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Abstract—Electromagnetic interference, equipment noise,

multi-path effects and obstructions in harsh smart grid envi-
ronments make the quality-of-service (QoS) communication

a challenging task for WSN-based smart grid applications.

To address these challenges, a cognitive communication based
cross-layer framework has been proposed. The proposed frame-

work exploits the emerging cognitive radio technology to mitigate

the noisy and congested spectrum bands, yielding reliable and
high capacity links for wireless communication in smart grids. To

meet the QoS requirements of diverse smart grid applications,

it differentiates the traffic flows into different priority classes

according to their QoS needs and maintains three dimensional

service queues attributing delay, bandwidth and reliability of

data. The problem is formulated as a Lyapunov drift optimization

with the objective of maximizing the weighted service of the traffic

flows belonging to different classes. A suboptimal distributed

control algorithm (DCA) is presented to efficiently support QoS

through channel control, flow control, scheduling and routing

decisions. In particular, the contributions of this paper are three

folds; employing dynamic spectrum access to mitigate with the

channel impairments, defining multi-attribute priority classes

and designing a distributed control algorithm for data delivery

that maximizes the network utility under QoS constraints. Per-

formance evaluations in ns-2 reveal that the proposed framework

achieves required QoS communication in smart grid.

Index Terms—Cognitive radio sensor networks (CRSNs), cross-

layer quality-of-service (QoS), smart grid.

I. INTRODUCTION

S MART grids are recognized as the next-generation power

systems, which employ various monitoring and actuating

devices to autonomously monitor, diagnose, and control and to

efficiently operate the power equipments used in power gener-

ation, distribution, and utilization [19], [20]. Recently, wireless
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sensor networks (WSNs) have been considered as a promising

technology to achieve seamless, reliable, and low-cost remote

monitoring and control in smart grids [27], [29]. The current

and envisioned applications ofWSNs in power-grid span a wide

range, including advancedmetering, remote power systemmon-

itoring and control, electricity fraud detection, fault diagnostics,

demand response and dynamic pricing, load control and energy

management, and power automation [12], [28], [5]. However,

the smart grid applications can have different quality-of-ser-

vice (QoS) requirements and specifications in terms of relia-

bility and communication delay [12], [11], [21]. Recent field

tests reveal that wireless links in smart grid environments have

higher packet error rates and variable link capacity because of

dynamic topology changes, obstructions, electromagnetic inter-

ference, equipment noise, multipath effects, and fading [12],

[14]. This leads to both time and location dependent delay and

capacity variations of wireless links in smart grid environments.

Thus, the key design challenges in smart grid are to support re-

liable and real-time data delivery under adverse transmission

conditions [21].

To this end, cognitive radio wireless sensor networks [2] can

enhance the overall network performance by dynamic spectrum

access and, hence, improve spectrum utilization in smart grid

environments [13]. Cognitive radio exploits the temporally un-

used spectrum, which is defined as a spectrum hole. If a sec-

ondary user (SU) encounters the high noise and/or primary user

(PU) signal at the particular spectrum band, it migrates to an-

other spectrum hole or stays in the same band without inter-

fering with the licensed user by adapting its communication

parameters. In unlicensed spectrum bands, there are no legiti-

mate PUs, and all users have the same right to access the un-

licensed spectrum but the use of noisy channels can be pre-

vented. Thus, cognitive radio can be exploited to address the

unique challenges of smart grid applications, which are time-

and space-varying spectrum characteristics, reliability and la-

tency, harsh propagation conditions, and energy constraints for

low-power sensor nodes.

Due to late recognition of smart grids, the research on their

communication protocols design is found to be limited. Though

QoS routing protocols [16], [25] for smart grid exist but their

scope is limited to certain applications, such as price signalling

and emergency handling. Similarly, various cross-layer routing

protocols [8], [26], [23] are proposed for cognitive radio ad

hoc networks, which mainly aim to maximize the throughput

of SUs under different constraints. A distributed optimization

1551-3203 © 2013 IEEE
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algorithm is also proposed in [23] that iteratively increases the

rate of each flow until it converges to the optimal rate of all of the

flows, yet another throughput maximization algorithm. Never-

theless, the existing studies provide optimal solutions to achieve

the maximum throughput globally, but they do not consider the

needs of each individual flow locally. Particularly, they do not

classify the heterogeneous traffic to deal with each traffic class

according to its QoS demand. Hence, there exists no cross-layer

solution that provides a flexible yet QoS constrained framework

for diverse set of applications in a challenging environment.

