
A Cross-layer Approach to Trustfulness in the
Internet of Things

Antônio Augusto Fröhlich, Alexandre Massayuki Okazaki,
Rodrigo Vieira Steiner, and Peterson Oliveira

Software/Hardware Integration Lab

Federal University of Santa Catarina

PO Box 476, 88040-900 - Florianópolis, SC, Brazil

guto,alexadre,rodrigo,peterson@lisha.ufsc.br

Jean Everson Martina

Computer Security Lab

Federal University of Santa Catarina

PO Box 476, 88040-900 - Florianópolis, SC, Brazil

everson@inf.ufsc.br

Abstract—It is a mistake to assume that each embedded object
in the Internet of Things will implement a TCP/IP stack similar
to those present in contemporary operating systems. Typical
requirements of ordinary things, such as low power consumption,
small size, and low cost, demand innovative solutions. In this
article, we describe the design, implementation, and evaluation
of a trustful infrastructure for the Internet of Things based on
EPOSMote. The infrastructure was built around EPOS’ second
generation of motes, which features an ARM processor and an
IEEE 802.15.4 radio transceiver. It is presented to end users
through a trustful communication protocol stack compatible with
TCP/IP. Trustfulness was tackled at MAC level by extending C-
MAC, EPOS native MAC protocol, with AES capabilities that
were used to encrypt and authenticate IP datagrams packets. Our
authentication mechanism encompasses temporal information
to protect the network against replay attacks. The prototype
implementation was assessed for processing, memory, and energy
consumption with positive results.

Keywords-Internet of Things; Cross-layer communication pro-
tocols; Trustfulness;

I. INTRODUCTION

The idea of an Internet of Things (IoT) is quickly material-

izing through the adoption of RFID as a replacement for bar

code along with the introduction of Near Field Communication

(NFC). We are able to interface with our daily-life objects over

the Internet. However, the next steps towards a global network

of smart objects will drive us through several large-scale,

interdisciplinary efforts. In particular, security and privacy are

issues that must be consistently addressed before IoT can make

its way into people’s lives.

Things in IoT interact with each other and with human

beings through a myriad of communication technologies, often

wirelessly, and subject to interference, corruption, eavesdrop-

ping, and all kinds of attacks. Most of encryption and authen-

tication techniques was developed for the original Internet—

the Internet of People that we use today—to handle attacks

can in theory be applied to the IoT. However, the microcon-

trollers used in smart objects will seldom be able to put up

with their requirements. Furthermore, IoT will be subject to

particular conditions not so often faced by today’s Internet

devices. Things will send messages that will trigger immediate

reactions from the environment. Capturing and reproducing

one such valid message, even if it is encrypted and signed,

could lead complex systems such as roadways, factories, and

even future cities to misbehave. Some Things will harvest

energy from the environment for hours before they can say

something to the world. And when they talk, one will have

to decide whether or not to believe in what they say without

having a chance to further discuss the subject (at least not for a

couple of hours). Solutions such as transaction authentication

and channel masking [6] are of little help in this context.

In this paper, we describe the design, implementation and

evaluation of a trustful communication framework for the

IoT conceived with these pitfalls in mind. The framework

follows a cross-layer design that combines medium access

control, location, timing, routing and trustfulness on highly

configurable manner. It was evaluated using EPOS’ second

generation of motes, EPOSMoteII, which features an ARM

processor and an IEEE 802.15.4 radio transceiver [13]. It

is presented to end users through a trustful communication

protocol compatible with TCP/IP, which per-definition en-

sures end-to-end reliable and ordered delivery. Trustfulness

is tackled at MAC level by extending C-MAC [25], EPOS

native MAC protocol, with Advanced Encryption Standard

(AES) [16] capabilities that were subsequently used to encrypt

and authenticate packets. EPOS Precision Time Protocol (PTP)

implementation is used to enrich the authentication mechanism

with temporal information.

Section II presents the design of EPOS original communica-

tion stack. EPOS trustful mechanisms are discussed separately

in Section II-G. Section III introduces the new cross-layer

design, in which elements of medium access control, location,

timing, routing, and security are carefully merged in a single-

level protocol. In Section IV we evaluate the new cross-layered

protocol on the EPOSMoteII platform, followed by related

works in Section V and conclusions in Section VI.

II. EPOS ORIGINAL COMMUNICATION PROTOCOL STACK

EPOS original communication protocols stack features a

layered architecture as suggested by the OSI model. Although

developed to be energy efficient and to present low overhead,

this architecture is similar to that of ordinary operating systems



traditionally used in the Internet of People. The original

layered architecture is described in the following sections.

