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ABSTRACT

The Universe’s Epoch of Reionization can be studied using a number of observational probes

that provide complementary or corroborating information. Each of these probes suffers from

its own systematic and statistical uncertainties. It is therefore useful to consider the mu-

tual information that these data sets contain. In this paper, we present a cross-correlation

study between the kinetic Sunyaev–Zel’dovich effect – produced by the scattering of cosmic

microwave background (CMB) photons off free electrons produced during the reionization

process – and the cosmological 21 cm signal – which reflects the neutral hydrogen content of

the Universe, as a function of redshift. The study is carried out using a simulated reionization

history in 100 h−1 Mpc scale N-body simulations with radiative transfer. In essence, we find

that the two probes anticorrelate. The significance of the anticorrelation signal depends on the

extent of the reionization process, wherein extended histories result in a much stronger signal

compared to instantaneous cases. Unfortunately, however, once the primary CMB fluctuations

are included into our simulation they serve as a source of large correlated noise that renders

the cross-correlation signal insignificant, regardless of the reionization scenario.

Key words: cosmic microwave background – cosmology: theory – diffuse radiation – large-

scale structure of Universe – radio lines: general.

1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) is one of the least explored periods

in the history of the Universe. At present, there are only a few

tentative observational constraints on the EoR such as the Gunn–

Peterson troughs (Gunn & Peterson 1965; Fan et al. 2006) and the

cosmic microwave background (CMB) E-mode polarization (Page

et al. 2007) at large scales. Both of these observations provide strong

yet limited constraints on the EoR. In the near future, however,

a number of observations at various wavelengths [e.g. redshifted

21 cm from H I, Lyman α emitters, high redshift quasi-stellar objects

(QSOs) etc.] are expected to probe this pivotal epoch in much

greater detail. Among these, the cosmological 21 cm transition line

of neutral hydrogen is the most promising probe of the intergalactic

medium during reionization (Madau, Meiksin & Rees 1997)

⋆E-mail: vjelic@astro.rug.nl

A number of radio telescopes [e.g. Low Frequency Array

(LOFAR),1 Murchison Widefield Array (MWA)2 and Square Kilo-

metre Array (SKA)3] are currently being constructed/designed that

aim at detecting the redshifted 21 cm line to study the EoR. Un-

fortunately, these experiments will suffer from a high degree of

contamination, due to both astrophysical interlopers such as the

Galactic and extragalactic foregrounds, and non-astrophysical in-

strumental effects (e.g. Jelić et al. 2008; Labropoulos et al. 2009).

Fortunately, the signal has some characteristics which differenti-

ate it from the foregrounds and noise, and using proper statis-

tics makes it possible to extract signatures of reionization (e.g.

Furlanetto, Zaldarriaga & Hernquist 2004; Harker et al. 2009a,b).

In order to reliably detect the cosmological signal from the observed

1http://www.lofar.org
2http://www.haystack.mit.edu/ast/arrays/mwa
3http://www.skatelescope.org
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data, it is essential to understand in detail all aspects of the data and

their influence on the extracted signal.

Given the challenges and uncertainties involved in measuring the

redshifted 21 cm signal from the EoR, it is vital to corroborate this

result with other probes of the EoR. In this paper, we study the infor-

mation imprinted on the CMB by the EoR and its cross-correlation

with the 21 cm probe. Given the recent launch of the Planck satel-

lite, which will measure the CMB with unprecedented accuracy, it

is fit to conduct a rigorous study into the cross-correlation of these

data sets.

One of the leading sources of secondary anisotropies in the CMB

is due to the scattering of CMB photons off free electrons, cre-

ated during the reionization process (Zeldovich & Sunyaev 1969).

The effect of anisotropies when induced by thermal motions of

free electrons is called the thermal Sunyaev–Zel’dovich effect

(tSZ) and when due to bulk motion of free electrons, the kinetic

Sunyaev–Zel’dovich effect (kSZ). The latter is far more dominant

during reionization (for a review of secondary CMB effects, see

e.g. Aghanim, Majumdar & Silk 2008).

The kSZ effect from a homogeneously ionized medium, i.e.

with ionized fraction only a function of redshift, has been stud-

ied both analytically and numerically by a number of authors;

the linear regime of this effect was first calculated by Sunyaev

& Zeldovich (1970) and subsequently revisited by Ostriker &

Vishniac (1986) and Vishniac (1987) – hence also referred to as the

Ostriker–Vishniac (OV) effect. In recent years, various groups have

calculated this effect in its non-linear regime using semi-analytical

models and numerical simulations (Gnedin & Jaffe 2001; Santos

et al. 2003; Zhang, Pen & Trac 2004). These studies show the con-

tribution due to non-linear effects being important only at small

angular scales (l > 1000), while the OV effect dominates at large

angular scales.

The kSZ effect from patchy reionization was first estimated using

simplified semi-analytical models (Santos et al. 2003) wherein they

concluded that fluctuations caused by patchy reionization dominate

over anisotropies induced by homogeneous reionization. However,

for a complete picture of the CMB anisotropies induced by the

EoR, a more detailed modelling is required. Over and above the

underlying density and velocity fields, these details should include

the formation history and ‘nature’ of the first ionizing sources and

the radiative transport of ionizing photons to derive the reionization

history (sizes and distribution of the ionized bubbles). Some recent

numerical simulations of the kSZ effect during the EoR were carried

out by Salvaterra et al. (2005), Zahn et al. (2005), Doré et al. (2007)

and Iliev et al. (2007).

Cross-correlation between the cosmological 21 cm signal and the

secondary CMB anisotropies provide a potentially useful statistic.

The cross-correlation has the advantage that the measured statistic

is less sensitive to contaminants such as the foregrounds, system-

atics and noise in comparison to ‘auto-correlation’ studies. An-

alytical cross-correlation studies between the CMB temperature

anisotropies and the EoR signal on large scales (l ∼ 100) were

carried out by Alvarez et al. (2006), Adshead & Furlanetto (2008)

and Lee (2009) and on small scales (l > 1000) by Cooray (2004),

Salvaterra et al. (2005) and Slosar, Cooray & Silk (2007). Thus

far, the only numerical study of the cross-correlation was carried

out by Salvaterra et al. (2005). Some additional analytical work on

cross-correlation between the E and B modes of CMB polarization

with the redshifted 21 cm signal was done by Tashiro et al. (2008)

and Dvorkin, Hu & Smith (2009).

In this paper, we first calculate the kSZ anisotropies from homo-

geneous and patchy reionization based on 100 h−1 Mpc scale nu-

merical simulations of reionization. We then cross-correlate them

with the expected EoR maps obtained from the same simulations,

and we discuss how the large-scale velocities and primary CMB

(pCMB) fluctuations influence the cross-correlation. Although sim-

ilar in some aspects, the work presented here differs from Salvaterra

et al. (2005) substantially. First, Salvaterra et al. used a relatively

small computational box (20 h−1 Mpc) incapable of capturing rel-

evant large-scale density and velocity perturbations. Secondly, the

pCMB fluctuations, which manifest themselves as a large back-

ground noise, were not taken into account. And finally, there is

a difference in the procedure for calculating the cross-correlation

coefficient.