In this paper, we propose a cross-layer framework that em-

ploys cognitive radio communication to circumvent the hostile

propagation conditions in power systems and supports QoS for

smart grid applications. The proposed framework deals with the

channel impairments by dynamically switching among different

spectrum bands to seek for a channel with the constrained noise

signal. The problem is formulated as a Lyapunov drift optimiza-

tion with the objective of maximizing the weighted service of

application flows belonging to different classes. A suboptimal

distributed control algorithm (DCA) is presented to efficiently

support QoS through dynamic spectrum access, flow control,

scheduling, and routing decisions. In DCA, channel selection

decision is made dynamically on the basis of perceived signal

interference and in turn the estimated channel capacity. Flow

control actions are employed to maintain the service of existing

flows by confirming the resources availability and adjusting ser-

vice attributes of newly admitted flows. Similarly, data sched-

uling and on-demand routing actions are performed to ensure

that the data can be delivered to a destination, while preserving

its service characteristics. Hence, we present a novel cognitive

radio-based cross-layer solution that is tailored to unique char-

acteristics of the power system environment and meets the QoS

requirements of smart grid applications. The earlier version of

this paper has appeared in [22].

The remainder of this paper is organized as follows. The net-

work model and basic assumptions are described in Section II.

The proposed cross-layer framework is presented in Section IV.

Performance evaluation results are discussed in Section V. Fi-

nally, in Section VI, we draw the main conclusion.

II. NETWORK MODEL

WSN is a promising technology to achieve seamless, en-

ergy-efficient, and reliable remote monitoring and control in

smart grid applications. Each sensor node is employed with a

cognitive radio interface and is operated through batteries with

limited energy source. We assume that the nodes employ single

radio that switches among various data channels as well as a

predefined control channel, transmitting at a fixed transmission

power level . Let be the set of channels sensed free of

PU transmission by a SU at a time instant slotted over time

slots , with a corresponding interference power

set of . The time-varying capacity

achieved on each of these channels is

that can be computed using Shannon capacity formula.

TABLE I

SMART GRID APPLICATIONS AND THEIR QOS SPECIFICATIONS [11]

TABLE II

DEFINITION OF THE VARIABLES USED IN THEMODEL, WHICH ARE OBSERVED

AT TIME SLOT

A. Smart Grid Applications and QoS Requirements

To efficiently operate the smart grids [24], the required in-

formation can be provided to utilities by sensor systems to en-

able them achieving dynamic power management. WSN-based

smart grid applications are described in detail in [11] along with

their diverse QoS requirements. For example, distributed feeder

automation applications require low-latency and high-data-rate

communications among substations and intelligent electronic

devices in order to timely detect and isolate faults. On the other

hand, smart metering applications require latency-tolerant in-

formation exchange between the meters and utility management

center. Table I summarizes the most important applications and

their QoS specifications attributed in terms of data rate ,

delay , and reliability , which can be mapped to the traffic

classes described in Section V. Nevertheless, the list of applica-

tions is momentary and the introduction of new applications do

not affect the functioning of the proposed solution since the flex-

ibility of traffic classes allow them to accommodate easily.
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To model the smart grid traffic, let be the set of priority

classes and be the set of weights assigned

to them for prioritizing. Each class is attributed by QoS parame-

ters and . A class has a priority weight and is

bounded to some minimum and maximum threshold values for

these attributes .

The threshold interval of each attribute corresponds to the

tolerance of the attribute in a class. Similarly, there may exist

an arbitrary number of flows in each class such that is

the set of flows in class at time slot and the set of flows

present in the entire network is, . Hence, the th

flow of class is privileged to use the respective service, where

and .