A. C-MAC

C-MAC is a highly configurable MAC protocol for Wireless

Sensor Networks (WSN) realized as a framework of medium

access control strategies that can be combined to produce

application-specific protocols [25]. It enables application pro-

grammers to configure several communication parameters (e.g.

synchronization, contention, error detection, acknowledgment,

packing, etc) to adjust the protocol to the specific needs of

their applications. An overview of C-MAC is rendered by the

activity diagrams of Figures 1, 2, and 3.

Figure 1: C-MAC synchronization activity diagram.

Figure 2: C-MAC transmission activity diagram.

The main configuration points of C-MAC are:

• Physical layer: These configuration parameters are de-

fined by the underlying radio transceiver.

• Synchronization: Derived from the mechanisms used to

exchange synchronization information among nodes.

• Collision avoidance: Configure contention mechanisms

used to avoid collisions.

• Acknowledgment: Define if and how successful or un-

successful packet exchanges are to be handled.

• Error handling: Determine which mechanisms will be

used to ensure the consistency of data.

• Security: Determine which mechanisms will be used to

ensure communication security.

Figure 3: C-MAC reception activity diagram.

When configured to mimic preexisting MAC protocols C-

MAC delivers comparable performance. This is due to the

use of static metaprogramming techniques, which ensures that

configurability does not come at the expense of performance

or code size [25]. In this way, C-MAC’s instances are fully

customized at compile-time and yield extremely lean run-

time MACs. C-MAC high configurability was essential to the

research being presented here.

B. HECOPS

EPOS location mechanism, the Heuristic Environmental

Consideration Over Positioning System [22], defines a dis-

tributed location algorithm for wireless sensor networks in

which every node estimates its own position after interacting

with other nodes. HECOPS establishes a ranking system to

determine the reliability of each estimated position and uses

heuristics to reduce the effects of measurement errors. So far,

HECOPS has been applied in the realm of IoT using two main

heuristics: the relationship between signal degradation and

distance inferred from the Received Signal Strength Indica-

tion (RSSI) provided by C-MAC [21], and the Time Difference

of Arrival (TDOA) provided by a UWB transceiver [19]. The

first heuristic is depicted in Figure 4. The location of anchor

nodes is determined equipping motes with GPS receivers.

Figure 4: Overview of HECOPS.



C. PTP

Time synchronization is a mandatory OS feature for many

distributed applications. EPOS timing protocol [19] delivers

clock time across a wireless sensor network in conformance

with the IEEE 1588 standard, the Precision Time Proto-

col (PTP). A node acting as a master clock extracts the

base time from a GPS receiver and propagates it to slave

clocks following the standard as illustrated by Figure 5. Since

propagation is usually done by broadcast or zone multicast,

listening nodes take advantage of protocol interactions to re-

calibrate whenever valid PTP messages are observed in the

network. This novel kind of clock, which we named listener,

adds to masters and slaves while saving considerable amounts

of energy as discussed in section IV. EPOS PTP is able to

keep a PAN synchronized with sub-millisecond precision.

Figure 5: Overview of EPOS PTP.

D. ADHOP

Motes in a wireless sensor network usually propagate data

packets in a multihop fashion and IoT devices are likely to

follow a similar scheme. In this scenario, routing will strongly

influence performance and energy consumption. EPOS Ant-

based Dynamic Hop Optimization Protocol (ADHOP) [17],

[18] was designed to address these questions. It is a self-

configuring, reactive routing protocol able to handle mobile

nodes and to balance energy consumption across the net-

work. ADHOP is able to handle dynamic topologies with a

combination of heuristics defined around different metrics,

thus adjusting routing according with network needs. ADHOP

pheromone concentration and evaporation rates are dynami-

cally adjusted considering global information collected and

disseminated by ants. A node forwarding too many packets,

because it is on a strategic location, will adjust pheromone to

favor other routes as soon as it realizes its resources are being

drained too quickly. For instance, when energy consumption

is given a higher importance by application programmers,

ADHOP will adjust pheromone evaporation rates based on

residual energy, eventually demoting a previously optimal

route and consequently balancing energy consumption across

the network.