The paper is organized as follows. In Section 2, we discuss the

kSZ signal and cosmological 21 cm signal from the EoR. In Sec-

tion 3, we present the numerical simulations employed to obtain

the kSZ and EoR maps for a specific reionization history. Cross-

correlation between the cosmological 21 cm fluctuations (EoR sig-

nal) and the kSZ anisotropies, together with the influence of the

large-scale velocities and the pCMB fluctuations on the CMB–EoR

cross-correlation, is discussed in Section 4. Finally, in Section 5 we

present our discussions and conclusions on the topic.

Throughout we assume � cold dark matter (�CDM) cosmology

with Wilkinson Microwave Anisotropy Probe 3 (WMAP3) parame-

ters (Spergel et al. 2007): h = 0.73, �b = 0.0418, �m = 0.238 and

�� = 0.762.

2 TH E O RY

Here we briefly review the theoretical aspects of the kSZ effect

and the cosmological 21 cm signal from the EoR. We also present

the relevant mathematical forms used to calculate the kSZ and the

cosmological 21 cm signals.

2.1 Kinetic Sunayev–Zel’dovich effect

The temperature fluctuation of the CMB caused by the Thompson

scattering of its photons off populations of free electrons in bulk

motion, for a given line of sight (LOS), is
(

δT

T

)

kSZ

= −σT

∫ t0

tr

e−τne(r̂ · v)dt, (1)

where τ is the optical depth of electrons to the Thomson scattering,

v the bulk velocity of free electrons and r̂ the unit vector denoting

the direction of the LOS. The integral is performed for each LOS

with tr being the time at the epoch of recombination and t0 the age

of the Universe today. Note that all quantities are in physical units.

Temperature fluctuations produced at time t will be attenuated due

to multiple scattering along the LOS to the present time and are

accounted for by the e−τ term.

The electron density can be written as the product of the total

atom density nn and ionization fraction xe. Both nn and xe vary

around their average values n̄n and x̄e, and thus these fluctuations

can be written as δ = nn/n̄n − 1 and δxe = xe/x̄e − 1, respectively,

and consequently the electron density expressed as

ne = n̄nx̄e(1 + δ + δxe + δδxe ). (2)

In the first approximation, one can just follow the reionization

of hydrogen and assume that the atom density equals the hydrogen

density. However, in our simulation we follow both hydrogen and

helium. Assuming that both hydrogen and helium follow the under-

lying dark matter density, the atom density is a sum of the total hy-

drogen (nH) and total helium (nHe I) densities: nn = (n̄H+n̄He)(1+δ).

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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Moreover, the electron density can be written as

ne = nHxH II + nHexHe II + 2nHexHe III, (3)

where xH II,He II,He III are ionization fractions of H II, He II and

He III, respectively. The ionization fractions are defined as xH II =

nH II/nH, xHe II = nHe II/nHe and xHe III = nHe III/nHe, respectively.

The mean hydrogen and helium densities vary with redshift as

n̄H,He = n̄H(0),He(0)(1 + z)3, where n̄H(0),He(0) are the mean hydrogen

and helium densities at the present time: n̄H(0) = 1.9 × 10−7 cm−3

and n̄He(0) = 1.5 × 10−8 cm−3.

By inserting equation (2) into equation (1) and converting equa-

tion (1) from an integral in time to one in redshift space4 (z), we

get
(

δT

T

)

kSZ

= −σTn̄n(0)

∫ z0

zr

(1 + z)2

H
e−τ x̄e

× (1 + δ + δxe + δδxe )vrdz, (4)

where vr is the component of v along the LOS (vr = r̂ · v) and

n̄n(0) = n̄H I(0) + n̄He I(0). For a �CDM universe, the Hubble constant

at redshift z is H = H0

√

�m(1 + z)3 + �� where H 0 is the present

value of the Hubble constant, �m is the matter and �� the dark

energy density.

For homogeneous reionization histories, i.e. a uniform change

in the ionization fraction as a function of redshift, equation (4)

becomes
(

δT

T

)

kSZ

= −σTn̄n(0)

∫ z0

zr

(1 + z)2

H
e−τ x̄e(1 + δ)vrdz, (5)

which means that the kSZ fluctuations are induced only by spatial

variations of the density field. The linear regime of this effect is

called the OV effect. The OV effect is of second order and peaks at

small angular scales (arcminutes) and has an rms of the order of a

few µK.

2.2 The cosmological 21 cm signal

In radio astronomy, where the Rayleigh–Jeans law is applicable,

the radiation intensity I (ν) is expressed in terms of the brightness

temperature Tb:

I (ν) =
2ν2

c2
kTb, (6)

where ν is the frequency, c is the speed of light and k is Boltzmann’s

constant. The predicted differential brightness temperature of the

cosmological 21 cm signal with the CMB as the background is

given by (Field 1958, 1959; Ciardi & Madau 2003)

δTb = 26 mK xH I(1 + δ)

(

1 −
TCMB

Ts

) (

�b h2

0.02

)

×

[(

1 + z

10

) (

0.3

�m

)]1/2

. (7)

Here Ts is the spin temperature, xH I is the neutral hydrogen fraction,

δ is the matter density contrast and h = H 0/(100 km s−1 Mpc−1).

If we express the neutral hydrogen fraction as xH I = x̄H I(1 + δxH I
),

equation (7) becomes

δTb = 26 mK x̄H I(1 + δ + δxH I
+ δδxH I

)

×

(

1 −
TCMB

Ts

) (

�b h2

0.02

) [(

1 + z

10

) (

0.3

�m

)]1/2

. (8)

4In order to make transformation of equation (1) to the redshift space we

use dt = − dz
H (z)[1+z]

, where H(z) is the Hubble constant at redshift z.

In his two seminal papers, Field (1958, 1959) calculated the spin

temperature, Ts, as a weighted average of the CMB, kinetic and

colour temperatures:

Ts =
TCMB + ykinTkin + yαTα

1 + ykin + yα

, (9)

where TCMB is the CMB temperature and ykin and yα are the kinetic

and Lyman α coupling terms, respectively. We assume that the

colour temperature, T α , is equal to Tkin (Madau et al. 1997). The ki-

netic coupling term increases with the kinetic temperature, whereas

the yα coupling term depends on Lyman α pumping through the

so-called Wouthuysen–Field effect (Wouthuysen 1952; Field 1958).

