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Abstract—Recent years have seen a trend in using graphic pro- hundreds of thousands of registers, and many parametgrs (e.
cessing units (GPU) as accelerators for general-purpose comput maximum number of threads per block, thread block dimen-
ing. The inexpensive, single-chip, massively parallel architecter sions) that constrain the programming. Téeconddifficulty

of GPU has evidentially brought factors of speedup to many nu- . . . .
merical applications. However, the development of a high-quality is that the multi-layered software execution stack makes it

GPU application is challenging, due to the large optimization difficult to predict the effects of a code optimization. A sjze
space and complex unpredictable effects of optimizations on GPU difficulty with CUDA is that currently a GPU program has to
program performance. _ be compiled by the NVIDIA CUDA compiler (NVCC) and
Recently, several studies have attempted to use empiri- \,n o the NVIDIA CUDA runtime system, some details of
cal search to help the optimization. Although those studies . . - ' S
have shown promising results, one important factor—program both of which are not disclosed yethird, an optimization
inputs—in the optimization has remained unexplored. In this Often has multiple effects, and the optimizations on défer
work, we initiate the exploration in this new dimension. By parameters often strongly affect each otheinally, some
conducting a series of measurement, we find that the ability to GPU applications are input-sensitive. The best optinresti
adapt to program inputs is important for some applications to of an application may be different when different inputs

achieve their best performance on GPU. In light of the findings, . to th licati Togeth th fact k
we develop an input-adaptive optimization framework, namely are given 1o the application. logetner, these faclors make

G-ADAPT, to address the influence by constructing cross-input Manual optimizations time consuming and difficult to attain

predictive models for automatically predicting the (near-)optima  the optimal, and at the same time, form great hurdles to

configurations for an arbitrary input to a GPU program. The  gutomatic optimizations as well.

results demonstrate the promise of the framework in serving asa o, the other hand, optimizations are particularly impartan

tool to alleviate the productivity bottleneck in GPU programming. . .
for GPU programming. Because of the tremendous computing

Index Terms—GPU, Program Optimizations, Empirical Power of GPU, there can be orders of magnitude performance

Search, CUDA, G-ADAPT, Cross-input Adaptation difference between well optimized and poorly optimized-ver
sions of an application [3], [20], [21].
|. INTRODUCTION Several recent studies have tried to tackle the problem

As a specialized single-chip massively parallel architethrough empirical search-based approaches. Ryoo and his
ture, Graphics Processing Units (GPU) have shown ordealleagues [21] have definexfficiencyand utilization models
of magnitude higher throughput and performance per dolleor GPU programs to help prune the optimization space.
than traditional CPUs. The properties have recently dravidaskaran et al. [3] have developed a polyhedral compiler
great interest from researchers and industry practit®mer model to optimize global memory accesses in affine loop nests
extending GPU computation beyond the traditional uses &md used model-driven empirical search to determine theddev
graphics rendering [3], [7], [18], [20]-[22]. of loop unrolling and tiling.

Besides hardware innovations, progresses in programmingAlthough both studies have shown promising results, neithe
models have significantly improved the accessibility of GPOf them have explored the influence of program inputs on
for general-purpose computing. In particular, the NVIDIAhe optimization. Program inputs refer to both the values an
ComputeUnified Device Architecture (CUDA) [17] abstracts other related properties (e.g., dimensions of an inputir)atr
GPU as a general-purpose multithreaded SIMD (single iostrwof the inputs given to a program. In this work, we initiate
tion, multiple data) architectural model, and offers a k&li an exploration in this new dimension, showing that program
interface—supported by a compiler and a runtime systemirputs may affect the effectiveness of an optimization by up
for GPU programming. CUDA simplifies the development ofo a factor of 6. Based on the exploration, we develop a
GPU programs. tool, G-ADAPT (GPU adaptive optimization framework), to