E. TCP/IP

TCP is a key protocol for the trustful IoT platform being

proposed here, that ensures ordered delivery of packets. Its ac-

knowledgement and flow control mechanisms have been opti-

mized to efficiently handle congestion, presumably the unique

significant cause for packet loss on low-error rate networks. In

the presence of higher error rates and intermittent connectivity,

traditional TCP implementations continue to react to packet

losses in the same way, causing a significant degradation of

performance observed by peers as poor throughput and high

latency [8].

The current EPOS IPv4 implementation uses TCP’s

window-based flow control mechanism to implement an ren-

dezvous protocol and thus virtually eliminates buffer manage-

ment on IoT nodes. The strategy is depicted in Figure 6. Peers

announce buffer availability for a single message at a time by

adjusting the window length in acknowledgement messages

accordingly. Several optimizations have also been conducted

to keep IP datagrams in pace with IEEE 802.15.4 127-byte

MTU. Energy efficiency is sought in EPOS TCP/IP stack by

incorporating the pheromone concept behind ADHOP as the

IP routing metric.

Figure 6: Overview of EPOS TCP/IP - Window 0.

F. Web Services

Many researchers and practitioners are now talking about

a Web of Things and proposing that our daily objects will

be embraced by the Web using the same protocols of the

ordinary Internet. We do not believe that ordinary objects

will ever implement such protocols. Nevertheless, in order

to be able to design the cross-layer protocol being proposed

here, we concluded that one such an implementation was

necessary. We therefore implemented a small web server for

EPOS, featuring the HTTP and the RESTful protocols, thus

enabling our “things” to be accessed just like any other web

service. Important here is to observe the enormous overhead

represented by the request message depicted in Figure 7.

MAC

26 Bytes

IP

20 Bytes

TCP HTTP

200 Bytes5 Bytes20 Bytes

SOAP

20 Bytes

TSL/SSL

Figure 7: Message format for a RESTful web service request

to an EPOSMote.



G. EPOS Strategy for Trustfulness

IoT devices will often communicate through the air using ra-

dio channels that are open for everyone to peek and poke [30].

In order to avoid undesired interference, EPOS devises a trust

mechanisms that adhere the following premises:

• Confidentiality: the protocol must prevent unauthorized

access to data. As receivers must have the right key to

decrypt it. This calls for a key management strategy.

• Authenticity: the protocol must be able to confirm the

origin of a message.

• Integrity: the protocol must ensure that the message was

not modified on the way from sender to the recipient.

We believe that security must be handled at the lowest

possible level in the system, since each additional layer of

software can potentially make room for exploits. Therefore,

we incorporated the proposed trustfulness mechanism into

C-MAC. It was accomplished through the addition of new

states to C-MAC’s finite-state machine and the corresponding

microcomponents to its framework. These elements were

already present at Figures 2 and 3 in Section II. ENCRYPT

is responsible for encrypting the payload. SIGN attaches

the time-stamp, which is also encrypted, and the message

authentication code to the packet. DECRYPT decrypts the

payload, while AUTHENTICATE verifies if both the time-

stamp and authentication code are valid.

1) Key Management: For key management, we opted for

a centralized key distribution scheme. Each sensor shares a

symmetric key with the gateway, which is kept in secret

by both. These symmetric keys are generated following a

Diffie–Hellman scheme over insecure communications chan-

nel [5]. We use EPOS’ secure key bootstraping scheme as

shown on Figure 8.

Our secure key bootstraping protocol enables EPOSmotes to

be deployed and keyd securely at a later stage. The protocol’s

requirements are that the gateway knows the serial number of

the nodes he will be sharing keys with, and that the nodes

are able to synchronize time, thus enabling the use of an one-

time password generation scheme. Both assumtions are easely

achievable using our framekwork infrastructure.

We assume that most of communication in an IoT scenario

will occur between devices and the gateway, but devices

willing to interact with each other directly have the option

to ask the gateway for a temporary group key. Alternatively,

sporadic device-to-device communication can be handled by

the gateway on a store-and-forward scheme.

2) Replay Attacks: To countermeasure replay attacks we

added a time-stamp to C-MAC’s packets. The engines gener-

ating time-stamps across the network are kept synchronized

via our PTP implementation. Master clocks are usually gates

and produce time seeds based on a GPS receiver or similar

device.