The two coupling terms are dominant under different conditions and

in principle could be used to distinguish between ionization sources,

e.g. between first stars, for which Lyman α pumping is dominant,

and first mini-quasars for which X-ray photons and therefore heat-

ing are dominant (see e.g. Madau et al. 1997; Zaroubi et al. 2007;

Thomas & Zaroubi 2008).

3 SI M U L AT I O N S

The kSZ (δT /T ) and the cosmological 21 cm maps (δT b) are simu-

lated using the following data cubes: density (δ), radial velocity (vr)

and H I, H II, He I, He II and He III fractions (xH I,H II,He I,He II and He III). The

data cubes are produced using the BEARS algorithm, a fast algorithm

to simulate the EoR signal (Thomas et al. 2009).

In the following subsections, we summarize the BEARS algorithm

and describe the operations preformed on the output in order to

calculate the kSZ and the EoR maps. Furthermore, we show in

detail the calculations for obtaining the optical depth and the kSZ

signal along a certain LOS. Finally, we present the maps of the

kSZ temperature fluctuations for the two patchy reionization models

(‘stars’ and ‘mini-quasars’) and discuss aspects of their contribution

to the signal.

3.1 BEARS algorithm: overview

BEARS is a fast algorithm to simulate the underlying cosmologi-

cal 21 cm signal from the EoR. It is implemented by using an

N-body/smoothed particle hydrodynamics (SPH) simulation in con-

junction with a 1D radiative transfer code under the assumption of

spherical symmetry of the ionized bubbles. The basic steps of the

algorithm are as follows. First, a catalogue of 1D ionization pro-

files of all atomic hydrogen and helium species and the temperature

profile that surrounds the source is calculated for different types

of ionizing sources with varying masses and luminosities at dif-

ferent redshifts. Subsequently, photon rates emanating from dark

matter haloes, identified in the N-body simulation, are calculated

semi-analytically. Finally, given the spectrum, luminosity and the

density around the source, a spherical ionization bubble is embedded

around the source, with a radial profile selected from the catalogue.

For more details, we refer to Thomas et al. (2009).

As outputs, we obtain data cubes (2D slices along the fre-

quency/redshift direction) of density (δ), radial velocity (vr) and hy-

drogen and helium fractions (xH I,H II,He I,He II and He III). Each data cube

consists of about 850 slices, each representing a certain redshift

between 6 and 11.5. This interval is chosen to match the spectral

resolution that the frequency-binned LOFAR data will have, i.e. at

0.1 MHz. This implies a δz of about 3 × 10−4 at the lowest red-

shift (z = 6) and ≈0.01 at the high redshift end (z = 11.5), which

translates to a minimum comoving separation of 0.1 Mpc at low and

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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<2 Mpc at high redshifts. In both cases, ionized bubbles are sam-

pled extremely well because their typical size (in physical units) is

≈6 Mpc in diameter. Slices have a size of 100 h−1 comoving Mpc

and are defined on a 5122 grid. Because these slices are produced to

simulate a mock data set for radio-interferometric experiments, they

are uniformly spaced in frequency (therefore, not uniform in red-

shift). Thus, the frequency resolution of the instrument dictates the

scales over which structures in the Universe are averaged/smoothed

along the redshift direction. The relation between frequency ν and

redshift space z is given by

z =
ν21

ν
− 1, (10)

where ν21 = 1420 MHz is the rest frequency that corresponds to the

21 cm line.

The final data cubes are produced using approximately 75 snap-

shots of the cosmological simulations. Since the choice of the red-

shift direction in each box is arbitrary, three final data cubes can be

produced in this manner (x, y and z).

3.2 Randomization of the structures

The kSZ effect is an integrated effect and is sensitive to the structure

distribution along the LOS. To avoid unnatural amplification of the

kSZ fluctuations due to repeating structures in the simulated data

cubes, we follow the approach of Iliev et al. (2007) and introduce

randomization of the structures along the LOS over a 100 Mpc h−1

scale in two steps. First, each 100 Mpc h−1 chunk of the data cube

is randomly shifted (assuming periodic boundary conditions) and

rotated in a direction perpendicular to the LOS. The shift can be

positive or negative in any direction [x and (or) y] by an integer value

between 0 and 512. The rotation can be clockwise or anticlockwise

by an nπ/2 angle (n = 0, 1, 2, 3). Secondly, the final data cube is

produced by assembling the first 100 Mpc h−1 part from the x data

cube, second from the y data cube, third from the z data cube and

then back to the x data cube and so on to a distance that spans the

comoving radial distance between redshifts 6 and 12.

3.3 Optical depth

The Thomson optical depth τ at redshift z is

τ = cσT

∫ z

0

ne

(1 + z)2

H (z)
dz, (11)

where c = 2.998 × 108 m s−1 is the speed of light, σ T = 6.65 ×

10−29 m2 the Thomson scattering cross-section for electrons, ne the

density of free electrons and H(z) the Hubble constant at redshift z.

In our simulations, we split the integral into two parts. The first

part represents the mean Thomson optical depth (τ̄06) between red-

shifts 0 and 6 and the second, τ 6z, from redshift 6 to a desired

redshift z. This choice is driven by the limited redshift range (z ∼

6–11.5) of imminent radio astronomical projects designed to map

the EoR. Under the assumption that reionization is completed by

redshift 6, the mean Thomson optical depth τ̄06 is 0.0517. Note

that our patchy simulations are set to have a mean Thomson optical

depth of 0.087, as obtained from the CMB data (τ = 0.087 ± 0.017;

Komatsu et al. 2009).

3.4 Creating the kSZ and EoR maps

For clarity, we summarize the steps we follow to create the kSZ and

EoR maps for a given scenario of the reionization history.

(i) Using the output of BEARS, data cubes for the density, radial

velocity, helium and hydrogen fractions are produced.

(ii) Data cubes are randomized over the 100 Mpc h−1 scale along

the redshift direction.

(iii) Using equation (11) the Thomson optical depth, τ , is calcu-

lated to a redshift z.

(iv) Using the integrand of equation (4), data cubes with the kSZ

signal are produced as a function of redshift.

(v) Integrating along each LOS through the kSZ data cube, the

integrated kSZ map is obtained. Note that we assume that the reion-

ization is complete by redshift 6, so the integral in equation (4)

spans the range z > 6.

(vi) Finally, the brightness temperature fluctuations, δT b, are cal-

culated using equation (8).

As examples, Figs 1 and 2 show slices through the simulated

redshift cube of the cosmological 21 cm signal (δT b) and the kSZ

effect (δT kSZ) in the case of the ‘Stars’ and the ‘QSOs’ patchy

reionization models. The angular size of the slices is ∼0.◦6.

In the following sections, we will use the kSZ and EoR maps

produced from five different models of reionization.

(i) Homogeneous: reionization history is homogeneous and the

ionized fraction follows

xe =
1

1 + ek(z−zreion)
, (12)

with zreion being set to 8.5 and k = 2, 4 and 10 which tunes the

‘rapidness’ of the reionization process. The mean ionization frac-

tions xe(z) for the three different values of k (homogeneous models:

HRH1, HRH2 and HRH3) are shown in Fig. 3.