However, developing aefficientGPU program remains asefficiently discover near-optimal decisions for GPU pragra
challenging as before if not even more. The difficulties com@ptimizations, and then, tailor the decisions for each oy
from four aspects. Thérst is the complexity in GPU archi- input.
tecture. On an NVIDIA GeForce 8800 GT, for example, there More specifically, this work makes three major contribu-
are over one hundred cores, four types of off-chip memonyons. First, we develop a source-to-source compiler-based



framework, G-ADAPT, for empirically searching for the Directly programming such a massively parallel architec-
best optimizations for GPU applications. The framework isire is difficult; CUDA, a programming model developed by
distinctive in that it conducts program transformationsl arNVIDIA, simplifies GPU programming by a set of abstrac-
optimization-space search in a fully automatic fashiond artions. The programming interface of CUDA is ANSI C with
meanwhile, offers a set of pragmas for programmers to eadilgrtain extensions. A GPU application written in CUDA is
incorporate their knowledge into the empirical search pssc composed of CPU code and GPU kernels. CUDA abstracts
Secondthis work examines the influence of program inputs othe execution of a GPU kernel as multithreaded SIMD com-
GPU program optimizations. We are not aware of any previopsitation. The threads are grouped into many warps with 32
studies in this direction. The lack of such explorations maihreads in each. Those warps are organized into a number of
be due to a common intuition that as most GPU applicatiottsread blocks. Each time, the runtime system maps one or
divide a task into small sub-tasks, the changes in theirtsipumore thread blocks to an SM. The warps in those blocks are
do not matter to the optimizations as long as the sub-tagkgnamically scheduled to run on the SM. In GeForce 8800
remain similar. Our experiments show that, although mayT, half of a warp is an SIMD execution unit. If one warp
GPU kernels conform that intuition, some GPU programs stalled (e.g., due to memory accesses), the other warps
exhibit strong input-sensitivity due to their computatipat- can be switched in with nearly zero overhead. Therefore, the
terns and the interplay with optimization paramet&isally, number of warps or thread blocks that are mapped to an
based on the exposed input sensitivity, we construct a croSM determines the effectiveness of the pipelining exeautio
input predictor by employing statistical learning (Regiea in hiding latency. As the thread-block size determines the
Trees in particular) to make G-ADAPT automatically tailomapping of blocks on SMs, it is an important parameter in
optimizations to program inputs. As far as we know, this & thGPU program optimizations.

first framework that allows cross-input adaptive optinizas Threads may communicate in the following ways. Threads
for GPU applications. in a block may communicate through shared memory and be

Experiments on NVIDIA GeForce 8800 GT GPU showsynchronized by a_syncthreadsrimitive. But communica-
that the adaptive optimization framework can predict thioons between threads that belong to different thread Islock
best optimizations for most of the 7 GPU applications withave to use off-chip global memory; the communications are
over 93% accuracy. The adaptive optimization improves tience slow and inflexible.
program performance by as much as 2.8 times in comparison
with manually optimized versions.

We organize the paper as follows. Section Il provides
some background on GPU and its programming model. SecAlthough CUDA simplifies GPU programming, it reduces
tion 11l discusses the challenges in GPU program optimizéttle if any difficulty in optimizing GPU applications; to
tions. Section IV describes G-ADAPT as our solution to thossome degree, the added abstractions even complicate the
challenges. Section V reports evaluation of the frameworptimization as they make performance prediction stildear
Section VI discusses the training overhead and some other a) Optimizations:There are mainly two ways to improve
complexities of G-ADAPT. After an overview of some relatedhe performance of a GPU program: the maximization of the
work in Section VII, we conclude the paper with a briefisage of computing units, and the reduction of the number
summary. of dynamic instructions. Optimizations to reach the firsalgo
fall into two categories. The first includes those technique
that attempt to increase the occupancy of the computing.unit

