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Abstract—Recent years have seen a trend in using graphic pro-
cessing units (GPU) as accelerators for general-purpose comput-
ing. The inexpensive, single-chip, massively parallel architecture
of GPU has evidentially brought factors of speedup to many nu-
merical applications. However, the development of a high-quality
GPU application is challenging, due to the large optimization
space and complex unpredictable effects of optimizations on GPU
program performance.

Recently, several studies have attempted to use empiri-
cal search to help the optimization. Although those studies
have shown promising results, one important factor—program
inputs—in the optimization has remained unexplored. In this
work, we initiate the exploration in this new dimension. By
conducting a series of measurement, we find that the ability to
adapt to program inputs is important for some applications to
achieve their best performance on GPU. In light of the findings,
we develop an input-adaptive optimization framework, namely
G-ADAPT, to address the influence by constructing cross-input
predictive models for automatically predicting the (near-)optimal
configurations for an arbitrary input to a GPU program. The
results demonstrate the promise of the framework in serving as a
tool to alleviate the productivity bottleneck in GPU programming.

Index Terms—GPU, Program Optimizations, Empirical
Search, CUDA, G-ADAPT, Cross-input Adaptation

I. I NTRODUCTION

As a specialized single-chip massively parallel architec-
ture, Graphics Processing Units (GPU) have shown orders
of magnitude higher throughput and performance per dollar
than traditional CPUs. The properties have recently drawn
great interest from researchers and industry practitioners in
extending GPU computation beyond the traditional uses in
graphics rendering [3], [7], [18], [20]–[22].

Besides hardware innovations, progresses in programming
models have significantly improved the accessibility of GPU
for general-purpose computing. In particular, the NVIDIA
ComputeUnified DeviceArchitecture (CUDA) [17] abstracts
GPU as a general-purpose multithreaded SIMD (single instruc-
tion, multiple data) architectural model, and offers a C-like
interface—supported by a compiler and a runtime system—
for GPU programming. CUDA simplifies the development of
GPU programs.

However, developing anefficientGPU program remains as
challenging as before if not even more. The difficulties come
from four aspects. Thefirst is the complexity in GPU archi-
tecture. On an NVIDIA GeForce 8800 GT, for example, there
are over one hundred cores, four types of off-chip memory,

hundreds of thousands of registers, and many parameters (e.g.,
maximum number of threads per block, thread block dimen-
sions) that constrain the programming. Theseconddifficulty
is that the multi-layered software execution stack makes it
difficult to predict the effects of a code optimization. A special
difficulty with CUDA is that currently a GPU program has to
be compiled by the NVIDIA CUDA compiler (NVCC) and
run on the NVIDIA CUDA runtime system, some details of
both of which are not disclosed yet.Third, an optimization
often has multiple effects, and the optimizations on different
parameters often strongly affect each other.Finally, some
GPU applications are input-sensitive. The best optimizations
of an application may be different when different inputs
are given to the application. Together, these factors make
manual optimizations time consuming and difficult to attain
the optimal, and at the same time, form great hurdles to
automatic optimizations as well.

On the other hand, optimizations are particularly important
for GPU programming. Because of the tremendous computing
power of GPU, there can be orders of magnitude performance
difference between well optimized and poorly optimized ver-
sions of an application [3], [20], [21].

Several recent studies have tried to tackle the problem
through empirical search-based approaches. Ryoo and his
colleagues [21] have definedefficiencyandutilization models
for GPU programs to help prune the optimization space.
Baskaran et al. [3] have developed a polyhedral compiler
model to optimize global memory accesses in affine loop nests,
and used model-driven empirical search to determine the levels
of loop unrolling and tiling.

Although both studies have shown promising results, neither
of them have explored the influence of program inputs on
the optimization. Program inputs refer to both the values and
other related properties (e.g., dimensions of an input matrix)
of the inputs given to a program. In this work, we initiate
an exploration in this new dimension, showing that program
inputs may affect the effectiveness of an optimization by up
to a factor of 6. Based on the exploration, we develop a
tool, G-ADAPT (GPU adaptive optimization framework), to
efficiently discover near-optimal decisions for GPU program
optimizations, and then, tailor the decisions for each program
input.