3) Message Authentication Code: The ZigBee specification

of high level protocols for IEEE 802 personal area net-

works defines a security architecture that is closely related

to the Advanced Encryption Standard (AES) [3]. This has

Diffie-
Hellman

Poly-
1035

AES

Master 
Secret

Serial 
#

Time 
Stamp

OTPAuth

Sync 
Clock

DH 
Params

Node

Diffie-
Hellman

Poly-
1035

Master 
Secret

Serial 
#

Time 
Stamp

OTP

Sync 
Clock

DH 
Params

Gateway

Auth

SN -> 
MS

Auth -> 
SN

Figure 8: Overview of key management in EPOS.

pushed manufacturers to include AES hardware accelerators

into many IEEE 802.15.4 platforms. We therefore considered

two AES-based Message Authentication Code (MAC) for

EPOS: Counter with CBC-MAC (CCM), which is a generic

authenticated encryption block cipher mode for AES [28];

and Poly1305-AES, a state-of-the-art computes a 16-byte

authenticator of a variable-length message using a 16-byte

AES key, a 16-byte additional key, and a 16-byte nonce [4].

4) Trusted Packets: Each packet includes the protocols

headers, the application data, a time-stamp representing the

current network time delivered by PTP, and the MAC produced

using the AES accelerator. The application data is encrypted

along with the time-stamp. Since the shared key used by AES

was negotiated directly with the gateway, decrypting a valid

message immediately renders the sender’s identity.

III. CROSS-LAYER PROTOCOL

After having implemented EPOS protocol stack piece by

piece over almost a decade, we observed that the traditional

layered design of the contemporary communication stacks

was inducing a lot of data replication on different layers.

Compelled by the necessity of designing a communication

protocol stack for the Internet of Things that could match its

requirements of low overhead and low power, we reorganized

C-MAC’s microcomponent framework to combine aspects of

medium access control, location, timing, routing, and trustful-

ness on a highly configurable cross-layer protocol.

The proposed cross-layer protocol exploits two characteris-

tics of the original stack responsible for most of the overhead:

• Information Sharing: Status information about the local

node and about its interactions are used across several

layers. Energy availability, residual memory, transmitted

and received packets, locally known address mappings

are some examples of status information intensively used

by several layers. Storing it separately and requesting in

on the demands of a single layer is a major source of

overhead. We opted for a single shared table containing

all the information.

• Implicit Learning: The information locally handled by

a node about its current status and that of its neighbors

can be implicitly update For instance, acknowledge and

beacon messages can carry location, timing, and routing



information almost for free. This kind of information can

be updated on each received message, thus preventing

message exchanges originally conceived to obtain them.

We took advantage of these observations while designing

the low-overhead cross-layer protocol. We first combined sev-

eral pieces of the original finite-state machines to incorporate

the behavior of each layer and subsequently adjusted the

format of packets to incorporate the corresponding data. The

result is depicted in Figure 9.

Figure 9: EPOS cross-layer protocol stack from the perspective

of packet format.

IV. EVALUATION

We gauged the proposed cross-layer protocol by comparing

it to the original protocol stack of EPOS. The conceived exper-

iments were carried out on EPOSMoteII atop of OpenEPOS

1.0. Whenever simulation was needed, OMNeT++ was used

with a realistic model. The following sections discuss rele-

vant details of both scenarios, EPOSMote and the simulation

model.

A. EPOSMote

The EPOSMote is an open hardware project [13]. The

project main objective is delivering a hardware platform

to allow research on energy harvesting, biointegration, and

MEMS-based sensors. The EPOSMoteII platform focus on

modularization, and thus is composed by interchangeable

modules for each function. Figure 10 shows the development

kit which is slightly larger than a R$1 coin.

Figure 10: EPOSMoteII SDK side-by-side with a R$1 coin.

Figure 11 shows an overview of the EPOSMoteII architec-

ture. Its hardware is designed as a layer architecture composed

by a main module, a sensing module, and a power module.

The main module is responsible for processing, storage, and

communication. The model used in this research features a

32-bit ARM7 processor, 128kB of flash, 96kB of RAM, and

an IEEE 802.15.4-compliant radio transceiver.

Figure 11: Architectural overview of EPOSMoteII.

B. Simulation Model

OMNeT++ simulator is an extensible, modular, component-

based C++ framework for building network simulations. Ta-

ble I shows the OMNeT++ simulation parameters used for the

IEEE 802.15.4 simulated network. In these experiments, each

simulation scenario ran for 900 seconds in an environment of

high mobility that is conducive to high data loss. The simu-

lation places nodes randomly in a squared area of 1.44 km
2

(edges of twelve hundred meters), and each node moves at a

maximum speed of five meters per second, according to the

Mass Mobility algorithm [20]. Twenty mobile source nodes

generates data traffic to other twenty mobile sink nodes. The

experiment explores the behavior of ADHOP varying the

heuristic information and the number of nodes, ranging from

twenty to two hundred. We compare it with AODV and AOER

algorithms for data delivery ratio and energy consumption.

