
A Cross-Layer Approach for Power-Performance Optimization in Distributed
Mobile Systems∗

Shivajit Mohapatra†, Radu Cornea†, Hyunok Oh†, Kyoungwoo Lee†, Minyoung Kim†,
Nikil Dutt†, Rajesh Gupta§, Alex Nicolau†, Sandeep Shukla¶, Nalini Venkatasubramanian†

† School of Information and Computer Science, UC Irvine,
§ Department of Computer Science and Engineering, UC San Diego,
¶ Department of Electrical and Computer Engineering, Virginia Tech.

Abstract

The next generation of mobile systems with multimedia
processing capabilities and wireless connectivity will be in-
creasingly deployed in highly dynamic and distributed envi-
ronments for multimedia playback and delivery (e.g. video
streaming, multimedia conferencing). The challenge is to
meet the heavy resource demands of multimedia applica-
tions under the stringent energy, computational, and band-
width constraints of mobile systems, while constantly adapt-
ing to the global state changes of the distributed environment.
In this paper, we present our initiatives under the FORGE
framework to address the issue of delivering high quality
multimedia content in mobile environments. In order to cope
with the resource intensive nature of multimedia applications
and dynamically changing global state (e.g. node mobility,
network congestion), an end-to-end approach to QoS aware
power optimization is required. We present a framework for
coordinating energy optimizing strategies across various lay-
ers of system implementation and functionality and discuss
techniques that can be employed to achieve energy gains for
mobile multimedia systems.

1. Introduction

Current trends indicate that delivery of multimedia con-
tent to mobile systems operating in distributed environments
will drive many future applications. Distributed multime-
dia applications (e.g. video streaming) with their distinctive
Quality of Service(QoS) and heavy resource demands can
quickly drain the battery energy of mobile systems. There-
fore, optimizing the energy consumption is an important de-
sign goal for such systems.

∗ This work was partially supported by NSF award ACI-0204028.

Researchers have proposed several techniques at various
system levels (hardware, OS, network, application) for sav-
ing battery energy in mobile systems. However, power opti-
mization techniques developed for individual components of
a device (single system level) have remained seemingly inc-
ognizant of the strategies employed for other components.
While focussing their attention to a single level, researchers
make a general assumption that no other power optimiza-
tion schemes are operational at other levels. We believe that
the cumulative power gains for incorporating multiple tech-
niques can be potentially significant, but this also requires
careful evaluation of the trade-offs involved and the cus-
tomizations required for unified operation [15].

Energy efficient delivery of multimedia content with good
quality attributes, requires tradeoffs across various layers of
system implementation and functionality - from application
to system software to networking and distributed adaptation.
Since the optimal energy conditions can change dynamically,
these optimizations should also allow for dynamic adaption
of system functionality and its performance. In order to dy-
namically adapt to device mobility, systems need to have a
high degree of “network awareness” (e.g. congestion rates,
mobility patterns etc.) and need to be cognizant of a con-
stantly changing global system state.

Therefore, within the context of the FORGE project, we
have concentrated our efforts on exploiting multimedia spe-
cific characteristics to enable a range of energy optimization
techniques that adapt to, and optimize for, changes in appli-
cation data (video stream), OS/Hardware (CPU, memory, re-
configurable logic), network (congestion, noise, node mobil-
ity), residual energy (battery) and even the user environment
(ambient light, sound) and user preferences (preferred qual-
ity). The interaction between different system layers (Fig. 1)
is even more important in distributed applications where a
combination of local and global information helps and im-
proves the control decisions (power, performance and QoS
trade-offs) made at runtime.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



Server

Clientn

Clienti

Client1

Network
Card

Display Cache Memory RegFiles
CPU

H/W

Operating System
DVS Scheduler

Network
Management

Transcoding Admission
Control

Applications
Video Player Other Tasks

Middleware

Figure 1. Abstraction Layers in Distributed Multi-
media Streaming

The FORGE project [9] aims to study the tradeoffs be-
tween power, performance and QoS requirements across the
various computational layers. The goal is to develop and
coordinate application, middleware, OS and hardware en-
ergy optimization approaches, for improvements in power
savings and the overall user experience, in the context of
distributed multimedia applications.Multimedia applications
heavily utilize the biggest power consumers in modern com-
puters: the CPU, the network and the display. Therefore, in
FORGE, we aggregate the hardware and software techniques
that lead to power savings for these resources. As a result
of the FORGE initiative, we have explored different ideas
for achieving coordinated power management across differ-
ent levels of system functionality in the context of multime-
dia applications.