More specifically, this work makes three major contribu-
tions. First, we develop a source-to-source compiler-based



framework, G-ADAPT, for empirically searching for the
best optimizations for GPU applications. The framework is
distinctive in that it conducts program transformations and
optimization-space search in a fully automatic fashion, and
meanwhile, offers a set of pragmas for programmers to easily
incorporate their knowledge into the empirical search process.
Second, this work examines the influence of program inputs on
GPU program optimizations. We are not aware of any previous
studies in this direction. The lack of such explorations may
be due to a common intuition that as most GPU applications
divide a task into small sub-tasks, the changes in their inputs
do not matter to the optimizations as long as the sub-tasks
remain similar. Our experiments show that, although many
GPU kernels conform that intuition, some GPU programs
exhibit strong input-sensitivity due to their computationpat-
terns and the interplay with optimization parameters.Finally,
based on the exposed input sensitivity, we construct a cross-
input predictor by employing statistical learning (Regression
Trees in particular) to make G-ADAPT automatically tailor
optimizations to program inputs. As far as we know, this is the
first framework that allows cross-input adaptive optimizations
for GPU applications.

Experiments on NVIDIA GeForce 8800 GT GPU show
that the adaptive optimization framework can predict the
best optimizations for most of the 7 GPU applications with
over 93% accuracy. The adaptive optimization improves the
program performance by as much as 2.8 times in comparison
with manually optimized versions.

We organize the paper as follows. Section II provides
some background on GPU and its programming model. Sec-
tion III discusses the challenges in GPU program optimiza-
tions. Section IV describes G-ADAPT as our solution to those
challenges. Section V reports evaluation of the framework.
Section VI discusses the training overhead and some other
complexities of G-ADAPT. After an overview of some related
work in Section VII, we conclude the paper with a brief
summary.

II. BACKGROUND ON GPU ARCHITECTURE ANDCUDA

This work uses the NVIDIA GeForce 8800 GT GPU as
the architecture. It is a single-chip massively parallel archi-
tecture, with 112 cores and 512 MB off-chip memory. The
GPU contains 14 streaming multiprocessors (SMs). Each SM
contains 8 streaming processors (SPs) or cores, with the clock
rate set at 1.51 GHz. Each SM also includes 2 special function
units (SFUs) for the fast execution of complex floating point
operations, such as sine, cosine. Besides the computing units,
on each SM, there are 8192 32-bit registers and 16 KB shared
memory. Unlike cache, the shared memory has to be managed
explicitly in each GPU application.

The off-chip memory includes a 512 MB global memory,
which is both readable and writable by every SP, and some
constant memory and texture memory, which can only be read
by the SPs. The constant memory and texture memory are
cachable thanks to some on-chip cache, but the global memory
is not.

Directly programming such a massively parallel architec-
ture is difficult; CUDA, a programming model developed by
NVIDIA, simplifies GPU programming by a set of abstrac-
tions. The programming interface of CUDA is ANSI C with
certain extensions. A GPU application written in CUDA is
composed of CPU code and GPU kernels. CUDA abstracts
the execution of a GPU kernel as multithreaded SIMD com-
putation. The threads are grouped into many warps with 32
threads in each. Those warps are organized into a number of
thread blocks. Each time, the runtime system maps one or
more thread blocks to an SM. The warps in those blocks are
dynamically scheduled to run on the SM. In GeForce 8800
GT, half of a warp is an SIMD execution unit. If one warp
is stalled (e.g., due to memory accesses), the other warps
can be switched in with nearly zero overhead. Therefore, the
number of warps or thread blocks that are mapped to an
SM determines the effectiveness of the pipelining execution
in hiding latency. As the thread-block size determines the
mapping of blocks on SMs, it is an important parameter in
GPU program optimizations.