(ii) Patchy stars: reionization history is patchy, gradual and ex-

tended with stars as the sources of ionization.

(iii) Patchy QSOS: reionization history is patchy and relatively

fast with QSOs as the ionizing sources.

Apart from the difference in the global shape of the reionization

histories driven by ‘Stars’ and ‘QSOs’ (see Fig. 4), the average

sizes of the ionization bubbles are also smaller in ‘Stars’ compared

to those of ‘QSOs’. For a detailed description and comparison of

reionization histories due to ‘Stars’ and ‘QSOs’, see Thomas et al.

(2009).

The kSZ anisotropies from patchy reionization are induced by

both fluctuations of the density field δ and ionization fraction δxe

(see equation 4). Santos et al. (2003) found that kSZ anisotropies

from δxe fluctuations dominate over the δ modulated fluctuations

(OV effect). In order to test this result with our simulations, we

split the integral in equation (4) into three parts and produce three

integrated kSZ maps (for the ‘Stars’ model, see Fig. 5). The first

term ‘1 + δ’ represents the density-induced secondary anisotropies

(OV effect). The ‘δxe ’ term represents the secondary anisotropies

due to patchiness in the reionization and ‘δδxe ’ represents a higher

order anisotropy.

The mean and rms of the ‘1 + δ’, ‘δxe ’ and ‘δδxe ’ components of

the simulated kSZ maps are given in Table 1 for patchy reionization

in the ‘Stars’ and ‘QSOs’ models. The rms value of the maps is used

as a measure of the fluctuations. We confirm that the ‘δxe ’ fluctu-

ations are indeed larger than density-induced anisotropies (‘δ’) for

both patchy reionization models. However, the difference between

the ‘δxe ’ and ‘δ’ fluctuations is much larger for the ‘Stars’ reioniza-

tion history model than for the ‘QSOs’ model. Also note that the

third-order anisotropy (‘δδxe ’) is not negligible in both reionization

scenarios. For completeness, we also give the contribution from the

pure Doppler term (‘1’) in equation (4).
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Cross-correlating the 21 cm and kSZ from the EoR 2283

Figure 1. A slice through the simulated redshift cube of the cosmological 21 cm signal (top panel) and the kSZ effect (bottom panel) in the case of the ‘Stars’

patchy reionization model. The angular scale of the slices is ∼0.◦6.

Figure 2. The same as Fig. 2 but for the ‘QSOs’ patchy reionization model.

4 C RO SS-CORRELATION kSZ–EoR MAPS

The kSZ effect from the EoR is expected to be correlated with cos-

mological 21 cm maps for a homogeneous reionization history and

anticorrelated when patchy (Cooray 2004; Salvaterra et al. 2005;

Alvarez et al. 2006; Slosar et al. 2007; Adshead & Furlanetto 2008).

In this section, the simulations described in Section 3 are used to

explore the small angular scale cross-correlation between the kSZ

effect and EoR maps for five different reionization histories. Fur-

ther, we will fold in the influence of (i) the large-scale velocities

on the kSZ effect and (ii) the pCMB fluctuations on the cross-

correlation.

Throughout the paper, we will use a normalized cross-correlation

in order to be able to compare results from different pairs of maps.

The normalized cross-correlation between two images (ai,j and bi,j)

with the same total number of pixels n is defined at zero lag as

C0 =
1

n − 1

∑

i,j

(ai,j − ā)(bi,j − b̄)

σaσb

, (13)
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2284 V. Jelić et al.

Figure 3. The ionization fraction xe as a function of redshift for three

different models of homogeneous reionization (HRH1, HRH2 and HRH3).

All three models are defined by equation (12) but have different values of k

(different reionization durations).

Figure 4. The mean ionization fraction xe as a function of redshift for the

‘Stars’ and ‘QSOs’ patchy reionization models.

Table 1. The mean and rms of the ‘1 + δ’, ‘δxe ’ and ‘δδxe ’ simulated

kSZ maps for both the ‘Stars’ (see Fig. 5) and ‘QSOs’ patchy reioniza-

tion models. C0 is a cross-correlation coefficient at a zero lag between

corresponding kSZ maps and the integrated EoR map (see Section 4). For

completeness, we also list the results for the pure Doppler term (‘1’) in

equation (4).

δT kSZ 1 1 + δ δxe δδxe Total

Stars mean (µK) −0.004 0.03 0.58 0.02 0.63

rms (µK) 0.14 0.80 1.74 0.40 2.00

C0 0.05 −0.003 −0.12 −0.06 −0.11

QSOs mean (µK) −0.002 0.03 0.27 0.01 0.30

rms (µK) 0.15 0.93 1.28 0.28 1.57

C0 0.1 0.04 −0.08 −0.01 −0.06

where ā(b̄) is the mean and σ a(σ b) the standard deviation of image

a (b). However, the cross-correlation between the kSZ and the EoR

map needs to be considered more carefully, as we will explain in

the following paragraph.

The fluctuations of the kSZ effect over the simulated map are

both positive and negative, since the radial velocity vr can be both

positive and negative (see equation 4). In contrast, the EoR signal

fluctuations in our simulations are always positive (see equation 8).

When calculating the cross-correlation between these two maps, we

are interested in finding the number of points at which both signals

are present (homogeneous reionization model) or where one signal

is present and the other absent (patchy reionization model). In other

words, only the absolute value of the kSZ fluctuation is relevant in

our calculation and not its sign.

4.1 Homogeneous reionization history

We explore the cross-correlation between the kSZ map and inte-

grated EoR map in the case of three different homogeneous reion-

ization histories (HRH1, HRH2 and HRH3). These histories are

given by equation (12), with k = 2, 4 and 10 controlling the dura-

tion of reionization (see Fig. 3).

The cross-correlation between an integrated kSZ map and an in-

tegrated EoR map results in a coefficient C0,HRH1 = 0.10 ± 0.03 for

an extended homogeneous reionization history (HRH1). For HRH2

C0,HRH2 = 0.21 ± 0.02 and for HRH3 C0,HRH3 = 0.24 ± 0.02.

The errors are estimated by performing a Monte Carlo calcu-

lation with 200 independent realizations of the integrated kSZ

and EoR maps using the randomization procedure explained in

Section 3.

Figure 5. The simulated kSZ anisotropies induced by ‘1 + δ’ (first panel), ‘δxe ’ (second panel) and ‘δδxe ’ (third panel) terms in equation (4) for the ‘Stars’

patchy reionization model. The kSZ anisotropies induced by all terms together in equation (4) are shown in the fourth panel (‘TOTAL’). The mean and rms of

the simulated kSZ maps are given in Table 1. Note that each map has its own colour scale.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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Cross-correlating the 21 cm and kSZ from the EoR 2285

Figure 6. The zero-lag cross-correlation coefficient (C0) between the kSZ

map and the EoR map at a given redshift. The solid black line corresponds to

the ‘Stars’ and the dashed red line to the ‘QSOs’ patchy reionization model.