Table I: OMNeT++ Configuration

Parameter

Simulation Time 900 seconds
Number of Nodes 20 ∼ 200

Area 1200m X 1200m
Mobility Model Mass Mobility
Application Message Length 56 bytes
Application Message Frequency 0.25 Hz
ADHOP Header Length 6 bytes
PHY Transmitter Power 1 mW
PHY Sensitivity −85 dBm
PHY Thermal Noise −110 dBm
Channel Carrier Frequency 2.4 GHz
Battery Voltage 3 V
Battery Capacity 2 mAh

C. Results

We gauged the implementation of the trustful IoT infras-

tructure proposed in this paper in respect to three aspects:

memory consumption, encryption/decryption time, and energy

consumption. For all experiments, we used GCC 4.4.4 to

compile the application and the run-time support system (i.e.



EPOS). EPOSMoteII ARM processor clock was set to 24

MHz. Messages were adjusted to carry a payload of 16 bytes

when encryption was activated and 7 (request) and 6 (reply)

bytes otherwise. EPOSMoteII radio transceiver was adjusted

to transmit at 4.5 dBm.

One node acts as a base station for the local IoT, interfacing

its nodes to the ordinary Internet1, while the other one is a

sensor node. The base station broadcasts encrypted tempera-

ture requests every 10 seconds. The sensor node decrypts the

request, collects the required data, and sends back a signed

and encrypted reply.

In order to obtain the memory footprint of our implementa-

tion, we used the arm-size tool that is part of GNU Binutils.

Results are shown in Table II. The AES mediator column

represents the code needed to interact with the AES hardware

accelerator in order to accomplish encryption, decryption, and

authentication. App using AES column presents the code size

of the application using the proposed trusted infrastructure and

the App without AES column the size when using the original,

plain text, TCP/IP stack. It is possible to notice that there is a

difference between the value of App using AES and the sum

of App without AES and AES mediator. This is due to the fact

that not all methods from the AES mediator are used in App

using AES. Mediator methods that are not effectively invoked

by the client program are eliminated during compilation. This

is due to the fact that besides including the mediator code the

App using AES has to call this code, so it can be executed,

whereas App without AES has no such calls.

Table II: Memory footprint.

Section AES mediator App using AES App without AES

.text 1336 bytes 47184 bytes 45916 bytes

.data 0 bytes 217 bytes 217 bytes

.bss 10 bytes 5268 bytes 5268 bytes

TOTAL 1346 bytes 52669 bytes 51401 bytes

We used an oscilloscope to measure the time needed to en-

crypt, decrypt and authenticate messages in our infrastructure.

A General Purpose Input/Output (GPIO) pin in EPOSMoteII

is connected to the oscilloscope. We run the experiments for

one minute and calculated the averages shown in Table III.

Obtained values, besides confirming the efficiency of the

implementation in terms of execution time, also have a positive

impact in the node’s battery lifetime.

Table III: Encryption/decryption/MAC check processing time.

Encryption Decryption MAC Check

Time 17 µs 15 µs 12 µs

Figure 12 shows the energy consumed by both applica-

tionsover the time. The small increase in energy consumption

1For a larger scale experiment, the gateway would rather be configured to
provide some sort of NAT service between both realms, thus alleviating the
address limitation of IPv4.

for App using AES arises from the efficient usage of the hard-

ware accelerator.After 10 minutes executing, the difference is

minimal (53.2 J with AES and 52.6 J without), and after 1

hour, the applications have consumed 319.5 J and 315.5 J,

respectively, a difference of 1.25%.

Figure 12: Energy consumption.

The energy efficiency, shown in Figure 13 in logarithmic

scale, is the division of the overall energy consumption by

the amount of packets successfully delivered. Energy-Aware

ADHOP (EA-ADHOP) routing algorithm produces better re-

sults in terms of energy efficiency than ADHOP, AODV, and

AOER. We can notice that this approach can improve energy

use while reducing the energy consumption and enhancing

data delivery ratio. This differs from AOER, which has an

aggressive method to reduce the energy consumption [24],

as shown in Figure 14. This adds to the low bit rate of

IEEE 802.15.4 nodes, making the connectivity worse in higher

speeds [29]. This means greater competition for the medium

implying in collisions, congestions, data loss, and greater

energy consumption for mobile, dense, and scalable networks,

causing the depletion of energy on the routes.