Threads may communicate in the following ways. Threads
in a block may communicate through shared memory and be
synchronized by a syncthreadsprimitive. But communica-
tions between threads that belong to different thread blocks
have to use off-chip global memory; the communications are
hence slow and inflexible.

III. C HALLENGES IN THE OPTIMIZATION OF GPU
PROGRAMS

Although CUDA simplifies GPU programming, it reduces
little if any difficulty in optimizing GPU applications; to
some degree, the added abstractions even complicate the
optimization as they make performance prediction still harder.

a) Optimizations:There are mainly two ways to improve
the performance of a GPU program: the maximization of the
usage of computing units, and the reduction of the number
of dynamic instructions. Optimizations to reach the first goal
fall into two categories. The first includes those techniques
that attempt to increase the occupancy of the computing units.
One typical example is to reduce resource consumption of a
single thread so that multiple thread blocks can be assigned
to an SM at the same time. The multiple blocks may help
keep the SM busy when the threads in one block are stalled
for synchronization. Example transformations for that purpose
include the adjustment of the number of threads per block,
and loop tiling. The second category contains the techniques
that try to reduce latencies caused by memory references (or
branches). Examples include the use of cachable memory
(e.g., texture memory), the reduction of bank conflicts in
shared memory, and coalesced memory references (i.e., when
threads in a warp reference a sequence of contiguous memory
addresses at the same time.)

Optimizations to reduce the number of dynamic instructions
include many traditional compiler transformations, such as
loop unrolling, common subexpression elimination. Although
the CUDA compiler,NVCC, has implemented many of these



techniques, researchers have seen great potential to adjust
some of those optimizations, such as the levels of loop
unrolling [3], [21].

b) Challenges:It is difficult to analytically determine the
best optimizations for a GPU application, for three reasons.
First, it is often difficult to accurately predict the effects of
an optimization on the performance of the GPU application.
The effects are often non-linear as what Ryoo et al. have
shown [21]. The undisclosed details of the CUDA compiler
and other abstractions add further unpredictability.Second,
different optimizations often affect each other. Loop unrolling,
for example, removes some dynamic instructions and exposes
certain opportunities for the instruction scheduler to exploit;
but it also increases register pressure for each thread. Given
that the number of registers in an SM is limited, it may result
in fewer threads an SM can hold, and thus affect the selection
of thread-block size.Finally, the many limits in GPU hardware
add further complexity. In GeForce 8800 GT, for instance, the
maximum number of threads per block is 512, the maximum
number of threads per SM is 768, the maximum number of
blocks per SM is 8, and at each time, all the threads assigned
to an SM must use no more than 16 KB shared memory and
8192 registers in total. These constraints plus the unpredictable
effects of optimizations make it extremely difficult to build an
accurate analytical model for GPU optimization.

An alternative strategy for determining the best optimiza-
tions is through empirical search, whereby the optimizer
searches for the best optimization parameters by running
the GPU application many times, each time with different
optimizations applied. Three obstacles must be removed before
this solution becomes practical. First, a compiler is needed
for abstracting out the optimization space and transforming
the program accordingly. Second, effective space prunes are
necessary for the search efficiency, especially when the opti-
mization space is large. Finally, the optimizer must be ableto
handle the influence of program inputs. Our study (Section V)
shows that the best values of optimization parameters of some
GPU programs are different for different inputs. For example,
an optimization suitable for one input to a reduction program
degrades the performance of the program on another input
by as much as 640%. For such programs, it is desirable to
detect the input-sensitivity and make the optimization cross-
input adaptive.

IV. A DAPTIVE OPTIMIZATION FRAMEWORK

G-ADAPT is our solution to the challenges in GPU program
optimization. It is a cross-input adaptive framework, unifying
source-to-source compilation, performance modeling, andpat-
tern recognition. This section first gives an overview of the
framework, and then elaborates on every component in the
framework.