This work uses the NVIDIA GeForce 8800 GT GPU a®ne typical example is to reduce resource consumption of a
the architecture. It is a single-chip massively parallahar single thread so that multiple thread blocks can be assigned
tecture, with 112 cores and 512 MB off-chip memory. Theo an SM at the same time. The multiple blocks may help
GPU contains 14 streaming multiprocessors (SMs). Each $dep the SM busy when the threads in one block are stalled
contains 8 streaming processors (SPs) or cores, with tlei& cldor synchronization. Example transformations for thatgmse
rate set at 1.51 GHz. Each SM also includes 2 special functimetiude the adjustment of the number of threads per block,
units (SFUs) for the fast execution of complex floating poirdnd loop tiling. The second category contains the techsique
operations, such as sine, cosine. Besides the computitg urthat try to reduce latencies caused by memory references (or
on each SM, there are 8192 32-bit registers and 16 KB shal@dnches). Examples include the use of cachable memory
memory. Unlike cache, the shared memory has to be managed., texture memory), the reduction of bank conflicts in
explicitly in each GPU application. shared memory, and coalesced memory references (i.e., when

The off-chip memory includes a 512 MB global memorythreads in a warp reference a sequence of contiguous memory
which is both readable and writable by every SP, and soraddresses at the same time.)
constant memory and texture memory, which can only be readOptimizations to reduce the number of dynamic instructions
by the SPs. The constant memory and texture memory amelude many traditional compiler transformations, such a
cachable thanks to some on-chip cache, but the global memtmgp unrolling, common subexpression elimination. Altgbu
is not. the CUDA compiler,NVCGC has implemented many of these

IIl. CHALLENGES IN THE OPTIMIZATION OF GPU
PROGRAMS

Il. BACKGROUND ONGPU ARCHITECTURE ANDCUDA



techniques, researchers have seen great potential tot adjus left part in Figure 1, is to conduct a series of empirical
some of those optimizations, such as the levels of logearch in the optimization space of the given GPU program.
unrolling [3], [21]. During the search, a set of performance data, along with the
b) Challengesi:ltis difficult to analytically determine the program input features, are stored into a database. Afeer th
best optimizations for a GPU application, for three reasorfist stage finishes, the second stage, shown as the the right
First, it is often difficult to accurately predict the effects ofpart of Figure 1, uses the performance database to recognize
an optimization on the performance of the GPU applicatiothe relation between program inputs and the corresponding
The effects are often non-linear as what Ryoo et al. hasaitable optimization decisions. G-ADAPT then transfoithmes
shown [21]. The undisclosed details of the CUDA compilewsriginal GPU code into a program that is able to automaticall
and other abstractions add further unpredictabil®gcongd adapt to an arbitrary input.
different optimizations often affect each other. Loop diimg, The first part uses empirical search to overcome the dif-
for example, removes some dynamic instructions and exposieslty in modeling GPU program performance; the second
certain opportunities for the instruction scheduler toleitp part addresses the input-sensitivity issue by recognifireg
but it also increases register pressure for each threa@nGinfluence of inputs and making GPU program adaptive.
that the number of registers in an SM is limited, it may result
in fewer threads an SM can hold, and thus affect the selectigh Stage 1: Heuristic-Based Empirical Search and Data Col-
of thread-block sizeFinally, the many limits in GPU hardware |ection
add further complexity. In GeForce 8800 GT, for instance, th ] ] ) ] ]
maximum number of threads per block is 512, the maximum TN€ first stage is an iterative process. The inputs to the
number of threads per SM is 768, the maximum number BfOCeSS mc]ude agiven G,PU gppllcatlon (with some pragmas
blocks per SM is 8, and at each time, all the threads assigrlBg€ted) with a set of typical inputs.
to an SM must use no more than 16 KB shared memory and" the iterative process, the adaptive framework, for each
8192 registers in total. These constraints plus the ungtatde  Of the given inputs to the GPU application, automatically
effects of optimizations make it extremely difficult to blihn searches for the best values of optimization parametets tha
accurate analytical model for GPU optimization. can ma>§imize the performance of the application. The psoces
An alternative strategy for determining the best optimizd®Sults in a performance database, consisting of a set of
tions is through empirical search, whereby the optimizerinPut, best parameter valugstuples.
searches for the best optimization parameters by runningThree components are involved in this iterative process. Fo
the GPU application many times, each time with differert 9iven input to the GPU program, in each iteration, a compile
optimizations applied. Three obstacles must be removeatéefProduces a new version of the application, a calibrator then
this solution becomes practical. First, a compiler is nded&easures the performance of the program on the given input,
for abstracting out the optimization space and transfogmi@nd the measured result is used by an optimization agent
the program according|y_ Second, effective space prunes K? determine what version of the program the next iteration
necessary for the search efficiency, especially when thie ofhould try. When the system finds the best optimization
mization space is large. Finally, the optimizer must be able values for that input, it stores the values into the perforcea
handle the influence of program inputs. Our study (Section Wiptabase, and starts the iterations for another input.
shows that the best values of optimization parameters oeésom Several issues need to be addressed to make the empirical
GPU programs are different for different inputs. For exmp|seal’ch efficient and widely applicable. The issues inclunle h
an optimization suitable for one input to a reduction pragrato derive optimization space from the application, how to
degrades the performance of the program on another ingtiracterize program inputs, and how to prune the searce spa
by as much as 640%. For such programs, it is desirable tebaccelerate the search. In the following, we describe aw t
detect the input-sensitivity and make the optimizationssro 3 components in the first stage of G-ADAPT work together to
input adaptive. address these issues.
1) Optimization Pragmas and G-ADAPT Compile¥e
classify the optimization parameters in GPU applicatiarie i
G-ADAPT is our solution to the challenges in GPU prograrthree categories, corresponding to three different ogtition
optimization. It is a cross-input adaptive framework, yimf levels. In the first category are execution configurations of
source-to-source compilation, performance modeling,@atd the program—that is, the number of threads per block and the
tern recognition. This section first gives an overview of theumber of thread blocks for the execution of each GPU kernel.
framework, and then elaborates on every component in thbe second category includes the parameters that determine
framework. how the compiler transforms the program code, such as loop
unrolling levels and size of loop tiles. The third category
includes other implementation-level or algorithmic demwis,
Figure 1 shows the structure @-ADAPT Its two parts such as the selection of different algorithms for impleriment
separated by the dot vertical line correspond to two stagegunction. These parameters together constitute the dpace
of the optimization. The task of the first stage, shown dabke empirical search.