For both reionization models, we find an anticorrelation between the maps.

As expected, the integrated kSZ and EoR maps are correlated for

homogeneous models of reionization. Furthermore, the correlation

depends on the duration of reionization with larger values for more

‘rapid’ reionization. These results are in agreement with Alvarez

et al. (2006).

4.2 Patchy reionization history

For the patchy reionization models, we first cross-correlate the kSZ

and the EoR maps at a given redshift. The resulting zero-lag coef-

ficient (C0), as a function of redshift, is shown in Fig. 6. The solid

black line represents the correlation for ‘Stars’ while the dashed red

line the ‘QSOs’ patchy reionization model. As expected for patchy

reionization in both models, the kSZ and the EoR maps anticorrelate

at individual redshifts.

The anticorrelation obtained is also evident by visual inspection

of the kSZ and EoR slices through the simulated redshift cubes (see

Figs 1 and 2). One can see that the kSZ signal is present only at the

regions where the EoR signal is not. This result is not surprising

since the EoR signal is proportional to neutral hydrogen while the

kSZ to the ionized, both of which are almost mutually exclusive.

In reality, we are not able to measure the kSZ effect at a cer-

tain redshift but only the integrated effect along the entire history.

Thus, we can only cross-correlate the integrated kSZ map with the

integrated EoR map and/or the EoR maps at different redshifts.5

Fig. 7 shows the integrated EoR and kSZ map for the ‘Stars’

(first two panels) and ‘QSOs’ (last two panels) patchy reionization

models. The cross-correlation coefficients at zero lag for these two

maps are C0,Stars = −0.17 and C0,QSOs = −0.02, respectively. In

order to determine the error on the kSZ–EoR cross-correlation, we

perform a Monte Carlo calculation. After creating 200 indepen-

dent realizations of the integrated kSZ and EoR maps using the

randomization procedure explained in Section 3, we calculate the

cross-correlation coefficient for each pair of realizations. Finally, we

calculate the mean and standard deviation of the cross-correlations.

5This is because, unlike the kSZ effect, we can potentially obtain redshift-

specific information of neutral hydrogen via upcoming radio telescopes.

For the ‘Stars’ model we get C0,Stars = −0.16 ± 0.02, while for the

‘QSOs’ model C0,QSOs = −0.05 ± 0.02.

To understand the higher values of the cross-correlation coeffi-

cient in ‘Stars’ compared to the ‘QSOs’ model, one needs to analyse

Fig. 4 and Table 1. It is evident from Fig. 4 that the reionization

history is gradual and extended with stars as ionizing sources, com-

pared to a shorter and sharper history with QSOs as ionizing sources.

Moreover, the patchy term (‘δxe ’) of the kSZ fluctuations is much

larger than the homogeneous component in the anisotropy (‘δ’) in

the case of ‘Stars’ than for the ‘QSOs’ model (see Table 1). We

showed earlier that the kSZ effect correlates with the cosmological

21 cm signal for homogeneous reionization and that the correlation

is strongest for an ‘instant’ reionization history. We also obtain the

same result by correlating different kSZ components with the in-

tegrated EoR map (see Table 1). Combining these results we see

that the cross-correlation is driven by the patchy kSZ anisotropies

in the ‘Stars’ model, while in the ‘QSOs’ model the homogeneous

and patchy kSZ anisotropies tend to cancel each other. As a con-

sequence, the anticorrelation in the ‘QSOs’ model is much weaker

than that in ‘Stars’.

In addition to the balance between homogeneous and patchy kSZ

anisotropies that governs the (anti)correlation between the kSZ and

the EoR maps, the size of the ionized bubbles also plays a key

role. Recall that the average size of the ionization bubble is larger

for ‘QSOs’. As a result, the underlying structure within the ionized

bubble will additionally reduce the anticorrelation and might change

the scale of (anti)correlation.

From now on, we will concentrate on cross-correlations using

‘Stars’ since the ‘QSOs’ model does not show a significant anti-

correlation. Fig. 8 shows the correlation coefficient as a function of

lag (C(θ )) between the integrated kSZ and the integrated EoR map.

The dashed red lines represent the estimated error obtained from

Monte Carlo simulations. As in Salvaterra et al. (2005), we find that

the two signals are anticorrelated below a characteristic angular

scale θ c and this scale indicates the average size of the ionized

bubbles which in our case is θ c ≈ 10 arcmin.

Salvaterra et al. (2005) also showed that the amplitude of the

anticorrelation signal increases with decreasing redshift and that the

characteristic angular scale shows a redshift evolution. In order to

test this in our simulation, we calculate the redshift evolution of the

zero-lag cross-correlation coefficient between the integrated kSZ

map and the EoR map at different redshifts (Fig. 9). To calculate the

error in the cross-correlation, we generate 200 different realizations

of the kSZ and corresponding EoR cubes using the randomization

procedure explained in Section 3. Then, around a desired redshift

we fix the kSZ effect to zero and integrate along the non-zero part

of the kSZ cube. Finally, we cross-correlate the integrated kSZ map

with the EoR map at the desired redshift and estimate the error

on the cross-correlation between the integrated kSZ map and the

EoR map at the certain redshift. Note that the EoR map at a certain

redshift is produced by integrating a 100 h−1 Mpc volume around

that redshift.

From Fig. 9, we find no coherent redshift evolution of the an-

ticorrelation signal and at a few redshifts the two signals actually

correlate instead of anticorrelating. The correlation at a given red-

shift is caused by the following. (i) The patchy nature of the EoR

signal, which implies that there are some redshifts at which the EoR

map contains none or only a few small ionized bubbles. If one cor-

relates such an EoR map with the integrated kSZ map, the outcome

is a correlation between the two, and because of an insignificant

number of the ionization bubbles there is no contribution to the

anticorrelation (ii) The patchy nature of the kSZ signal. There are

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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Figure 7. The integrated EoR and kSZ map for the ‘Stars’ (first two panels) and ‘QSOs’ (second two panels) patchy reionization models. The mean cross-

correlation coefficient at the zero lag between the integrated EoR map and integrated kSZ map is C0,Stars = −0.16 ± 0.02 for the ‘Stars’ and C0,QSOs =

−0.05 ± 0.02 for the ‘QSOs’ model.

Figure 8. The cross-correlation between the integrated EoR map and in-

tegrated kSZ map as a function of lag (C(θ )) for the ‘Stars’ reionization

history scenario (dashed white line). The grey-shaded surface represents

the estimated error obtained by the Monte Carlo simulation. Note that the

correlation coefficient at the zero lag is C0 = −0.16 ± 0.02.

some redshifts where the kSZ signal from a certain ionization bub-

ble does hardly or not at all contribute to the integrated kSZ map.