• We investigate the use of an adaptive, distributed mid-
dleware framework (called ”Dynamo”) that coordinates
global (proxy based) and local adaptations for power
management in mobile devices operating in distributed
environments.

• We have studied how to annotate application data with
specific information that can be exploited during run-
time at different levels of abstraction (hardware through
application), for improving power efficiency and ulti-
mately the user experience.

• Finally, we examine the tradeoffs of parameters defined
in multiple layers such as application layer, OS layer
network layer and hardware layer. For example, we con-
sider image quality in application layer, compressed
size in network layer, and execution time and power
consumption in hardware layer. We investigate trade-
off between the parameters and system performance
and optimize each parameter to minimize power con-
sumptionwith meeting given image quality and network
bandwidth constraints.

We assume the system model depicted in Fig. 2. The
system entities include a multimedia server, a proxy node
that can perform various optimizations on the stream (e.g.
transcoding), the users with low-power wireless devices and

S P

C

C

C

ProxyServer Switch Access
Point

Transcoder, etc.

WAN WIRED ETHERNET

WIRELESS

�

�
�

�

�

Annotation

Figure 2. System Model

other network equipment along the way. The multimedia
servers store media content and stream videos to clients upon
requests issued by the users on their handheld devices. The
communication between the handheld device and the servers
can be routed through a proxy server – a high-end machine
that has the ability to process the video stream in real-time.
The proxy node can also perform inline profiling/annotation
for real-time video streaming (videoconferencing is an ex-
ample of such an application).

2. Cross-Layer Adaptation using the Dynamo
Middleware Framework

In order to coordinate power management strate-
gies across various system layers, one specific approach
we have adopted is to use a distributed middleware frame-
work to manage and interface the cross layer adaptations.
A middleware framework specifically designed to ad-
dress the cross-layer adaptation is effective because (i)
the middleware can exploit global system state informa-
tion (e.g. network noise, mobility patterns etc.) which
are typically not available locally on a low-power de-
vice to drive power management strategies and (ii) it can
abstract system level details effectively from higher lay-
ers (iii) coordinate local and remote adaptations by in-
terfacing with the applications, network, OS and hard-
ware.
We have designed and implemented an adaptive power-

aware middleware framework called “Dynamo” that coordi-
nates application adaptations, OS power-saving mechanisms
(dynamic voltage scaling) and adaptive middleware tech-
niques (energy-aware admission control, transcoding, net-
work traffic regulation, mobility etc.) for improving perfor-
mance and energy gains for mobile systems. We have iden-
tified interaction parameters between the different computa-
tional levels that can facilitate effective cross-layer coordina-
tions. To deploy such an unified power management frame-
work for mobile devices, we have developed a set of APIs
at the various computational layers in order to establish a
continuous dialogue between the various layers. Such a ca-
pability can be effectively exploited to drive various dy-
namic cross layer energy adaptations, either due to changes
in global system state or due to changes in the local device
state (e.g. battery energy).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



As shown in Fig. 1, we assume that the mobile device has
four levels - application, middleware, OS and hardware. The
energy consuming components (e.g. cpu, NIC, LCD display)
are at the hardware level. The next higher level is the operat-
ing system, which has access to the physical devices through
well defined driver interfaces. We enhance the operating sys-
tem for supporting cross-layer energy management. Next in
the hierarchy is the distributed middleware level. Our frame-
work entirely adds this layer for coordinating global and lo-
cal adaptations. The middleware layer can be considered to
have three abstract components to it - a “system” component
that resides within the OS (with possible OS level code inte-
gration), a “network” component that implements a commu-
nication protocol to talk with a distributed proxy server and
a “user level” component that performs the various middle-
ware based adaptations using the information gathered from
the network, the OS and the user (or application). The appli-
cation layer provides user profiles (specific user preferences)
and application specific context to the middleware and also
performs dynamic QoS negotiations.
In this model, the middleware executes on both the mo-

