure are 28 mRNAs whose metastatic
log-fold change (LFC) can be predicted by the metastatic LFC of miRNA (FDR-adjusted p <

0.05). The labelled miRNA transcripts are important in predicting the dysregulation of at least
3 mRNAs. Some of these labelled miRNAs have been previously implicated in cancer metastasis
or progression, including miR-301b, miR-1296, and miR-423. The complete edge list is provided
in the Supplementary Information. Note that for clarify of visualization, we removed the “miR-”
prefix from the miRNA node labels. Interestingly, most of these genes are not characterised within
the MSigDB Hallmarks or KEGG gene sets.

Edges, on the other hand, indicate that a change in the metastatic expression of that miRNA
helps predict the metastatic dysregulation of that mRNA gene. Here, we see 9 miRNAs that have
an important contribution in predicting the differential expression of at least 3 mRNAs. Of these,
miR-301b, a member of the part of the miR-130 family [11], associates with the metastatic signature
of 4 mRNAs. This miRNA has been found up-regulated in malignant prostate cancer samples [11],
and is associated with worse breast cancer outcomes [7]. Indeed, miR-301b is considered part of a
super-family of pan-cancer oncomiRs, along with the miR-17, -19, -130, -210 -18 and -455 families,
some of which also appear as lesser nodes in Figure 5 (i.e., -17, -19, -130, and -18) [16]. Meanwhile,
two miRNAs within the miR-130 family, miR-301a and miR-130a, associate with 1 and 2 genes,
respectively. Although the choice to analyse the top 2.5% of important edges was arbitrary, the
combined degree of the miR-130 family is still larger than that of any single miR when looking at
the top 5% and top 10% of edges (with 11 and 16 associations respectively). Taken together, our
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Ensembl ID Gene Symbol Permuted RMSE Observed RMSE Percent Difference p-value BH p-value
ENSG00000110427 KIAA1549L 1.6989 1.4224 19.4355 0.0000 0.0000
ENSG00000142661 MYOM3 1.4599 1.2425 17.4914 0.0000 0.0000
ENSG00000167483 FAM129C 1.9533 1.6211 20.4927 0.0000 0.0000
ENSG00000168071 CCDC88B 0.8564 0.6996 22.4078 0.0000 0.0000
ENSG00000232679 LINC01705 1.6862 1.4530 16.0480 0.0000 0.0000
ENSG00000134363 FST 1.4929 1.2823 16.4227 0.0000 0.0001
ENSG00000137809 ITGA11 1.2159 1.0114 20.2262 0.0000 0.0001
ENSG00000165617 DACT1 0.8431 0.7272 15.9438 0.0000 0.0001
ENSG00000176971 FIBIN 1.8796 1.4608 28.6640 0.0000 0.0002
ENSG00000189320 FAM180A 1.8069 1.4439 25.1400 0.0000 0.0002
ENSG00000164107 HAND2 1.9638 1.7251 13.8377 0.0000 0.0003
ENSG00000156103 MMP16 1.3396 1.1962 11.9896 0.0000 0.0006
ENSG00000122986 HVCN1 0.8464 0.7609 11.2370 0.0000 0.0009
ENSG00000145824 CXCL14 3.6598 3.1571 15.9248 0.0000 0.0009
ENSG00000157551 KCNJ15 1.1121 0.9751 14.0453 0.0000 0.0013
ENSG00000204262 COL5A2 1.2158 1.0178 19.4585 0.0000 0.0020
ENSG00000075035 WSCD2 1.6657 1.4472 15.0967 0.0000 0.0021
ENSG00000180448 ARHGAP45 0.6604 0.5820 13.4832 0.0000 0.0026
ENSG00000166923 GREM1 1.7331 1.4957 15.8748 0.0000 0.0031
ENSG00000186081 KRT5 3.6900 3.1928 15.5709 0.0000 0.0042
ENSG00000171812 COL8A2 1.1490 1.0070 14.1091 0.0000 0.0068
ENSG00000145423 SFRP2 3.2499 2.6971 20.4931 0.0000 0.0080
ENSG00000133110 POSTN 1.7425 1.5359 13.4543 0.0000 0.0105
ENSG00000174099 MSRB3 0.7309 0.6276 16.4519 0.0000 0.0111
ENSG00000227039 ITGB2-AS1 0.9453 0.8424 12.2113 0.0001 0.0162
ENSG00000105989 WNT2 2.5691 2.2515 14.1059 0.0001 0.0167
ENSG00000180044 C3orf80 1.2539 1.0542 18.9402 0.0001 0.0224
ENSG00000145244 CORIN 1.1041 0.9839 12.2145 0.0002 0.0470

Table 1: This table shows the 28 mRNAs whose metastatic log-fold change (LFC) is predicted
by the metastatic LFC of miRNAs significantly better than chance. In this table, we present the
HGNC symbol for the Ensebl gene ID, the permuted root mean squared error (RMSE) of the
regression, the observed RMSE of the regression, and the percent difference between the permuted
and observed RMSEs. We also report p-values for a one-tailed Wilcoxon Rank-Sum test comparing
the permuted and observed RMSEs. To control the false discovery rate, we adjusted the p-values
using the Benjamini-Hochberg procedure.

data suggest that a LFC of miR-130 transcripts in a metastatic sample is associated with a LFC
of select mRNAs in the same metastatic sample.

Among the most “important” miRNAs, we also find miR-1296 to be associated with the
metastatic signature of 3 mRNAs. As above, miR-1296 is associated with cancer and metasta-
sis, with one study finding it down-regulated in gastric cancer (compared with adjacent normal
tissue) and even more down-regulated in lymph node metastases (compared with gastric cancer)
[34]. Meanwhile, induction of miR-1296 was found to induce apoptosis in triple negative breast
cancer [28]. Although the other miRNAs presented in Figure 5 have not yet been associated with
metastasis per se, several have been linked to cancer more generally, including miR-423 which is
found to promote tumour progression in laryngeal cancer [15], and miR-101-2 and miR-4687 which
are found to be associated with gastric cancer [31] and breast cancer [25] respectively. Confir-
matory studies are needed to determine whether these miRNAs promote oncogenesis through the
regulation of genes predicted by our random forest model.

4 Summary

The miRNA-mRNA regulatory axis remains an important facet of cancer research with potential
diagnostic and therapeutic implications. For this reason, we used paired primary and metastatic
samples to explore the miRNA-mRNA regulatory axis across 11 cancers from three perspectives.
First, we identified a cross-cancer mRNA signal capable of differentiating primary tumours from
metastatic. This signal contains biomarkers enriched for canonical cancer pathways including ep-
ithelial mesenchymal transition and G2M checkpoint. Second, we also identified a cross-cancer
miRNA signal capable of differentiating primary and metastatic samples, although this signal was
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not as strong as the mRNA signal. Finally, we integrated the mRNA and miRNA data to model
how well the metastasis-associated dysregulation of miRNA can predict the metastasis-associated
dysregulation of mRNA. From this analysis, we identified several miRNAs whose dysregulation
alone can predict mRNA dysregulation, including miR-301b, miR-1296, and miR-423, previously
linked to cancer metastasis or progression. These discoveries all survive rigorous statistical cor-
rection despite small sample sizes, highlighting the value of paired study designs. Nevertheless,
experimental validation is needed to determine whether the discovered miRNA-mRNA associations
are causal.
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