This could happen due to a weak kSZ signal from a certain ion-

ized bubble or due to cancellation of the kSZ signal from another

ionization bubble along the LOS.

To illustrate the patchy nature of the kSZ signal and its implica-

tions to the cross-correlation, we plot the kSZ signal, δT kSZ(z), and

its cumulative integral,
∫ z

zmax
δTkSZ(z)dz, as a function of redshift,

for two random LOSs (see Fig. 10). Note from the bottom panel of

Fig. 10 that the kSZ signal, as its progress towards the lower red-

shifts, fluctuates randomly between positive and negative values.

Thus, there is no coherent contribution (continuous increase or de-

crease) to the kSZ signal over the whole redshift range. See also figs

12 and 13 in Iliev et al. (2007) who reached a similar conclusion.

We repeat the analysis of the redshift evolution of the zero-lag

cross-correlation coefficient for different bin sizes along redshift

(e.g. redshift bins corresponding to 20 h−1 Mpc in comoving co-

ordinates). However, the result does not differ significantly. We

also calculate the redshift evolution of the characteristic angular

scale (θ c), but we do not find any coherent evolution. This result

Figure 9. The redshift evolution of the zero-lag correlation coefficient be-

tween the integrated kSZ map and the EoR map at the certain redshift. The

result is shown for the ‘Stars’ reionization history model. Note that the EoR

map at a certain redshift is produced by integrating 100 h−1 Mpc volume

around that redshift.

is driven by the fact that the contribution of the kSZ signal from

a certain redshift to the integrated kSZ map is not significant or

even non-existent. As a result, if there is no coherent contribution

(continuous increase or decrease) to the integrated kSZ map over

the whole redshift range there will be no coherent redshift evolution

of the kSZ–EoR cross-correlation signal (Fig. 10).

The discrepancy between our results and those of Salvaterra et al.

(2005) is due to (i) the difference in the method to calculate the

cross-correlation coefficient and (ii) the different sizes of the com-

putational boxes.

Salvaterra et al. first calculated the cross-correlation coefficient

(not normalized with the rms) between a certain kSZ and EoR map.

Then, they scrambled both maps without keeping any structural

information and calculated the cross-correlation coefficient. They

compared the coefficients in the two cases to draw their conclusion.

In contrast to Salvaterra et al., we first calculate the normalized

cross-correlation coefficient (see equation 13) between a pair of

kSZ–EoR maps. And then for comparison, we perform a Monte

Carlo simulation to generate different realizations of the kSZ and

the EoR maps. However, despite the cross-correlation procedure

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

3
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


Cross-correlating the 21 cm and kSZ from the EoR 2287

Figure 10. Top panel: two random (solid and dotted) LOs through the ‘Stars’ kSZ cube, δT kSZ(z), averaged over 10 pixels (∼0.7 arcmin) at each redshift.

Bottom panel: for the same LOSs the cumulative integral of the kSZ effect,
∫ z

zmax
δTkSZ(z)dz. Note that there is no coherent contribution (continuous increase

or decrease) of the cumulative kSZ effect over the whole redshift range.

used, once the pCMB fluctuations are included we are not able to

find any significant kSZ–EoR cross-correlation (see Section 4.4).

In addition, Salvaterra et al. used fairly small computational boxes

(4 and 20 h−1 Mpc) compared to our 100 h−1 Mpc box. Since most

of the signal comes around the mid-point of reionization, the veloc-

ity field and the typical size of reionization bubbles at that redshift

put a strong constraint on the size of simulation that one can use.

In fig. 2 of Salvaterra et al. (2005), one can see that at 50 per cent

reionization, the size of the reionization bubble is about half the

simulation box. This means that no matter how one randomizes the

box, the bubble will still overlap with the position of the bubble

in the next or previous snapshot. Moreover, the small 20 h−1 Mpc

simulation box misses ∼90 per cent of the velocity power as given

by the linear theory (see section 4.3 in Iliev et al. 2007), and this

could lead to velocity coherence. In other words, the redshift ‘en-

hancement’ of the kSZ signal is not fully removed.

4.3 Large-scale velocity

Our simulation volume is (100 h−1 Mpc)3 (see Section 3). Thus,

large-scale velocities associated with bulk motions, on scales

of �100 h−1 Mpc, are missing. The missing velocities represent

∼50 per cent of the total power in the velocity field as given by the

linear theory.

Iliev et al. (2007) showed that the large-scale velocities on scales

of �100 h−1 Mpc increase the kSZ signal. Motivated by this result,

we approximately account for the missing large-scale velocities

in a similar way as Iliev et al. (2007): first, we assume that every

100 h−1 Mpc chunk of our simulation cube has a random large-scale

velocity component vLS. Since our simulation cube is produced

using 15 simulation boxes (100 h−1 Mpc), we need in total 15 vLS.

We randomly choose a realization of the 15 vLS based on a velocity

field power spectrum from linear theory. By doing this, we ensure

that the velocities are correlated at large scales. Finally, we add the

missing vLS component to each 100 h−1 Mpc chunk of the simulated

cube.

Based on 200 realizations of the large-scale velocity field, we

have found that the large-scale velocities increase the kSZ signal

during the EoR by 10 per cent. But on average we do not find any

significant increase or decrease in the kSZ–EoR cross-correlation.

However, for ∼20 per cent of all large-scale velocity realizations

we find an increase in the cross-correlation signal by a factor of 2

or larger and for ∼2 per cent a factor of 3 or larger.

4.4 Primary CMB

Up to now, our cross-correlation analysis only took into account the

secondary CMB anisotropies generated by the kSZ effect. In the

actual experiment, the CMB data will comprise not only the kSZ

anisotropies which are secondary, but also the primary and other

secondary CMB anisotropies (for a recent review, see Aghanim

et al. 2008). In this subsection, we will examine the influence of

the pCMB fluctuations on the detectability of the kSZ–EoR cross-

correlation.

We simulate the pCMB fluctuations in the following way: first

the CMB power spectra are obtained using CMBFAST (developed by

U. Seljak and M. Zaldarriaga in 2003) and then the map of the

primary anisotropy is produced as a random Gaussian field with

this power spectrum. An example of the simulated pCMB map is

shown in Fig. 11. The size of the map corresponds to the size of

the simulated EoR and kSZ maps. Note the lack of power at small

scales due to the Silk damping (Silk 1967).