bile device and the proxy, and performs several important
functions. On the device, the middleware makes the execut-
ing mobile applications both “local state aware” and “global
state aware”. By local state awareness we refer to every-
thing that resides on the physical device the application is ex-
ecuting on - for example residual battery information, back-
light settings, operating CPU frequency, memory informa-
tion, other executing applications etc.. We also exploit our
middleware to make individual system layers aware of the
power management functionalities in the other layers. On the
other hand, global awareness refers to information that is not
available on the local device (e.g. bandwidth availability, net-
work congestion, mobility information).
While most current power management strategies exhibit

a certain degree of local awareness in their approach, none
of the power management techniques have tried to exploit
the information available in both global and local contexts.
Based on the residual battery energy level (local context) of
a device, a proxy can perform several energy aware adapta-
tions. For example, the quality of a video stream can be dy-
namically reduced if the device running low on battery. The
distributed middleware plays the role of both exposing global
and local contexts to applications and proxies. Additionally,
the middleware can use its cognizance of global/local states
to provide valuable hints that aid the other system levels to
better tune their adaptations.
Fig. 3 shows the various implemented components of our

integrated cross-layer adaptation framework. The top level
consists of the various applications that link to our frame-
work. The primary components of the distributed middle-
ware layer are the system/energy monitors, the adaptation
manager and the communication manager. We implement a
power-aware API interface for applications & middleware

Mobile Applications

Adaptation
Manager

Middleware API Interface

C
o

m
m

u
n

ic
at

i
o

n
M

an
ag

er

Energy Monitor

Power Aware OS Kernel (Linux)

OS API Interface

Middleware runtime

System
Monitor

C
o

m
m

u
n

ic
at

io
n

M
an

ag
er

Strategy
Analysis

Network
Monitor

Payoff
base

Middleware runtime

transcoder

PROXY SERVER

Communication
protocol

PA-API

PA-OSL Interface

PA-HAL Interface

HARDWARE

OS HAL

Figure 3. Framework Implementation

components to interface with the power aware operating sys-
tem. The energy/system monitors are middleware libraries
that export calls to provide applications (as well as other mid-
dleware modules) with local state information. The monitor
interface has been implemented on Linux using the “proc”
file system interface provided by linux [3]. The communica-
tion manager implements a middleware communication pro-
tocol to communicate state and control information between
the device and proxy. The adaptation manager performs vari-
ous middleware level adaptations (e.g strategy selection, QoS
negotiation etc). The middleware employs an active runtime
component (thread), that performs various background tasks
(like updating local/global state periodically etc.). However,
the functions of both the adaptation manager and the runtime
are dictated by adaptations specific to applications.
In the power-aware operating system we implement the

dynamic frequency scaling of the CPU. We have modified
the Familiar Linux kernel v2.4 to implement our frequency
scaling policies based on the rate-monotonic criterion [17].
Additionally, the kernel exports a set of API calls that enable
the middleware/applications to set task execution parameters
for dynamic adaptation. At the lowest level, we have a power
aware hardware abstraction layer that implements code for
accessing and changing power and performance knobs of the
actual devices.We have developedwrapper functions that ex-
pose these capabilities to the middleware layer [1].
We studied the performance of the Dynamo framework

using a streaming video application. We show that by using
our framework, we were able to improve the overall video
quality (user satisfaction) of the system over time within the
energy budget of the mobile device. Fig. 4 plots the video
quality (utility factor UF ) over time for a two hour video se-
quence with different initial battery lifetimes at the device.
The horizontal lines indicate the without the cross-layer op-
timizations. In each case, we were able to manifest our en-
ergy savings due to cross-layer adaptations as improvements
in the UF , and hence the user experience. Fig. 5 shows the
same video requested but this time with a random user in-
duced energy cost (noise due to other processes, backlight
changes etc.). Clearly, the utility factor is improved with the
integrated approach even in the presence of noise.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



0

1

2

3

4

5

6

7

8

0

33
0

66
0

99
0

13
20

16
50

19
80

23
10

26
40

29
70

33
00

36
30

39
60

42
90

46
20

49
50

52
80

56
10

59
40

62
70

66
00

69
30

IIL = LIFETIME OF iPAQ AT THE
TIME OF VIDEO REQUEST

IIL = 144 – 148 mins (No Optimizations)