IV. ADAPTIVE OPTIMIZATION FRAMEWORK

A. Overview
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Fig. 1. G-ADAPT: An adaptive optimization framework for GPUograms.

Different applications have different parameters to oén mann and Midkiff. With some extensions added to Cetus, the
some parameters may be implicit in a program, and tli&ADAPT compiler is able to support CUDA programs, the G-
ranges of some parameters may be difficult to be automaticalDAPT pragmas, and a set of program transformations (e.g.,
determined because of aliases, pointers, and the entamgiemedundant elimination, and various loop transformatipns.
among program data.

So even though Comp”ers may automatica”y recognizeThe G-ADAPT compiler has two-fold responsibilities. At
some parameters in the first two categories, for automatfte beginning of the empirical search, the compiler recoggi
search to work generally, it is necessary to have a mechaniéi optimization space through data flow analysis, loop-anal
to easily expose all those kinds of parameters and th¥RiS, and analysis on the pragmas in the GPU application. In
possible values for an arbitrary GPU application. each iteration of the empirical search, the compiler uses on

In this work, we employ a set of pragmas, named G-ADAPSEL (_)f p_arameter values in the see_lrch space to t_ran_sform the
pragmas, to support the synergy between programmers Ahgplication and produces one version of the application.
compilers in revealing the optimization space. There are
three types of pragmas. The first type is dedicated for the) performance Calibrator and Optimization Agenthe
adjustment of scalar variable (or constant) values thatrobn performance calibrator invokes the CUDA compilsyCG
the execution configurations of the GPU application. Thg produce an executable from the GPU program generated
second type is for compiler optimizations. The third typeois by the G-ADAPT compiler. It then runs the executable (on
implementation selection. The pragmas allow the inclusibn the current input) to measure the running time. After the run
search hints, such as the important value ranges of a paamgtcomputes the occupancy of the executable on the GPU. The
and the suitable step size. For example, a pragma, “#pragft@upancy reflects the degree to which the executable exerts
erange 64,512,2" above the statement “#define BLKSZ 256he computing power of the GPU. A higher occupancy is often
means that the search range for the value of BLKSZ is frogesirable, but does not necessarily suggest higher peafaren
64 to 512 with exponential (the first “e” in “erange”) increas The occupancy calculation is based on the occupancy célcula
with base 2. ing spreadsheet [1] provided by NVIDIA. Besides hardware