In order to express the utility of a particular application on

achieving its desired QoS, a utility function is defined. When

the application specifies its delay requirement to achieve ben-

efit, its utilization depends on the probability that the delay is

achieved by the network. For instance, demand response man-

agement application sets its communication delay to keep the

demand and supply balanced otherwise it would cost in terms

of excessive energy production or shortage. The similar notion

is applied to the reliability and bandwidth utility. Let

, and represent the utility at meeting data rate,

delay and reliability requirement of flow passing through node

at time . The utility function for the communication parame-

ters is computed as

(1)

where the weighting coefficients , and intensify each

of the QoS parameters in a class separately and

. is translated to explicit application utility in terms

of benefit or profit on achieving appropriate network service.

B. Problem Definition

We formulate a problem, whose objective is to maximize the

utility of the node through its downstream node subject to

the data rate, latency and reliability constraints as

(2)

(3)

(4)

(5)

(6)

where is the channel control variable that takes the value 1

if the channel is selected by , and 0 otherwise.

In the above formulation, constraint (3) ensures that a flow

is admitted only when its data rate requirement can be satisfied

through the surplus capacity on the selected channel

while the existing flows continue to be served. Constraint (4)

prohibits the use of same channel by any of the neighbors of

sender or receiver at the same time , while constraint (5) corre-

sponds to the selection of a path that can deliver the data within

the given flow delay. Similarly, constraint (6) makes sure that

the reliability of the channel in terms of bit error rate (BER) is

higher than the reliability demanded by the flow.

III. LYAPUNOV DRIFT OPTIMIZATION

To solve the utility maximization problem, we apply Lya-

punov optimization techniques. Prior works [15], [10], [18]

on stochastic network optimization provide a detailed method-

ology for minimizing the Lyapunov drift of not only physical

queue backlogs in a queuing network, but also virtual queues

introduced to constrain other system resources. To solve the

problems (2)–(6), we first transform all of the constraints into

queue stability problems. It follows that if we can design a

control algorithm that makes all actual queues and virtual

queues mean rate stable, and yields maximum utility for smart

grid applications, then the problems (2)–(6) are solved. In the

following section, we define the physical queues and the virtual

queues with their update functions. The distributed control

algorithm is presented in Section IV to achieve stability in the

queues. We define physical queue to represent the routing

queue backlog, and virtual queues and for Constraints

2, 3 and 5, respectively. Whereas, the stability of and

jointly ensures constraint (6).

Each network node maintains a set of output priority queues

and determines the forwarding node on the path. Representing

as the vector of data that arrives to the

transport layer for each flow on slot . We assume that a trans-

port layer flow controller observes for th flow every slot

and decides how much of this data to add to the network layer

at its source node and how much to drop. Flow control deci-

sions are made to limit queue buffers and ensure the network

stability. Such an adaptive flow controller exploits the relia-

bility tolerance of the flows in their admission. Let

be the collection of flow control decision variables on slot .

These decisions are made subject to the flow control constraint

. If the flow is rejected, then , oth-

erwise for a minimum data rate of a flow of

class .

Let denote the matrix of current weighted queue back-

logs at node , where at . Denote as

the set of flows of class at the source node and the

queue backlog of class type queue. The change in queue

backlog after slot is computed as

where , due to the potentially dropped data

and, therefore, we have for
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. We also define the total

incoming traffic of class at node as

If there is not enough data to send at the offered rate or higher

priority queue is served then null data is sent, so that

(7)

To satisfy constraint (3), we define a virtual queue [18]

at node for traffic class that represents the queue drain

on the channel of a link originated at and is changed as

(8)

Now, if , then the flow request is accepted, oth-

erwise rejected. If both the queues are stable, then it yields

Rearranging the above, we obtain

If a node has surplus capacity at its forwarding link , i.e.,

, then we have . Hence,

a flow at rate with its loss tolerance is admitted satisfying

constraint (3).

Similarly, we define a virtual queue for a channel se-

lection, which is initialized to 0, i.e., . The number

of nodes using the free channel to be used at the

link at any time is . The nodes selecting

channel cannot be negative, and, therefore, we always have

. Thus, the queue is updated as

(9)

Constraint (4) is satisfied subject to the stability of the virtual

queue at time .