Video playback time
(secs)

IIL = 150 to 154 mins (No Optimizations)

IIL
=

14
4

m
in

IIL
=

14
6

m
in

IIL
=

15
0

m
in

With optimization

UF at start of streaming

Figure 4. Utility Factor over time

0

1

2

3

4

5

6

7

8

0

3
00

6
00

9
00

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

39
00

42
00

45
00

48
00

51
00

54
00

57
00

60
00

63
00

66
00

69
00

72
00

U
ti

lit
y

F
ac

to
r

II
L

=
14

6
m

in
s

IIL = 146min (no optimization)

IIL = LIFETIME OF iPAQ AT THE
TIME OF VIDEO REQUEST

UF at start of streaming

With optimization and noise

Video playback time
(secs)

Figure 5. Utility Factor over time (with noise)

3. Stream Annotations for Power-Performance
Tradeoffs

Our framework should be able to dynamically adapt to
global changes in the system: for example, changes in the
data stream trigger the local middleware runtime on the de-
vice to automatically adjust the architecture level parameters
(like CPU frequency, display backlight, etc). Recent stud-
ies [12] have shown that multimedia workloads are charac-
terized by quasi regular patterns in their execution, mainly
because media encoding/decoding is composed of process-
ing filters, applied in a specific order. The only changes are
introduced by variations in the input data and the algorithm
itself. Knowledge of data characteristics can be exploited at
all levels in a multimedia streaming application (hardware,
OS, middleware/network, application) and is especially im-
portant for portable devices where battery life and thus mo-
bility are of utmost importance.
Focusing on the OS/hardware level, we analyze the stream

of data during playback and annotate it with a summary of
the information collected; this information will be used later
at run-time for data-aware optimizations. Annotations typ-

ically capture patterns or trends in the data that are diffi-
cult/impossible or too time-consuming to gather at run-time
on the handheld device and that can be exploited later for ei-
ther power or performance benefits.

3.1. Annotation-Based DVS for Multimedia Play-
back

The processing unit (CPU) is one of the major consumers
of power during multimedia playing, mostly due to the com-
putationally intensive decoding of MPEG compressed video.
On the other hand, MPEG compression is a relative regular
sequence of multimedia kernels applied to the input stream.
Based on the actual content of each MPEG frame, we pre-
dict the CPU load for decoding video frames and automati-
cally adjust the DVS settings for better energy efficiency.
At the server side, we profile a representative set of video

clips from the domain and apply regression fitting algorithms
to find a function between frame sizes/distribution and de-
coding times. Next, we devise an estimation heuristic for
frame decoding time and use it to control a DVS scheme at
the client side. Our technique slows down the processor (sav-
ing power) during each frame decode to the lowest frequency
that still allows it to finish before the frame deadline.
To evaluate the power savings, we compare our approach

to the original case, where no DVS technique is in effect and
the processor runs at full power all the time. We also com-
pare our technique against a simple heuristic, which we call
“simpleWCET DVS”. This heuristic assumes a constant pro-
cessor frequency for the duration of the entire clip, chosen so
that all frames can be decoded before the deadline (slows
down the processor such that the worst case decoding time
is still before the deadline). The “simple WCET heuristic”
is similar to what a current DVS-capable device would actu-
ally perform and does not take advantage of the time differ-
ence between decoding different frames.

0

10

20

30

40

50

60

70

80

90

100

ac
tio

n
ne

ws

ak
iyo

_c
if

co
as

tg
ua

rd
_c

if

co
nt
ai
ne

r_
cif

fo
re

m
an

_c
if

ha
ll_

cif

m
ob

ile
_c

if

ne
ws_

cif

sil
en

t_
cif

Video Clips

N
o
rm

al
iz

ed
P

o
w

er
C

o
n
su

m
p
tio

n

No DVS

Simple WCET DVS

Individual Estimation DVS

Global Estimation DVS

Figure 6. Power Savings Results

In our approach, we use the prediction algorithm and pro-
filing individually on each clip (i.e. each clip is first profiled,
then prediction used for DVS). The results are presented in
Fig. 6. As we can see, the power savings are up to 50% over
no DVS and up to 40% over the “simple DVS” (worst case

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



assumption for decoding times). Both these results refer to
CPU power consumption.