We develop a source-to-source compiler, named the @&formation, the calculation requires the information dre t
ADAPT compiler, to construct and explore the optimizatiosize of shared memory allocated in each thread, the number
space. The G-ADAPT compiler is based on Cetus [14], a @ registers used by each thread, and the thread block size.
compiler infrastructure developed by the group led by Eigeifhe calibrator obtains the information from the “.cubin’efl



of the GPU program and the execution of the executdble compiler (JIT) support, the integration could happen dyrin
The calibrator then stores the parameter values, alongtime implicitly: The JIT compiles the program functions
with the running time and occupancy, into the performanaessing the parameters predicted as the best for the program
database. It checks whether the termination conditions (émput. Without JIT, the integration can occur either thrbug
plained next) for the search on the current input have bekmker, which links the appropriate versions of object fils®
reached; if so, it stores the input, along with the best patam an executable before every execution of the applicatiomnor
values that have been found, into the performance databasxecution wrapper, which every time selects the apprapriat
The responsibility of the optimization agent is to determinversion of executables to run. In our experiments, we use
which point in the optimization space should be explorethe wrapper solution because it has no linking overhead, and
in the next iteration of the search process. The size of thiee programs in our experiments need only few versions of
optimization space can be very large. Far independent executables. The G-ADAPT compiler, along with the CUDA
parameters, withD; denoting the number of possible valuegompiler, produces one executable for each parameterrvecto
of the ith parameter, the optimization space is as larghat is considered as the best for some training inputs in the
as Hfil D;. It implies that for an application with many performance database. When the application is launched with
loops and implementation options, the space may becowsme arbitrary input, the version selector in the wrapper uses
too large for the framework to enumerate all the points. Thke constructed regression trees to quickly determineigftne r
optimization agent uses hill climbing to accelerate thedea executable based on the input and then runs the program.
Let K be the number of parameters. The search starts with
all the parameters having their minimum values. In each of
the next K iterations, it increases one parameter by a stepWe use seven benchmarks to test the effectiveness of the
and keeps the others unchanged. After iteraiéh+ 1), it optimization framework, as listed in Table I. Most of the
finds the best of thek parameter vectors that are just triedprograms are from NVIDIA SDK [1]. The progranmvMul
and use it as the base for the néktiterations. This process is a matrix vector multiplication program from Fujimoto [9]
continues. When one parameter reaches the maximum, it stips an efficient implementation, outperforming the NVIDIA
increasing. When all parameters reach their maximum valu€d)BLAS [1] version significantly, thanks to its adoption
the search stops. of a new algorithm along with an effective use of texture
This hill climbing search differs from the model-based grunmemory [9].
proposed by Ryoo et al. [21]. Their approach is applicable We emphasize that the programs we use have all been
when the program performance is not bounded by memamanually tuned by the developers. Tieeluctionprogram, for
bandwidth; the method has shown more significant prune ratstance, has gone through seven optimizations, respbctiv
than our approach does. On the other hand, the hill climbiog the algorithm, locality, branch divergence, loop uringil
search is more generally applicable, making no assumpticared so on. NVIDIA has used it as a typical example to
on the GPU application. demonstrate manual optimizations on GPU programs. The

C. Stage 2: Pattern Recognition and Cross-Input Adaptatioﬁequence of optimizations have accelerated the program by
' ' as much as a factor of 30 [10].