20 40 60 80 100 120 140 160 180 200

Number of Nodes

10
1

10
2

10
3

10
4

10
5

C
o
n
s
u
m

e
d

E
n
e
rg

y
p
e
r

D
e
liv

e
re

d
D

a
ta

P
a
c
k
e
t
(m

W
h
)

AODV

AOER

ADHOP

EA-ADHOP

Figure 13: Energy Consumption per Delivered Data.

Another important characteristic of ADHOP is shown in

Figure 15. Route Requests, Route Replies, and Route Errors

are message types defined by AODV. In ADHOP, data is

sent along with the ants thereby decreasing the amount of

control packets in the network. Accordingly, our approach

tends to produce low routing overhead for sparse networks



20 40 60 80 100 120 140 160 180 200

Number of Nodes

0

10

20

30

40

50

60

%
(D

a
ta

P
a
c
k
e
t
D

e
liv

e
ry

R
a
ti
o
)

AODV

AOER

ADHOP

EA-ADHOP

Figure 14: Delivery Ratio of Data Packets.

due to low connectivity. However, it also produces high link

failures, shown in Figure 16. We can notice that ADHOP,

AODV, and AOER produce better results of link failures than

EA-ADHOP. Since this approach aims at energy efficiency

instead of connectivity, the links between neighbor nodes tend

to be more susceptible to failures.

20 40 60 80 100 120 140 160 180 200

Number of Nodes

0

20

40

60

80

100

%
(R

o
u
ti
n
g

O
ve

rh
e
a
d
)

AODV

AOER

ADHOP

EA-ADHOP

Figure 15: Overhead for the maintenance of the routing

mechanism.

20 40 60 80 100 120 140 160 180 200

Number of Nodes

0

5

10

15

20

25

30

35

%
(L

in
k

F
a
ilu

re
s
)

AODV

AOER

ADHOP

EA-ADHOP

Figure 16: Link Failures

V. RELATED WORK

TinySec [12] defines a link-layer security architecture for

Wireless Sensor Networks (WSNs). TinySec supports two

different security options: authenticated encryption (TinySec-

AE), and authentication only (TinySec-Auth). In authenticated

encryption mode, TinySec encrypts the data payload according

to the Skipjack block cipher [2] and authenticates the packet

with a Message Authenticity Code (MAC). In authentication

only mode, TinySec authenticates the entire packet with a

MAC, but the data payload is not encrypted. The inclusion of

a MAC to ensure the authenticity and integrity have a cost on

radio usage and, consequently, in energy consumption. This is

because the hash values commonly represent a long sequence

of bits. TinySec achieves low energy consumption by reducing

the MAC size, hence decreasing the level of security provided.

TinySec also does not attempt to protect against replay attacks,

and does not discuss how to establish link-layer keys. TinySec

was implemented in TinyOS and runs on Mica, Mica2, and

Mica2Dot, each using Atmel processors. TinySec has 3000

lines of nesC code [7] and the implementation require 728

bytes of RAM and 7146 bytes of space.

MiniSec [15] is a secure network layer protocol for WSNs

which attempts to solve the known problems of TinySec. First,

it employs a block cipher mode of operation that provides both

privacy and authenticity in only one pass over the message

data. Second, MiniSec sends only a few bits of the Initializa-

tion Vector (IV) while retaining the security of a full-length

IV per packet. In order to protect against replay attacks and

reduce the radio’s energy consumption, it uses synchronized

counters. However, Jinwala et al. showed that such scheme

requires costly resynchronization routines to be executed when

the counters shared are desynchronized (packets delivery out-

of-order) [11].

Focusing on sensor battery’s useful life, Braun and

Dunkels [27] introduces an approach to support energy ef-

ficient TCP operation in sensor networks. The concept called

TCP Support for Sensor nodes (TSS) allows intermediate

sensor nodes to cache TCP data segments and to perform local

retransmissions TSS does not require any changes to TCP

implementations at end points, and simulations show that it

reduces the number of TCP data segment and acknowledge-

ment transmissions in a wireless network. Ganesh [23] also

introduces a mechanism which improves TCP performance,

called TCP Segment Caching.

Elrahim et al. [1] proposes an energy-efficient way to

implement TCP protocol in scenarios with high losses. They

present a modified Congestion Control Algorithm for WSN.

By increasing retransmission timeout value, they reduce the

number of TCP segment transmissions that are needed to

transfer a certain amount of data across a wireless sensor

network with relatively high bit/packet error rates.