A. Overview

Figure 1 shows the structure ofG-ADAPT. Its two parts
separated by the dot vertical line correspond to two stages
of the optimization. The task of the first stage, shown as

the left part in Figure 1, is to conduct a series of empirical
search in the optimization space of the given GPU program.
During the search, a set of performance data, along with the
program input features, are stored into a database. After the
first stage finishes, the second stage, shown as the the right
part of Figure 1, uses the performance database to recognize
the relation between program inputs and the corresponding
suitable optimization decisions. G-ADAPT then transformsthe
original GPU code into a program that is able to automatically
adapt to an arbitrary input.

The first part uses empirical search to overcome the dif-
ficulty in modeling GPU program performance; the second
part addresses the input-sensitivity issue by recognizingthe
influence of inputs and making GPU program adaptive.

B. Stage 1: Heuristic-Based Empirical Search and Data Col-
lection

The first stage is an iterative process. The inputs to the
process include a given GPU application (with some pragmas
inserted) with a set of typical inputs.

In the iterative process, the adaptive framework, for each
of the given inputs to the GPU application, automatically
searches for the best values of optimization parameters that
can maximize the performance of the application. The process
results in a performance database, consisting of a set of
<input, best parameter values> tuples.

Three components are involved in this iterative process. For
a given input to the GPU program, in each iteration, a compiler
produces a new version of the application, a calibrator then
measures the performance of the program on the given input,
and the measured result is used by an optimization agent
to determine what version of the program the next iteration
should try. When the system finds the best optimization
values for that input, it stores the values into the performance
database, and starts the iterations for another input.

Several issues need to be addressed to make the empirical
search efficient and widely applicable. The issues include how
to derive optimization space from the application, how to
characterize program inputs, and how to prune the search space
to accelerate the search. In the following, we describe how the
3 components in the first stage of G-ADAPT work together to
address these issues.

1) Optimization Pragmas and G-ADAPT Compiler:We
classify the optimization parameters in GPU applications into
three categories, corresponding to three different optimization
levels. In the first category are execution configurations of
the program—that is, the number of threads per block and the
number of thread blocks for the execution of each GPU kernel.
The second category includes the parameters that determine
how the compiler transforms the program code, such as loop
unrolling levels and size of loop tiles. The third category
includes other implementation-level or algorithmic decisions,
such as the selection of different algorithms for implementing
a function. These parameters together constitute the spacefor
the empirical search.
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Fig. 1. G-ADAPT: An adaptive optimization framework for GPU programs.

Different applications have different parameters to optimize;
some parameters may be implicit in a program, and the
ranges of some parameters may be difficult to be automatically
determined because of aliases, pointers, and the entanglement
among program data.

So even though compilers may automatically recognize
some parameters in the first two categories, for automatic
search to work generally, it is necessary to have a mechanism
to easily expose all those kinds of parameters and their
possible values for an arbitrary GPU application.

In this work, we employ a set of pragmas, named G-ADAPT
pragmas, to support the synergy between programmers and
compilers in revealing the optimization space. There are
three types of pragmas. The first type is dedicated for the
adjustment of scalar variable (or constant) values that control
the execution configurations of the GPU application. The
second type is for compiler optimizations. The third type isfor
implementation selection. The pragmas allow the inclusionof
search hints, such as the important value ranges of a parameter
and the suitable step size. For example, a pragma, “#pragma
erange 64,512,2” above the statement “#define BLKSZ 256”,
means that the search range for the value of BLKSZ is from
64 to 512 with exponential (the first “e” in “erange”) increases
with base 2.

We develop a source-to-source compiler, named the G-
ADAPT compiler, to construct and explore the optimization
space. The G-ADAPT compiler is based on Cetus [14], a C
compiler infrastructure developed by the group led by Eigen-

mann and Midkiff. With some extensions added to Cetus, the
G-ADAPT compiler is able to support CUDA programs, the G-
ADAPT pragmas, and a set of program transformations (e.g.,
redundant elimination, and various loop transformations.)