3.2. Backlight Scaling Using Annotations

In mobile devices backlight dominates other components,
with about 20-30% of total power consumption. On the other
hand, power consumption of LCD displays increases with the
backlight level intensity, yielding important savings for the
entire system can be achieved if the LCD backlight is prop-
erly adjusted during the playback of a movie.
On a typical PDA screen, the perceived intensity of pix-

els is given by the formula: I = ρ × L × Y , where ρ is the
transmittance of the LCD panel, while L and Y are the lumi-
nance of backlight and displayed image respectively.
During video playback, the entire range of luminance is

not always completely used: for example a large number of
scenes in a movie have darker scenes, i.e. scenes in which
there are only a few or no pixels in the high luminance range.
This allows us to increase the brightness of the image while
simultaneously dimming the backlight for reduced power us-
age. We use annotations for storing luminance information
for different scenes in a video stream. For reducing the power
consumption during playback, we dim the backlight while at
the same time compensating by increasing the luminance of
the displayed image.
For each type of PDA we characterize the display

and backlight performance (power vs luminance inten-
sity vs backlight level). We perform this by displaying im-
ages of different solid gray levels on the handheld and cap-
turing snapshots of the screen with a digital camera. For
example, we noticed that for our handheld, while lumi-
nance is almost linear with the level of white in the image
(gray level), it is not linear with the backlight level This al-
lows us to easily compute the new backlight level needed
to achieve a particular luminance level. In our experi-
ments we also noticed that the power consumption of the
LCD is almost proportional to the luminance.
We validate our results by using a digital camera and tak-

ing snapshots of the PDA displaying initial frame (reference
screen snapshot) and comparing it with a picture of the same
frames after backlight/brightness adjustment (compensated
screen snapshot).
During profiling (at the media server), our technique uses

a simple heuristic[10] to find and tag the various scene in a
movie, where the maximum luminance level does not vary
significantly. Then, for each scene the required level of back-
light is computed and annotated to the video stream. Depend-
ing on the level of quality requested by the user, if it allows
the compensation algorithm goes even further and trades off
quality for power and an increase in battery life. We noticed
that a very small number of pixels amount for the highest
luminance levels. Therefore, we can safely remove a large
number of these pixels without noticeable quality loss on the

image displayed on the PDA, but with important savings for
backlight during playback. The LCD backlight level is con-
trolled by the OS level, based on the annotations found in the
media stream (for each separate scene).

Max. Luminance

Scene Max.
Luminance

Backlight Power
Saved

Lu
m

in
an

ce

P
ow

er

Time (seconds)

Figure 7. Backlight Compensation

Figure 7 presents our backlight adjusting technique results
during a short video clip. It shows the original maximum lu-
minance and our scene-grouping based on luminance level. It
also plots the instantaneous power savings for the LCD back-
light during playback.

LCD Power Savings for Different Quality Levels

0%

10%

20%

30%

40%

50%

60%

70%

40
5th

em
ov

ie

ca
tw

om
an

hu
nte

r_
su

br
es

i_r
obo

t

ice
_a

ge

of
fic

ex
p

re
tur

no
fth

ek
ing

sh
re

k2

sp
ide

rm
an2

th
ein

cr
ed

ibles
-tl

r2

Video Clip

S
av

in
g

s

0%

5%

10%

15%

20%

Figure 8. LCD Power Savings

On the client device, the user chooses a desired level of
quality, which translates in a maximum percentage of pixel
degradation allowed. We experimented with a number of dif-
ferent quality levels (0% to 20% quality loss). Even at the
5% quality lost we already start seeing a huge improvement
in the backlight power consumption, and visual degradation
is kept to a minimum (hardly noticed). The results (figure 8)
show that up to 50% of the backlight power consumption can
be saved using our approach, or even more if the user allows
a more aggressive QoS-energy trade-off.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



4. Parameter Optimization for Cross Layer
Adaptation

At the application level, our framework optimizes various
parameters available in the multimedia workload so that all
given constraints are satisfied such as image quality, network
bandwidth and power budget. The approach follows four
steps: specification, profiling, optimization and code gener-
ation.