The size of TCP implementation also is important when

developing for resource-constrained sensors. NanoTCP [10] is

a protocol stack for WSNs with reduced overhead. The low

memory consumption of the protocol show its suitability to

resource constrained devices. But nanoTCP is a simplified

version of TCP protocol, not being fully compatible. How-

ever, other implementations such as uIP and lwIP faithfully

represent the TCP protocol.

Huai proposes to cut down duty cycles and decrease the

energy consumption of executing the AES algorithm by run-



ning both CTR and CBC-MAC in parallel [9]. Similarly to our

scheme, their design employs a hardware accelerator to offload

CPU. It uses an 8-bit data path and a shared key expansion

module with both AES cores, encryption and authentication.

They achieved an encryption time of 71.6 ns for a payload of

17 bytes. Their parallel hardware acceleration provides better

results when compared with the sequential AES hardware ac-

celerator in the FreeScale MC13224V present in EPOSMoteII.

Furthermore, this paper analyses communication efficiency

through the total delay per hop, and it shows that when the

scale of the sensor networks grows, the delay has been dou-

bled, and energy consumption has also increased accordingly.

VI. CONCLUSIONS

This paper presented a trustful infrastructure for the IoT

developed within the realm of project EPOS. By trustful, we

mean reliable and secure. Aspects such as people privacy and

data dependability have not been considered in this paper.

The proposed infrastructure is implemented around the EPOS-

MoteII platform and delivered to end users through a trustful

communication protocol stack compatible with TCP/IP. Trust-

fulness for the infrastructure was achieved through a combi-

nation of mechanisms. From TCP/IP, we inherited reliable and

ordered end-to-end packet delivery. C-MAC was enriched with

AES-based encryption and authentication. It now also time-

stamps messages to prevent replay attacks. Authentication

is performed using a centralized key distribution scheme in

which each sensor shares a unique key with the local base

station. We also developed a secure key bootstraping for key

agreement between nodes and gateways. We experimentally

evaluated our proposal in terms of memory consumption,

encryption/authentication time, and energy consumption. The

results confirm that the proposed infrastructure is able to

provide confidentiality, authentication, integrity, and reliability

without introducing excessive overhead to a network of things,

a key step in making the Internet of Things a daily reality.

REFERENCES

[1] Salwa El Ramlf Adel Gaafar A. Elrahim, Hussein A. Elsayed and
Ibrahim Magdy M. Improving TCP congestion control for wireless
sensor networks. In 4th Annual Caneus Fly by Wireless Workshop,
pages 1–6, Montreal, QC, Canada, June 2011.

[2] National Security Agency. Skipjack and kea algorithm specifications,
may 1998.

[3] ZigBee Alliance. ZigBee Specification. online, 2007.
[4] Daniel J. Bernstein. The poly1305-aes message authentication code. In

Proceedings of Fast Software Encryption, pages 32–49, Paris, France,
Feb 2005.

[5] W. Diffie and M. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.
[6] Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. Active

traffic analysis attacks and countermeasures. In Proceedings of the

2003 International Conference on Computer Networks and Mobile

Computing, ICCNMC ’03, pages 31–, Washington, DC, USA, 2003.
IEEE Computer Society.

[7] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to networked
embedded systems. In Proceedings of the ACM SIGPLAN 2003

conference on Programming language design and implementation, PLDI
’03, pages 1–11, New York, NY, USA, 2003. ACM.

[8] Elan Amir Hari Balakrishnan, Srinivasan Seshan and Randy H. Katz.
Improving tcp/ip performance over wireless networks. In Proceedings

of the 1st annual international conference on Mobile computing and

networking, pages 2–11, New York, NY, USA, 1995. ACM.
[9] Lian Huai, Xuecheng Zou, Zhenglin Liu, and Yu Han. An energy-

efficient aes-ccm implementation for ieee802.15.4 wireless sensor net-
works. Networks Security, Wireless Communications and Trusted Com-

puting, International Conference on, 2:394–397, 2009.
[10] C. Jardak, E. Meshkova, J. Riihijarvi, K. Rerkrai, and P. Mahonen.

Implementation and Performance Evaluation of nanoIP Protocols: Sim-
plified Versions of TCP, UDP, HTTP and SLP for Wireless Sensor Net-
works. In IEEE Wireless Communications and Networking Conference,
pages 2474–2479, March 2008.