To ensure the worst-case delay is bounded, we define a virtual

queue at node for with that is updated

as

(10)

The bound on maximum arrival rate of class limits its

number of flows as . The size of pro-

vides a bound on the delay of the head-of-queue data in queue

in a FIFO scheduling. If a scheduling algorithm ensures

that and for all and finite con-

stants and for a class flows, then the worst-case

delay is obtained [18] as

(11)

We use Lyapunov drift optimization for stable queue

scheduling [18] in order to make transmission decision

based on channel states and the current queue back-

logs maintained separately for each traffic class. Define

and a non-negative Lyapunov

function for set of queues of at node as

(12)

Now we define as the conditional Lyapunov drift

at node and minimize a bound on the following drift-minus-

utility at every node independently as

(13)

where is a control parameter chosen to tradeoff between the

utility and relaxing constraints, and is a bound defined as

Any algorithm that minimizes the drift in (13) results in system

queues, which is a constant multiple of the optimal utility in

worst case. To achieve this, we employ a distributed control al-

gorithm since the global solution is NP-hard and is not efficient

for resource constrained devices.

IV. DISTRIBUTED CONTROL ALGORITHM (DCA)

The DCA minimizes the right-hand side of the inequality

(13) for each node by making the channel decision, flow con-

trol decision, packet dropping, or reliability decision. Therefore,
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the problem in (13) is decomposed into three separable sub-

problems related to each control action. The channel selection

problem in DCA is solved to maintain an optimal link state for

routing. Although flow control can be solved independently but

its solution is based on the input obtained from the channel con-

trol action. Similarly, packet scheduling and dropping problem

takes input from the flow control and channel decisions but

its solution is independent to these problems as described in

Section IV-C. Hence, the overall solution in DCA is obtained

through cross-layer interaction and solution of its subproblems.

Since all the arrivals and transmission decisions are indepen-

dent of the queues backlog, we can omit the condition of

in the expectations in (13). For every slot , a node observes

the physical queue for each class and the virtual

queues , and and performs the actions in the

following control phases.

A. Channel Control

Let the node select the channel , i.e., .

The channel control problem is then formulated as

In order to solve the above, a routing algorithm makes the de-

cision by choosing the forwarding node and selects the

channel in neighborhood of both and that minimizes sat-

uration in the vicinity of to avoid interference. The

probability of channel selection is computed as

.

The necessary condition in selecting is the BER that should

not exceed the tolerance of a flow of class to ensure the

constraint (6). Thus, takes the value as

if

otherwise

(14)

where is the BER computed for channel based on

its noise signal . This is achieved by using a CSMA-based

MAC protocol in which the structure of frame is composed of

three periods; spectrum sensing (SS) period , control (CTRL)

period and data transmission (DATA) period . No-

tably, the frame period is of fixed duration but its distribu-

tion into three periods is variable. At the beginning of each

frame, spectrum sensing [3] is performed for a period of

sec, where is the basic slot period and is the max-

imum number of slots to sense a channel. After obtaining a list

of free channels, MAC initiates the control period that may span

over initially but skews to its minimum length as

the data request is received or generated. Similarly, the transmis-

sion period is initially set to 0 but is stretched to

for data transmission. If no data transmission takes place for

a number of idle frames threshold then it resets both to initial

values.

For data transmission, node sends channel contention re-

quest to its potential receiver that contains the list of channels

with the preferred channel marked. also determines

the saturation on each channel that it overhears and makes the

selection decision using (14). Likewise, computes the chan-

nels selection probability and sends the response back with the

selection to . If and the interference is

also tolerable then prefers to use it, i.e., , otherwise it

replies with its own preferred channel, i.e., . However,

is obliged to use and confirms it by sending acknowledg-

ment. Thus, all of the neighbors of the sender and receiver will

be aware of the usage of during the current frame that evades

interference by other SU nodes.

B. Admission Control

Each node makes the flow admission decision to solve

A node selects the amount of each flow that

minimizes the surplus capacity of the link and eventually maxi-

mizes the utility of the flows scaled by factor . The throughput

utility of a flow is computed as . Thus, a

flow utilizing more capacity gets higher utility value. More-

over the utility is weighted by its class priority as given in (1)

that motivates to prioritize the flows of higher priority class

for maximizing the utility. To achieve this, we implement a

high-priority-low-rate algorithm that allows to admit the large

number of low rate flows of high priority class that eventually

minimizes the surplus capacity and significantly maximizes the

utility. Consider two flows and competing at node to be

admitted belonging to classes and , respectively.