4.1. System Specification for Video Encoding Algo-
rithm

The block diagram of a conventional video encoder like
an H.263 encoder is shown in figure 9. The transform cod-
ing includes the following major steps: Motion Estimation
(ME), Discrete Cosine Transform (DCT), Quantization (Q)
and Variable Length Coding (VLC).

Figure 9. H.263 Encoder Algorithm

As seen from the above figure, we can adjust and opti-
mize several application parameters to meet constraints such
as power budget, image quality, network bandwidth, device
computation ability and device memory size. For instance,
we can increase quantization level to reduce the bitstream
size for meeting bandwidth constraints, albeit at a loss of
video quality. In order to study the QoS tradeoffs required
to meet dynamic system constraints, we study the follow-
ing components of the video encoding algorithm: implemen-
tation selection, algorithm parameters and system setting as
shown in figure 10.
We implement several motion estimation algorithms: full

search, diamond search [20], three step search [14], two di-
mensional logarithmic search [13], one at a time search [18]
and so on. Similarly, we change the implementations of DCT,
the quantization algorithm, and variable length coding block.
One of our goals is to identify the relative tradeoffs achiev-
able through each of these algorithms.
Multimedia applications allow us to tune the algorithm pa-

rameters. For instance, quantization level is defined in the
H.263 encoding standard to control image quality and com-
pressed data size. In addition, I:P frame ratio, frame rate and
frame size can be chosen to meet image quality and com-
pressed frame size. If we increase I:P frame ratio, we can de-
crease the compressed size with more computation for mo-

tion estimation since I frame does not require any motion es-
timation while P frame does.
The system setting is an important factor to affect overall

system performance. Using an accurate profile of application
behavior (e.g. execution profile, bandwidth usage), we can
employ our cross-layer framework to perform better adapta-
tions at the various system levels discussed earlier. For ex-
ample, we can provide hints to the OS better scheduling de-
cisions (e.g. DVS) as well as improve upon our proxy based
remote adaptations.

Figure 10. Adjustable parameters

4.2. Profiling

For profiling, we observe system performances by simu-
lating or running an application on a real hardware platform.
We measure image quality, compressed bit size, execution
time and energy consumption by changing motion estima-
tion algorithm, quantization value, and I:P ratio. We use dia-
mond search with a quantization value of 5, 1:10 for I:P ra-
tio. We take three standard video sequences for our exper-
iments: CLAIRE.QCIF (less movement), GARDEN.QCIF
(high movement) and FOREMAN.QCIF (a mix of both types
of movements). The encoder algorithms are run on a Sharp
Zaurus PDA platform consisting of an ARM processor (200
MHz) which runs Linux as operating system.
Energy, power and execution time are measured for each

of the above mentioned algorithms. The peak signal to noise
ratio (PSNR) is measured to get an estimate of the quality
level achieved after encoding. The bit rate (number of bytes
per frame in the encoded video) is also calculated to get an
idea of the compression achieved by encoding.
Table 1 represents tradeoffs of image quality, execution

time (power consumption) and bit rate between motion esti-
mation algorithm. We use full search, diamond search, three
step search, one at a time search, two dimensional logarith-
mic search, motion estimation without half-pel search and no
motion estimation. Table 2 represents profiling results at var-
ious quantization values while Table 3 indicates results at I:P
ratio.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



ME PSNR Bitrate Time Energy
(dB) (bytes/frame) (sec) (mJ)

FS 36.82 1758.84 159.34 141.67
DS 36.86 1848.93 85.11 74.94
TSS 36.80 1994.95 88.22 78.33
OTS 36.88 2345.12 75.31 75.67
TDS 36.85 1875.09 79.26 79.35
w/o HP 36.30 2202.65 64.94 54.56
NO 37.85 5489.09 65.25 59.15

Table 1. Tradeoff between motion estimation

Q PSNR Bitrate Time Energy
(dB) (bytes/frame) (sec) (mJ)

1 46.81 11908.11 96.13 84.59
4 38.08 2336.17 79.12 69.63
8 33.76 1018.26 74.56 64.73
12 31.48 626.08 72.60 63.89
20 28.87 360.12 70.56 61.80
31 26.93 250.10 69.43 61.10