The G-ADAPT compiler has two-fold responsibilities. At
the beginning of the empirical search, the compiler recognizes
the optimization space through data flow analysis, loop anal-
ysis, and analysis on the pragmas in the GPU application. In
each iteration of the empirical search, the compiler uses one
set of parameter values in the search space to transform the
application and produces one version of the application.

2) Performance Calibrator and Optimization Agent:The
performance calibrator invokes the CUDA compiler,NVCC,
to produce an executable from the GPU program generated
by the G-ADAPT compiler. It then runs the executable (on
the current input) to measure the running time. After the run,
it computes the occupancy of the executable on the GPU. The
occupancy reflects the degree to which the executable exerts
the computing power of the GPU. A higher occupancy is often
desirable, but does not necessarily suggest higher performance.
The occupancy calculation is based on the occupancy calculat-
ing spreadsheet [1] provided by NVIDIA. Besides hardware
information, the calculation requires the information on the
size of shared memory allocated in each thread, the number
of registers used by each thread, and the thread block size.
The calibrator obtains the information from the “.cubin” files



of the GPU program and the execution of the executable1.
The calibrator then stores the parameter values, along

with the running time and occupancy, into the performance
database. It checks whether the termination conditions (ex-
plained next) for the search on the current input have been
reached; if so, it stores the input, along with the best parameter
values that have been found, into the performance database.

The responsibility of the optimization agent is to determine
which point in the optimization space should be explored
in the next iteration of the search process. The size of the
optimization space can be very large. ForK independent
parameters, withDi denoting the number of possible values
of the ith parameter, the optimization space is as large
as

∏
K

i=1
Di. It implies that for an application with many

loops and implementation options, the space may become
too large for the framework to enumerate all the points. The
optimization agent uses hill climbing to accelerate the search.
Let K be the number of parameters. The search starts with
all the parameters having their minimum values. In each of
the nextK iterations, it increases one parameter by a step
and keeps the others unchanged. After iteration(K + 1), it
finds the best of theK parameter vectors that are just tried,
and use it as the base for the nextK iterations. This process
continues. When one parameter reaches the maximum, it stops
increasing. When all parameters reach their maximum values,
the search stops.

This hill climbing search differs from the model-based prune
proposed by Ryoo et al. [21]. Their approach is applicable
when the program performance is not bounded by memory
bandwidth; the method has shown more significant prune rate
than our approach does. On the other hand, the hill climbing
search is more generally applicable, making no assumptions
on the GPU application.

C. Stage 2: Pattern Recognition and Cross-Input Adaptation

After the first stage, the performance database contains a
number of<input, best parameter values> tuples, from which,
the pattern recognizer learns the relation between program
inputs and the optimization parameters. A number of statistical
learning techniques can be used in the learning process. In
this work, we select Regression Trees [11] for its simplicity
and good interpretability. Regression Trees is a divide-and-
conquer learning approach. It divides the input space into
local regions with each region having a regular pattern. In the
resulting tree, every non-leaf node contains a question on the
input features, and every leaf node corresponds to a region in
the input space. The question contained in a non-leaf node is
automatically selected in the light of entropy reduction, defined
as the increase of the purity of the data set after the data are
split by that question. We then apply Least Mean Squares
(LMS) to the data that fall into each leaf node to produce the
final predictive models.

To capitalize on the learned patterns, we need to integrate
them into the GPU application. If there were just-in-time

1The “.cubin” files are generated byNVCCwith the usage of registers and
shared memory per thread block exposed.

compiler (JIT) support, the integration could happen during
runtime implicitly: The JIT compiles the program functions
using the parameters predicted as the best for the program
input. Without JIT, the integration can occur either through a
linker, which links the appropriate versions of object filesinto
an executable before every execution of the application, oran
execution wrapper, which every time selects the appropriate
version of executables to run. In our experiments, we use
the wrapper solution because it has no linking overhead, and
the programs in our experiments need only few versions of
executables. The G-ADAPT compiler, along with the CUDA
compiler, produces one executable for each parameter vector
that is considered as the best for some training inputs in the
performance database. When the application is launched with
an arbitrary input, the version selector in the wrapper uses
the constructed regression trees to quickly determine the right
executable based on the input and then runs the program.