Now, if , then the admission controller allows

both of them to enter the network layer such that

and . On the other hand, if ,

then it selects the flow of higher priority class and admits if

, otherwise is admitted. However, if ,

then it chooses the flow whose data rate is lower. In the worst

case, if , it exploits the reliability tolerance to adjust

the flow rate under the capacity constraint. Therefore, it drops

a fraction of the data to reduce the offered rate , where

the new data rate is and admits the

flow if , otherwise it rejects.

C. Delay Control

Let be the binary variable that takes the value 1 if the flow

of class is scheduled for transmission on link , otherwise 0.
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To satisfy the constraint (5), each node makes the scheduling

and routing decision to solve the following problem:

The minimization objective is achieved by reducing the data

stored in queues, that is, schedule as much data as possible for

transmission during the current frame to minimize the back-

logged data. At the same time, the delay utility is also required

to be maximized, which is best achieved by selecting the high

priority class and the critical delay flow. We devise a high-pri-

ority-critical-delay algorithm for scheduling data from different

queues. For each class , node drops the data of th flow

exceeding its delay limit since it might cause delay in transmis-

sion of other data packets. Therefore, it drops if

Otherwise, selects the queue for scheduling whose product of

delay weight and criticality is the highest among all the queues.

It then computes the queue scheduling variable as

Thus, the scheduling control variable is defined as

(15)

The control algorithm schedules the packets from different

classes that limits the queue size to minimize the delay as given

in (11). Moreover, the routing algorithm ensures the route

length to the maximum path length, which is possibly a shortest

routing path. However, if there are many feasible paths from

source to destination then it does not necessarily select the

shortest rather incorporates load balancing to avoid congestion

and eventually achieves the reliability.

A route length threshold is defined to limit the number

of hops for each source. The worst case end-to-end delay is ob-

tained by that bounds the delay of th route as

V. PERFORMANCE EVALUATION

Here, we present the performance results of the proposed

DCA framework simulated using ns-2 [30]. To simplify the

evaluation, we consider four different classes of applications;

TABLE III

TRAFFIC CLASSESWITH THEIR ATTRIBUTE VALUES

Fig. 1. Average packet delivery ratio representing the reliability for flows of

different traffic classes at varying number of cognitive channels.

Class I: real-time critical (XRtX), e.g., emergency response,

Class II: real-time and high data rate (HRaRtX), e.g., automated

demand supply, Class III: certain data rate, reliability and

real-time constraints (RaRtRe), e.g., SCADA, and Class IV:

certain data rate and reliability (RaXRe), e.g., smart metering.

The QoS specifications of these classes are listed in Table III.

The performance metrics are reliability, packet latency, and

data rate. The impact on these evaluation parameters is in-

vestigated by varying the number of flows of different classes

with the number of channels upto eight. PUs also appear on the

channels to induce unwanted interference and limit the access

of the given spectrum. The total number of sensor nodes are

49 deployed in 7 7 grid with the sink chosen at the corner of

the grid. Due to lack of QoS routing framework in CRSN, we

compare the performance with MMSPEED [9] proposed for

WSN to give an insight to the benefit of using cognitive radio

in a hostile environment.

In the first scenario, there are five flows per each class, for

the four traffic classes to report the reliability results under high

network load with high data rate demands. PUs are present on

the first four channels but the sensor nodes still switch among all

the channels to mitigate the interference. It can be seen in Fig. 1

that the reliable class XRtRe maintains higher delivery ratio of

95% approximately even at the smaller number of channels but

approaches to almost one as the number of channels are suffi-

cient to create more transmission opportunity. However, other
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Fig. 2. Channel usage in the proposed framework.

Fig. 3. Average packet delay for five class XRtX flows, five class HRaRtX

flows, and a varying number of class RaRtRe flows.

classes could not achieve that higher reliability since their re-

liability attribute is set to lower. Class XRtX also achieves the

reliability upto 95% at eight channels, but other classes do not

reach that level even by increasing the number of channels.