[11] D. Jinwala, D. Patel, S. Patel, and K.S. Dasgupta. Replay protection at
the link layer security in wireless sensor networks. In Computer Science

and Information Engineering, 2009 WRI World Congress on, volume 1,
pages 160 –165, 31 2009-april 2 2009.

[12] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link layer
security architecture for wireless sensor networks. In Proceedings of the

2nd international conference on Embedded networked sensor systems,
SenSys ’04, pages 162–175, New York, NY, USA, 2004. ACM.

[13] Software/Hardware Intergration Lab. EPOS Project.
[14] Hyeopgeon Lee, Kyounghwa Lee, and Yongtae Shin. Implementation

and Performance Analysis of AES-128 CBC algorithm in WSNs. In The

12th International Conference on Advanced Communication Technology,
pages 243–248, 2010.

[15] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec: A secure
sensor network communication architecture. In Information Processing

in Sensor Networks, 2007. IPSN 2007. 6th International Symposium on,
pages 479 –488, april 2007.

[16] NIST. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication 197, November 2001.

[17] Alexandre Massayuki Okazaki and Antônio Augusto Fröhlich. Ant-
based Dynamic Hop Optimization Protocol: a Routing Algorithm for
Mobile Wireless Sensor Networks. In Joint Workshop of SCPA 2011 and

SaCoNAS 2011 - IEEE GLOBECOM 2011, pages 1179–1183, Huston,
Texas, USA, December 2011.

[18] Alexandre Massayuki Okazaki and Antônio Augusto Fröhlich. ADHOP:
an Energy Aware Routing Algorithm for Mobile Wireless Sensor Net-
works. In IEEE SENSORS 2012, Taipei, Taiwan, October 2012.

[19] Peterson Oliveira, Alexandre Massayuki Okazaki, , and Antônio Augusto
Fröhlich. Sincronização de Tempo a nível de SO utilizando o protocolo
IEEE1588. In Brazilian Symposium on Computing System Engineering,
Natal, Brazil, November 2012.

[20] Charles E. Perkins and et al. Optimized smooth handoffs in mobile ip.
In IN PROCEEDINGS OF ISCC, pages 340–346, 1999.

[21] Rafael Pereira Pires, Lucas Francisco Wanner, and Antônio Augusto
Fröhlich. An Efficient Calibration Method for RSSI-based Location
Algorithms. In 6th International IEEE Conference on Industrial Infor-

matics, pages 1183–1188, Daejeon, Korea, July 2008.
[22] Ricardo Reghelin and Antônio Augusto Fröhlich. A Decentralized

Location System for Sensor Networks Using Cooperative Calibration
and Heuristics. In 9th ACM/IEEE International Symposium on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, pages 139–146,
Torremolinos, Malaga, Spain., October 2006.

[23] R. Amutha S. Ganesh. Energy efficient transport protocol for wireless
sensor networks. In 2nd IEEE International Conference on Computer

Science and Information Technology, pages 464–468, August 2009.
[24] Bing Shuang, Zhenbo Li, and Jiapin Chen. An ant-based on-demand

energy route protocol for ieee 802.15.4 mesh network. International

Journal of Wireless Information Networks, 16:225–236, 2009.
[25] Rodrigo Steiner, Tiago Rogério Mück, and Antônio Augusto Fröhlich.

C-MAC: a Configurable Medium Access Control Protocol for Sensor
Networks. In 9th IEEE Sensors, pages 845–848, Waikoloa, HI, USA,
November 2010.

[26] Hung-Min Sun, Shih-Ying Chang, A.B. Tello, and Yen-Hsuen Chen.
An authentication scheme balancing authenticity and transmission for
wireless sensor networks. In Computer Symposium (ICS), 2010 Inter-

national, pages 222 –227, dec. 2010.
[27] Thiemo Voigt Torsten Braun and Adam Dunkels. TCP support for sensor

networks. In Fourth Annual Conference on Wireless on Demand Network

Systems and Services, pages 162–169, January 2007.
[28] D. Whiting, R. Housley, and N. Ferguson. RFC 3610 - Counter with

CBC-MAC. online, Sep 2003.



[29] K. Zen, D. Habibi, A. Rassau, and I. Ahmad. Performance evaluation
of ieee 802.15.4 for mobile sensor networks. In 5th IFIP International

Conference on Wireless and Optical Communications Networks, pages
1–5, may. 2008.

[30] Yun Zhou, Yuguang Fang, and Yanchao Zhang. Securing wireless sensor
networks: A survey. IEEE Communications Surveys & Tutorials, 10:6–
28, 2008.