In order to calculate the noise in the cross-correlation introduced

by the pCMB fluctuations, we generate 200 different realizations

of the pCMB fluctuations. We then add secondary kSZ anisotropies

induced by the ‘Stars’ (map shown in Fig. 7) and calculate the

cross-correlation between the pCMB+kSZ map and the integrated

cosmological 21 cm map. The zero-lag cross-correlation coeffi-

cient obtained is 0.0 ± 0.3. The noise introduced by the pCMB

fluctuations is thus too large to detect any significant kSZ–EoR

(anti)correlation. However, one has to remember that the pCMB

anisotropies are damped on small angular scales and that on these

scales the secondary anisotropies are the dominant component of

the CMB power spectra (see Fig. 12).6 Utilizing this fact, one can

6Note that a harmonic multipole l translates to degrees as θ [◦] = 180◦/l. The

angular resolution of the simulated maps is ∼5 arcsec, which translates to

lmax ∼ 1.3 × 105. The maps are expected to convey the physical information

for 1.5 × 103 � l � 1.3 × 105.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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Figure 11. The map of the pCMB fluctuations generated as a Gaussian

random field with the power spectrum obtained from the CMBFAST algorithm.

Figure 12. The power spectra of pCMB fluctuations (dotted line) and kSZ

anisotropies obtained from the simulated maps (solid line).

do a cross power spectrum and see the correlation as a function of

the angular scale. Pursuing this lead, we first calculate the kSZ–

EoR cross spectrum without and then with the pCMB added to the

kSZ map.

The cross spectrum (CX
l ) between the two images of a small

angular size is given by

CX
l ≃ P X

k =
1

nk

∑

p,q∈k

Ap,q · B∗
p,q , (14)

where Ap,q is the Fourier transform of the first image, B∗
p,q the

complex conjugate of the Fourier transform of the second image

and nk the number of points in the kth bin (k =
√

p2 + q2). Note

that we assume the ‘flat-sky’ approximation (e.g. White et al. 1999):

k2P (k) ≃ l(l+1)

(2π)2 Cl |l=2πk which is valid for l � 60.

Fig. 13 shows the cross power spectrum between the kSZ

anisotropies and the integrated cosmological 21 cm map for reion-

Figure 13. The cross spectrum (see equation 14) between the integrated

kSZ map and integrated EoR map for the ‘Stars’ reionization history (dashed

white line). The grey-shaded surface represents the estimated error obtained

by the Monte Carlo simulation. Note that the pCMB fluctuations are not

included.

ization due to ‘Stars’. It is evident from the plot that the two images

anticorrelate on large scales (l � 8000), but that the anticorrelation

becomes weaker towards smaller angular scales. At angular scales

l � 8000, there is no (anti)correlation.

We also calculate the cross power spectrum between the inte-

grated EoR map and integrated kSZ map with pCMB fluctuations

included. In this case, the noise introduced by the pCMB is too large

to find any significant correlation at scales l � 8000.

This result might be driven by the simulation box size and reion-

ization scenarios considered in this study and does not mean that

a cross-correlation signal is absent at all scales and reionization

histories. In order to test this, one needs to explore the kSZ–

EoR cross-correlation using simulations with box sizes larger than

100 h−1 Mpc.

4.5 Additional cross-correlation techniques

For better understanding of the properties of the kSZ–EoR cross-

correlation, and with the hope of being able to find the cross-

correlation signal in the presence of the pCMB fluctuation, in this

subsection we apply techniques of filtering, wavelet decomposition

and relative entropy to our data. We will only use the integrated

kSZ map and integrated EoR map from the ‘Stars’ model of reion-

ization, since as we saw above, this model produces the strongest

cross-correlation signal. Note that in the following analysis, we first

use the kSZ and the EoR maps and then as a second step include

the pCMB fluctuations.

Fig. 14 shows the zero-lag cross-correlation coefficient for the

three different filtering procedures. The first one uses a high-pass,

the second a low-pass and the third a band-pass filter that passes out

only a certain scale. In all three cases, the filter is based on the ‘Top

hat’ function. We filter out the desired scale from both the kSZ map

and the EoR map and calculate the cross-correlation coefficient at

zero lag. The results are shown for the low-pass and high-pass filters

as a function of the FWHM of the filter and for the band-pass filter

as a function of scale.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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Figure 14. The zero-lag cross-correlation coefficient as a function of the three different filtering procedures. The first one uses a high-pass filter, the second

one uses a low-pass filter and the third a band-pass filter that passes only a certain scale. In all three cases, the filter is based on the ‘Top hat’ function. The

dashed white line is the mean and the grey-shaded surface represents the estimated error obtained by the Monte Carlo simulation.

The plot on the left-hand panel in Fig. 14 implies that the anti-

correlation is strongest on the largest scales of the map. By adding

smaller scales, the correlation coefficient decreases meaning that

smaller scales introduce noise in the correlation. The middle panel

in Fig. 14 suggests the same behaviour. By removing the large

scales, the cross-correlation signal becomes very weak. Finally, the

third panel of Fig. 14 suggests that the large scales are indeed the

dominant component of the anticorrelation signal.

As a next step in our analysis, we include the pCMB fluctuations.

However, we obtain the same result as discussed in Section 4.4. On

the scales where the kSZ anisotropies dominate over the primary

anisotropies, either the anticorrelation signal is too weak or the

noise introduced by residuals of the pCMB fluctuations is too large

to find any statistically significant kSZ–EoR (anti)correlation.

The wavelet analysis of the maps is preformed using Daubechies

and Coiflet wavelet functions. Both the integrated kSZ map with

added pCMB fluctuations and the integrated EoR map are decom-

posed to a certain wavelet mode and then they are cross-correlated.

Because the outcome is similar to that of filtering, we will not

discuss this further.

The last method applied to the data is the ‘relative entropy’, also

known as the Kullback–Leibler distance. The relative entropy is

a measure of the information shared between two variables (two

images) by comparing the normalized distribution of the two. This

method also did not produce any significant result.

5 SU M M A RY A N D C O N C L U S I O N S

This paper presents a cross-correlation study between the kSZ ef-

fect and cosmological 21 cm signal produced during the EoR. The

study uses an N-body/SPH simulation along with a 1D radiative

transfer code (the BEARS algorithm; Thomas et al. 2009) to simulate

the EoR and to obtain maps of the cosmological 21 cm signal and

the kSZ effect. The maps are produced using a 100 h−1 Mpc comov-

ing simulation box for five different (three homogeneous and two

patchy) models of reionization history. The homogeneous model

with varying degrees of ‘rapidness’ of the reionization process is

given by equation (12). The patchy reionization histories include

one by ‘Stars’ (gradual) and the other by ‘QSOs’ (instant).

For a homogeneous reionization history, we find that the kSZ

map and the integrated EoR map are correlated and that the cor-

relation depends on the duration of reionization with larger val-

ues for more ‘rapid’ models. This result agrees with the analyt-

ical kSZ–EoR cross-correlation analysis carried out by Alvarez

et al. (2006).