After the first stage, the performance database contains &g third column of the table shows the number of different
number of<input, best parameter valuegtuples, from which, i ts we have used for each benchmark. We create those

the pattern recognizer learns the relation between PrografButs based on our understanding to the applications, avith
inputs and the optimization parameters. A number of stedilst attempt to cover a wide range of the input space.
learning techniques can be used in the learning process. IRpe type of GPU we use is NVIDIA GeForce 8800 GT.
this work, we select Regression Trees [11] for its SimpliCiti; conains 512 MB global memory, 14 multiprocessors, 112
and good interpretability. Regression Trees is a dividg-ancores with clock rates set at 1.51 GHz. Each multiprocessor
conquer leaming approach. It divides the input space infas 16 KB shared memory and 8192 registers. Every GPU
local regions with each region having a regular patternh& t ._r,ns with 2 Intel Xeon processors (3.6 GHz) on a machine
resulting tree, every non-leaf node contains a questiorhen {iin SUSE Linux 2.6.22 installed.
input features, and every leaf node corresponds to a region i gefore presenting the detailed results on each benchmark,
the input space. The question contained in a non-leaf nodeyJg priefly summarize the results. The best configurations of
automatically selected in the light of entropy reductiogfined ,-0q out of the seven programs change with their inputs. For
as the increase of the purity of the data set after the data gjine programs, the G-ADAPT is able to learn the relation
split by that question. Wg then apply Least Mean Squarggiyeen inputs and optimization parameters, producing ove
(LMS) to the data that fall into each leaf node to produce thgsoy, prediction accuracy (except 80% for one program) for
final predictive models. _ the best optimization decisions. The prediction yieldsesav

To capitalize on the learned patterns, we need to integrgi&as of speedup compared the running times of the original
them into the GPU application. If there were just-in-timgograms. In the following subsections, we present theltesu

1The “.cubin” files are generated BYVCCwith the usage of registers and of the input-sensitive programs first, followed by the resul
shared memory per thread block exposed. of other programs.

V. EVALUATION



TABLE |

BENCHMARKS
Benchmark | Description Num of Inputs | Prediction acc| Training iterations| Training time (s)
convolution | convolution filter of a 2D signal 10 100% 200 2825
matrixMul dense matrix multiplication 9 100% 196 2539
mvMul dense matrix-vector multiplication 15 93.3% 124 124
reduction sum of array 15 80% 75 29
scalarProd | scalar products of vector pairs 7 100% 93 237
transpose matrix transpose 18 100% 54 1639
transpose-co| matrix transpose with coalescing memory references 18 100% 54 631
A. Matrix-Vector Multiplication C. Matrix Transpose

The program,mvMul computes the product between a There are two versions of matrix transpose in the NVIDIA
dense matrix and a vector. The parameters of this prograRK. One uses memory coalescing and the other one does not;
include the size of a thread block, and the loop unrollinge denote them asanspose-candtransposeespectively. In
factors in the kernel function. Figure 2 shows the perforoeanPoth versions, the kernel function contains no loops, aed th
of the program on two example inputs when different confideey optimization parameter is the block size. Figure 5 shows
urations are used. The different parameter values cause uph€e results oftranspose For matrices of medium sizes, the
2.5 times performance difference. The block size has mdigst block size is 256, the same as the default setting in the
significant influence than the unrolling levels. Moreovére t Original program. Whereas, the best size becomes 16 when the
results clearly show the influence of program inputs on tiaatrix size increases to over 4 million elements. The speedu
optimal parameter values. The best block size for the fildgcomes more significant as the matrix become larger.
input turns out to be the worst for the second input, causing!n contrast, the coalesced versitranspose-cpis not input-

2.4 times slowdown than its best run. One of the reasons ffinsitive. The best block size is always 256. This version
the negligible effect of loop unrolling is that there is l6tt differs from transposemainly in memory accesses. In the
room for adjustment: the innermost loop can have iteratiok§nel function ofmtcq the references to the global memory
of at most a quarter of the width of a thread block. are staged. The data are first brought into shared memory in