Table 2. Tradeoff between quantization

4.3. Experimental Results

To determine appropriate encoding parameters of our
video application (combination of quantization, I:P ra-
tio and motion estimation), we find pareto optimal points
from the populated data. We then minimize execution time
while satisfying minimum image quality and bandwidth lim-
itations. The problem is formulated as an ILP and solved
using an integer linear programming solver [2]. The solv-
ing time for integer linear programming is no more than 0.2
second on a P4 3.0GHz PC.
Figure 11 shows results with 2K bytes/frame for FORE-

MAN.QCIF (300 frames). The x axis shows constrained
PSNR value to be met and the y axis is execution time. The
”Q only” varies quantization value only without changing
motion estimation and the I:P ratio. The ”Q,ME” adapts both
quantization value and motion estimation algorithm. If we
consider more parameters then we can get shorter execution
time which is proportional to total energy consumption. On

I:P = 1:x PSNR Bitrate Time Energy
(dB) (bytes/frame) (sec) (mJ)

4 36.89 2378.78 73.12 73.98
8 36.64 1934.61 82.05 87.75
16 36.48 1707.65 87.06 95.39
64 36.29 1547.34 88.26 97.23
128 36.27 1531.59 89.64 99.69

Table 3. Tradeoff between I:P ratio

Figure 11. Minimization of execution time
(bytes/frame ≤ 2000)

an average, we expect that we can reduce execution time by
40% and 20% by changing the quantization step, motion esti-
mation algorithm and I:P ratio than by adapting quantization
step only, and by adjusting quantization step and motion es-
timation algorithm.
Finally, we generate a code with these parameter values

computed above. The code chooses the proper value for each
parameter from the pre-computed values at the previous step.
Note that for a static environment (e.g., fixed network b/w,
image quality), some parameters can be fixed; otherwise they
should be chosen at run-time. In the measurement results, we
reduce the execution time by 33% and 15% which are simi-
lar to the results in Figure 11 when the bytes/frame is 2000.
When the bytes/frame constraint is 1000, the execution time
is reduced by 30% and 10% than Q only and Q,ME respec-
tively while when the constraint is 500, it is 17% and 20%.
These results show our ability to select encoding parameter
settings while minimizing execution time.

5. Related Work

Several research results have focused on analyzing the in-
put data stream and deriving various techniques for improv-
ing either communication or computation in streaming appli-
cations; we review related efforts below.
The Aspire research group studies various data-shaping

algorithms for mobile multimedia communication. They pro-
file and annotate still images for improving transmission over
a wireless channel usage (bandwidth, latency). In [11] the
image data is compressed according to dynamic conditions
and requirements. Content adaptation is classified depend-
ing on time (static, dynamic), content (to determine optimal
compression) and goals of technique or metrics (constrained
bandwidth, display size, response time).
Chandra and Ellis perform an informed quality-aware

transcoding in [4], based on image characteristics. They find
that a change in JPEG quality factor (compression metric
controlled by quantization steps) directly corresponds to in-
formation quality lost. A prediction for computational over-
head is applied, which approximates number of basic compu-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



tation blocks based on image size, color depth and can pre-
dict output size for a particular transcoding.
In [5], the authors analyze the characteristics of images

available on web sites (distribution of gif or jpg images, size,
colors and quality). They clasify images in: bullets, lines,
icons, banners, trueimages based on heuristics and analyze
various transcoding techniques for reducind image size (re-
ducing spatial geometry or thumbnailing, reducing the num-
ber of unique colors, changing the image format or compres-
sion). Tripathi and Claypool study different ways to reduce
bandwidth in network transmission in [19], by either tempo-
ral scaling (dropping frames), quality scaling (reducing qual-
ity of frames) or spatial scaling (changing the size of frames).
The quality degradation is evaluated through an user study.
Reducing backlight intensity as a means of saving power

was also studied by Cheng et al. in [7]. Here the authors
present a hardware based implementation for concurrent
brightness and contrast scaling in a TFT-LCD display. The
technique yields good power savings for still images, but it
is not applicable to video sequences due of its frame based
analysis. An application of backlight power optimization for
streaming video applications is presented in [16]. The adap-
tation is coordinated by a middleware layer running on both
the client and a intermediary proxy node.
[8] describes a number techniques for low-power TFT

LCD display, one of which applies backlight luminance dim-
ming with appropriate brightness and contrast compensation.
These techniques result in good aggregated results for a num-
ber of different applications. Backlight compensation is fur-
ther implemented in hardware and further studied for typical
PDA applications in [6].
Unlike our efforts in the FORGE project, none of these

related efforts perform a cross-layer approach for power-
performance optimization.