For patchy reionization models, we find that the kSZ temperature

fluctuations are of a few µK level (see Table 1) and are in agreement

with previous results (Salvaterra et al. 2005; Iliev et al. 2007). In

addition, we show that the temperature fluctuations induced by the

patchiness of the reionization process (‘δxe ’ term in equation 4) are

larger than the density-induced fluctuations (homogeneous ‘1 + δ’

term in equation 4). The difference between the two is stronger

for the extended history (‘Stars’ model) than for the more rapid

reionization history (‘QSOs’ model) (see Table 1).

As a first step in the kSZ–EoR cross-correlation study of patchy

reionization histories, we cross-correlate the kSZ map and EoR map

at each redshift (see Figs 1 and 2). As expected, the kSZ and the

EoR map anticorrelate at certain redshifts (see Fig. 6).

We then cross-correlate the integrated cosmological 21 cm map

and the integrated kSZ map for patchy reionization (see Fig. 7). The

two signals show significant anticorrelation only in the ‘Stars’ model

(C0,Stars = −0.16 ± 0.02, C0,QSOs = −0.05 ± 0.02.). The result is

driven by the balance between homogeneous and patchy (‘1 + δ’

and ‘δxe ’ terms in equation 4) kSZ anisotropies and the average size

of the ionized bubbles. Since the homogeneous kSZ anisotropies

correlate and patchy kSZ anisotropies anticorrelate with the cos-

mological 21 cm maps, the two effects tend to cancel each other.

In addition, the average size of the ionization bubble is larger for

‘QSOs’ than for the ‘Stars’ model and the structure of matter within

the ionized bubble reduces the cross-correlation. As a consequence,

the kSZ–EoR anticorrelation is much stronger for the extended

(‘Stars’ model) reionization history than for a more instant history

(‘QSOs’ model).

For a patchy model of reionization, we estimate the redshift evo-

lution of the correlation coefficient (C0) and characteristic angular

scale θC. This was done by cross-correlating the integrated kSZ

maps with the EoR maps at different redshifts (see Fig. 9). In con-

trast to Salvaterra et al. (2005), we do not find any significant coher-

ent redshift evolution of C0 and θC. This discrepancy is caused by

the difference in the procedure used for calculating cross-correlation

and the different size of the computational boxes.

The influence of the missing large-scale velocities on the kSZ

signal and kSZ–EoR cross-correlation was investigated. Although

the large-scale velocities increase the kSZ signal by 10 per cent,

we do not find, on average, any significant change in the kSZ–EoR

cross-correlation. However, for ∼20 per cent of large-scale velocity

realizations we find an increase in the cross-correlation signal by

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290
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a factor of 2 or larger and for ∼2 per cent by a factor of 3 or

larger.

The data from CMB experiments contain both the secondary

(e.g. kSZ) and primary anisotropies. We calculate the noise in the

kSZ–EoR cross-correlation introduced by the pCMB fluctuations

and found that its addition reduces the cross-correlation signal to

zero (C0 = 0.0 ± 0.3). The cross-correlation was also performed

on scales where the kSZ anisotropies dominate over the pCMB

fluctuations (l � 4000; see Fig. 12). We have done this by calculating

cross-power spectra (Fig. 13), applying different filtering methods

(Fig. 14) on the data and by doing wavelet decomposition. However,

the outcome of the analysis is that on the scales where the kSZ

anisotropies dominate over primary, either the anticorrelation signal

is too weak or the noise introduced by residuals of the pCMB

fluctuations is still too large to find any statistically significant kSZ–

EoR (anti)correlation.

As a further check, we calculate the kSZ–EoR cross-correlation

using the simulation from Iliev et al. (2007) (‘f250C’ 100 h−1 Mpc

simulation). The reionization history of this model is similar to our

‘QSOs’ model. The reionization history is relatively sharp and in-

stant. The cross-correlation coefficient at zero lag for the integrated

kSZ map and integrated EoR map is C0 = −0.04 ± 0.02. The

result is in agreement with the result obtained from the ‘QSOs’

model. We also calculated the redshift evolution of the zero-lag

cross-correlation coefficient and have found no coherent redshift

evolution.

In view of all the results obtained from our kSZ–EoR cross-

correlation study, we conclude that the kSZ–EoR anticorrelation

on scales captured by our simulation box (∼0.◦6) is not a reliable

technique for probing the EoR. However, there is still hope that we

will be able to find the correlation between the kSZ and EoR signals

on scales larger than ∼1◦, where the patchiness of the ionization

bubbles should average out (Alvarez et al. 2006; Tashiro et al. 2009).

Finally, it is important to note that the kSZ signal induced during

the EoR could still be detected in the power spectra of the CMB

and used to place some additional constraints on this epoch in the

history of our Universe.
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Jelić V. et al., 2008, MNRAS, 389, 1319

Komatsu E. et al., 2009, ApJS, 180, 330

Labropoulos P. et al., 2009, arXiv:0901.3359

Lee K.-G., 2009, ApJ, submitted (arXiv:0902.1530)

Madau P., Meiksin A., Rees M. J., 1997, ApJ, 475, 429

Ostriker J. P., Vishniac E. T., 1986, ApJ, 306, L51

Page L. et al., 2007, ApJS, 170, 335

Salvaterra R., Ciardi B., Ferrara A., Baccigalupi C., 2005, MNRAS, 360,

1063

Santos M. G., Cooray A., Haiman Z., Knox L., Ma C.-P., 2003, ApJ, 598,

756

Silk J., 1967, Nat, 215, 1155

Slosar A., Cooray A., Silk J. I., 2007, MNRAS, 377, 168

Spergel D. N. et al., 2007, ApJS, 170, 377

Sunyaev R. A., Zeldovich Y. B., 1970, Ap&SS, 7, 3

Tashiro H., Aghanim N., Langer M., Douspis M., Zaroubi S., 2008, MNRAS,

389, 469

Tashiro H., Aghanim N., Langer M., Douspis M., Zaroubi S., Jelic V., 2009,

MNRAS, submitted (arXiv:0908.1632)

Thomas R. M., Zaroubi S., 2008, MNRAS, 384, 1080

Thomas R. M. et al., 2009, MNRAS, 393, 32

Vishniac E. T., 1987, ApJ, 322, 597

White M., Carlstrom J. E., Dragovan M., Holzapfel W. L., 1999, ApJ, 514,

12

Wouthuysen S. A., 1952, AJ, 57, 31

Zahn O., Zaldarriaga M., Hernquist L., McQuinn M., 2005, ApJ, 630, 657

Zaroubi S., Thomas R. M., Sugiyama N., Silk J., 2007, MNRAS, 375, 1269

Zeldovich Y. B., Sunyaev R. A., 1969, Ap&SS, 4, 301

Zhang P., Pen U.-L., Trac H., 2004, MNRAS, 347, 1224

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 402, 2279–2290

 b
y
 g

u
est o

n
 N

o
v
em

b
er 2

3
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/