Figure 3 (a) reports the best block size for each of the ﬁ—,coa!esced manner before the com_puta_ttion. Furthermaze, th
inputs. The block size used in the original program is 258ay is padde.d to reduce bank conflicts in the shared memory.
which works the best for the 4 inputs on the left. For the othdin€ changes in memory reference patterns remove the input-
inputs, the best block size is 64. Figure 3 (b) plots the speed Sensitivity. When the block size is 16, the program agh!eves
of the program when it uses the optimizations predicted By?0% occupancy on the multiprocessors, and thus exhilgits th
the G-ADAPT framework. The baseline is the running time8€st performance.
of the original program. The trend is that as the height
the input gr]natrixp bgcomes larger than its width, the sp?eed%;p Other Benchmarks and Overall Results
becomes larger. The reason why large blocks work poorly for The best values of the parameters in the other 3 benchmarks,
thin matrices is that each time, a block is in charge of a groiiatMulGPU, convolution, scalarProghow no sensitivity to
of rows, and in thin matrices, each thread has little workdo dheir inputs. Besides the parameters for loop optimization
and thus results in low occupancy on GPU processors. TH programmatMulGPUhas a parameter controlling the size

benchmark demonstrates that the shape of the input matriofsthread blocks, the programonvolutionhas 3 parameters
critical for the optimization decisions. controlling the tile size and the number of columns, and

the programscalarProd has 2 parameters controlling the
dimensions of the grid and the dimensions of a thread block.
The G-ADAPT system successfully finds the best parameter
The programreduction performs sum operations on an arvalues for all the 3 programs.
ray of integers. It represents one kind of common computatio We apply the predictions of G-ADAPT to these programs to
in parallel computing, reducing a series of values into glsin measure the effectiveness in performance improvement. The
value. Given that many optimizations (e.g., loop unrollingorediction is based on leave-one-out cross validation,[11]
have been manually applied in the development of the originghich is a typical practice in statistical learning to esite
program, our experiment concentrates on a single parameteé error of a predictive model in real uses. For each inpat, w
the number of threads per block. use all the other inputs as training inputs to build regmssi
The default setting is 128 threads per block. That settitigees, and then apply the trees to the left-out input to ptedi
turns out to be the best for most inputs, except two inputise corresponding best optimization decisions. The aeerag
whose array sizes ae8? and22?, in which case, the best blockprediction accuracies are shown in the fourth column in Ta-
size is 64. Even on these two inputs, the default setting svorlile I. For input-insensitive programs, the prediction s gle.
virtually similar to the optimal, with only 3% performanceFor the input-sensitive programs, the prediction accuracy
difference. 80% forreduction 93.3% formvMul and 100% fotranspose

B. Parallel Reduction
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The best values of the optimization parametersmeMul are input-sensitive. G-ADAPT addresses the influence anduymes significant speedup
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These results demonstrate the effectiveness of the Regressharacterization procedures and link them with G-ADAPT. A

Trees method in modeling the relation between inputs anecent study [15] proposes an extensible input charaetésiz

optimization decisions. language, XICL, to ease the efforts. Detailed studies remai
On different inputs to an application, the G-ADAPT yieldgo be our future work.

different speedups. Figure 6 summarizes the ranges of gpeed

brought by G-ADAPT on the 7 GPU programs. The baseline VIl. RELATED WORK

is the running times of '_[he original GPU programs. For each The studies closest to this work are the recent explorations

program, Fhe Ie_ft bar in a ben<_:hmark correspond_s _to t%?/ Ryoo et al. [21], and Baskaran et al. [3]. Ryoo and his

worst conﬁ_guratlon encount.ered in the explored o_pﬂmugaﬂ colleagues have definegfficiencyand utilization models for

space, Wh'?h reﬂects. the risk of a careless cc_)nflguratlon éerU computing, and demonstrated the effectiveness of the

transformation. The right bar shows the effectiveness of G: (s in pruning of the optimization space. Our study com-

ADAPT. Among all programs, only the default settings i lements their technique in that the influence from program
transpose-candreductionhappen to be (almost) the same a puts is a dimension omitted in their work. Furthermores th

tr:ﬁ one G'ADAZT flndst. Tthethl.s ;fo 2t.'8 times Off_Spe‘i_%Z cE:ﬂ'evious work conducts transformations manually, whereas
other programs demonstrate the effectiveness of input we develop a compiler framework with optimization pragmas

optimizations enabled by G-ADAPT. for automatic transformations. The prune method in our tool
complements the previous models in that it relaxes some
assumptions made by previous work, such as the memory

In this section, we first present the training overhead dfndwidth is not the bottleneck on performance. On the other
G-ADAPT and then discuss some complexities in applyingand, the previous models may work well in the cases when
G-ADAPT for large applications. the assumptions hold.