V. EVALUATION

We use seven benchmarks to test the effectiveness of the
optimization framework, as listed in Table I. Most of the
programs are from NVIDIA SDK [1]. The program,mvMul,
is a matrix vector multiplication program from Fujimoto [9].
It is an efficient implementation, outperforming the NVIDIA
CUBLAS [1] version significantly, thanks to its adoption
of a new algorithm along with an effective use of texture
memory [9].

We emphasize that the programs we use have all been
manually tuned by the developers. Thereductionprogram, for
instance, has gone through seven optimizations, respectively
on the algorithm, locality, branch divergence, loop unrolling
and so on. NVIDIA has used it as a typical example to
demonstrate manual optimizations on GPU programs. The
sequence of optimizations have accelerated the program by
as much as a factor of 30 [10].

The third column of the table shows the number of different
inputs we have used for each benchmark. We create those
inputs based on our understanding to the applications, withan
attempt to cover a wide range of the input space.

The type of GPU we use is NVIDIA GeForce 8800 GT.
It contains 512 MB global memory, 14 multiprocessors, 112
cores, with clock rates set at 1.51 GHz. Each multiprocessor
has 16 KB shared memory and 8192 registers. Every GPU
co-runs with 2 Intel Xeon processors (3.6 GHz) on a machine
with SUSE Linux 2.6.22 installed.

Before presenting the detailed results on each benchmark,
we briefly summarize the results. The best configurations of
three out of the seven programs change with their inputs. For
all the programs, the G-ADAPT is able to learn the relation
between inputs and optimization parameters, producing over
93% prediction accuracy (except 80% for one program) for
the best optimization decisions. The prediction yields several
times of speedup compared the running times of the original
programs. In the following subsections, we present the results
of the input-sensitive programs first, followed by the results
of other programs.



TABLE I
BENCHMARKS

Benchmark Description Num of Inputs Prediction acc Training iterations Training time (s)
convolution convolution filter of a 2D signal 10 100% 200 2825
matrixMul dense matrix multiplication 9 100% 196 2539
mvMul dense matrix-vector multiplication 15 93.3% 124 124
reduction sum of array 15 80% 75 29
scalarProd scalar products of vector pairs 7 100% 93 237
transpose matrix transpose 18 100% 54 1639
transpose-co matrix transpose with coalescing memory references 18 100% 54 631

A. Matrix-Vector Multiplication

The program,mvMul, computes the product between a
dense matrix and a vector. The parameters of this program
include the size of a thread block, and the loop unrolling
factors in the kernel function. Figure 2 shows the performance
of the program on two example inputs when different config-
urations are used. The different parameter values cause up to
2.5 times performance difference. The block size has more
significant influence than the unrolling levels. Moreover, the
results clearly show the influence of program inputs on the
optimal parameter values. The best block size for the first
input turns out to be the worst for the second input, causing
2.4 times slowdown than its best run. One of the reasons for
the negligible effect of loop unrolling is that there is little
room for adjustment: the innermost loop can have iterations
of at most a quarter of the width of a thread block.

Figure 3 (a) reports the best block size for each of the 15
inputs. The block size used in the original program is 256,
which works the best for the 4 inputs on the left. For the other
inputs, the best block size is 64. Figure 3 (b) plots the speedups
of the program when it uses the optimizations predicted by
the G-ADAPT framework. The baseline is the running times
of the original program. The trend is that as the height of
the input matrix becomes larger than its width, the speedup
becomes larger. The reason why large blocks work poorly for
thin matrices is that each time, a block is in charge of a group
of rows, and in thin matrices, each thread has little work to do
and thus results in low occupancy on GPU processors. This
benchmark demonstrates that the shape of the input matrix is
critical for the optimization decisions.