This is due to the fact that the single common control channel

becomes the bottleneck for large number of contenders to ne-

gotiate data channels. In order to visualize the fundamental of

achieving reliability in a hostile environment by using cognitive

radios, Fig. 2 demonstrates the usage of the channels. Since PUs

are present only on the first four channels, it is clear that SUs

mainly utilize the channels above four, which have lesser inter-

ference from PUs or noise. Therefore, the interference with the

PUs is reported under the 10% of the channel usage time. This

clearly proves the effectiveness of cognitive radios in smart grid

systems.

Fig. 4. Packet deadline miss-ratio for flows of real-time class XRtX at delay

bound of 0.6 s by increasing the number of flows for each class.

In the second scenario, we evaluate the real-time support by

reporting average packet delay for the real-time classes XRtX,

HRaRtX, and RaRtRe at the deadline of 0.6 s. We initiate five

flows for the XRtX andHRaRtX classes and increase the number

of flows of other two classes. Fig. 3 illustrates the impact of

varying the number of class RaRtRe flows up to 10. Clearly,

the three real-time classes meet their deadlines until the flows

were increased to 9, but the delay starts increasing exponen-

tially as the number of flows reaches 10. However, the delay

increase for the highest priority class XRtX is smaller than the

others, while it is significantly larger for the second priority class

HRaRtX due to its high data rate than the remaining two classes.

The delay performance is also compared with MMSPEED [9]

that exploits multipath routing and achieves low delay in data

routing according to the priority of class. It can be observed that

the difference of delay between the lower priority class II and

higher priority class I is notable in MMSPEED that eventually
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Fig. 5. Average data rate for five class XRtX flows, five class HRaRtX flows,

and varying number of class RaRtRe flows.

Fig. 6. Average data rate for five class XRtX flows, five class HRaRtX flows,

and varying number of the lowest priority class RaXRe flows.

does not scale to defining more priority classes for increased

and diverse applications of smart grids. To further elaborate the

latency performance, Fig. 4 shows the deadline miss ratio for

class XRtX, which reflects the same trend as discussed for the

average packet delay.

In Fig. 5, the impact on data rate of first three classes is pre-

sented by varying the number of flows of class RaRtRe. At

higher load under ten additional flows, the data rate provided

to class HRaRtX flows is reduced to 35 kbps, which is a reduc-

tion of about 12%. However, this reduction is only 8%, when the

same number of flows of the lowest priority class RaXRe are en-

tered as shown in Fig. 6 in which the data rate of non-real-time

RaXRe flows is reduced to provide room for high-priority high-

rate HRaRtX flows. It gives an insight to the impact of adding

new flows of different priority classes. On the other hand, data

rate of class XRtX is not much affected due to its high priority

Fig. 7. Average per flow data rate for five flows of each of four traffic classes

by varying the number of channels.

with low rate requirement. Although delay in MMSPEED is not

higher than the proposedDCA, its data rate is significantly lower

for both classes, which is observed to be half as the number of

flows are increased to 10. This is due to the fact that MMSPEED

is not spectrum-aware and the underlying MAC protocol oper-

ates on fixed spectrum that does not cope with the extensive

interference in power systems.

The impact of varying the number of data channels under

higher traffic load of five flows per each class is shown in Fig. 7.

The two real-time and low-rate classes achieve higher rate at

smaller channel unlike the other low priority classes but it im-

proves as the number of channels are increased. Hence, DCA

framework supports the data rate for each flows corresponding

to its class, given that the bandwidth is sufficiently available and

maintains the service guarantees in terms of reliability, latency

and data rate according to the priority of classes.

VI. CONCLUSION

This paper presents a cross-layer framework that employs

cognitive radio communication to circumvent the hostile propa-

gation conditions in power systems and supports QoS for smart

grid applications. The problem is formulated as a Laypunov drift

optimization with the objective of maximizing the weighted

service of traffic flows belonging to different classes. A cross-

layer distributed control algorithm (DCA) solution is provided

that jointly optimizes the routing, medium access and physical

layer functions. Performance results reveal that the increase in

number of flows of lower priority class does not affect much

of the performance of flows of higher priority classes for their

specified attributes. Moreover, under limited number of chan-

nels with large PU footprints, presumed to be unwanted signal or

noise, each class preserves performance of its flows with respect

to its attribute specifications. In addition, performance evalu-

ations show that the increase in number of channels does not

necessarily enhance the performance with the same ratio and is

limited due to high contention on the common control channel.
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