The right-most two columns in Table | reveal the training In the study by Baskaran et al. [3], the authors focus on the
overhead of G-ADAPT on the seven benchmarks. The totgbtimization of affine loops in GPU applications. They deyel
numbers of iterations range from 54 to 200, and the totah approach to improving global memory accesses and use
training time spans from 29 seconds to 47 minutes. The timeodel-driven empirical search to determine optimal parame
is determined by the number of training inputs, the dimemsioters for loop unrolling and tiling. Our work is complementar
of the search space, and the size of the inputs. The programtheir technique on two aspects. First, our optimizatiare
convolution happens to run for a long time on some of ittnput adaptive, whereas, the influence of program inputs is
training inputs, resulting in the longest training time. a missing factor in the previous study. Second, our tool can

It is worth noting that one complexity, input characterizabe applied to not only optimization of affine loops, but also
tion, happens to be simple in our experiments. Input charawther factors that affect the performance of GPU applicatio
terization is to determine the important features of prograsuch as the size of thread block size and implementaticai-lev
inputs. In our experiments, the inputs to the programs aglecisions. On the other hand, the transformations develope
just several numbers, indicating the sizes of the inputadjgnin the previous work can strengthen the effectiveness of our
matrix, array, or vector, which naturally capture the intpat tool. An integration of them into the tool may be worthwhile.
characteristics of the input data sets. However, for largeOn traditional CPU architecture, there has been many
complex GPU applications, the input characterization magudies on empirical-search based optimizations. Manyef t
need special treatment. One option is to develop some ingxplorations are for the development of efficient numerical

VI. DISCUSSIONS
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Fig. 6. The ranges of speedup brought by different optinonatiecisions. For each program, the left bar shows the rangpezfdup (less than 1 means
slowdown) if the worst decision is taken. The right bar shokes range of speedup when the G-ADAPT's prediction is used.

libraries or kernels, such as ATLAS [25], PHIPAC [4], SPARsupported by the National Science Foundation under Grant No
SITY [12], SPIRAL [19], FFTW [8], STAPL [23]. Our work is CSR-0720499 and CCF-0811791. Any opinions, findings, and
enlightened by those explorations, but focuses on a sitigfe- conclusions or recommendations expressed in this masrgal
massively parallel architecture, on which, the optimimasi those of the authors and do not necessarily reflect the views
dramatically differ from those on the previous CPU architeof our sponsors.

ture. Furthermore, the targets of this work are general GPU
applications, rather than a certain set of kernels. Thestyari

in the applications further complicates input charactgian
and the construction of cross-input predictive models.

The adaptation to different program inputs in this workH]
shares some common theme with code specialization, su<LﬁJ1
as procedure cloning [5], the incremental run-time special
ization [16], the specialization of libraries in Telesaogi 3l
Languages [13]. In addition, dynamic optimizations [2]], [6
[15], [24] may tailor a program to their inputs by runtime eod
generation.

VIIl. CONCLUSION [4]

This paper reports our exploration of the influence of pro-
gram inputs on GPU program optimizations. It shows that for
some GPU applications, their best optimizations are differ
for different inputs. It presents a compiler-based adaptivis
framework, G-ADAPT, which is able to extract optimization
space from program code, and automatically search for the
best optimizations for an GPU application on different itspu (7
With the use of Regression Trees, G-ADAPT produces cross-
input predictive models from the search results. The models
can predict the best optimizations from the input given tqg
the GPU application, and thus enable cross-input adaptive
optimizations. Experiments show significant performame i [9]
provement generated by the optimizations, demonstratiag t
promise of the framework as an automatic tool for resolvingo)
the productivity bottleneck in the development of efficient
GPU programs. (11]
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