B. Parallel Reduction

The program,reduction, performs sum operations on an ar-
ray of integers. It represents one kind of common computation
in parallel computing, reducing a series of values into a single
value. Given that many optimizations (e.g., loop unrolling)
have been manually applied in the development of the original
program, our experiment concentrates on a single parameter,
the number of threads per block.

The default setting is 128 threads per block. That setting
turns out to be the best for most inputs, except two inputs
whose array sizes are219 and220, in which case, the best block
size is 64. Even on these two inputs, the default setting works
virtually similar to the optimal, with only 3% performance
difference.

C. Matrix Transpose

There are two versions of matrix transpose in the NVIDIA
SDK. One uses memory coalescing and the other one does not;
we denote them astranspose-coandtransposerespectively. In
both versions, the kernel function contains no loops, and the
key optimization parameter is the block size. Figure 5 shows
the results oftranspose. For matrices of medium sizes, the
best block size is 256, the same as the default setting in the
original program. Whereas, the best size becomes 16 when the
matrix size increases to over 4 million elements. The speedup
becomes more significant as the matrix become larger.

In contrast, the coalesced version,transpose-co, is not input-
sensitive. The best block size is always 256. This version
differs from transposemainly in memory accesses. In the
kernel function ofmtco, the references to the global memory
are staged. The data are first brought into shared memory in
a coalesced manner before the computation. Furthermore, the
array is padded to reduce bank conflicts in the shared memory.
The changes in memory reference patterns remove the input-
sensitivity. When the block size is 16, the program achieves
100% occupancy on the multiprocessors, and thus exhibits the
best performance.

D. Other Benchmarks and Overall Results

The best values of the parameters in the other 3 benchmarks,
matMulGPU, convolution, scalarProd, show no sensitivity to
their inputs. Besides the parameters for loop optimizations,
the programmatMulGPUhas a parameter controlling the size
of thread blocks, the programconvolutionhas 3 parameters
controlling the tile size and the number of columns, and
the programscalarProd has 2 parameters controlling the
dimensions of the grid and the dimensions of a thread block.
The G-ADAPT system successfully finds the best parameter
values for all the 3 programs.

We apply the predictions of G-ADAPT to these programs to
measure the effectiveness in performance improvement. The
prediction is based on leave-one-out cross validation [11],
which is a typical practice in statistical learning to estimate
the error of a predictive model in real uses. For each input, we
use all the other inputs as training inputs to build regression
trees, and then apply the trees to the left-out input to predict
the corresponding best optimization decisions. The average
prediction accuracies are shown in the fourth column in Ta-
ble I. For input-insensitive programs, the prediction is simple.
For the input-sensitive programs, the prediction accuracyis
80% forreduction, 93.3% formvMul, and 100% fortranspose.
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Fig. 5. Experimental results ontranspose.

These results demonstrate the effectiveness of the Regression
Trees method in modeling the relation between inputs and
optimization decisions.

On different inputs to an application, the G-ADAPT yields
different speedups. Figure 6 summarizes the ranges of speedup
brought by G-ADAPT on the 7 GPU programs. The baseline
is the running times of the original GPU programs. For each
program, the left bar in a benchmark corresponds to the
worst configuration encountered in the explored optimization
space, which reflects the risk of a careless configuration or
transformation. The right bar shows the effectiveness of G-
ADAPT. Among all programs, only the default settings in
transpose-coandreductionhappen to be (almost) the same as
the one G-ADAPT finds. The 1.5 to 2.8 times of speedup on
other programs demonstrate the effectiveness of input-adaptive
optimizations enabled by G-ADAPT.

VI. D ISCUSSIONS

In this section, we first present the training overhead of
G-ADAPT and then discuss some complexities in applying
G-ADAPT for large applications.

The right-most two columns in Table I reveal the training
overhead of G-ADAPT on the seven benchmarks. The total
numbers of iterations range from 54 to 200, and the total
training time spans from 29 seconds to 47 minutes. The time
is determined by the number of training inputs, the dimensions
of the search space, and the size of the inputs. The program,
convolution, happens to run for a long time on some of its
training inputs, resulting in the longest training time.

It is worth noting that one complexity, input characteriza-
tion, happens to be simple in our experiments. Input charac-
terization is to determine the important features of program
inputs. In our experiments, the inputs to the programs are
just several numbers, indicating the sizes of the input signal,
matrix, array, or vector, which naturally capture the important
characteristics of the input data sets. However, for large
complex GPU applications, the input characterization may
need special treatment. One option is to develop some input

characterization procedures and link them with G-ADAPT. A
recent study [15] proposes an extensible input characterization
language, XICL, to ease the efforts. Detailed studies remain
to be our future work.

VII. R ELATED WORK

The studies closest to this work are the recent explorations
by Ryoo et al. [21], and Baskaran et al. [3]. Ryoo and his
colleagues have definedefficiencyand utilization models for
GPU computing, and demonstrated the effectiveness of the
models in pruning of the optimization space. Our study com-
plements their technique in that the influence from program
inputs is a dimension omitted in their work. Furthermore, the
previous work conducts transformations manually, whereas,
we develop a compiler framework with optimization pragmas
for automatic transformations. The prune method in our tool
complements the previous models in that it relaxes some
assumptions made by previous work, such as the memory
bandwidth is not the bottleneck on performance. On the other
hand, the previous models may work well in the cases when
the assumptions hold.

In the study by Baskaran et al. [3], the authors focus on the
optimization of affine loops in GPU applications. They develop
an approach to improving global memory accesses and use
model-driven empirical search to determine optimal parame-
ters for loop unrolling and tiling. Our work is complementary
to their technique on two aspects. First, our optimizationsare
input adaptive, whereas, the influence of program inputs is
a missing factor in the previous study. Second, our tool can
be applied to not only optimization of affine loops, but also
other factors that affect the performance of GPU applications,
such as the size of thread block size and implementation-level
decisions. On the other hand, the transformations developed
in the previous work can strengthen the effectiveness of our
tool. An integration of them into the tool may be worthwhile.

On traditional CPU architecture, there has been many
studies on empirical-search based optimizations. Many of the
explorations are for the development of efficient numerical
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libraries or kernels, such as ATLAS [25], PHiPAC [4], SPAR-
SITY [12], SPIRAL [19], FFTW [8], STAPL [23]. Our work is
enlightened by those explorations, but focuses on a single-chip
massively parallel architecture, on which, the optimizations
dramatically differ from those on the previous CPU architec-
ture. Furthermore, the targets of this work are general GPU
applications, rather than a certain set of kernels. The variety
in the applications further complicates input characterization
and the construction of cross-input predictive models.

The adaptation to different program inputs in this work
shares some common theme with code specialization, such
as procedure cloning [5], the incremental run-time special-
ization [16], the specialization of libraries in Telescoping
Languages [13]. In addition, dynamic optimizations [2], [6],
[15], [24] may tailor a program to their inputs by runtime code
generation.

VIII. C ONCLUSION

This paper reports our exploration of the influence of pro-
gram inputs on GPU program optimizations. It shows that for
some GPU applications, their best optimizations are different
for different inputs. It presents a compiler-based adaptive
framework, G-ADAPT, which is able to extract optimization
space from program code, and automatically search for the
best optimizations for an GPU application on different inputs.
With the use of Regression Trees, G-ADAPT produces cross-
input predictive models from the search results. The models
can predict the best optimizations from the input given to
the GPU application, and thus enable cross-input adaptive
optimizations. Experiments show significant performance im-
provement generated by the optimizations, demonstrating the
promise of the framework as an automatic tool for resolving
the productivity bottleneck in the development of efficient
GPU programs.
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