6. Conclusion

In this paper, we discussed the various initiatives under
the FORGE framework for studying energy and performance
tradeoffs for mobile multimedia systems. By coordinating
energy saving techniques at all system levels, the FORGE
framework is able to improve user experience on mobile de-
vices. In addition, for distributed applications the knowledge
of the global system state such as network noise and mobility
information can lead to better energy aware adaptations on a
device. We show that exchange of global/local information is
beneficial for all layers (OS, hardware, middleware, applica-
tion) and the FORGE framework integrates a distributed mid-
dleware to perform remote optimizations and collect global
system state. Our results indicate that such a cross-layer ap-
proach can result in better application performance and better
energy utilization at the device. As an extension of our cur-
rent efforts, we plan to develop adaptations involving multi-
ple proxies and devices.

References

[1] http://dynamo.ics.uci.edu.
[2] http://www.cplex.com.
[3] http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual/ref-guide/ch-proc.html.

[4] S. Chandra and C. S. Ellis. JPEG compression metric as a
quality-aware image transcoding. In USENIX, 1999.

[5] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat. Transcod-
ing characteristics of web images. InMMCN, 2001.

[6] N. Chang, I. Choi, and H. Shim. Dls: Dynamic backlight lumi-
nance scaling of liquid crystal display. In TVLSI, volume 12,
pages 837–846, 2004.

[7] W.-C. Cheng, Y. Hou, and M. Pedram. Power minimization in
a backlit tft-lcd display by concurrent brightness and contrast
scaling. InDATE, page 10252. IEEE Computer Society, 2004.

[8] I. Choi, H. Shim, and N. Chang. Low-power color tft lcd dis-
play for hand-held embedded systems. In ISLPED, pages 112–
117. ACM Press, 2002.

[9] R. Cornea, N. Dutt, R. Gupta, I. Krueger, A. Nicolau,
D. Schmidt, and S. Shukla. FORGE: A framework for op-
timization of distributed embedded systems software. In
IPDPS, April 2003.

[10] R. Cornea, A. Nicolau, and N. Dutt. Using annotations to fa-
cilitate power vs quality trade-offs in streaming appl ications.
Technical report, University of California, Irvine, 2005.

[11] D.G.Lee, D.Panigrahi, and S.Dey. Network-aware image data
shaping for low-latency and energy-efficient data services over
the Palm wireless network. In World Wireless Congress (3G
Wireless), 2003.

[12] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srini-
vasan. Variability in the execution of multimedia applications
and implications for architecture. In ICCA, 2001.

[13] J. R. Jain and A. K. Jain. Displacement measurement and its
application in interframe image coding. IEEE Trans- Com-
mun., COM-29:1799–1808, December 1981.

[14] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishguro. Mo-
tion compensated interframe coding for video conferencing.
In Proc. Nat. Telecommun. Conf., December 1981.

[15] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and
N. Venkatasubramanian. Integrated power management for
video streaming to mobile handheld devices. In ACMMM,
November 2003.

[16] S. Pasricha, S. Mohapatra, M. Luthra, N. Dutt, and
N. Venkatasubramanian. Reducing backlight power consump-
tion for streaming video applications on mobile handheld de-
vices. In ESTIMedia, CODES-ISSS, 2003.

[17] V. Raghunathan, C. Pereira, and et. al. Energy Aware Wire-
less Systems with Adaptive Power-Fidelity Tradeoffs. VLSI
Systems, 2004.

[18] R. Srinivasan and K. R. Rao. Predictive coding based on
efficient motion estimation. IEEE Trans- Commun., COM-
33:888–895, August 1985.

[19] A. Tripathi and M. Claypool. Improving multimedia stream-
ing with content-aware video scaling. Technical Report WPI-
CS-TR-01-02, Worcester Polytechnic Institute, 2001.

[20] S. Zhu and K. K. Ma. A new diamond search algorithm for
fast block matching motion estimation. ICICSP, 1, 1997.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE


